《公式法因式分解》

合集下载

公式法因式分解

公式法因式分解

公式法因式分解公式法因式分解是一种有效的数学方法,它可以帮助我们快速找出复杂的表达式的因式分解结果。

它的基本原理是,通过运用因式的定义和性质,将一个复杂的表达式分解成若干个简单的因式,从而得到它的因式分解式。

因式分解是一个十分复杂的概念,它涉及到多个关键概念,如因式、因数、展开式、积式、系数、系数和系数等。

因式分解的过程可以概括为:①将一个表达式分为因式;②将这些因式各自因数分解;③用展开式、积式等简单形式重新构造出因式分解式。

公式法因式分解的基本思想是,将一个复杂的多项式以特定的形式分解成若干个因式,从而使其因式分解式更加清晰明了。

例如,将多项式2x2+7x+6分解成因式,可以先将其分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),再重新构造出它的因式分解式:2x2+7x+6=(2x+3)(x+2),这样就得到了它的因式分解式了。

公式法因式分解的步骤如下:①根据多项式的式子把它分解成若干个简单的因式;②把每个因式因数分解;③用展开式、积式等形式重新构造出因式分解式。

本文将从实例出发,重点介绍公式法因式分解的实践方法。

首先,根据多项式的式子把它分解成若干个简单的因式。

需要特别注意的是,分解时一定要满足因式分解的特殊性质,即每个因式至少有一个非零系数。

例如:将多项式2x2+7x+6分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),即可满足因式分解的特殊性质。

其次,要把每个因式的因数分解出来,以便重新构造出因式分解式。

这一部分最重要的是,要能够分解出每一组因式的因数,具体的方法是,把因式的项的系数分别乘起来,得到它的常数项,再根据它的单项式把它分解出对应的因数,就可以得到完整的因式分解式了。

最后,要把因式按照正确的形式重新构造出因式分解式。

首先,要根据因式分解的特殊性质重新排列因式,使每个因式的非零系数在因式分解式的头部;其次,要把多项式的最高次数项保留,其他项按降幂排序;最后,要对除系数外的各项因数进行乘积运算,把它们组合成因式分解式。

公式法因式分解教案

公式法因式分解教案

公式法因式分解教案公式法因式分解教案篇一学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课复习乘方an的意义:an表示个相乘,即an=.乘方的结果叫a叫做,n是问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?列式为,你能利用乘方的意义进行计算吗?二、探究新知:探一探:1根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)55×54=_________=5();(3)(-3)3×(-3)2=_________________=(-3)();(4)a6a7=________________=a().(5)5m5n猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?说一说:你能用语言叙述同底数幂的乘法法则吗?同理可得:amanap=(m、n、p都是正整数)三、范例学习:【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.2.计算:(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式. (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1四、学以致用:1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=⑷-4444=⑸22n22n+1=⑹y5y2y4y=2.判断题:判断下列计算是否正确?并说明理由⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

《公式法》因式分解

《公式法》因式分解
《公式法》因式分解
汇报人: 2023-12-26
目录
• 公式法因式分解简介 • 公式法因式分解的基本步骤 • 公式法因式分解的常见类型 • 公式法因式分解的实例解析 • 公式法因式分解的注意事项
01
公式法因式分解简介
因式分解的定义
01
02
03
因式分解的定义
将一个多项式表示为几个 整式的积的形式,这种变 形叫做把这个多项式因式 分解,也叫做分解因式。
在化简过程中,需要注意消除项和合 并同类项。
简化多项式可以使其更容易理解和计 算。
03
公式法因式分解的常见类型
二次多项式的因式分解
01
02
03
04
总结词
利用完全平方公式和平方差公 式进行因式分解
公式法
$ax^2+2abx+b^2=(ax+b) ^2$
公式法
$ax^2-b^2=(ax+b)(ax-b)$
二次多项式的实例解析
总结词
二次多项式是多项式中最简单的一类, 其因式分解方法相对固定,公式法是其 中最常用的方法之一。
VS
详细描述
对于形如ax^2+bx+c的二次多项式,我 们可以使用公式法进行因式分解。首先计 算判别式b^2-4ac的值,然后根据判别式 的值选择合适的公式进行因式分解。当判 别式大于0时,二次多项式有两个实根, 可以使用公式法分解为两个一次多项式的 乘积;当判别式等于0时,二次多项式有 一个重根,可以分解为一个一次多项式的 平方;当判别式小于0时,二次多项式没 有实根,无法使用公式法进行因式分解。
因式分解的步骤
提取公因式、公式法、十 字相乘法、分组分解法等 。
因式分解的作用

《一元二次方程的解法(三)--公式法,因式分解法》—知识讲解(提高)

《一元二次方程的解法(三)--公式法,因式分解法》—知识讲解(提高)

《一元二次方程的解法(三)--公式法,因式分解法》—知识讲解(提高)【学习目标】1. 理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2. 正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3. 通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根. 3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号);③求出的值; ④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=;①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,2x =;② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-;③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x 的方程2()(42)50m n x m n x n m ++-+-=.【答案与解析】(1)当m+n =0且m ≠0,n ≠0时,原方程可化为(42)50m m x m m +--=.∵ m ≠0,解得x =1.(2)当m+n ≠0时,∵ a m n =+,42b m n =-,5c n m =-,∴ 2224(42)4()(5)360b ac m n m n n m m -=--+-=≥,∴ 2424|6|2()2()n m n m m x m n m n --±==++, ∴ 11x =,25n m x m n-=+. 【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用公式法解含有字母系数的一元二次方程---例2练习】【变式】解关于x 的方程2223(1)x mx mx x m ++=+≠;【答案】原方程可化为2(1)(3)20,m x m x -+-+=∵1,3,2,a m b m c =-=-=∴ 2224(3)8(1)(1)0b ac m m m -=---=+≥,∴ 3(1),2(1)m m x m -±+==- ∴ 122, 1.1x x m==-2.用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)=4m ;【答案与解析】方程整理为224214540m m m m m --++--=,∴ 22130m m --=,∴ a =1,b =-2,c =-13,∴ 224(2)41(13)56b ac -=--⨯⨯-=,∴ m ==1==∴ 11m =21m =【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用因式分解法解含字母系数的一元二次方程---例5(3)】【变式】用公式法解下列方程:【答案】∵21,3,2,a b m c m ==-=∴22224(3)4120b ac m m m -=--⨯⨯=≥∴32m m x ±== ∴122,.x m x m ==类型二、因式分解法解一元二次方程3.解方程:(x+1)2-2(x+1)(2-x)+(2-x)2=0【思路点拨】这道试题实质是完全平方式,但是难于看出来,采用换元法,显而易见,设x+1=m,2-x=n,进行化简即可.【答案与解析】设x+1=m,2-x=n,则原方程可变形为:2220m mn n-+=.∴ (m-n)2=0,∴ m=n,即x+1=2-x.∴121 2x x==.【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太繁琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.4.(1)解方程x(x﹣1)=2.有学生给出如下解法:∵x(x﹣1)=2=1×2=(﹣1)×(﹣2),∴或或或解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=﹣1.∴x=2或x=﹣1.请问:这个解法对吗?试说明你的理由.(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上边的事实,解答下面的问题:用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.【思路点拨】(1)这种做法不对,两个数的积是2,这两个数的情况有无数种,不一定只是所列出的几种;(2)因为周长一定的多边形中,正多边形面积最大,那么就把五根木棒都用上,不会得到正三角形,也就是等边三角形,只能取最接近的办法,即2+5,3+4,6来围成三角形,其面积最大,得到一个等腰三角形,则其底边上的高等于2,S△=6.【答案与解析】(1)答案一:对于这个特定的已知方程,解法是对的.理由是:一元二次方程有根的话,只能有两个根,此学生已经将两个根都求出来了,所以对.答案二:解法不严密,方法不具有一般性.理由是:为何不可以2=3×等,得到其它的方程组此学生的方法只是巧合了,求对了方程的解.(2)解:因为周长一定(2+3+4+5+6=20cm)的三角形中,以正三角形的面积最大.取三边尽量接近,使围成的三角形尽量接近正三角形,则面积最大.此时,三边为6、5+2、4+3,这是一个等腰三角形.可求得其最大面积为6.【总结升华】考察解一元二次方程,以及周长一定的多边形中,正多边形面积最大等知识.5.请先阅读例题的解答过程,然后再解答:代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)﹣5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x﹣5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x﹣5)=0,就相当于解方程x+2=0或3x﹣5=0,得到原方程的解为x1=﹣2,x2=.根据上面解一元二次方程的过程,王力推测:a﹒b>0,则有或,请判断王力的推测是否正确?若正确,请你求出不等式>0的解集,如果不正确,请说明理由.【思路点拨】先根据利用因式分解法求方程根的方法判断出王力的推测是正确的,再根据其范例及不等式的性质列出不等式组,求出其解集即可.【答案与解析】王力的推测是正确的.∴∴(1)或(2)解不等式组(1)得:x;解不等式组(2)得:x;∴不等式的解集是x或x.【总结升华】此题是一道材料分析题,考查了同学们的阅读理解能力.对于分式不等式,应当根据“两数相除,同号得正”进行分析.。

公式法分解因式ppt

公式法分解因式ppt

总结词
完全平方公式是一种常见的因式分解方法,适用于形如$a^2 + 2ab + b^2$的式子。
公式
$(a+b)^2 = a^2 + 2ab + b^2$
完全平方公式法
平方差公式法
总结词
平方差公式是一种基本的因式分解方法,适用于形如$a^2 - b^2$的式子。
提取公因式法是因式分解中常用的一种方法,适用于有公因式的式子。
详细描述
利用三角恒等变换,将式子化为一个单项式的倍数形式,从而得到因式分解的结果。
方法描述
三角公式法
04
公式法分解因式的案例分析
请输入您的内容
公式法分解因式的案例分析
05
公式法分解因式的注意事项与技巧
确认公式是否正确
在使用公式法分解因式时,首先需要确认所使用的公式是否正确,避免使用错误的公式导致结果错误。
THANKS
感谢观看
2023-10-27
公式法分解因式ppt
目录
contents
引言公式法分解因式的基本原理公式法分解因式的具体方法公式法分解因式的案例分析公式法分解因式的注意事项与技巧总结与展望
01
引言
分解因式的定义与重要性
分解因式的重要性
1. 便于化简:通过分解因式,可以将一个复杂的多项式简化为易于计算的基本因子乘积,有助于进一步化简。
在使用公式法分解因式时,需要了解公式的变形,包括平方差公式的逆运算、立方和公式的逆运算等,以便更好地运用公式解决各种问题。
了解公式的变形
掌握公式的运用方法
在使用公式法分解因式时,需要掌握公式的运用方法,包括如何使用公式进行因式分解、如何使用公式进行计算等。

《公式法》因式分解PPT(第1课时)

《公式法》因式分解PPT(第1课时)

B.-m ²-n²的两平方项符号相同,不能用平方差公式进行因式分解;
C.-m ²+n ² 符合平方差公式的特点,能用平方差公式进行因式分解;
D. m ²-tn ²不符合平方差公式的特点,不能用平方差公式进行因式分解.
合作探究
探究点三 问题1:把下列各式分解因式: (1)9(m+n)²-(m-n)²; (2)2x³-8x. (3)x 4-1 解:(1)9(m+n)²-(m-n)²
4.3 公式法
第1课时
八年级下册
-.
学习目标 1 掌握用平方差公式分解因式的方法. 2 能综合运用提取公因式法、平方差公式法分解因式.
前置学习
1.填空
①25x²= (__5_x__)²
③0.49b²= (_0_._7_b_)²
⑤1
4
b²=
(__12_b__)²
②36a4 = (__6_a_²_)² ④64x²y²= (__8_x_y_)²
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形 式 2 .公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
课后作业
1.对于任意整数n,多项式(n+7) ²-(n-3) ²的值都能( A )
随堂检测
1.判断正误 (1)x²+y²=(x+y)(x-y); (2)x²-y²= (x+y)(x-y); (3)-x²+y²=(-x+y)(-x-y); (4)-x²-y²=-(x+y)(x-y).
(✘) ( ✔) ( ✘) ( ✘)
随堂检测
2. 某同学粗心大意,分解因式时,把等式x4-■=(x ²+4)(x+2)(x-▲)中的

《公式法》资料:因式分解知识点小结

《公式法》资料:因式分解知识点小结

一、提公因式法【知识要点】知识点1 因式分解的定义 把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【注】(1)因式分解与整式乘法是相反方向的变形. (2)因式分解是恒等变形,因此可以用整式乘法来检验.知识点2 公因式:一个多项式中各项都含有的相同的因式,叫做这个多项式的公因式.知识点3 提公因式法:把一个多项式中的公因式提出来,从而将多项式化成几个因式乘积的形式,这种分解因式的方法叫做提取公因式法.【知识点总结】1. 方法规律:一个多项式各项的公因式必须由三部分组成:(1)各项整数系数的最大公约数;(2)各项相同的字母;(3)相同因式的指数取最小次数. 2. 解题方法:(1)用提公因式法分解因式后,剩下因式不能再有公因式;(2)公因式提出后,剩下的因式的求法:用公因式去除多项式各项,所得商即为另一个因式.3. 方法技巧:(1)、用提公因式法分解因式的一般步骤:○1 确定公因式○2 把公因式提到括号外面后,用原多项式除以公因式所得商作为另一个因式.(2)为了检验分解因式的结果是否正确,可以用整式乘法运算来检验.二、公式法3.公式法:(1)常用公式 平 方 差: )b a )(b a (b a 22-+=-完全平方: 222)b a (b 2ab a ±=+±(2)常见的两个二项式幂的变号规律:①22()()n n a b b a -=-; ②2121()()n n a b b a ---=--.(n 为正整数)三、十字相乘、分组分解【知识要点】1.十字相乘法(1)二次项系数为1的二次三项式2xpx q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22(2)二次项系数不为1的二次三项式2ax bx c ++中,如果能把二次项系数a 分解成两个因数12,a a 的积,把常数项c 分解成两个因数12,c c 的积,并且1221a c a c +等于一次项系数b 的值,那么它就可以把二次三项式2ax bx c ++分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++.2.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-,既没有公因式,又不能直接利用公式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

因此x=-5是原分式方程的解.
随堂练习
1.下列方程是分式方程的是( B )
A.
一元一次方程
B.
C. x2-1=0
D. 2x+1=3x 一元二次方程
一元一次方程
2.(2020·海南中考)分式方程 的解是(
A. x=-1
B. x=1 C. x=5
x-2=3
D. x=2
x=5
) C
解分式方程时,不要忘记检验哦.
用平方差公式分解因式 由于整式的乘法与因式分解是方向相反的变形,把整 式乘法的平方差公式(a+b)(a-b)=a2-b2的等号两边互换位 置,就得到了 a2-b2=(a+b)(a-b)
语言叙述:两个数的平方差,等于这两个数的和与这 两个数的差的积.
用完全平方公式分解因式 把整式乘法的完全平方公式 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 的等号两边互换位置,就可以得到 a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2. 语言叙述:两个数的平方和加上(或减去)这两个数 的积的2倍,等于这两个数的和(或差)的平方.
分析:将b2看成一个整体a,则原式变形为(b2)2-b2-12,
可以看作a2-b-12.
1 -4
b4-b2-12 =(b2-4)(b2+3) =(b+2)(b-2)(b2+3).
13 1×3+1×(-4)=-1
2.(2020·乐山)已知y≠0,且x2-3xy-4y2=0,则 的值是
__4_或__-_1__.
分析:因为x2-3xy-4y2=0, 即(x-4y)(x+y)=0, 可得x=4y或x=-y, 所以 =4或 =−1.

公式法因式分解

公式法因式分解

2 a2 6a 9 原式 x 32
3 4a2 4a 1 原式 2a 12
4 9m2 6mn n2 原式 3m n2
5 x2 1 x
4
原式
x
1 2
2
6 4a2 12ab 9b2 原式 2a 3b2
1. 因式分解 (1)9-a2-4ab-4b2 (2) 1+a2b2-a2-b2 (3) x2-4xy+4y2-5x+10y
(3)-3a+6a2-3a3 (4)4(a-b)3-9(a-b)
2.计算 (1)13×9.98+5.6×99.8+310×0.998
(2)9992-9982 (3)172+26×17+132
2.计算:542 462 2 54 46
3.已知 x y 2, xy ,2 求
x2 y2 6xy 的值。
(2)25m2 80m 64
(3)a2 1 a
(4) 24xy x2 y2
(5)(a b)2 18(a b) 81
[例3]分解因式: (1)(x+4)2+2x(x+4)+x2
(2)a4-2a2b2+b4
(3)(x2+3x)2-(x-1)2 (4)-2an+1+2an- 1 an-1
2
练习. 2.分解因式:
(1)x2 y 4 y
(2) 3x3 12x2 y 12xy2 (3)3ax2 6axy 3ay2 (4)a4 8a2 16
(5)x3 4x2 4x
3、计算:8002-1600×798+7982
应用提高、拓展创新
1.把下列多项式分解因式,从中你能发现 因式分解的一般步骤吗?

《公式法因式分解》课件

《公式法因式分解》课件

因式分解的基本思想?
因式分解的基本思想是将多 项式中的公因式提出来,然 后对剩余部分进行因式分解。
公式法因式分解
1
什么是公式法因式分解?
公式法因式分解是指通过特定的公式,将多项式分解成几个单项式的积。
2
列举公式法因式分解的几个公及其应用
例如: ①平方差公式分解:$a^2-b^2=(a-b)(a+b)$ ②三项完全平方公式分解:$a^2+2ab+b^2=(a+b)^2$ ③一次多项式因式公式分解:$ax^2+bx+c=a(x-x_1)(x-x_2)$
总结与思考
总结公式法因式分解方法 的优缺点
总结公式法因式分解方法的优 点和不足之处,引导学生思考 这一方法的适用范围和限制条 件。
思考其他因式分解方法的 应用场景
向学生介绍不同的因式分解方 法,让他们了解不同的思路和 技巧,开拓视野、拓宽思路。
强调学生掌握因式分解方 法的重要性和未来发展前 景
通过对因式分解实际应用的案 例介绍,并引领学生关注相关 前沿科技和产业,激发他们学 习的兴趣和动力。
公式法因式分解PPT课件
这份PPT课件将带你深入了解因式分解中最常用的公式法,并向你展示这一简 单易学却极其实用的技巧。
பைடு நூலகம்
背景介绍
什么是因式分解?
因式分解即将多项式写成几 个单项式的积的形式。
因式分解的意义和应用?
因式分解可以帮助我们更简 洁、准确地表达多项式,同 时在化简代数式、解方程、 求极值、证明等方面具有广 泛的应用。
3
详细步骤介绍
详细介绍公式法因式分解的每一个步骤,包括提取公因式、使用公式、检验结果等。
实例演练

14.3.2公式法_因式分解(完全平方公式)

14.3.2公式法_因式分解(完全平方公式)

a 2ab b a 2ab b
2 2
2
2
完全平方式的特点: 1、必须是三项式 2、有两个“项”的平方 3、有这两“项”的2倍或-2倍
2 2 首 2首尾 尾
判别下列各式是不是完全平方式
1x 2 xy y 2 2 2A 2 AB B 2 2 3甲 2 甲乙 乙 2 2 4 2
a 2ab b a b
2 2
2
a 2ab b a b
2 2
2
这两个多项式有什么特征?
2 2 2 2 a +2ab+b 与a -2ab+b
这两个多项式是两个数的平方和加上(或 减去)这两个数的积的2倍,这恰是两个 数和或差的平方。
我们把 2 2 和 2 2 a +2ab+b a -2ab+b 这样的式子叫做完全平方式。
1. 因式分解:9x2-y2-4y-4=_____. 2 2 【解析】9x -y -4y-4
= 9x2-(y2+4y+4) = 答案: 2. 分解因式:2a2–4a+2 2 【解析】 2a – 4a+2 = 2(a 2 – 2a +1) = 2(a – 1) 2
需要我们掌握: 1:如何用符号表示完全平方公式?
(1) (2) 1 6 a 4 + 2 4 a 2 b 2 + 9 b 4 2 2 解:(1)x - 12xy+36y 2 2 = x -2· x· 6y+ ( 6y ) = ( x - 6y ) 2 ( 2 ) 16a 4 +24a 2 b 2 +9b 4
2. 因式分解.
2 2 x - 12xy+36y

公式法分解因式说课稿

公式法分解因式说课稿

公式法分解因式说课稿公式法分解因式说课稿1一、教材分析(一)地位和作用分解因式与数是分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。

在后面的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。

因此分解因式这一章在整个教材中起到了承上启下的作用。

同时,在因式分解中体现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。

因此,因式分解的学习是数学学习的重要内容。

根据《课标》的要求,__介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完全平方公式)。

因此公式法是分解因式的重要方法之一,是现阶段的学习重点(二)学情分析:学生已经学习了乘法公式中的完全平方公式和平方差公式,在上一节课学习了提公因式法和平方差公式分解因式,初步体会了分解因式与整式乘法的互逆关系,为本节课的学习奠定了良好的.基础。

学生已经建立了较好的预习习惯,为本节课的难点突破提供了先决条件。

(三)教学目标1.知识与技能使学生了解运用公式法分解因式的意义;会用公式法(直接用公式不超过两次)分解因式(指数是正整数);使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式。

2.过程与方法经历通过整式乘法的完全平方公式逆向得出运用公式分解因式方法的过程,发展学生的逆向思维和推理能力。

3.情感与态度培养学生灵活的运用知识的能力和操积极思考的良好行为,体会因式分解在数学学科中的地位和价值。

(四)教学重难点、1.教学重点:会运用完全平方公式和分解因式,培养学生观察、分析问题的能力。

2.教学难点:准确理解和掌握公式的结构特征,并善于运用完全平方公式分解因式。

3.易错点:分解因式不彻底。

二、学法与教法分析1.学法分析:①注意分解因式与整式乘法的关系,两者是互逆的。

②注意完全平方公式的特点。

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解

因式分解——运用公式法

因式分解——运用公式法

因式分解——运用公式法因式分解是将一个多项式化简成一系列乘积的过程。

通常有两种方法用于进行因式分解:公式法和分组法。

公式法可以概括为以下几种常用的因式分解公式:1.a²-b²=(a+b)(a-b)这是平方差公式,用于因式分解差的平方。

例如,我们可以将x²-4分解为(x+2)(x-2)。

2. a³ + b³ = (a + b)(a² - ab + b²)这是立方和公式,用于因式分解和的立方。

例如,我们可以将x³+8分解为(x+2)(x²-2x+4)。

3. a³ - b³ = (a - b)(a² + ab + b²)这是立方差公式,用于因式分解差的立方。

例如,我们可以将x³-8分解为(x-2)(x²+2x+4)。

4. a⁴ + b⁴ = (a² + √2ab + b²)(a² - √2ab + b²)这是四次和公式,用于因式分解和的四次方。

例如,我们可以将x⁴+16分解为(x²+4√2x+4)(x²-4√2x+4)。

5. a⁴ - b⁴ = (a² - √2ab + b²)(a² + √2ab + b²)这是四次差公式,用于因式分解差的四次方。

例如,我们可以将x⁴-16分解为(x²-4√2x+4)(x²+4√2x+4)。

除了以上这些常用的因式分解公式外,还有一些其他形式的因式分解公式,以及一些特殊的因式分解技巧。

例如,对于一个二次方程式ax² + bx + c,我们可以使用求根公式x = (-b ± √(b² - 4ac)) / 2a 来因式分解。

根据求根公式,我们可以将二次方程ax² + bx + c 分解为两个因式的乘积 (x - x₁)(x - x₂),其中 x₁和 x₂是由求根公式得到的两个根。

沪科初中数学七下《《因式分解》公式法教案

沪科初中数学七下《《因式分解》公式法教案

8.4《因式分解》公式法教学目标(一)教学知识点运用平方差公式分解因式.(二)能力训练要求1.能说出平方差公式的特点.2.能较熟练地应用平方差公式分解因式.3.初步会用提公因式法与公式法分解因式.•并能说出提公因式在这类因式分解中的作用.4.知道因式分解的要求:把多项式的每一个因式都分解到不能再分解.(三)情感与价值观要求培养学生的观察、联想能力,进一步了解换元的思想方法.教学重点应用平方差公式分解因式.教学难点灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学方法自主探索法.教具准备投影片.教学过程Ⅰ.提出问题,创设情境出示投影片,让学生思考下列问题.问题1:你能叙述多项式因式分解的定义吗?问题2:运用提公因式法分解因式的步骤是什么?问题3:你能将a2-b2分解因式吗?你是如何思考的?[生]1.多项式的因式分解其实是整式乘法的逆用,•也就是把一个多项式化成了几个整式的积的形式.2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,•就不能使用提公因式法对该多项式进行因式分解.3.对不能使用提公因式法分解因式的多项式,不能说不能进行因式分解.[生]要将a2-b2进行因式分解,可以发现它没有公因式,•不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的平方差形式,所以用平方差公式可以写成如下形式:a2-b2=(a+b)(a-b).[师]多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法.今天我们就来学习利用平方差公式分解因式.Ⅱ.导入新课[师]观察平方差公式:a2-b2=(a+b)(a-b)的项、指数、符号有什么特点?(让学生分析、讨论、总结,最后得出下列结论)(1)左边是二项式,每项都是平方的形式,两项的符号相反.(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差.(3)在乘法公式中,“平方差”是计算结果,而在分解因式,•“平方差”是得分解因式的多项式.由此可知如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.出示投影片[做下列填空题的作用在于训练学生迅速地把一个单项式写成平方的形式.•也可以对积的乘方、幂的乘方运算法则给予一定时间的复习,避免出现4a2=(4a)2•这一类错误] 填空:(1)4a2=()2;(2)49b2=()2;(3)0.16a4=()2;(4)1.21a2b2=()2;(5)214x4=()2;(6)549x4y2=()2.例题解析:出示投影片:[例1]分解因式(1)4x2-9 (2)(x+p)2-(x+q)[例2]分解因式(1)x4-y4(2)a3b-ab可放手让学生独立思考求解,然后师生共同讨论,纠正学生解题中可能发生的错误,并对各种错误进行评析.[师生共析][例1](1)(教师可以通过多媒体课件演示(1)中的2x,(2)中的x+p•相当于平方差公式中的a;(1)中的3,(2)中的x+q相当于平方差中的b,进而说明公式中的a与b•可以表示一个数,也可以表示一个单项式,甚至是多项式,渗透换元的思想方法)[例2](1)x4-y4可以写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了.但分解到(x2+y2)(x2-y2)后,部分学生会不继续分解因式,针对这种情况,可以回顾因式分解定义后,•让学生理解因式分解的要求是必须进行到多项式的每一个因式都不能再分解为止.(2)不能直接利用平方差公式分解因式,但通过观察可以发现a3b-ab•有公因式ab,应先提出公因式,再进一步分解.解:(1)x4-y4=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)a3b-ab=ab(a2-1)=ab(a+1)(a-1).学生解题中可能发生如下错误:(1)系数变形时计算错误;(2)结果不化简;(3)化简时去括号发生符号错误.最后教师提出:(1)多项式分解因式的结果要化简:(2)在化简过程中要正确应用去括号法则,并注意合并同类项.练一练:(出示投影片)把下列各式分解因式(1)36(x+y)2-49(x-y)2(2)(x-1)+b2(1-x)(3)(x2+x+1)2-1(4)2()4x y--2()4x y+.Ⅲ.随堂练习1.课本P76练习1、2.Ⅳ.课时小结1.如果多项式各项含有公因式,则第一步是提出这个公因式.2.如果多项式各项没有公因式,则第一步考虑用公式分解因式.3.第一步分解因式以后,所含的多项式还可以继续分解,•则需要进一步分解因式.直到每个多项式因式都不能分解为止.Ⅴ.课后作业1.课本P78习题4(2)(4)5(1)(2)题.2.预习“用完全平方公式分解因式”.。

《用公式法进行因式分解》教案

《用公式法进行因式分解》教案

12.5.2《用公式法分解因式》教案教学目标:• 1. 理解整式乘法和因式分解是互逆的,培养逆向思维能力。

• 2.进一步理解因式分解的意义,掌握用平方差公式和完全平方公式分解因式的方法。

• 3. 掌握提公因式法、公式法分解因式的综合运用。

• 4.体会换元法、类比法、整体思想、转化思想。

重点:用平方差公式和完全平方公式法进行因式分解.难点:把多项式进行必要变形,灵活运用平方差公式和完成平方公式分解因式 教学过程:一、创设情境 明确目标复习回顾1. 还记得学过的两个最基本的乘法公式吗?2. 什么叫因式分解?我们学过的因式分解的方法是什么?3. 因式分解与整式乘法有什么关系?你能很快做出下面两道题吗?引出新课,确定学习目标二、引导自学 初步达标自主完成下面填空并思考:(4分钟,独立完成)(一)根据乘法公式计算:= == = (二)根据等式的对称性填空 = = = = (三)思考:1、(二)中四个多项式的变形是因式分解吗?2、对比(一)和(二)你有什么发现?我的发现:乘法公式反过来就是因式分解把乘法公式反过来进行因式分解的方法称为公式法。

你能用图形的面积说明这两个公式吗?三、探究新知 达成目标探究一 用平方差公式分解因式222007200740162008 1+⨯-)(2220072008 2-)((2)(2)m m +-()()a b a b -+2()a b +2(2)m +24m -22a b -244m m ++222a ab b ++22222()()2()a b a b a b a ab b a b -=-+±+=±思考:1、因式分解时,平方差公式的左边和右边各有什么特征?2、你能用语言叙述这个公式吗?议一议:下列多项式可以用平方差公式分解吗?(1)x 2-y 2 ;(2)-x 2+y 2;(3)x 2+y 2 ;(4)-x 2-y 2;(5)16-b 2 ;(6)(2a)2-(3b)2;(7) 4a 2-9b 2 ;(8) (a+b)2-(a-b)2 ;(9) 9(a+b)2-16(a-b)2思考: 你是如何怎样判断一个多项式是否能用平方差公式分解?归纳:平方差公式公式: a 2-b 2=(a+b)(a-b)(一)结构特点:1、左边左边有二项,是两个数的平方差的形式2、右边是右边是左边平方项的底数的和与差的积(二)判断:看多项式是否能写成两个数的平方的差的形式(三)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
1
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)

八年级数学_因式分解_公式法课件

八年级数学_因式分解_公式法课件
a2-2ab+b2 = (a-b)2
上列各式,从左到右利用了( )公式? 像这种对多项式进行因式分解的方法
就称为:__公__式__法___
§12.2.1 单项式与单项式相乘
例1:把下列各式因式分解
(1)25a2-16b2 (2)x2+4xy+4y2 解:(1) 25a2-16b2
= (5a )2 -(4b)2 =(5a+4b)( 5a+4b ) (2) x2+4xy+4y2 =x2+2 • x • 2y+(2y) 2 = (x+2y)2
巩固练习
因式分解
x2-4= (x-2)(x+2)
4x4-9y2 = (2x2-3y)(2x2+3y) 4x2+12x+9=(2x+3)2
§12.2.1 单项式与单项式相乘
小结注意:
(1) 因式分解的运算过程与多项式的乘法运算过程 刚好是互逆运算,不能混淆,更不能来回运算
(2) 第一项系数为负数时,提公因式法应将负号 一起提取,是括号里的第一项系数为正数;
12.5 因式分解
2. 分解因式--公式法
甘肃清水*王河中学 刘贵*
温故知新
1 因式分解:把一个多项式化为几个整式的 积的形式,叫做多项式的因式分解
如:ma+mb+mc = m(a+b+c) a2-b2 =(a+b)(a-b)
2 提公因式法:如 ma+mb+mc = m(a+b+c) 公因式:如 上式中式相乘
例1:把下列各式因式分解
(1)4x3y-4x2y2+xy3 (2)3x3-12xy2 解:(1) 4x3y-4x2y2+xy3

《因式分解《公式法》优质课获奖教案

   《因式分解《公式法》优质课获奖教案

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。

2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。

从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。

本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。

《公式法》教学目标1.了解运用公式法分解因式的意义;2.掌握用平方差公式和完全平方公式分解因式.教学重点掌握运用平方差公式和完全平方公式分解因式.教学难点将某些单项式化为平方形式,再用平方差公式分解因式.教学过程Ⅰ.创设问题情境,引入新课我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法.Ⅱ.新课讲解1.请看乘法公式(1)(a+b)(a-b)=a2-b2左边是整式乘法,右边是一个多项式,把这个等式反过来就是(2)a2-b2=(a+b)(a-b)左边是一个多项式,右边是整式的乘积.判断一下,第二个式子从左边到右边是否是因式分解?第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式.同理,完全平方公式需要反向运用2.例题讲解[例1]把下列各式分解因式:(1)25-16x2;(2)9a 2-41b 2. 解:(1)25-16x 2=52-(4x )2=(5+4x )(5-4x );(2)9a 2-41 b 2=(3a )2-(21b )2 =(3a +21b )(3a -21b ). [例2]把下列各式分解因式: (1)9(m +n )2-(m -n )2;(2)2x 3-8x .解:(1)9(m +n )2-(m -n )2=[3(m +n )]2-(m -n )2=[3(m +n )+(m -n )][3(m +n )-(m -n )]=(3m +3n +m -n )(3m +3n -m +n )=(4m +2n )(2m +4n )=4(2m +n )(m +2n )(2)2x 3-8x =2x (x 2-4)=2x (x +2)(x -2)说明:例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法.[例3]分解因式:(1)3ax 2+6axy +3ay 2 (2)(a +b )2-12(a +b )xy +36x 2y 2Ⅲ.课堂练习1.判断正误(1)x 2+y 2=(x +y )(x -y );( )(2)x 2-y 2=(x +y )(x -y );( )(3)-x 2+y 2=(-x +y )(-x -y );( )(4)-x 2-y 2=-(x +y )(x -y ).( )2.把下列各式分解因式(1)a 2b 2-m 2(2)(m -a )2-(n +b )2(3)x2-(a+b-c)2(4)-16x4+81y43.下列各式是否是完全平方式?如果不是,请说明理由.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+4b2;(4)a2-2ab+b2;(5)x2-6x-9;(6)a2+a+0.25.[教学反思]学生对生活中的立体图形感兴趣,气氛极好,能认识圆柱、圆椎、正方体、长方体、棱柱、球,并能用自己的语言简单描述它们的某些特征,也能分别举出生活中的物体哪些是属于圆柱、圆椎、正方体、长方体、棱柱、球.本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习回顾
填空: (1)(x+5)(x-5) =
x –25
2 2
2 2
; ;
2
(2)(3x+y)(3x-y)= 9x –y
(3)(3m+2n)(3m–2n)= 9m –4n . 它们的结果有什么共同特征? 2
(a + b)(a - b) = a - b
2
尝试将它们的结果分别写成两个因式的乘积:
(x+5 )(x-5) __; x 2 - 25 = __________ __________
a + 2ab + b a - 2ab + b
2 2
2
2
我们把以上两个式子 叫做完全平方式 “头” 平方, “尾” 平方, “头” “尾”两倍中间放.
(1x + 2 xy + y 是 2 2 是 (2A - 2 AB + B 2 2是 (3甲 + 2 甲乙 + 乙 2 2 是 (4 - 2 +
2)原式=(x² +1)(x+1)(x-1)
因式分解的基本方法2
运用公式法
把乘法公式反过来用,可以把符合公式 特点的多项式因式分解,这种方法叫公式法. (1) 平方差公式: a2-b2=(a+b)(a-b) (2) 完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
平方差公式:
例1.把下列各式分解因式
(1)16a² -1
解:1)16a² -1=(4a)² -1
( 2 ) 4x² - m² n²
(3)
9 —
25
=(4a+1)(4a-1)
x²-
1 — 16

解:2) 4x² - m² n²
( 4 ) –9x² +4
=(2x)² - (mn)²
=(2x+mn)(2x-mn)
D


D. - X² + y²
2) -4a² +1分解因式的结果应是 A. -(4a+1)(4a-1) C. -(2a +1)(2a+1) 2. 把下列各式分解因式: 1)18-2b² 2) x4 –1 B. D.
D
-( 2a –1)(2a –1) -(2a+1) (2a-1)
1)原式=2(3+b)(3-b)
在使用平方差公式分解因式时,要
注意:
先把要计算的式子与平方差公式对照, 明确哪个相当于 a , 哪个相当于 b.
牛刀小试(一)
把下列各式分解因式: 1 2 2 y ①x 16 ② 0.25m2n2 – 1
③ (2a+b)2 - (a+2b)2
④ 25(x+y)2 - 16(x-y)2
牛刀小试(二)
(4) a2x2 -25y 2 = (ax)2 -(5y)2
(5) -x2 -25y2 不能转化为平方差形式
例1.分解因式:
解:原式
解:原式
公式法因式分解关键:确定a和b;
a2 - b2= (a + b) (a - b)
下列多项式能转化成( )2-( 如果能,请将其转化成( )2- (1) m2 -1 =m2 -12 (2)4m2 -9 =(2m)2 -32 (3)4m2 + 9 不能转化为平方差形式 (4)x2 -25y
)
把下列各式进行因式分解 1. a3b3-a2b-ab ab(a2b2-a-1)
2. -9x2y+3xy2-6xy -3xy(3x-y+2)
比一比
• 和老师比一比,看谁算的又快又准确!
322-312
2 8 2 7 ( )-( ) 15 15
682-672 5.52-4.52
在横线内填上适当的式子,使等式成立: (1)(x+5)(x-5)= (2)(a+b)(a-b)= (3) x2-25 = (x+5)( (4) a2-b2 = (a+b)( x2-25 a2-b2 x-5 a-b ; ; ); )。
4. 若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
如图,在边长为6.8cm 正方形钢板上,挖去4个边 长为1.6cm的小正方形,求 剩余部分的面积。
考考你
你知道992-1能否被100整除吗? 说说你是怎么想的?
课前小测:
1.选择题: 1)下列各式能用平方差公式分解因式的是( A. 4X² +y² B. 4 x- (-y)² C. -4 X² -y³ (
根据因式分解的概念,判断下列由左边到右 边的变形,哪些是因式分解,哪些不是,为 什么? 1.(2x-1)2=4x2-4x+1 2. 3x2+9xy-3x=3x(x+3y-1) 2.4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y)
4 . a2 + a - 2 = a ( a + 12 a
2 2
判别下列各式是不是 完全平方式
a + 2ab + b a - 2ab + b
2 2
2
2
完全平方式的特点

1、必须是三项式 2、有两个平方的“项” 3、有这两平方“项”底数的2倍或-2 倍
2 2 首 2首尾 + 尾
2 2 1 a + b + 2ab 是 ( 2 2
下列各式是不是完全平方式
5)— a² -2 2 =(7a+2b-5c)(-3a+2b+5c)
3.原式 -1)=4a(a+1)(a-1) 1 =4a(a²
=[2(a+b)+ 5(a-c)][2(a+b)- 5(a-c)]
巩固练习:
1.选择题: 1)下列各式能用平方差公式分解因式的是( A. 4X² +y² B. 4 x- (-y)² C. -4 X² -y³ (
(a+b)(a-b) = a²- b²
整式乘法
Hale Waihona Puke a²- b² = (a+b)(a-b) 因式分解
平方差公式反 过来就是说: 两个数的平方 差,等于这两 个数的和与这 两个数的差的 积
将下面的多项式分解因式 1) m² - 16 2) 4x²- 9y²
m² - 16= m² - 4² =( m + 4)( m - 4) a² - b² = ( a + b)( a - b ) 4x² - 9y² =(2x)² -(3y)² =(2x+3y)(2x-3y)
9 x 2 - y 2 = __________ __________ _; 9m - 4n = __________ __________ .
2 2
(3x+y)(3x-y)
(3m+2n)(3m–2n)
分解因式注意事项:
• 首项是否为负; • 分解是否彻底; • 结果是否最简;
探究新知 谈谈你的感受。
把下列各式分解因式:
1 )a2-82 = (a+8) (a -8) 看(1 谁 2 -y2 =(4x+y) (4x -y) ( 2 ) 16x 2 快 1 2 又 (3) 3 - y + 4x2=(2x + 1 y) (2x - 1 y) 9 对 3 3
(4) 4 4k2 -25m2n2 =(2k+5mn) (2k -5mn)
2)原式=(x² +1)(x+1)(x-1)
完全平方公式
( a+b = a + 2ab +b ( a-b = a - 2ab + b
2
2 2
2
2
2
a + 2ab + b = ( a +b 2 2 a - 2ab + b = ( a -b
2 2
现在我们把这个公式反过来
2
2
很显然,我们可以运用以上这 个公式来分解因式了,我们把 它称为“完全平方公式”
试一试
1.运用公式法分解因式:
(1) -9x2+4y2 (2) 64x2-y2z2
(3) a2(a+2b)2-4(x+y)2
(5) (x-y+z)2-(2x-3y+4z)2
(4) (a+bx)2-1
创新与应用
2、已知, x+ y =7, x-y =5,求代数式 x 2- y22y+2x 的值.
1. 若a=101,b=99,求a2-b2的值. 2. 1993-199能被200整除吗?还能被 哪些整数整除?
1 2=[ (x+y) 16
3m
)2;
(4) 25a2b2=(
]2;
)2;
2(a-b)
1 2。 ] (x+y ) 4
首页
上页
下页
做一做
你能试着把下列各式分解因式吗?
(1)a2-16 =a2-( 4 )2 =(a+4)(a-4)
(2)64-b2 =( 8 ) 2-b2=(8+b)(8-b)
a2 - b2= (a + b) (a - b)
• 利用因式分解计算:
(1)2.882-1.882;
(2)782-222。
首页
上页
下页
不信难不倒你!
用你学过的方法分解因式:
4x3 - 9xy2
方法:
先考虑能否用提取公因式法,再考虑能否用 平方差公式分解因式。 结论: 多项式的因式分解要分解到不能再分解为止。
分解因式:
1.
4x3 - 4x
相关文档
最新文档