超声波焊接原理及材料对其的影响

合集下载

超声波焊接

超声波焊接

超声波焊接超声波焊接是一种应用超声波技术进行焊接的方法,它具有高效、可靠、环保等特点,广泛应用于工业生产中。

本文将从超声波焊接的原理、设备、应用领域以及优势等方面进行介绍。

超声波焊接是利用超声波振动产生的能量实现焊接材料的熔接。

超声波是一种频率超过人耳能听到的声音的机械波,其频率一般在20kHz到70kHz之间。

超声波焊接的原理主要是利用超声波振动使材料分子的间距变小,从而产生高温高压的效果,促使材料发生熔接现象。

在焊接过程中,超声波振动会穿透至焊材表面,使接触部分的温度升高,然后通过适当的加压使材料熔化并熔接在一起,最终形成焊接接头。

超声波焊接设备主要由超声波振动系统、机械系统和电气系统组成。

超声波振动系统是超声波焊接的核心部分,它由发声器和承载器组成。

发声器是将电能转化为机械振动的装置,承载器则是将振动传递给焊接件的装置。

机械系统主要包括焊接头、压力机构等部分,用于在焊接过程中施加适当的压力。

电气系统则提供了超声波发生器、控制电路、传感器等设备,用于控制焊接过程的各个参数。

超声波焊接在工业生产中有着广泛的应用。

它可以焊接各种金属材料,如铝、铜、钢等,也可以焊接塑料和纺织品等非金属材料。

超声波焊接常被运用在汽车制造、电子设备生产、包装行业等领域。

例如,在汽车制造中,超声波焊接被应用于制造车灯、排气管和电池等零部件;在电子设备生产中,它被用于焊接电子元件和连接导线等;在包装行业中,超声波焊接可用于封口、划线和熔接等工作。

超声波焊接具有许多优势。

首先,它的焊接速度快,能够在短时间内完成焊接工作,提高生产效率。

其次,超声波焊接的焊接接头牢固可靠,具有较高的拉伸强度和密封性能。

再次,它适用于焊接的材料种类广泛,包括金属、塑料和纺织品等。

此外,超声波焊接过程不需要使用焊接剂和填料,所以它是一种环保、无污染的焊接方法。

总结起来,超声波焊接是一种高效、可靠、环保的焊接方法,广泛应用于多个行业中。

随着技术的不断进步,超声波焊接设备的性能和效果也在不断提高,为我们的生产和生活带来了许多便利和效益。

超声波焊接在塑料连接中的研究进展

超声波焊接在塑料连接中的研究进展

超声波焊接在塑料连接中的研究进展塑料作为一种广泛应用的材料,在现代工业和日常生活中扮演着重要的角色。

而将塑料部件有效地连接在一起,对于实现产品的结构完整性和性能可靠性至关重要。

超声波焊接作为一种高效、清洁且经济的塑料连接技术,近年来取得了显著的研究进展。

超声波焊接的基本原理是利用高频振动的超声波能量,在压力作用下使塑料接触面迅速摩擦生热,从而实现塑料的熔化和连接。

这种焊接方式具有焊接速度快、焊接强度高、对焊件表面损伤小等优点,适用于多种热塑性塑料的连接。

在超声波焊接的研究中,焊接工艺参数的优化一直是一个重要的方向。

焊接功率、焊接时间、焊接压力以及振幅等参数对焊接质量有着显著的影响。

通过大量的实验研究和理论分析,研究人员逐渐掌握了这些参数之间的相互关系,从而能够根据不同的塑料材料和焊件结构,精确地设定焊接工艺参数,以获得最佳的焊接效果。

塑料材料的特性也是影响超声波焊接质量的关键因素之一。

不同种类的塑料具有不同的熔点、结晶度、粘度等特性,这些特性会直接影响到超声波能量的吸收和传递,进而影响焊接效果。

例如,非晶态塑料通常比结晶态塑料更容易焊接,因为它们在加热过程中没有明显的相变过程,能够更均匀地吸收超声波能量。

因此,在进行超声波焊接时,需要根据塑料材料的特性选择合适的焊接工艺和参数。

除了工艺参数和材料特性,焊件的结构设计也对超声波焊接质量有着重要的影响。

合理的焊件结构设计可以提高焊接的效率和质量,减少焊接缺陷的产生。

例如,在设计焊件时,应尽量避免出现尖角、薄壁等结构,以减少应力集中和能量损耗。

同时,焊件的接触面形状和尺寸也应根据焊接要求进行优化,以确保超声波能量能够均匀地分布在焊接面上。

随着计算机技术和数值模拟方法的不断发展,越来越多的研究人员开始采用数值模拟的方法来研究超声波焊接过程。

通过建立数学模型和物理模型,可以模拟超声波在塑料中的传播、能量的吸收和转化以及塑料的熔化和流动等过程,从而预测焊接质量和优化焊接工艺。

超声波金属焊接基础知识

超声波金属焊接基础知识

一、超声波金属焊接基础知识1、原理超声波金属焊接是利用高频振动波传递到两个需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合,其优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。

2、焊接优点:1)、焊接材料不熔融,不脆弱金属特性。

2)、焊接后导电性好,电阻系数极低或近乎零.3)、对焊接金属表面要求低,氧化或电镀均可焊接。

4)、焊接时间短,不需任何助焊剂、气体、焊料.5)、焊接无火花,环保安全。

3、超声波金属焊接适用产品:1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。

.2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。

3)、电线互熔,偏结成一条与多条互熔。

4)、电线与名种电子元件、接点、连接器互熔。

5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。

6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。

7)、金属管的封尾、切断可水、气密.4、振幅参数振幅对于需要焊接的材料来说是一个关键参数,相当于铬铁的温度,温度达不到就会熔接不上,温度过高就会使原材料烧焦或导致结构破坏而强度变差。

因为每一间公司选择的换能器不同,换能器输出的振幅都有所不同,经过适配不同变比的变幅杆及焊头,能够校正焊头的工作振幅以符合要求,通常换能器的输出振幅为10—20μm,而工作振幅一般为30μm左右,变幅杆及焊头的变比同变幅杆及焊头的形状,前后面积比等因素有关,形状来说如指数型变幅、函数型变幅、阶梯型变幅等,对变比影响很大,前后面积比与总变比成正比。

贵公司选用的是不同公司品牌的焊接机,最简单的方法是按已工作的焊头的比例尺寸制作,能保证振幅参数的稳定。

5、频率参数任何公司的超声波焊接机都有一个中心频率,例如20KHz、40 KHz等,焊接机的工作频率主要由换能器(Transducer)、变幅杆(Booster)、和焊头(Horn)的机械共振频率所决定,发生器的频率根据机械共振频率调整,以达到一致,使焊头工作在谐振状态,每一个部份都设计成一个半波长的谐振体。

超声波金属焊接

超声波金属焊接

超声波金属焊接一、超声波金属焊接基础知识1、原理超声波金属焊接是利用高频振动波传递到两个需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合,其优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。

2、焊接优点:1)、焊接材料不熔融,不脆弱金属特性。

2)、焊接后导电性好,电阻系数极低或近乎零。

3)、对焊接金属表面要求低,氧化或电镀均可焊接。

4)、焊接时间短,不需任何助焊剂、气体、焊料。

5)、焊接无火花,环保安全。

3、超声波金属焊接适用产品:1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。

.2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。

.3)、电线互熔,偏结成一条与多条互熔。

4)、电线与名种电子元件、接点、连接器互熔。

5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。

6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。

7)、金属管的封尾、切断可水、气密。

4、振幅参数振幅对于需要焊接的材料来说是一个关键参数,相当于铬铁的温度,温度达不到就会熔接不上,温度过高就会使原材料烧焦或导致结构破坏而强度变差。

因为每一间公司选择的换能器不同,换能器输出的振幅都有所不同,经过适配不同变比的变幅杆及焊头,能够校正焊头的工作振幅以符合要求,通常换能器的输出振幅为10—20μm,而工作振幅一般为30μm左右,变幅杆及焊头的变比同变幅杆及焊头的形状,前后面积比等因素有关,形状来说如指数型变幅、函数型变幅、阶梯型变幅等,对变比影响很大,前后面积比与总变比成正比。

贵公司选用的是不同公司品牌的焊接机,最简单的方法是按已工作的焊头的比例尺寸制作,能保证振幅参数的稳定。

5、频率参数任何公司的超声波焊接机都有一个中心频率,例如20KHz、40 KHz等,焊接机的工作频率主要由换能器(Transducer)、变幅杆(Booster)、和焊头(Horn)的机械共振频率所决定,发生器的频率根据机械共振频率调整,以达到一致,使焊头工作在谐振状态,每一个部份都设计成一个半波长的谐振体。

超声波焊接的原理及应用

超声波焊接的原理及应用

超声波焊接的原理及应用1. 简介超声波焊接是一种利用超声波振动能量来实现材料的焊接技术。

它通过将高频振动传导到两个被焊接的材料之间,使它们在接触面产生摩擦热而达到熔接的目的。

超声波焊接广泛应用于汽车、电子、医疗等领域,具有焊接速度快、焊接强度高、无需额外添加焊接材料等优点。

2. 原理超声波焊接的原理是利用超声波在材料接触面上产生摩擦振动,使材料表面产生高温和高压,并迅速熔接起来。

其具体原理如下:•超声波产生:超声波是频率高于20kHz的机械振动波。

通过超声波发生器产生的高频电信号,经过换能器的转换作用,变成机械振动,形成超声波。

•振动传导:超声波振动通过提示头传导到焊接材料上,使其产生微小的摩擦振动。

•接触面摩擦:被焊接材料表面相互接触产生摩擦,使温度急剧升高,因为摩擦产生的热量引起焊接界面的塑性变形。

•熔接:热量累积到一定程度时,焊接界面的材料开始熔化,并形成熔池。

•固化:当超声波停止传导时,熔池冷却凝固,并且形成牢固的焊接接头。

3. 应用领域超声波焊接在多个领域有着广泛的应用,以下是其中几个主要领域:3.1 汽车制造•车灯组件焊接:超声波焊接可用于汽车前大灯、尾灯等组件的焊接。

它可以确保灯具的水密性,提高焊接强度,同时避免因高温焊接导致的变形。

•内饰部件焊接:超声波焊接可用于汽车内饰件的焊接,如仪表板、门板等。

它能够快速焊接,并且焊接点牢固,不会对外观造成任何损伤。

3.2 电子制造•电子元件焊接:超声波焊接可用于电子元件的焊接,如电池片、电路板等。

它可以实现高效快速的焊接,同时保持焊接点的精确度和稳定性。

•电缆连接:超声波焊接可用于电缆的连接,如线缆、USB接口等。

它能够实现高强度的焊接,并且焊接时间短,无需使用额外的焊接材料。

3.3 医疗器械•塑料容器焊接:超声波焊接可用于医疗器械中的塑料容器的焊接。

它可以确保无菌环境,同时提高容器的密封性和耐压性。

•医用器械组件焊接:超声波焊接可用于医用器械的组件焊接,如手术器械、医用注射器等。

超声焊接原理

超声焊接原理

超声焊接原理全文共四篇示例,供读者参考第一篇示例:超声焊接是一种将金属或塑料物体通过超声波振动进行连接的加工技术。

它广泛应用于汽车、电子、医疗器械等行业,具有快速、高效、环保等优点。

超声焊接的原理是利用超声波高频振动的特性,在接触面产生摩擦热,使材料局部加热并软化,然后通过施加压力将两个材料连接在一起。

超声焊接的原理主要分为以下几个步骤:第一步是能量转换。

超声振动器产生的高频振动能量通过焊头传递给工件,使其表面微震动,产生高频摩擦热。

这种高频振动使得工件分子结构产生变化,形成塑性变形,达到焊接的目的。

第二步是焊接面的预处理。

在焊接前,需要对工件表面进行清洁处理,以确保焊接面无杂质,确保焊接质量。

同时还需要对工件进行定位,使焊接面对齐,以便焊接过程中产生均匀的焊接接触压力。

第三步是焊接过程控制。

在实际焊接过程中,需要控制超声波功率、振幅、焊接时间等参数,以适应不同材料的焊接需求。

通过精确调节这些参数,可以保证焊接过程的稳定性和可靠性。

第四步是焊接质量检测。

焊接完成后,需要进行焊接质量检测,检查焊接面的牢固性和质量。

通过超声波检测仪器可以检测焊缝的密实性和质量,确保焊接的可靠性。

超声焊接原理通过超声波的高频振动产生摩擦热,实现材料的局部加热和塑性变形,最终将两个材料连接在一起。

这种焊接技术不仅可以提高工件的生产效率,还可以降低焊接的成本和能耗,是一种环保节能的焊接方法。

在未来的发展中,超声焊接技术将会得到更广泛的应用。

第二篇示例:超声焊接是一种利用超声波振动能量产生的热量来实现材料的连接的一种焊接方法。

它是一种非接触式的焊接方式,通过将超声波振动传递到焊接材料表面,产生的摩擦热能使材料表面达到熔化点,从而实现焊接。

超声焊接的原理是利用超声波在焊接头部引起的高频振动,通过摩擦热的作用使焊接材料局部升温至其熔化点,然后冷却固化形成焊接接头。

超声波传递到焊接头部后,由于头部和工件之间的相互作用,形成了频率一定的机械振动能量,这种振动能量被称为纵波。

焊接材质对超声波焊接质量的影响效果

焊接材质对超声波焊接质量的影响效果

焊接材质对超声波焊接质量的影响效果
焊接材质对超声波焊接质量的影响效果
超声波焊接质量与弹性模量、摩擦系数、导热系数成正比,与它
的密度、比热容、熔点成反比。

超声波焊接质量重要与材料的熔点和表面摩擦系数有关。

这些参
数随着材料和温度的不同而不同,它们在超声波焊接过程中的变化会影
响超声波焊接区域的温度、应力和变形,从而影响超声波焊接的质量。

但是超声波超声波焊接时间很短,很难通过试验掌控参数的变化。

国内外学者采纳数值模拟的方法来解决这一问题。

利用刘川有限元法,
分析了聚氯乙烯在超声波超声波焊接过程中物理参数的影响,发觉超声
波焊接区域的温度与样品厚度成正比。

焊接材质对超声波焊接质量的影响效果
焊接材料修改的影响
超声波焊接的修改会影响超声波焊接的质量。

纤维等填充物的加
入可以提高高分子材料的硬度,有利于超声波的传播。

在合适的工艺条
件下,填料的加入可以提超群声波焊接的结合强度。

材料表面粗糙度的影响
加添材料表面粗糙度可以降低声阻抗,加添表面能流密度,从而
提高其超声波焊接质量。

表面具有滚压花纹的膜材料可以获得更高的超
声波焊接质量,比表面光滑的PP膜的超声波焊接接头强度高近一倍。

材料搭接宽度的影响
超声波焊接接头的强度随着材料搭接宽度的加添而降低。

随着搭
接宽度的加添,超声波焊接接头边缘应力集中增大,边缘微裂纹增多,
接头强度降低。

超声波焊接层压浸渍法制备的玻璃纤维改性PP,超声波焊接接头强度随着宽度的加添而降低。

《超声波焊接工艺》课件

《超声波焊接工艺》课件
检测方法
超声波频率:影响焊接 效果,需选择合适的频

焊接时间:影响焊接效 果,需控制焊接时间
焊接温度:影响焊接效 果,需控制焊接温度
环境因素:影响焊接效 果,需控制环境因素
焊接设备:影响焊接效 果,需选择高质量的设

07
超声波焊接技术的发展趋势与展望
超声波焊接技术的国内外研究现状
国内研究现状:超声波焊 接技术在国内得到了广泛 应用,主要集中在汽车、 电子、医疗等领域。
超声波发生器:产生高频超 声波
工件:需要焊接的工件
冷却系统:冷却焊头和工件, 防止过热损坏
控制系统:控制超声波发生 器、换能器、焊头等部件的
工作状态
超声波焊接设备的分类
按照功率分类:大功率、中功率、小功率 按照频率分类:低频、中频、高频 按照结构分类:单头、双头、多头 按照用途分类:通用型、专用型、特殊型
培训与教育:对操作人员 进行培训,提高焊接质量 意识和技能水平
超声波焊接质量影响因素及改进措施
超声波功率:影响焊接 强度,需调整至最佳功

焊接压力:影响焊接质 量,需调整至最佳压力
焊接材料:影响焊接效 果,需选择合适的材料
操作人员技能:影响焊 接质量,需提高操作人
员技能
质量检测方法:影响焊 接质量,需选择合适的
汇报人:PPT
超声波焊接的应用范围
电子行业:如电路板、电子元器件 等
汽车行业:如汽车零部件、内饰件 等
医疗行业:如医疗器械、医疗耗材 等
食品行业:如食品包装、食品容器 等
航空航天:如航天器零部件、航空 器零部件等
纺织行业:如纺织品、服装等
03
超声波焊接设备
超声波焊接设备的组成

超声波焊接的原理及应用

超声波焊接的原理及应用
❖ 国外在1960年开始应用超声波焊接技术 ❖ 优点:焊接时间短、焊接强度高、表面无损坏、
非焊接区域不发热,易实现自动化等优点, 已 被广泛用于同种材料或不同材料之间的连接。 ❖溶剂粘敷:连接物表面需要处理, 不但费时, 还易造成外观粗糙。 ❖热融接法:焊接质量极差, 工件外观易变形, 尤其是当产品要求密封性好时, 废品率极高。
超声波焊接的机理
❖ 初始温度的影响
精品课件
超声波焊接的机理
❖ 初始产热源
精品课件
超声波焊接的机理
❖ 产热机理
精品课件
内容提要
1
基本概念
2
焊接机理
3
工艺条件
4
当前应用
5
总结展望
精品课件
超声波焊接的工艺参数
❖一、材料选择
❖ 热塑性vs热固性 ❖ 非结晶vs结晶(熔化温度、能量补充、传递) ❖ 能量传递特性(近场与远场) ❖ 吸湿性(PC、PA)
❖ 特殊焊接设计
精品课件
超声波焊接的工艺条件
❖ 点焊
❖ 铆焊
精品课件
超声波焊接的工艺条件
❖ 凸缘连接焊
精品课件
内容提要
1
基本概念
2
焊接原理
3
工艺条件
4
当前应用
5
总结展望
精品课件
超声波焊接的应用
❖ 应用领域:医械、包装、汽配、渔具等行业 ❖ 产品:汽车、服装、塑料玩具自封袋、塑料酒
瓶盖、洗碗机水轮、塑料假鱼饵、充电器外壳 和手机吊带的焊接、一次打火机外壳。 ❖材料范围:ABS 塑料、AEC塑料、AMMA塑料、 ABA塑料、ARS塑料、AS塑料、PS塑料、PP塑料、 PC塑料、PE、PVC、POM等

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用于金属、塑料等材料焊接的设备,其工作原理是利用超声波的振动产生磨擦热,使材料表面温度升高,从而实现焊接的目的。

下面将详细介绍超声波焊接机的工作原理。

1. 超声波发生器超声波焊接机的核心部件是超声波发生器。

超声波发生器通过电能转换为机械振动,产生频率高于20kHz的超声波。

这些超声波通过振动系统传导到焊接头部,产生焊接所需的振动。

2. 振动系统振动系统由振动发生器、振动放大器和换能器组成。

振动发生器产生电信号,经过振动放大器放大后,传递给换能器。

换能器将电能转换为机械振动,通过焊接头传导到工件上,使工件表面产生磨擦热。

3. 焊接头焊接头是超声波焊接机的关键部件,它将超声波振动传导到工件上。

焊接头通常由金属材料制成,具有特定的形状和尺寸。

焊接头的形状和尺寸需根据被焊接材料的特性来设计,以获得最佳的焊接效果。

4. 工件准备在进行超声波焊接之前,需要对工件进行准备。

首先,将待焊接的工件放置在焊接头下方,确保工件与焊接头密切接触。

然后,根据焊接要求,选择合适的焊接参数,如振幅、压力、时间等。

5. 焊接过程一旦工件准备就绪,超声波焊接机就可以开始工作了。

超声波发生器产生的振动信号通过振动系统传递到焊接头上,焊接头将振动传导到工件上。

工件表面由于超声波的振动而产生磨擦热,使工件表面温度升高。

当工件表面温度达到熔点时,焊接材料开始熔化。

同时,焊接头施加的压力使熔化的焊接材料相互接触并结合在一起。

随着焊接头的振动继续传导,焊接材料逐渐冷却固化,形成坚固的焊接接头。

6. 焊接质量控制为确保焊接质量,超声波焊接机通常会配备一些质量控制装置。

例如,可以通过监测焊接过程中的振幅、压力和时间等参数来实时监控焊接质量。

如果浮现异常情况,如焊接温度不足或者焊接时间过长等,可以及时调整焊接参数,以确保焊接质量。

总结:超声波焊接机通过超声波的振动产生磨擦热,使工件表面温度升高,从而实现焊接的目的。

超声波焊接的原理

超声波焊接的原理

超声波焊接的原理
超声波焊接是一种高效、精确的焊接技术,它利用超声波的振动能量将两个或多个材料加热并融合在一起。

这种焊接技术广泛应用于汽车、电子、医疗、食品和包装等行业。

超声波焊接的原理是利用超声波振动器将高频振动能量传递到焊接部位,使材料表面产生高频振动,从而产生热能。

当材料表面温度升高到熔点时,材料开始融化并形成焊缝。

焊接完成后,焊缝冷却并形成牢固的焊接。

超声波焊接的优点是焊接速度快、焊接质量高、无需使用焊接剂、无污染、无需后处理等。

它可以焊接各种材料,包括金属、塑料、陶瓷、玻璃等。

此外,超声波焊接还可以实现多点焊接、连续焊接和自动化生产。

超声波焊接的应用非常广泛。

在汽车行业中,它可以用于焊接汽车零部件,如车灯、仪表盘、空调出风口等。

在电子行业中,它可以用于焊接电子元件,如电池、电路板、手机壳等。

在医疗行业中,它可以用于焊接医疗器械,如注射器、输液器、手术器械等。

在食品和包装行业中,它可以用于焊接食品包装袋、饮料瓶盖等。

超声波焊接是一种高效、精确、环保的焊接技术,它在各个行业中都有广泛的应用。

随着科技的不断发展,超声波焊接技术将会越来越成熟,为各行各业的生产带来更多的便利和效益。

超声波焊

超声波焊

图1超声波焊的原理
1—发生器;2—换能器;3—传振杆; 4—聚能器;5—耦合器;6—静载荷; 7—上声极;8—焊件;9—下声极; F—静压力;v1—纵向振动方向; v2—弯曲振动方向
2.1、超声波的分类
根据接头形式分类:超声 波焊可分为点焊、缝焊、 环焊和线焊等。 不同类型的超声波焊得到 的焊缝形状不同,分别为 焊点、密封连续焊缝、环 焊缝和平直连续焊缝。 【1】点焊 根据能量传递方式,点焊 可分为单侧式和双侧式两 类。
3.2、超声波焊接工艺
3.2.1 接头设计 超声波焊接的接头目前只限于搭接一种形式。考虑 到焊接过程母材不发生熔化,焊点不受过大压力, 也没有电流分流等问题,设计焊点的点距s、边距e 、和行距r等参数。
1、边距e 电阻点焊时为了防止熔合溢出而要求 e>6δ (δ为板厚)。超声波点焊不受此限制,可以比 它小,只要声极不压碎或穿破薄板的边缘,就采用 最小的e,节省母材,减轻质量。
点焊机
当超声振动能量只通过 上声极导入时为单侧式 点焊;
分别从上、下声极导入
时为双侧式点焊。目前 应用最广泛的是单侧导 入式超声波点焊。
图2 超声波点焊的能量系统类型 1—静压力 2—上声极 3—焊件 4—下声极 V—振动方向
根据上声极的振动情 况,点焊分为纵向振 动式、弯曲振动式和 介于两者之间的轻型 弯曲振动式。 纵向振动系统主要用于 小功率超声波焊机, 弯曲振动系统主要用 于大功率超声波焊机 ,而轻型弯曲振动系 统适用于中小功率的 超声波焊机。
1.2、超声波的原理
超声波焊接时既不向焊件输送电流,也不向焊件 引入高温热源,只是在静压力作用下将弹性振动 能量转变为焊件间的摩擦功、变形能及随后有限 的温升。接头之间的冶金结合是在母材不发生熔 化的情况下实现的,因而是一种固态焊接方法。 超声波焊接的原理如下:

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常见的焊接设备,它利用超声波振动来实现材料的焊接。

其工作原理涉及声波传播、振动传递和热能转换等多个方面。

1. 声波传播超声波是指频率高于人类听觉范围(20kHz)的机械振动波。

超声波在介质中传播时,会引起分子的振动和相互碰撞,从而产生能量传递。

超声波的传播速度和频率与介质的物理性质有关。

2. 振动传递超声波焊接机通过超声波发生器产生高频电信号,然后将其转换为机械振动。

这种振动通过焊接头传递给焊接部件,使其产生微小的振动。

焊接头通常由金属材料制成,具有良好的导热性和机械性能。

3. 热能转换焊接头振动时,会产生摩擦热。

当焊接头与焊接部件接触时,摩擦热会使接触面的温度升高。

当温度达到材料的熔点时,焊接部件表面的材料开始熔化。

同时,焊接头的振动还可以帮助排除氧化物和其他污染物,使焊接部件表面更加清洁。

4. 焊接过程超声波焊接机将焊接部件放置在焊接头之间,并施加一定的压力。

焊接头开始振动,产生摩擦热。

随着温度的升高,焊接部件表面的材料开始熔化,形成熔池。

当焊接头停止振动时,焊接部件冷却固化,形成坚固的焊接接头。

5. 应用领域超声波焊接机广泛应用于塑料、金属和复合材料的焊接。

在塑料焊接中,超声波焊接机可以用于汽车零部件、电子产品、医疗器械等行业。

在金属焊接中,超声波焊接机可以用于电池片焊接、导线连接等。

此外,超声波焊接机还可以用于食品包装、纺织品加工等领域。

总结:超声波焊接机通过声波传播、振动传递和热能转换等过程实现材料的焊接。

其工作原理简单明了,操作方便,广泛应用于塑料、金属和复合材料的焊接领域。

随着科技的不断发展,超声波焊接机将在更多的领域展现其独特的优势和应用价值。

超声波焊

超声波焊

超声波焊是一种快捷,干净,有效的装配工艺,用来装配处理热塑性朔料配件,及一些合成构件的方法。

目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果一、超声波的优点:1,节能2,无需装备散烟散热的通风装置3,成本低,效率高4,容易实现自动化生产!目前工厂常用的超声波焊接机二、超声波焊接机的工作原理!超声波焊接装置是通过一个电晶体功能设备将当前50/60Hz的电频转变成20KHz或40KHz的电能高频电能,供应给转换器。

转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。

焊头是将机械振动能直接传输至需压合产品的一种声学装置!!振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!三、超声波焊接的应用领域目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!四、超声波焊接的工艺焊接:指的是广义的将两个热塑性塑料产品熔接的过程。

当超音停止振动时,固体材料熔化,完成焊接。

其接合点强度接近一整块的连生材料,只要产品的接合面设计得匹配,完全密封是绝对没有什么问题的,碟合:熔化机械锁形成一个材质不同的塑料螺栓的过程。

嵌入:将一个金属元件嵌入塑料产品的预留孔内。

具有强度高,成型周期短安装快速的优点!!类似于模具设计中的嵌件!弯曲/生成音波将配件的一部分熔化再组成一个塑料的突起部位或塑料管或其它挤出配件。

这种方式的优势在于处理的快速,较小的内压,良好的外观及对材料本性的克服。

点悍点焊是对没有预留也或能源控制的两个热塑塑料组件的局部焊接。

超声波焊接原理

超声波焊接原理

超声波焊接原理:超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。

其优点是增加多倍生产率,降低成本,提高产品质量及安全生产超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。

新型的15KHz超声波塑胶焊接机,对焊接较软的PE、PP材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。

超声波焊接工艺:一、超声波焊接:以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美,二、铆焊法:将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。

三、埋植:借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

一、超声波塑料焊接的相容性和适应性:热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接■-表示相容○- 注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.超声波焊接会影响产品内的电子元件吗我有一个产品是把PCBA装到后壳再把前后壳超起来,PCBA上的主要元件有基带射频IC、FLASH、晶振等,我想请教大家,超声会对这些电子元件产生影响吗?超声会对其他哪些电子元件产生影响?谢谢大家了!1:晶振肯定会有影响.2:我之前做个类似读卡器的产品,首先是经过检测的PCBA装配后超声连接的,但其中很奇怪有约10%的产品功能测试NG.拆开后经常生产的技术员检测为BGA IC 开路,对此我也不是很确定就一定会有问题,不过可能跟IC的型号及封装方式有关吧,1 V* O7 `4 {! ~6 A. }2 }8 m所以后来我都改为卡扣连接了.3:超声波加工为高频振荡方式,,对一定的元器件及其连接点都有影响,应慎重选择。

超声波焊接原理

超声波焊接原理

超声波焊接原理超声波焊接原理通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。

又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。

当超声波停止作用后,让压力持续,有些许保压时间,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料本体强度。

超声波焊接是如何工作的?超声波焊接原理是通过超声波发生器将50/60赫兹电流转换成15、20、30或40千赫兹电能。

被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的调幅器装置传递到焊头。

焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料熔化。

超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。

一套超声波焊接系统的主要组件包括超声波发生器,换能器/调幅器/焊头三联组,模具和机架线性振动摩擦是如何工作的?线性振动摩擦焊接利用在两个待焊工件接触面所产生的摩擦热能来使塑料熔化。

热能来自一定压力下,一个工件在另一个表面以一定的位移或振幅往复的移动。

一旦达到预期的焊接程度,振动就会停止,同时仍旧会有一定的压力施加于两个工件上,使刚刚焊接好的部分冷却、固化,从而形成紧密地结合。

轨道式振动摩擦是如何工作的?轨道式振动摩擦焊接是一种利用摩擦热能焊接的方法。

在进行轨道式振动摩擦焊接时,上部的工件以固定的速度进行轨道运动——向各个方向的圆周运动。

运动可以产生热能,使两个塑料件的焊接部分达到熔点。

一旦塑料开始熔化,运动就停止,两个工件的焊接部分将凝固并牢牢的连接在一起。

小的夹持力会导致工件产生最小程度的变形,直径在10英寸以内的工件可以用应用轨道式振动摩擦进行焊接。

应用范围超声波焊接机主要用于热塑性塑料的二次连接,相比其他传统工艺(如胶粘、电烫合或螺丝紧固等),具有生产效率高、焊接质量好、环保又节能等显著优点。

超声波焊接技术的原理与应用

超声波焊接技术的原理与应用

超声波焊接技术的原理与应用在现代工业生产中,焊接技术是一项至关重要的工艺。

而超声波焊接技术作为一种先进的焊接方法,凭借其独特的优势,在众多领域得到了广泛的应用。

超声波焊接技术的原理其实并不复杂。

简单来说,它是通过高频振动产生的能量来实现材料的连接。

这个过程就好像我们快速地用手搓动两个物体,摩擦会产生热量,从而使它们结合在一起。

但超声波焊接的振动频率极高,通常在 20kHz 以上,这种高频振动能够在极短的时间内产生大量的热能,并集中在焊接区域。

在超声波焊接设备中,有一个关键的部件叫做换能器。

它的作用就像是一个能量转换器,将输入的电能转化为机械振动能。

而变幅杆则负责将换能器产生的振动进行放大,并传递到焊接模具上。

焊接模具直接与被焊接的材料接触,将高频振动传递给它们。

当材料受到高频振动时,它们之间的分子会相互摩擦、碰撞,从而产生热量。

这些热量会使材料的接触面迅速熔化,形成一个焊接区域。

同时,在压力的作用下,熔化的材料会相互融合,并在冷却后形成牢固的焊接接头。

超声波焊接技术具有许多显著的优点。

首先,它的焊接速度非常快,通常只需要几秒钟就能完成一个焊接点,大大提高了生产效率。

其次,由于焊接过程中产生的热量相对较少,所以对周围材料的热影响很小,能够有效避免材料的变形和性能下降。

此外,超声波焊接不需要使用额外的焊接材料,如焊条、焊丝等,降低了成本,也减少了材料的浪费。

在汽车制造领域,超声波焊接技术被广泛应用于汽车零部件的生产。

例如,汽车内饰中的塑料件,如仪表盘、门板、座椅等,很多都是通过超声波焊接连接在一起的。

这种焊接方式不仅能够保证连接的强度和稳定性,还能使内饰件的外观更加美观。

在电子行业,超声波焊接也发挥着重要的作用。

像手机、电脑等电子产品中的电池、线路板、连接器等部件,都可以采用超声波焊接进行组装。

由于其焊接精度高,能够满足电子设备对微型化和高性能的要求。

医疗行业同样离不开超声波焊接技术。

一次性医疗器械,如注射器、输液管等,通常采用超声波焊接来保证其密封性和安全性。

超声波塑料焊接工艺

超声波塑料焊接工艺

超声波塑料焊接工艺超声波塑料焊接工艺是一种高效并且环保的塑料连接工艺,它能够将两个或多个塑料件快速地、牢固地连接在一起。

本文将详细介绍超声波塑料焊接工艺的原理、应用、优点以及局限性。

一、超声波塑料焊接工艺的原理超声波塑料焊接工艺是利用超声波产生的高频振动来摩擦、加热和融化塑料,在外力的作用下将塑料件连接在一起的技术。

具体来说,超声波发生器会将电能转化成机械能,通过换能器将超声波传递到塑料件焊点。

当超声波遇到塑料面时,会产生剪切力和热量,使塑料面快速摩擦、热化并融化,再由外力压合,使塑料接头得以牢固地连接起来。

二、超声波塑料焊接工艺的应用超声波塑料焊接工艺可以应用于各种塑料产品的制造,如汽车、电子、医疗设备等。

特别是在电子行业中,超声波塑料焊接工艺被广泛应用于连接小型电子元件,因为它可以快速而精准地进行塑料连接,连接质量高且不损坏电子元件。

此外,超声波塑料焊接工艺也可应用于食品包装行业,如酸奶杯、密封袋等。

三、超声波塑料焊接工艺的优点1.快速精准:超声波塑料焊接工艺能够在短时间内完成连接工作,且连接质量高,不产生塑料渣和其他杂质。

2.无毒环保:超声波塑料焊接工艺没有采用粘合剂或其他有害化学物质,不会对环境造成污染。

3.节能省电:超声波塑料焊接工艺没有热损失,不需要额外的加热设备或大量的电能,具有节能省电的优点。

4.设计自由度高:由于超声波可以穿透一个物体,因此可以实现复杂的连接形状和各种不同的体积大小。

四、超声波塑料焊接工艺的局限性1.对焊接材料要求高:超声波塑料焊接工艺对焊接材料有一定的要求,只有符合材料特性才能保障连接质量。

2.焊接深度受限:由于超声波的穿透能力有限,因此对于较厚的材料,超声波可能会造成局部无法接触的情况。

3.受限于材料性质:超声波的焊接效果受材料性质的影响,如硬度、粘度等,在处理不同种类的塑料时可能收到一定程度的限制。

综上所述,超声波塑料焊接工艺是一种高效、快速、精准、环保的连接工艺,被广泛应用于各种塑料产品的制造。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★超声波焊接是热塑性塑料在超声波振动作用下,由于表面分子间摩擦生热而使两块塑料熔接在一起的焊接方法。

超声波金属焊接:
1、超声波金属焊接
超声波金属焊接的优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。

超声波金属焊接是一种机械处理过程,在焊接过程中,并无电流在被焊件中流过,也无诸如电焊模式的焊弧产生,由于超声焊接不存在热传导与电阻率等问题,因此对于有色金属材料来说,无疑是一种理想的金属焊接设备系统,对于不同厚度的片材,能有效地进行焊接。

超声波焊接原理:
超声波塑料焊接机超声波塑料焊接原理
当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。

又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。

当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。

超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。

这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。

这个最佳压力是焊接部分的边长与边缘每1mm的最佳压力之积
原理分析图
超声波焊接优点:
1、超声波塑料焊接优点:焊接速度快,焊接强度高、密封性好;取代传统的焊接/粘接工艺,成本低廉,清洁无污染且不会损伤工件;焊接过程稳定,所有焊接参数均可通过软件系统进行跟踪监控,一旦发现故障很容易进行排除和维护。

2、超声波金属焊接优点:1)、焊接材料不熔融,不脆弱金属特性。

2)、焊接后导电性好,电阻系数极低或近乎零。

3)、对焊接金属表面要求低,氧化或电镀均可焊接。

4)、焊接时间短,不需任何助焊剂、气体、焊料。

5)、焊接无火花,环保安全。

超声波金属焊接适用产品:
1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。

2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。

3)、电线互熔,偏结成一条与多条互熔。

4)、电线与名种电子元件、接点、连接器互熔。

5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。

6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。

7)、金属管的封尾、切断可水、气密。

超音波的熔焊应用方法:
一、熔接法:以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生摩擦热而瞬间熔融接合,焊接强度可与本体媲美,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品所带来的不便,实现高效清洁的熔接。

二、铆焊法:将超音波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。

三、埋植:藉着焊头之传道及适当之压力,瞬间将金属零件(如螺母、螺杆等)挤入预留入塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

四、成型:本方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定,且外观光滑美观、此方法多使用在电子类、喇叭之固定成形,及化妆品类之镜片固定等。

五、点焊:A、将二片塑胶分点熔接无需预先设计焊线,达到熔接目的。

B、对比较大型工件,不易设计焊线的工件进行分点焊接,而达到熔接效果,可同时点焊多点。

六、切割封口:运用超音波瞬间发振工作原理,对化纤织物进行切割,其优点切口光洁不开裂、不拉丝。

超声波金属焊接机2、超声波金属焊接原理是利用超声频率(超过16KHz )的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将框框振动能量转变为工作间的摩擦功、形变能及有限的温升.接头间的冶金结合是母材
不发生熔化的情况下实现的一种固态焊接.因此它有效地克服了电阻焊接时所产生的飞溅和氧化等现象.超
声金属焊机能对铜、银、铝、镍等有色金属的细丝或薄片材料进行单点焊接、多点焊接和短条状焊接.可广泛应用于可控硅引线、熔断器片、电器引线、锂电池极片、极耳的焊接。

材料对超声波焊接的影响:
超声波在塑料件中传播,塑料件或多或少对超声波能量有吸收和衰减,从而对超声加工效果产生一定的影响,塑料一般有非晶体材料之分,按硬度有硬胶和软胶之分,还有模数的区分,通俗地来说,硬度高,低熔点的塑料超声加工性能优于硬度低、高熔点的塑料。

因此,这就牵涉到超声波加工距离的远近问题。

相关文档
最新文档