2015年高考数学创新设计精品试题专题训练1-6-1
2015年高考数学创新设计精品试题专题训练1-1-4
则g′(x)≤0在[1,2]上恒成立,
即-+2x+≤0在[1,2]上恒成立,
即aห้องสมุดไป่ตู้-x2在[1,2]上恒成立.
令h(x)=-x2,
在[1,2]上h′(x)=--2x=-<0,
所以h(x)在[1,2]上为减函数,h(x)min=h(2)=-.
所以a≤-.
10.(2014·北京西城区一模)已知函数f(x)=lnx-,其中a∈R.
解析f′(x)=x2-4x,由f′(x)>0,得x>4或x<0.
∴f(x)在(0,4)上递减,在(4,+∞)上递增,∴当x∈[0,+∞)时,f(x)min=f(4).∴要使f(x)+5≥0恒成立,只需f(4)+5≥0恒成立即可,代入解之得m≥.
答案A
4.已知函数f(x)=x3+ax2+3x+1有两个极值点,则实数a的取值范围是().
A.(,+∞)B.(-∞,-)
C.(-,)D.(-∞,-)∪(,+∞)
解析f′(x)=x2+2ax+3.
由题意知方程f′(x)=0有两个不相等的实数根,
所以Δ=4a2-12>0,
解得:a>或a<-.
答案D
二、填空题
5.已知函数f(x)=x2+mx+lnx是单调递增函数,则m的取值范围是________.
(2)由f(x)>-x+2,得lnx->-x+2,
即a<xlnx+x2-2x.
设函数g(x)=xlnx+x2-2x,
则g′(x)=lnx+2x-1.
因为x∈(1,+∞),
所以lnx>0,2x-1>0,
所以当x∈(1,+∞)时,g′(x)=lnx+2x-1>0,
故函数g(x)在x∈(1,+∞)上单调递增,
2015年高考数学创新设计精品试题专题训练1-6-2
4.(2014· 合肥模拟)从装有除颜色外完全相同的 3 个白球和 m 个黑球的布袋中随 机摸取一球,有放回的摸取 5 次,设摸得白球数为 X,已知 E(X)=3,则 D(X) 等于 8 A.5 4 C.5 解析 6 B.5 2 D.5 根据题目条件,每次摸到白球的概率都是 p= 3 ,满足二项分布, 3+m ( ).
因此可求得期望 E(ξ)=1. 答案 D
3 3.(2014· 温州模拟)某人射击一次击中的概率为5,经过 3 次射击,此人至少有两 次击中目标的概率为 54 A.125 81 C.125 解析 27 B.125 108 D.125 该人 3 次射击,恰有两次击中目标的概率是 ( ).
32 2 5 · , P1=C2 3· 5 33 5 . 三次全部击中目标的概率是 P2=C3 3· 所以此人至少有两次击中目标的概率是 33 81 2 32 2 5 · +C3 P=P1+P2=C3 · . 35 = 5 125 答案 C
P(ξ=0)=0.5×(1-a)×(1-a)=0.5(1-a)2; P(ξ=1)=0.5×(1-a)×(1-a)+2×0.5×a×(1-a)=0.5(1-a2); P(ξ=2)=0.5×a2+2×0.5×a×(1-a)=0.5a(2-a); P(ξ=3)=0.5×a×a=0.5a2. 7 ∴E(ξ)=P(ξ=0)×0+P(ξ=1)×1+P(ξ=2)×2+P(ξ=3)×3=6. 7 1 即 0.5(1-a2)+a(2-a)+1.5a2=6,解得 a=3. 答案 1 3
8.袋中有大小、质地相同的 5 个球,2 白 3 黑,现从中摸球,规定:每次从袋
中随机摸取一球,若摸到的是白球,则将此球放回袋中,并再放同样的一个 白球入袋;若摸到的是黑球,则将球放回袋中,并再放同样的一个黑球入袋, 连续摸两次球且按规定操作后袋中白球的个数记为 X,则 X 的数学期望为 __________. 解析 首先,连续摸两次球且按规定操作后袋中白球的个数可能为 2,3,4.
【创新设计】(人教通用)2015高考数学二轮复习 专题整合限时练1 理(含最新原创题,含解析)
【创新设计】(人教通用)2015高考数学二轮复习 专题整合限时练1理(含最新原创题,含解析)(建议用时:40分钟) 一、选择题1.若A ={x |2<2x<16,x ∈Z },B ={x |x 2-2x -3<0},则A ∩B 中元素个数为 ( ).A .0B .1C .2D .3解析 因为A ={x |2<2x<16,x ∈Z }={x |1<x <4,x ∈Z }={2,3},B ={x |x 2-2x -3<0}={x |-1<x <3},所以A ∩B ={2}. 答案 B2.若(1+2a i)i =1-b i ,其中a ,b ∈R ,则|a +b i|=( ).A.12+i B . 5 C.52D .54解析 因为(1+2a i)i =1-b i ,所以-2a +i =1-b i ,a =-12,b =-1,|a +b i|=|-12-i|=52. 答案 C3.我校要从4名男生和2名女生中选出2人担任H 7N 9禽流感防御宣传工作,则在选出的宣传者中男、女都有的概率为( ). A.815B .12 C.25D .415解析 从4名男生和2名女生中选出2人担任H 7N 9禽流感防御宣传工作,总的方法数为C 04C 22+C 14C 12+C 24C 02=15,其中选出的宣传者中男、女都有的方法数为C 14C 12=8,所以,所求概率为815.答案 A4.等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ).A .21B .24C .28D .7解析 ∵a 2+a 4+a 6=3a 4=12, ∴a 4=4, ∴S 7=a 1+a 72×7=7a 4=28.答案 C5.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件解析 由(a -b )·a 2<0得,a ≠0且a <b ;反之,由a <b ,不能推出(a -b )·a 2<0,即“(a -b )·a 2<0”是“a <b ”的充分非必要条件. 答案 A6.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12 B .32C .1D . 3解析 抛物线y 2=4x 的焦点为(1,0),双曲线x 2-y 23=1的渐近线为x ±33y =0,所以抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是|1±33×0|1+332=32. 答案 B7.已知a 为执行如图所示的程序框图输出的结果,则二项式⎝⎛⎭⎪⎫a x -1x 6的展开式中含x 2项的系数是( ).A .192B .32C .96D .-192解析 由程序框图可知,a 计算的结果依次为2,-1,12,2,…,成周期性变化,周期为3;当i =2 011时运行结束,2 011=3×670+1,所以a =2.所以,⎝⎛⎭⎪⎫a x -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6,T r +1=C r 6(2x )6-r⎝⎛⎭⎪⎫-1x r=(-1)r C r 6·26-r x 3-r, 令3-r =2,得r =1,所以,含x 2项的系数是(-1)C 1625=-192. 答案 D8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,则f (x )的解析式为( ).A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3C .f (x )=sin ⎝⎛⎭⎪⎫2x +π6 D .f (x )=sin ⎝⎛⎭⎪⎫2x -π6 解析 由图象可知A =1,且14T =14×2πω=7π12-π3=π4,∴ω=2,f (x )=sin (2x +φ). 把⎝⎛⎭⎪⎫7π12,-1代入得:-1=sin ⎝ ⎛⎭⎪⎫2×7π12+φ,又∵|φ|<π2,∴7π6+φ=3π2,∴φ=π3,∴f (x )=sin (2x +π3).答案 A9.已知O 是坐标原点,点A (-2,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则O A →·O M →的取值X 围是( ). A .[-1,0]B .[-1,2]C .[0,1]D .[0,2]解析 ∵A (-2,1),M (x ,y ),∴z =O A →·O M →=-2x +y ,作出不等式组对应的平面区域及直线-2x +y =0,如图所示.平移直线-2x +y =0,由图象可知当直线经过点N (1,1)时,z min =-2+1= -1;经过点M (0,2)时,z max =2. 答案 B10.如图F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1F 2|=|F 1A |,则C 2的离心率是( ).A.13 B .23 C.15D .25解析 由题意知,|F 1F 2|=|F 1A |=4,∵|F 1A |-|F 2A |=2,∴|F 2A |=2,∴|F 1A |+|F 2A |=6,∵|F 1F 2|=4,∴C 2的离心率是46=23. 答案 B11.已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形正视图为直角梯形,则此几何体的体积V 为( ).A.323 B .403C.163D .40解析 观察三视图可知,该几何体为四棱锥,底面为直角梯形,两个侧面与底面垂直,棱锥的高为4,由图中数据得该几何体的体积为13×4+12×4×4=403.答案 B12.已知定义在R 上的函数f (x )是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }满足a 1=-1,且S n n =2×a n n+1(其中S n 为{a n }的前n 项和),则f (a 5)+f (a 6)=( ). A .-3 B .-2 C .3D .2解析 ∵函数f (x )是奇函数,∴f (-x )=-f (x ),∵f (32-x )=f (x ),∴f (32-x )=-f (-x ),∴f (3+x )=f (x ),∴f (x )是以3为周期的周期函数. ∵S n n =2×a n n+1,∴S n =2a n +n ,S n -1=2a n -1+(n -1)(n ≥2). 两式相减并整理得出a n =2a n -1-1, 即a n -1=2(a n -1-1),∴数列{a n -1}是以2为公比的等比数列,首项为a 1-1=-2,∴a n -1=-2·2n -1=-2n ,a n =-2n+1,∴a 5=-31,a 6=-63.∴f (a 5)+f (a 6)=f (-31)+f (-63)=f (2)+f (0)=f (2)=-f (-2)=3. 答案 C 二、填空题13.已知向量p =(2,-1),q =(x,2),且p ⊥q ,则|p +λq |的最小值为__________.解析 ∵p ·q =2x -2=0,∴x =1, ∴p +λq =(2+λ,2λ-1), ∴|p +λq |=2+λ2+2λ-12=5λ2+5≥ 5.答案514.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由sin B +cos B =2得,2sin ⎝ ⎛⎭⎪⎫B +π4=2,sin ⎝⎛⎭⎪⎫B +π4=1,而B ∈(0,π),所以B =π4.由正弦定理得,sin A =a sin B b =12,又A +B +C =π,A ∈⎝⎛⎭⎪⎫0,3π4,∴A =π6.答案π615.若曲线y =x 在点(m ,m)处的切线与两坐标轴围成三角形的面积为18,则m =________. 解析 由y =x ,得y ′=-12x,所以,曲线y =x在点(m ,m)处的切线方程为y -m=-12m(x -m ),由已知,得12×32m×3m =18(m >0),m =64.答案 6416.已知a >0,b >0,方程为x 2+y 2-4x +2y =0的曲线关于直线ax -by -1=0对称,则3a +2bab的最小值为________.解析 该曲线表示圆心为(2,-1)的圆,直线ax -by -1=0经过圆心,则2a +b -1=0,即2a +b =1,所以 3a +2b ab =3b +2a =(3b +2a )(2a +b )=6a b +2b a+7≥26a b ·2ba+7=7+43(当且仅当a =2-3,b =23-3时等号成立). 答案 7+4 3。
2015年高考数学创新设计精品试题专题训练1-5-2
答案
A
x2 4.(2014· 福建卷)设 P,Q 分别为圆 x2+(y-6)2=2 和椭圆10+y2=1 上的点,则 P,Q 两点间的最大距离是 A.5 2 C.7+ 2 解析 B. 46+ 2 D.6 2 ( ).
设圆的圆心为 C,则 C(0,6),半径为 r= 2,
点 C 到椭圆上的点 Q( 10cos α, sin α)的距离|CQ|= 10cos α2+sin α-62 = 46-9sin2 α-12sin α = 2 50-9sin α+32≤ 50=5 2,
x2 2)=0,即 x2+(y-2)2=1,它是以(0,2)为圆心,1 为半径的圆.又双曲线a2- y2 b 2a b > 0) 的渐近线方程为 y = ± x , 即 bx ± ay = 0 , 由题意, 可得 2=1(a>0, b a a2+b2 2a c >1,即 c >1,所以 e=a<2,又 e>1,故 1<e<2. 答案 (1,2)
+|AB|=4a=8,所以|AB|=8-(|AF2|+|BF2|)≥3,由椭圆的性质,可知过椭圆 2b2 焦点的弦中,通径最短,即 a =3,可求得 b2=3,即 b= 3. 答案 D
3.(2014· 湖北卷)已知 F1,F2 是椭圆和双曲线的公共焦点,P 是它们的一个公共 π 点, 且∠F1PF2=3, 则椭圆和双曲线的离心率的倒数之和的最大值为 ( ).
b 则直线 y= 3x 应在两渐近线之间,所以有a≤ 3, 即 b≤ 3a,所以 b2≤3a2, c2-a2≤3a2,即 c2≤4a2,e2≤4,所以 1<e≤2. 答案 B
x2 y2 2.已知椭圆 4 +b2=1(0<b<2),左、右焦点分别为 F1,F2,过 F1 的直线 l 交椭 圆于 A,B 两点,若|BF2|+|AF2|的最大值为 5,则 b 的值是 A.1 3 C.2 解析 B. 2 D. 3 由椭圆的方程, 可知长半轴长为 a=2; 由椭圆的定义, 可知|AF2|+|BF2| ( ).
2015年高考数学创新设计精品试题专题训练1-1-3
二、填空题
5.(2014·盐城模拟)已知f(x)=x2+2xf′(2 014)+2 014lnx,则f′(2 014)=_____.
解析因为f′(x)=x+2f′(2 014)+,
所以f′(2 014)=2 014+2f′(பைடு நூலகம் 014)+,
即f′(2 014)=-(2 014+1)=-2 015.
答案-2 015
6.函数f(x)=2mcos2+1的导函数的最大值等于1,则实数m的值为________.
解析显然m≠0,所以f(x)=2mcos2+1
=m+m+1=mcosx+m+1,
因此f′(x)=-msinx,其最大值为1,故有m=±1.
答案±1
7.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在(1,2)上为增函数,则a的值等于________.
(2)由(1)知,f(x)=(x-5)2+6lnx(x>0),
f′(x)=x-5+=.
令f′(x)=0,解得x=2或3.
当0<x<2或x>3时,f′(x)>0,
故f(x)在(0,2),(3,+∞)上为增函数;
当2<x<3时,f′(x)<0,
故f(x)在(2,3)上为减函数.
由此可知f(x)在x=2处取得极大值f(2)=+6ln 2,在x=3处取得极小值f(3)=2+6ln 3.
解析∵函数f(x)=x2-ax+3在(0,1)上为减函数,
∴≥1,得a≥2.
又∵g′(x)=2x-,依题意g′(x)≥0在x∈(1,2)上恒成立,得2x2≥a在x∈(1,2)上恒成立,有a≤2,∴a=2.
答案2
8.(2014·绍兴模拟)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为________.
【创新设计】(江苏专用)2015高考数学二轮复习 专题整合突破练1 理(含最新原创题,含解析)
又CD⊂平面PCD,所以平面PAC⊥平面PCD.
(2)取AE中点G,连接FG,BG.
因为F为ED的中点,所以FG∥AD且FG= AD.
在△ACD中,AC⊥CD,∠DAC=60°,
所以AC= AD,所以BC= AD.
在△ABC中,AB=BC=AC,所以∠ACB=60°,
T6=T5b6=T3b4b5b6=T3b1b2b3= T3,
……
T3n+1+T3n+2+T3n+3=T3n-2b3n-1b3nb3n+1+
T3n-1b3nb3n+1b3n+2+T3nb3n+1b3n+2b3n+3
=T3n-2b1b2b3+T3n-1b1b2b3+T3nb1b2b3
= (T3n-2+T3n-1+T3n),
代入上式可得2x1x2+2m-(m+1)(x1+x2)=0,
∴2× +2m-(m+1)× =0,即2m-6=0,∴m=3,
∴存在Q(3,0)使得直线QA,QB的倾斜角互为补角.
4.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y= +2是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用模型函数y= 作为奖励函数模型,试确定最小的正整数a的值.
解(1)设奖励函数模型为y=f(x),按公司对函数模型的基本要求,函数y=f(x)满足:
故该函数模型不符合公司要求.
2015年高考数学创新设计精品习题专题训练1-2-2
7.(2014·天津卷)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=a,2sinB=3sinC,则cosA的值为________.
解析∵2sinB=3sinC,由正弦定理得2b=3c,∴b=c,
又b-c=a,∴a=4(b-c),∴a=2c.
∴cosA===-.
答案-
8.(2014·江苏卷)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是________.
答案A
2.(2014·益阳模拟)在△ABC中,角A,B,C所对的边分别为a,b,c.若asinA+bsinB-csinC=asinB,则角C等于().
A.B.
C.D.
解析由正弦定理,得a2+b2-c2=ab,
所以cosC==,又0<C<π,所以C=.
答案A
3.(2014·吉林省实验中学一模)在△ABC中,sin(A+B)·sin(A-B)=sin2C,则此三角形的形状是().
答案A
二、填空题
6.(2014·福建卷)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于________.
解析由余弦定理得,BC2=AB2+AC2-2AB·AC·cosA,
∴12=AB2+16-2×AB×4×cos 60°,解得AB=2,
∴S△ABC=·AB·AC·sinA=×2×4×sin 60°=2.
第2讲 解三角形问题
一、选择题
1.(2014·西安模拟)△ABC的三个内角A,B,C所对的边分别为a,b,c,且
asinAsinB+bcos2A=a,则因为asinAsinB+bcos2A=a,所以由正弦定理,得sinAsinAsinB+sinB=sinA,即sinB=sinA,所以=.
【三维设计】2015年高考数学总复习创新问题专项训练(二)文北师大版
创新问题专项训练(二)一、选择题 1.用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C A -C B ,C A C B ,C B -C A ,C AC B ,若A ={x |x 2-ax -1=0,a ∈R },B ={x ||x 2+bx +1|=1,b ∈R },设S ={b |A *B =1},则C (S )等于( )A .4B .3C .2D .12.已知集合A ={(x ,y )||x -2|+|y -3|≤1},集合B ={(x ,y )|x 2+y 2+Dx +Ey +F ≤0,D 2+E 2-4F >0},若集合A ,B 恒满足“A ⊆B ”,则集合B 中的点所形成的几何图形面积的最小值是( )A.22πB .πC.12πD.2π3.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+ … +x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=x ·e x5.定义:若函数f (x )的图像经过变换T 后所得图像对应函数的值域与f (x )的值域相同,则称变换T 是f (x )的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于f (x )的同值变换的是( )A .f (x )=(x -1)2,T 将函数f (x )的图像关于y 轴对称 B .f (x )=2x -1-1,T 将函数f (x )的图像关于x 轴对称C .f (x )=2x +3,T 将函数f (x )的图像关于点(-1,1)对称D .f (x )=sin(x +π3),T 将函数f (x )的图像关于点(-1,0)对称二、填空题6.对于非空实数集A ,记A *={y |任意x ∈A ,y ≥x }.设非空实数集合M ,P ,满足M ⊆P .给出以下结论:①P *⊆M *;②M *∩P ≠∅;③M ∩P *=∅.其中正确的结论是________(写出所有正确结论的序号).7.已知[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f (x )=ln x -2x的零点,则[x 0]等于________.8.某同学为研究函数f (x )=1+x 2+1+-x2(0≤x ≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设CP =x ,则AP +PF =f (x ).请你参考这些信息,推知函数f (x )的极值点是______;函数f (x )的值域是________.9.(1)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =x ,y =x 12,y =(22)x的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.(2)若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满足:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为自然对数的底数),根据你的数学知识,推断h (x )与φ(x )间的隔离直线方程为________.三、解答题10.已知二次函数f (x )=ax 2+bx +c 和g (x )=ax 2+bx +c ·ln x (abc ≠0). (1)证明:当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数; (2)在同一函数图像上取任意两个不同的点A (x 1,y 1),B (x 2,y 2),线段AB 的中点C (x 0,y 0),记直线AB 的斜率为k ,若f (x )满足k =f ′(x 0),则称其为“K 函数”.判断函数f (x )=ax 2+bx +c 与g (x )=ax 2+bx +c ·ln x (abc ≠0)是否为“K 函数”?并证明你的结论.11.如图,两个圆形飞轮通过皮带传动,大飞轮O 1的半径为2r (r 为常数),小飞轮O 2的半径为r ,O 1O 2=4r .在大飞轮的边缘上有两个点A ,B ,满足∠BO 1A=π3,在小飞轮的边缘上有点C .设大飞轮逆时针旋转,传动开始时,点B ,C 在水平直线O 1O 2上.(1)求点A 到达最高点时A ,C 间的距离; (2)求点B ,C 在传动过程中高度差的最大值.答 案1.选B 显然集合A 的元素个数为2,根据A *B =1可知,集合B 的元素个数为1或3,即方程|x 2+bx +1|=1有1个根或有3个根.结合函数y =|x 2+bx +1|的图象可得,b =0或4-b 24=-1,即b =0或b =±2 2.2.选B 集合A 可以看作是由区域{(x ,y )||x |+|y |≤1}向右平移2个单位长度、向上平移3个单位长度得到的,这是一个边长为2的正方形区域,集合B 是一个圆形区域,如果A ⊆B 且集合B 中的点形成的几何图形的面积最小,则圆x 2+y 2+Dx +Ey +F =0是|x -2|+|y -3|=1所表示正方形的外接圆,其面积是π×12=π.3.选B 由于线性回归方程恒过样本点的中心(x ,y ),则由“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”一定能推出“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”,反之不一定成立.4.选D 由凸函数的定义可得该题即判断f (x )的二阶导函数f ″(x )的正负.对于A ,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,在x ∈(0,π2)上,恒有f ″(x )<0;对于B ,f ′(x )=1x -2,f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;对于C ,f ′(x )=-3x 2+2,f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;对于D ,f ′(x )=e x +x e x ,f ″(x )=e x +e x +x e x =2e x +x e x,在x ∈(0,π2)上,恒有f ″(x )>0.5.选B 选项B 中,f (x )=2x -1-1的值域为(-1,+∞),将函数f (x )的图象关于x轴对称变换后所得函数的值域为(-∞,1),值域改变,不属于同值变换.经验证,其他选项正确.6.解析:对于①,由M ⊆P 得知,集合M 中的最大元素m 必不超过集合P 中的最大元素p ,依题意有P *={y |y ≥p },M *={y |y ≥m },又m ≤p ,因此有P *⊆M *,①正确;对于②,取M =P ={y |y <1},依题意得M *={y |y ≥1},此时M *∩P =∅,因此②不正确;对于③,取M ={0,-1,1},P ={y |y ≤1},此时P *={y |y ≥1},M ∩P *={1}≠∅,因此③不正确.综上所述,其中正确的结论是①.答案:①7.解析:∵函数f (x )的定义域为(0,+∞),∴函数f ′(x )=1x +2x2>0,即函数f (x )在(0,+∞)上单调递增.由f (2)=ln 2-1<0,f (e)=ln e -2e >0,知x 0∈(2,e),∴[x 0]=2.答案:28.解析:显然当点P 为线段BC 的中点时,A ,P ,F 三点共线,此时AP =PF ,且函数f (x )取得最小值5,函数f (x )的图象的对称轴为x =12;当x ∈[0,12]时,函数f (x )单调递减,且值域为[5,2+1];当x ∈[12,1]时,函数f (x )单调递增,且值域为[5,2+1],∴函数f (x )的值域为[5,2+1].答案:x =12[5,2+1]9.解析:(1)由A 点的纵坐标为2,得点A 的横坐标是⎝⎛⎭⎪⎫222=12,由矩形的边平行于坐标轴,得B 点的纵坐标是2,从而横坐标是22=4,所以C 点的横坐标是4,纵坐标是(22)4=14,所以点D 的横坐标等于A 点的横坐标12,点D 的纵坐标等于C 点的纵坐标14,即D 点的坐标是(12,14).(2)容易观察到h (x )和φ(x )有公共点(e ,e),又(x -e)2≥0,即x 2≥2e x -e ,所以猜想h (x )和φ(x )间的隔离直线为y =2e x -e ,下面只需证明2eln x ≤2e x -e 恒成立即可,构造函数λ(x )=2eln x -2e x +e.由于λ′(x )=2e e -xx(x >0),即函数λ(x )在区间(0,e)上递增,在(e ,+∞)上递减,故λ(x )≤λ(e)=0,即2eln x -2e x +e≤0,得2eln x ≤2e x -e.故猜想成立,所以两函数间的隔离直线方程为y =2e x -e.答案:(1)(12,14)(2)y =2e x -e10.解:(1)假设g (x )在定义域(0,+∞)上为增函数,则有g ′(x )=2ax +b +c x =2ax 2+bx +cx>0对于一切x >0恒成立,从而必有2ax 2+bx +c >0对于一切x >0恒成立.又a <0,由二次函数的图象可知:2ax 2+bx +c >0对于一切x >0恒成立是不可能的. 因此当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数.(2)函数f (x )=ax 2+bx +c 是“K 函数”,g (x )=ax 2+bx +c ·ln x (abc ≠0)不是“K 函数”.证明如下:对于二次函数f (x )=ax 2+bx +c ,k =f x 1-f x 2x 1-x 2=a x 22-x 21+b x 2-x 1x 2-x 1=a (x 2+x 1)+b =2ax 0+b .又f ′(x 0)=2ax 0+b ,故k =f ′(x 0). 故函数f (x )=ax 2+bx +c 是“K 函数”.对于函数g (x )=ax 2+bx +c ·ln x (abc ≠0)(x >0), 不妨设x 2>x 1>0,则k =g x 1-g x 2x 1-x 2=a x 21-x 22+b x 1-x 2+c ln x 1x 2x 1-x 2=2ax 0+b +c lnx 1x 2x 1-x 2.又g ′(x 0)=2ax 0+b +c x 0,若g (x )为“K 函数”,则必满足k =g ′(x 0),即有2ax 0+b +c ln x 1x 2x 1-x 2=2ax 0+b +cx 0,也即c ln x 1x 2x 1-x 2=2c x 1+x 2(c ≠0),所以lnx 1x 2x 1-x 2=2x 1+x 2.设t =x 1x 2,则0<t <1,ln t =t -1+t.①设s (t )=ln t -t -1+t,则s ′(t )=t -2t+t2>0,所以s (t )在t ∈(0,1)上为增函数,s (t )<s (1)=0,故ln t ≠t -1+t.②①与②矛盾,因此,函数g (x )=ax 2+bx +c ·ln x (abc ≠0)不是“K 函数”. 11.解:(1)以O1为坐标系的原点,O 1O 2所在直线为x 轴,建立如图所示的直角坐标系.当点A 到达最高点时,点A 绕O 1转过π6,则点C 绕O 2转过π3.此时A (0,2r ),C (92r ,32r ).∴AC =-92r 2+r -32r 2=25-23·r .(2)由题意,设大飞轮转过的角度为θ, 则小飞轮转过的角度为2θ,其中θ∈[0,2π].此时B (2r cos θ,2r sin θ),C (4r +r cos 2θ,r sin 2θ). 记点B ,C 的高度差为d ,则d =|2r sin θ-r sin 2θ|, 即d =2r |sin θ-sin θcos θ|.设f (θ)=sin θ-sin θcos θ,θ∈[0,2π], 则f ′(θ)=(1-cos θ)(2cos θ+1).令f ′(θ)=(1-cos θ)(2cos θ+1)=0,得cos θ=-12或1,则θ=2π3,4π3,0或2π.f (θ)和f ′(θ)随θ的变化情况如下表:综上所述,点B ,C 在传动过程中高度差的最大值d max =332r .。
【创新设计】(江西专用)2015高考数学二轮复习 专题训练 1-3-2 数列的综合问题 理
第2讲 数列的综合问题一、选择题1.(2014·杭州质量检测)设S n 为等差数列{a n }的前n 项和.若a 4<0,a 5>|a 4|,则使S n >0成立的最小正整数n 为( ).A .6B .7C .8D .9解析 ∵a 4<0,a 5>|a 4|, ∴a 4+a 5>0, ∴S 8=a 4+a 52=a 1+a 82>0.∴最小正整数为8. 答案 C2.(2014·广州综合测试)在数列{a n }中,已知a 1=1,a n +1-a n =sin n +π2,记S n 为数列{a n }的前n 项和,则S 2014=( ).A .1 006B .1 007C .1 008D .1 009解析 由a n +1-a n =sinn +π2⇒a n +1=a n +sinn +π2,所以a 2=a 1+sin π=1+0=1,a 3=a 2+sin 3π2=1+(-1)=0,a 4=a 3+sin 2π=0+0=0,a 5=a 4+sin 5π2=0+1=1,∴a 5=a 1,如此继续可得a n +4=a n (n ∈N *),数列{a n }是一个以4为周期的周期数列,而2 014=4×503+2,因此S 2 014=503×(a 1+a 2+a 3+a 4)+a 1+a 2=503×(1+1+0+0)+1+1=1 008. 答案 C3.(2014·吉林省实验中学模拟)a n =⎠⎛0n (2x +1)d x ,数列⎩⎨⎧⎭⎬⎫1a n 的前项和为S n ,数列{b n }的通项公式为b n =n -8,则b n S n 的最小值为 ( ).A .-3B .-4C .3D .4解析 a n =⎠⎛0n (2x +1)d x =n 2+n =n (n +1),所以1a n=1n -1n +1,所以S n =n n +1,所以b n S n =n n -n +1=n +1+9n +1-10≥-4,当且仅当n +1=9n +1,即n =2时等号成立,所以b n S n 的最小值为-4. 答案 B4.已知各项都为正的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( ).A.32 B .53 C.256D .43解析 由a 7=a 6+2a 5,得a 1q 6=a 1q 5+2a 1q 4,整理有q 2-q -2=0,解得q =2或q =-1(与条件中等比数列的各项都为正矛盾,舍去),又由 a m ·a n =4a 1,得a m a n =16a 21,即a 212m+n -2=16a 21,即有m +n -2=4,亦即m +n =6,那么1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫4m n +n m +5≥16⎝ ⎛⎭⎪⎫24mn ·n m +5=32,当且仅当4m n =n m ,m +n =6,即n =2m =4时取得最小值32.答案 A 二、填空题5.(2013·辽宁卷)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1, ∴a 1=1,a 3=4,则公比q =2, 因此S 6=-261-2=63.答案 636.(2014·江苏五市联考)各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.解析 根据题意,由于各项均为正数的等比数列{a n }中,a 2-a 1=1,所以q >1.∵a 2a 1=q ,∴a 1(q -1)=1,a 1=1q -1, ∴a 3=q 2q -1=q -2+q -+1q -1=q -1+1q -1+2≥2q -1q -1+2=4, 当且仅当q =2时取得等号,故可知数列{a n }的通项公式a n =2n -1.答案 2n -17.(2014·咸阳一模)已知函数f (x )=x +sin x ,项数为19的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则当k =________时,f (a k )=0.解析 因为函数f (x )=x +sin x 是奇函数,所以图象关于原点对称,图象过原点.而等差数列{a n }有19项,a n ∈⎝ ⎛⎭⎪⎫-π2,π2,若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则必有f (a 10)=0,所以k =10. 答案 108.(2013·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 由已知⎩⎪⎨⎪⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2n -2d =n 33-10n 23,由于函数f (x )=x 33-10x 23(x >0)在x =203处取得极小值也是最小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49. 答案 -49 三、解答题9.已知数列{a n }是各项均为正数的等比数列,a 3=4,{a n }的前3项和为7.(1)求数列{a n }的通项公式;(2)若a 1b 1+a 2b 2+…+a n b n =(2n -3)2n+3,设数列{b n }的前n 项和为S n ,求证:1S 1+1S 2+…+1S n ≤2-1n.(1)解 设数列{a n }的公比为q ,由已知得q >0,且⎩⎪⎨⎪⎧a 1q 2=4,a 1+a 1q +4=7,∴⎩⎪⎨⎪⎧a 1=1,q =2.∴数列{a n }的通项公式为a n =2n -1.(2)证明 当n =1时,a 1b 1=1,且a 1=1,解得b 1=1. 当n ≥2时,a n b n =(2n -3)2n+3-(2n -2-3)2n -1-3=(2n -1)·2n -1.∵a n =2n -1,∴当n ≥2时,b n =2n -1.∵b 1=1=2×1-1满足b n =2n -1, ∴数列{b n }的通项公式为b n =2n -1(n ∈N *). ∴数列{b n }是首项为1,公差为2的等差数列.∴S n =n 2.∴当n =1时,1S 1=1=2-11.当n ≥2时,1S n =1n 2<1nn -=1n -1-1n. ∴1S 1+1S 2+…+1S n ≤2-11+11-12+…+1n -1-1n =2-1n. 10.(2014·四川卷)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n, 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n.所以,T n =2n +1-n -22n. 11.数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上.(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.② ①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2). 因为a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列.所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12.若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2. 又λ=2时,S n +2n +22n =2n +2,显然{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.。
2015年高考数学《新高考创新题型》之7:立体几何(含精析)
2015年高考数学《新高考创新题型》之7:立体几何(含精析)之7.立体几何(含精析)一、选择题。
1.如图,正方体的棱长为,点在棱上,且,点是平面上的动点,且动点到直线的距离与点到点的距离的平方差为,则动点的轨迹是()A.圆B.抛物线C.双曲线D.2.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A.B.C.D.3.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点,F是侧面CDD1C1上的动点,且B1F面A1BE,则B1F与平面CDD1C1所成角的正切值构成的集合是()A.2B.C.D.,这两个球相外切,且球与正方体共顶点A的三个面相切,球与正方体共顶点的三个面相切,则两球在正方体的面上的正投影是()(创作:学科网“天骄工作室”)5.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()6.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②7.如图,正方体的棱长为,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于(创作:学科网“天骄工作室”)A.B.C.D.8.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为A.B.C.D.的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则的取值范围是()A.(0,2) B.(0,1)C.(1,2) D.10.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形.若将它倒立放在桌面上,则该圆锥体在桌面上从垂直位置倒放到水平位置的过程中(含起始位置和最终位置),其在水平桌面上正投影不可能是()设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当APC为钝角时,λ的取值范围是________.12.如右图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).[来源:学§科§网]①当时,S为四边形;②当时,S不为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为的鸡蛋(视为球体)放在其上(如图),则鸡蛋中心(球心)与蛋托底面的距离为________.平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理、一个平放的圆柱和一个长方体,得出的体积值为________.抛物线绕轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是.三、解答题。
2015年高考数学创新设计精品习题专题训练1-2-3
A.B.
C.D.
解析由题意知点F为△ABC的重心,设H为BC中点,则==×(+)=a+b,
所以x=,yБайду номын сангаас.
答案C
4.(2014·龙岩期末考试)在平面直角坐标系中,菱形OABC的两个顶点为O(0,0),A(1,1),且·=1,则·等于().
A.-1B.1
C.D.
解析依题意,||=||=||=,·=||||cos∠AOC=1,
C.max{|a+b|2,|a-b|2}≤|a|2+|b|2
D.max{|a+b|2,|a-b|2}≥|a|2+|b|2
解析对于min{|a+b|,|a-b|}与min{|a|,|b|},相当于平行四边形的对角线长度的较小者与两邻边长的较小者比较,它们的大小关系不定,因此A、B均错;而|a+b|,|a-b|中的较大者与|a|,|b|可构成非锐角三角形的三边,因此有max{|a+b|2,|a-b|2}≥|a|2+|b|2,因此选D.
答案D
二、填空题
6.(2014·山东卷)在△ABC中,已知·=tanA,当A=时,△ABC的面积为________.
解析由A=,·=tanA,
得||·||·cosA=tanA,
即||·||×=,∴||·||=,
∴S△ABC=||·||·sinA=××=.
答案
7.如图,在△ABC中,∠C=90°,且AC=BC=3,点M满足=2,则·=________.
cos∠AOC=,∠AOC=,则||=||=||=,∠BAC=,·=||||cos∠BAC=1.
答案B
5.(2014·浙江卷)记max{x,y}=min{x,y}=设a,b为平面向量,则().
2015年高考数学创新设计精品试题专题训练1-5-1
4.(2014· 辽宁卷)已知点 A(-2,3)在抛物线 C:y2=2px 的准线上,过点 A 的直线 与 C 在第一象限相切于点 B,记 C 的焦点为 F,则直线 BF 的斜率为 ( 1 A.2 3 C.4 解析 2 B.3 4 D.3 ∵A(-2,3)在抛物线 y2=2px 的准线上, ).
p ∴-2=-2,∴p=4,∴y2=8x,设直线 AB 的方程为 x=m(y-3)-2①,将 ①与 y2=8x 联立,得 y2-8my+24m+16=0②,则 Δ=(-8m)2-4(24m+16) 1 =0,即 2m2-3m-2=0,解得 m=2 或 m=-2(舍去),将 m=2 代入①②解 x=8, 8-0 4 得 即 B(8,8),又 F(2,0),∴kBF= = ,故选 D. 8-2 3 y=8, 答案 D
பைடு நூலகம்二、填空题
5.(2014· 新课标全国卷Ⅱ)设点 M(x0,1),若在圆 O:x2+y2=1 上存在点 N,使得 ∠OMN=45° ,则 x0 的取值范围是________. 解析 由题意可知 M 在直线 y=1 上运动,设直线 y=1 与圆 x2+y2=1 相切
于点 P(0,1).当 x0=0 即点 M 与点 P 重合时,显然圆上存在点 N(± 1,0)符合要 求;当 x0≠0 时,过 M 作圆的切线,切点之一为点 P,此时对于圆上任意一 点 N,都有∠OMN≤∠OMP,故要存在∠OMN=45° ,只需∠OMP≥45° .特 别地,当∠OMP=45° 时,有 x0=± 1.结合图形可知,符合条件的 x0 的取值范 围为[-1,1].
答案
[-1,1]
x2 y2 6.已知 P 为椭圆25+16=1 上的一点,M,N 分别为圆(x+3)2+y2=1 和圆(x- 3)2+y2=4 上的点,则|PM|+|PN|的最小值为________. 解析 由题意知椭圆的两个焦点 F1,F2 分别是两圆的圆心,且 |PF1|+ |PF2|
精编2015年高考真题理科高中数学新课标ⅰ卷试卷和答案
绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
=i,则|z|=(1)设复数z满足1+z1z(A)1 (B(C)(D)2【答案】A(2)sin20°cos10°-con160°sin10°=(A ) (B (C )12- (D )12【答案】D【解析】原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D.(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n【答案】C【解析】p ⌝:2,2n n N n ∀∈≤,故选C.(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A )0.648 (B )0.432(C )0.36(D )0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF ∙2MF <0,则y 0的取值范围是(A )(-3,3(B )(-66)(C )(3-,3) (D )(【答案】A(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
2015年高考中的五类创新题连成
2015年高考中的五类创新题连成实际应用型试题以社会生活热点为背景,诸如用料最省、效率最高等,重点考查考生对现实问题的数学理解能力,要求考生依据题目给出的信息提炼出一个相关的数学模型,用已学的数学知识与方法来加以解决.例1 (湖南理科卷第10题)某工件的三视图如图1所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)A. B.C. D.参考答案 A本题亮点①圆锥的内接长方体;②基本不等式求最值.解题策略解决这类问题的关键是熟记主要的数学模型,如函数与导数模型、数列模型、不等式模型、三角函数模型、解析几何模型、立体几何模型、线性规划模型、算法模型、概率与统计模型等,根据实际问题进行分析,建立相应的数学模型,然后进行求解和检验.给定一个新模型来创设新的问题情境,要求考生在阅读理解的基础上,依据题中提供的信息,联系所学的知识和方法,实现信息的迁移,从而顺利解决问题,这能有效区分考生的思维品质和学习潜力.例2 (全国新课标卷一理科卷第6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图2,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A.14斛B.22斛C.36斛D.66斛参考答案 B本题亮点①以历史文献为背景;②考查考生的估算能力.解题策略①读懂题意后进行信息提取,明确新定义的含义;②对提取的新信息进行加工,探求解决方法,有时可以寻找相近的知识点,明确它们的共同点和不同点;③对新信息中提取的知识进行转换和有效输出,其中对新信息的提取和化归与转化是解题的关键,也是解题的难点所在.函数是中学数学中起连接和支撑作用的主干知识.图像是表示函数的一种重要形式,其最大的优点是直观.函数图像型试题一直是高考的热点,可以说是常考常新.新课程改革的实施,给函数问题注入了生机和活力,开辟了许多新的解题途径,拓宽了高考对函数问题的命题空间.例3 (北京理科卷第8题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.图3描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油参考答案 D本题亮点实例来源于生活,考查考生对图像的处理能力.解题策略图形或图像的力量比文字更为简洁而有力.挖掘其中蕴含的有效信息,正确理解问题是解题的关键.对图形或图像的独特理解很多时候成为问题解决中的亮点.类比和归纳是非常重要的科学研究方法,可培养考生的创造性思维、创新精神和创造力.试题中往往给出一个命题且指出一个方向,要求考生从已知的结构出发,通过类比、归纳、应用的方式而得到一般的结论或新命题.近几年高考明显加强了对考生类比和归纳能力的考查,即由归纳猜想类比到发现新知,这渗透了从局部到整体、从特殊到一般的思维方法.例4 (山东理科卷第11题)观察下列各式:C01=40;C03+C13=41;C05+C15+C25=42;C07+C17+C27+C37=43;……照此规律,当n∈时,C0 2n-1+C1 2n-1+C2 2n-1+…+Cn-1 2n-1=______.参考答案4n-1本题亮点从具体的实例中寻找规律,考查考生的观察能力.解题策略解答类比推理问题的关键在于确定类比物,建立类比项,并对数学结论的运算、推理过程等进行类比分析,从解题的思想方法、思维策略等层面寻求内在的关联;解答归纳推理问题的关键是从一些特殊的例子中寻找共同的规律.所谓新定义型试题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求考生读懂题意并结合已有知识和能力进行理解,根据新定义进行运算、推理和迁移的一种题型.新定义型试题成为近几年来高考数学压轴题的亮点.在进行高考复习时,考生应该重视提高应用新知识解决问题的能力.例5 (上海理科卷第23题)对于定义域为R的函数g (x),若存在正常数T,使得cos g(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证h(x)=x+sin 是以6π为余弦周期的余弦周期函数.(2)设a<b.证明:对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c.(3)证明:“u0为方程cos f(x)=1在[0,T]上的解”的充要条件是“u0+t为方程cos f(x)=1在[T,2T]上的解”,并证明对任意x∈[0,T]都有f(x+T)=f(x)+f(T).参考答案(1)(验证过程省略)(2)(证明过程省略)(3)(证明过程省略)解题策略考生在解题时关键要把握住两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.(责任编校?筑周峰)。
【创新设计】2015高考数学(鲁闽皖京渝津,文科)大二轮总复习:第1部分专题4第1讲 专题训练 Word版含解析
一、选择题1.(2014·广东卷)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是().A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析构造如图所示的正方体ABCD-A1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,故排除A、B、C,选D.答案 D2.(2014·重庆卷)某几何体的三视图如图所示,则该几何体的表面积为().A.54 B.60 C.66 D.72解析还原为如图所示的直观图,S表=S△ABC+S△DEF+S矩形ACFD+S梯形ABED+S梯形CBEF=12×3×4+12×3×5+5×3+12×(2+5)×4+12×(2+5)×5=60.答案 B3.(2014·安徽卷)一个多面体的三视图如图所示,则该多面体的体积为().A.233B.476C.6 D.7解析如图,由三视图可知,该几何体是由棱长为2的正方体右后和左下分别截去一个小三棱锥得到的,其体积为V=2×2×2-2×13×12×1×1×1=233.答案 A4.(2014·潍坊一模)三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为().A.32πB.32πC.3πD.12π解析如图,因为AB⊥BC,所以AC是△ABC所在截面圆的直径,又因为SA ⊥平面ABC,所以△SAC所在的截面圆是球的大圆,所以SC是球的一条直径.由题设SA=AB=BC=1,由勾股定理可求得:AC=2,SC=3,所以球的半径R =32,所以球的表面积为4π×⎝ ⎛⎭⎪⎫322=3π.答案 C 二、填空题5. (2014·金丽衢十二校联考)一个几何体的三视图如图所示,则该几何体的体积为____________.解析 由题意可得,几何体相当于一个棱长为2的正方体切去一个角,角的相邻三条棱长分别是1,2,2,所以几何体的体积为8-23=223. 答案 2236.(2014·山东卷)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 解析 设棱锥的高为h ,则V =13×S 底·h =13×6×34×22×h =23, ∴h =1,由勾股定理知,侧棱长为22+1=5, ∵六棱锥六个侧面全等,且侧面三角形的高为 (5)2-12=2,∴S 侧=12×2×2×6=12. 答案 127.(2014·武汉调研测试)已知某几何体的三视图如图所示,则该几何体的表面积为________.解析由三视图可知,该几何体是底面半径为1,高为3,母线长为2的圆锥的一半,其表面积是整个圆锥表面积的一半与轴截面的面积之和.所以,S=12×12×2π×1×2+12×π×12+12×2×3=3π2+ 3.答案3+3π28.正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________(填序号).①AC⊥BE;②B1E∥平面ABCD;③三棱锥E-ABC的体积为定值;④直线B1E⊥直线BC1.解析因AC⊥平面BDD1B1,故①正确;易得②正确;记正方体的体积为V,则V E-ABC =16V为定值,故③正确;B1E与BC1不垂直,故④错误.答案①②③三、解答题9.(2014·山东卷)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面P AC.证明(1)设AC∩BE=O,连接OF,EC. 由于E为AD的中点,AB=BC=12AD,AD∥BC,所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△P AC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF.所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC⊂平面P AC,所以BE⊥平面P AC.10. (2014·威海一模)如图,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.(1)求证:平面ADF⊥平面CBF;(2)求证:PM∥平面AFC;(3)求多面体CD-AFEB的体积V.(1)证明∵矩形ABCD所在的平面和平面ABEF互相垂直,且CB⊥AB,∴CB⊥平面ABEF,又AF⊂平面ABEF,所以CB⊥AF,又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=3,∴AF2+BF2=AB2,得AF⊥BF,BF∩CB=B,∴AF⊥平面CFB,又∵AF⊂平面ADF;∴平面ADF⊥平面CBF.(2)证明连接OM延长交BF于H,则H为BF的中点,又P为CB的中点,∴PH∥CF,又∵CF⊂平面AFC,PH⊄平面AFC,∴PH∥平面AFC,连接PO,则PO∥AC,又∵AC⊂平面AFC,PO⊄平面AFC,PO∥平面AFC,PO∩PH=P,∴平面POH∥平面AFC,又∵PM⊂平面POH,∴PM∥平面AFC.(3)解多面体CD-AFEB的体积可分成三棱锥C-BEF与四棱锥F-ABCD的体积之和在等腰梯形ABEF中,计算得EF=1,两底间的距离EE1=3 2.所以V C -BEF =13S △BEF ×CB =13×12×1×32×1=312, V F -ABCD =13S 矩形ABCD ×EE 1=13×2×1×32=33, 所以V =V C -BEF +V F -ABCD =5312.11.(2014·江西卷)如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1. (1)求证:A 1C ⊥CC 1;(2)若AB =2,AC =3,BC =7,问AA 1为何值时,三棱柱ABC -A 1B 1C 1体积最大,并求此最大值.(1)证明 由AA 1⊥BC 知BB 1⊥BC ,又BB 1⊥A 1B , 故BB 1⊥平面BCA 1,即BB 1⊥A 1C , 又BB 1∥CC 1,所以A 1C ⊥CC 1. (2)解 法一 设AA 1=x ,在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2. 同理,A 1C =A 1C 21-CC 21=3- x 2.在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C=-x 2(4-x 2)(3-x 2),sin ∠BA 1C =12-7x 2(4-x 2)(3-x 2),所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x 22.从而三棱柱ABC -A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22,因x 12-7x 2=12x 2-7x 4=-7(x 2-67)2+367,故当x =67=427,即AA 1=427时,体积V 取到最大值377.法二 如图,过A 1作BC 的垂线,垂足为D ,连接AD .由AA 1⊥BC ,A 1D ⊥BC ,故BC ⊥平面AA 1D ,BC ⊥AD ,又∠BAC =90°, 所以S △ABC =12AD ·BC =12AB ·AC ,所以AD =2217.设AA 1=x ,在Rt △AA 1D 中, A 1D =AD 2-AA 21=127-x 2,S △A 1BC =12A 1D ·BC =12-7x 22.从而三棱柱ABC -A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因x 12-7x 2=12x 2-7x 4=-7(x 2-67)2+367,故当x =67=427,即AA 1=427时,体积V 取到最大值377.。
【三维设计】2015年高考数学总复习创新问题专项训练(一)文北师大版
创新问题专项训练(一)一、选择题1.如图,直线l 和圆C ,当l 从l 0开始在平面上绕点O 按逆时针方向匀速转动(转动角度不超过90°)时,它扫过的圆内阴影部分的面积S 是时间t 的函数,这个函数的图像大致是( )2.已知两个非零向量a 与b ,定义|a ×b |=|a |·|b |sin θ,其中θ为a 与b 的夹角.若a =(-3,4),b =(0,2),则|a ×b |的值为( )A .-8B .-6C .8D .63.设实数a 1,a 2,a 3,a 4是一个等差数列,且满足1<a 1<3,a 3=4.若定义b n ={2a n },给出下列命题:(1)b 1,b 2,b 3,b 4是一个等比数列;(2)b 1<b 2;(3)b 2>4;(4)b 4>32;(5)b 2·b 4=256.其中真命题的个数为( )A .2B .3C .4D .54.我们把形如y =f (x )φ(x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y =φ(x )ln f (x ),两边求导得y ′y=φ′(x )·ln f (x )+φ(x )·f x f x ,于是y ′=f (x )φ(x )[φ′(x )·l n f (x )+φ(x )·f x f x].运用此方法可以探求得y =x 1x的一个单调递增区间是( )A .(e,4)B .(3,6)C .(2,3)D .(0,1)5.对向量a =(a 1,a 2),b =(b 1,b 2)定义一种运算“⊗”:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知动点P ,Q 分别在曲线y =sin x 和y =f (x )上运动,且OQ =m ⊗OP +n (其中O为坐标原点),若向量m =(12,3),n =(π6,0),则y =f (x )的最大值为( )A.12 B .2 C .3 D. 3二、填空题6.设a =x 2-xy +y 2,b =p xy ,c =x +y ,若对任意的正实数x ,y ,都存在以a ,b ,c 为三边长的三角形,则实数p 的取值范围是________.7.若从集合113,434⎧⎫⎨⎬⎩⎭,,中随机抽取一个数记为a ,从集合{-1,1,-2,2}中随机抽取一个数记为b ,则函数f (x )=a x+b (a >0,a ≠1)的图像经过第三象限的概率是________.8.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知如图是“优美图”,则点A,B与边a所对应的三个数分别为________.9.已知数列{a n}:a1,a2,a3,…,a n,如果数列{b n}:b1,b2,b3,…,b n满足b1=a n,b k=a k-1+a k-b k-1,其中k=2,3,…,n,则称{b n}为{a n}的“衍生数列”.若数列{a n}:a1,a2,a3,a4的“衍生数列”是5,-2,7,2,则{a n}为________;若n为偶数,且{a n}的“衍生数列”是{b n},则{b n}的“衍生数列”是________.三、解答题10.设数列{a n}的各项均为正数.若对任意的n∈N+,存在k∈N+,使得a2n+k=a n·a n+2k 成立,则称数列{a n}为“J k型”数列.(1)若数列{a n}是“J2型”数列,且a2=8,a8=1,求a2n;(2)若数列{a n}既是“J3型”数列,又是“J4型”数列,证明:数列{a n}是等比数列.11.春节前,有超过20万名广西,四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾驶人员休息站,让过往返乡过年的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行省籍询问一次,询问结果如图所示.(1)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法;(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的被抽取了5名,则四川籍的应抽取几名?(3)在上述抽出的驾驶人员中任取2名,求至少有1名驾驶人员是广西籍的概率.答 案1.选D 依题意,直线l 从l 0开始按逆时针方向匀速转动,开始一段时间阴影部分的面积增加的比较慢,中间一段时间阴影部分的面积增加的比较快,最后一段时间阴影部分的面积增加的又比较慢,因此结合各选项知,选D.2.选D |a |=-2+42=5,|b |=02+22=2,a ·b =-3×0+4×2=8,所以cos θ=a ·b |a |·|b |=85×2=45,又因为θ∈[0,π],所以sin θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫452=35.故根据定义可知|a ×b |=|a |·|b |sin θ=5×2×35=6. 3.选C 若{a n }是公差为d 的等差数列,则{2a n }是公比为2d的等比数列,故(1)正确;a 3>a 1⇒公差d >0⇒公比2d >1,(2)正确;a 1+a 3=2a 2,由1<a 1<3,a 3=4,得a 1+a 3>5⇒a 2>2⇒b 2=2a 2>4,(3)正确;1<a 1<3,a 3=4,又a 3=a 1+2d ⇒d =4-a 12∈(12,32)⇒a 4∈(92,112),故b 4=2a 4不一定大于32,(4)不正确;因为b 2·b 4=b 23=(2a 3)2=256,所以(5)正确.4.选D 由题意知y ′=x 1x(-1x 2l n x +1x ·1x )=x 1x ·1x 2(1-ln x ),x >0,1x2>0,x 1x >0,令y ′>0,则1-ln x >0,所以0<x <e ,因为(0,1)⊆(0,e),所以选D.5.选C 设P =(x 1,y 1),Q =(x ,y ),∵m =(12,3),∴m ⊗OP =(12,3)⊗(x 1,y 1)=(x 12,3y 1),∵OQ =m ⊗OP +n ,∴(x ,y )=(x 12,3y 1)+(π6,0),∴x =x 12+π6,y =3y 1,∴x 1=2x-π3,y 1=y3, 又y 1=sin x 1,∴y 3=sin(2x -π3),∴y =3sin(2x -π3),显然当sin(2x -π3)=1时,y =f (x )取得最大值3.6.解析:∵a =x 2-xy +y 2,b =p xy ,c =x +y ,∴a <c ,∴⎩⎨⎧x 2-xy +y 2+p xy >x 2+2xy +y 2,x 2-xy +y 2+x 2+2xy +y 2>p xy ,即⎩⎪⎨⎪⎧p > x y +yx +2- x y +yx -1,p < x y +yx+2+ x y +yx-1,令t =x y +y x(t ≥2),则⎩⎨⎧p >t +2-t -1p <t +2+t -1,从而1<p <3.答案:(1,3)7.解析:(b ,a )的所有可能情况有:⎝ ⎛⎭⎪⎫-1,13,⎝ ⎛⎭⎪⎫-1,14,(-1,3),(-1,4);⎝ ⎛⎭⎪⎫1,13,⎝ ⎛⎭⎪⎫1,14,(1,3),(1,4);⎝ ⎛⎭⎪⎫-2,13,⎝ ⎛⎭⎪⎫-2,14,(-2,3),(-2,4);⎝ ⎛⎭⎪⎫2,13,⎝ ⎛⎭⎪⎫2,14,(2,3),(2,4),共16种.由于函数f (x )的图象经过第三象限,因此,0<a <1,b <-1或a >1,b <0,因此满足条件的(b ,a )有:(-1,3),(-1,4),(-2,13),(-2,14),(-2,3),(-2,4),共6种.根据古典概型的概率计算公式可得P =616=38.答案:388.解析:观察图中编号为4的边,由于6-2=5-1=4,而数字2已为一端点的编号,故编号为4的边的左、右两端点应为5、1,从而易知编号为1的边的左、右两端点应为4、3.考虑到图中编号为1的边,易知点A 对应的数为3,点B 对应的数为6.故应填3、6、3.答案:3、6、39.解析:由b 1=a n ,b k =a k -1+a k -b k -1,k =2,3,…,n 可得,a 4=5,2=a 3+a 4-7,解得a 3=4.又7=a 2+a 3-(-2),解得a 2=1.由-2=a 1+a 2-5,解得a 1=2,所以数列{a n }为2,1,4,5.由已知,b 1=a 1-(a 1-a n ),b 2=a 1+a 2-b 1=a 2+(a 1-a n ),….因为n 是偶数,所以b n =a n +(-1)n(a 1-a n )=a 1.设{b n }的“衍生数列”为{c n },则c i=b i +(-1)i(b 1-b n )=a i +(-1)i·(a 1-a n )+(-1)i(b 1-b n )=a i +(-1)i(a 1-a n )+(-1)i·(a n -a 1)=a i ,其中i =1,2,3,…,n .则{b n }的“衍生数列”是{a n }.答案:2,1,4,5 {a n }10.解:(1)由题意得a 2,a 4,a 6,a 8,…成等比数列,且公比q =(a 8a 2)13=12,所以a 2n =a 2qn -1=(12)n -4. (2)由数列{a n }是“J 4型”数列,得a 1,a 5,a 9,a 13,a 17,a 21,…成等比数列,设公比为t .由数列{a n }是“J 3型”数列,得a 1,a 4,a 7,a 10,a 13,…成等比数列,设公比为α1;a 2,a 5,a 8,a 11,a 14,…成等比数列,设公比为α2; a 3,a 6,a 9,a 12,a 15,…成等比数列,设公比为α3.则a 13a 1=α41=t 3,a 17a 5=α42=t 3,a 21a 9=α43=t 3. 所以α1=α2=α3,不妨记α=α1=α2=α3,且t =α43.于是a 3k -2=a 1αk -1=a 1(3α)(3k -2)-1,a 3k -1=a 5αk -2=a 1t αk -2=a 1α23k -=a 1(3α)(3k -1)-1,a 3k =a 9αk -3=a 1t 2αk -3=a 1α13k -=a 1(3α)3k -1,所以a n =a 1(3α)n -1,故{a n }为等比数列.11.解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法. (2)从图中可知,被询问了省籍的驾驶人员是广西籍的有5+20+25+20+30=100名,四川籍的有15+10+5+5+5=40名.设四川籍的驾驶人员应抽取x 名,依题意得5100=x40,解得x =2,即四川籍的应抽取2名.(3)用a 1,a 2,a 3,a 4,a 5表示被抽取的广西籍驾驶人员,b 1,b 2表示被抽取的四川籍驾驶人员,则所有可能结果共有{a 1,a 2},{a 1,a 3},{a 1,a 4},{a 1,a 5},{a 1,b 1},{a 1,b 2},{a 2,a 3},{a 2,a 4},{a 2,a 5},{a 2,b 1},{a 2,b 2},{a 3,a 4},{a 3,a 5},{a 3,b 1},{a 3,b 2},{a 4,a 5},{a 4,b 1},{a 4,b 2},{a 5,b 1},{a 5,b 2},{b 1,b 2},共21个,其中2名驾驶人员都是四川籍的结果有{b 1,b 2},1个. 所以抽取的2名驾驶人员都是四川籍的概率P 1=121,至少有1名驾驶人员是广西籍的概率P =1-P 1=1-121=2021.。
2015年最新数学高考模拟试题精编12套
数学高考模拟试题精编一【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数z =2i1+i,z 的共轭复数为z ,则z ·z =( ) A .1-i B .2 C .1+i D .02.(理)条件甲:⎩⎨⎧ 2<x +y <40<xy <3;条件乙:⎩⎨⎧0<x <12<y <3,则甲是乙的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件(文)设α,β分别为两个不同的平面,直线l ⊂α,则“l ⊥β”是“α⊥β”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.某程序框图如图所示,该程序运行后输出的k 的值是( )A.4 B.5C.6 D.74.(理)下列说法正确的是()A.函数f(x)=1x在其定义域上是减函数B.两个三角形全等是这两个三角形面积相等的必要条件C.命题“∃x∈R,x2+x+1>0”的否定是“∀x∈R,x2+x+1<0”D.给定命题p、q,若p∧q是真命题,则綈p是假命题(文)若cos θ2=35,sinθ2=-45,则角θ的终边所在的直线为()A.7x+24y=0 B.7x-24y=0C.24x+7y=0 D.24x-7y=05.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35)、[35,40)、[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为()A.0.04 B.0.06C.0.2 D.0.36.已知等比数列{a n }的首项为1,若4a 1,2a 2,a 3成等差数列,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( ) A.3116 B .2 C.3316 D.16337.已知l ,m 是不同的两条直线,α,β是不重合的两个平面,则下列命题中为真命题的是( )A .若l ⊥α,α⊥β,则l ∥βB .若l ⊥α,α∥β,m ⊂β,则l ⊥mC .若l ⊥m ,α∥β,m ⊂β,则l ⊥αD .若l ∥α,α⊥β,则l ∥β 8.(理)在二项式⎝⎛⎭⎪⎪⎫x +12·4x n 的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( ) A.16 B.14 C.13 D.512(文)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .1 B .-1 C .-e -1 D .-e9.将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ(φ>0)个单位,再将图象上每一点横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( ) A.π8 B.3π8 C.3π4 D.π2 10.如图所示是一个几何体的三视图,其侧视图是一个边长为a 的等边三角形,俯视图是两个正三角形拼成的菱形,则该几何体的体积为( ) A .a 3B.a 32C.a 33D.a 34 11.如图所示,F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支的两个交点分别为A ,B ,且△F 2AB 是等边三角形,则双曲线的离心率为( ) A.2+1 B.3+1 C.2+12 D.3+1212.设定义在R 上的奇函数y =f (x ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于( ) A .-12 B .-13 C .-14 D .-15 答题栏题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上)13.向平面区域{}(x ,y )|x 2+y 2≤1内随机投入一点,则该点落在区域⎩⎨⎧2x +y ≤1x ≥0y ≥0内的概率等于________.14.(理)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC→=________.(文)已知向量p =(1,-2),q =(x,4),且p ∥q ,则p ·q 的值为________. 15.给出下列等式:观察各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则依次类推可得a 6+b 6=________.16.已知不等式xy ≤ax 2+2y 2,若对任意x ∈[1,2],且y ∈[2,3],该不等式恒成立,则实数a 的取值范围是________.三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程及演算步骤)17.(本小题满分12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+2cos 2x -1(x ∈R )(1)求f (x )的单调递增区间;(2)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=12,b ,a ,c 成等差数列,且AB →·AC →=9,求a 的值.18.(理)(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C ⊥底面ABC ,AA 1=A 1C =AC =2,AB =BC ,AB ⊥BC ,O 为AC 中点. (1)证明:A 1O ⊥平面ABC ;(2)求直线A 1C 与平面A 1AB 所成角的正弦值;(3)在BC 1上是否存在一点E ,使得OE ∥平面A 1AB ?若存在,确定点E 的位置;若不存在,说明理由. (文)(本小题满分12分)如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,AB=1,AA1=62,∠ABC=60°.(1)求证:AC⊥BD1;(2)求四面体D1-AB1C的体积.19.(理)(本小题满分12分)某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛,其中一道题是连线题,要求将4种不同的工具与它们的4种不同的用途一对一连线,规定:每连对一条得5分,连错一条得-2分.某参赛者随机用4条线把消防工具与用途一对一全部连接起来.(1)求该参赛者恰好连对一条的概率;(2)设X为该参赛者此题的得分,求X的分布列与数学期望.(文)(本小题满分12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学基本公式大赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.20.(本小题满分13分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2.(1)设b n=a n+1-2a n,证明:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(理)(本小题满分13分)已知函数f (x )=e x (ax 2-2x -2),a ∈R 且a ≠0. (1)若曲线y =f (x )在点P (2,f (2))处的切线垂直于y 轴,求实数a 的值; (2)当a >0时,求函数f (|sin x |)的最小值;(3)在(1)的条件下,若y =kx 与y =f (x )的图象存在三个交点,求k 的取值范围. (文)(本小题满分12分)已知函数f (x )=ln x 与g (x )=kx +b (k ,b ∈R )的图象交于P ,Q 两点,曲线y =f (x )在P ,Q 两点处的切线交于点A .(1)当k =e ,b =-3时,求函数h (x )=f (x )-g (x )的单调区间;(e 为自然常数) (2)若A ⎝ ⎛⎭⎪⎫e e -1,1e -1,求实数k ,b 的值. 22.(本小题满分12分)如图F 1、F 2为椭圆C :x 2a 2+y 2b 2=1的左、右焦点,D 、E 是椭圆的两个顶点,椭圆的离心率e =32,S △DEF 2=1-32.若点M (x 0,y 0)在椭圆C 上,则点N ⎝ ⎛⎭⎪⎫x 0a ,y 0b 称为点M 的一个“椭点”,直线l 与椭圆交于A 、B 两点,A 、B两点的“椭点”分别为P 、Q . (1)求椭圆C 的标准方程;(2)问是否存在过左焦点F 1 的直线l ,使得以PQ 为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.山东省数学高考模拟试题精编二【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答. 题号 一二 三 总分13 1415 16 17 18 19 20 21 22 得分第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A ={1,4,2x },B ={1,x 2},若B ⊆A ,则x =( ) A .0 B .-2C .0或-2D .0或±22.命题“若x >1,则x >0”的否命题是( ) A .若x >1,则x ≤0 B .若x ≤1,则x >0 C .若x ≤1,则x ≤0 D .若x <1,则x <0 3.若复数z =2-i ,则z +10z =( ) A .2-i B .2+i C .4+2i D .6+3i4.(理)已知双曲线x 2a 2-y 2b 2=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( ) A .5x 2-45y 2=1 B.x 25-y 24=1C.y 25-x 24=1 D .5x 2-54y 2=1(文)已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22x B .y =±2x C .y =±2x D .y =±12x5.设函数f (x )=sin x +cos x ,把f (x )的图象按向量a =(m,0)(m >0)平移后的图象恰好为函数y =-f ′(x )的图象,则m 的最小值为( ) A.π4 B.π3 C.π2 D.2π36.(理)已知⎝ ⎛⎭⎪⎫x 2+1x n 的展开式的各项系数和为32,则展开式中x 4的系数为( )A .5B .40C .20D .10(文)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为( ) A .7 B .9 C .10 D .157.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是( ) A .5 B .6 C .7 D .88.点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A.125π6 B .8π C.25π4 D.25π169.(理)已知实数a ,b ,c ,d 成等比数列,且函数y =ln(x +2)-x 当x =b 时取到极大值c ,则ad 等于( ) A .1 B .0 C .-1 D .2(文)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( ) A .2 B .-1 C .1 D .-210.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34 B.32 C .1 D .211.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π有零点的概率为( ) A.78 B.34 C.12 D.1412.(理)设函数f (x )=x -1x ,对任意x ∈[1,+∞),f (2mx )+2mf (x )<0恒成立,则实数m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,-12 B.⎝ ⎛⎭⎪⎫-12,0 C.⎝ ⎛⎭⎪⎫-12,12 D.⎝ ⎛⎭⎪⎫0,12 (文)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,0)∪(0,1) C .(0,1) D .(0,1)∪(1,+∞) 答题栏二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上)13.一个几何体的三视图如图所示,则该几何体的体积为________.14.若x ,y 满足条件⎩⎨⎧3x -5y +6≥02x +3y -15≤0,y ≥0当且仅当x =y =3时,z =ax -y 取得最小值,则实数a 的取值范围是________.15.已知函数f (x )满足:当x ≥4时,f (x )=⎝ ⎛⎭⎪⎫12x ;当x <4时f (x )=f (x +1),则f (2+log 23)=________.16.(理)已知a n =∫n 0(2x +1)d x ,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,数列{b n }的通项公式为b n =n -8,则b n S n 的最小值为________.(文)在△ABC 中,2sin 2A 2=3sin A ,sin (B -C)=2cos B sin C ,则ACAB =________. 三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程及演算步骤)17.(本小题满分12分)已知函数f(x)=3sinωx +φ2cos ωx +φ2+sin 2ωx +φ2(ω>0,0<φ<π2).其图象的两个相邻对称中心的距离为π2,且过点⎝ ⎛⎭⎪⎫π3,1.(1)求函数f(x)的表达式;(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,a =5,S △ABC =25,角C 为锐角,且满足f ⎝ ⎛⎭⎪⎫C 2-π12=76,求c 的值.18.(理)(本题满分12分)如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.(文)(本小题满分12分)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1的中点.(1)求证:AB1⊥平面A1BD;(2)设点O为AB1上的动点,当OD∥平面ABC时,求AOOB1的值.19.(理)(本小题满分12分)某高校组织自主招生考试,共有2 000名优秀同学参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成8组:第1组[195,205),第2组[205,215),…,第8组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.(1)估计所有参加笔试的2 000名同学中,参加面试的同学人数;(2)面试时,每位同学抽取三个问题,若三个问题全答错,则不能取得该校的自主招生资格;若三个问题均回答正确且笔试成绩在270分以上,则获A 类资格;其他情况下获B 类资格.现已知某中学有3人获得面试资格,且仅有1人笔试成绩在270分以上,在回答三个面试问题时,3人对每一个问题正确回答的概率均为12,用随机变量X 表示该中学获得B 类资格的人数,求X 的分布列及期望EX. (文)(本小题满分12分)PM 2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB 3095-2012,PM 2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标. 从某自然保护区某年全年每天的PM 2.5日均值监测数据中随机地抽取12天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)求空气质量为超标的数据的平均数与方差;(2)从空气质量为二级的数据中任取两个,求这两个数据的和小于100的概率; (3)以这12天的PM 2.5日均值来估计该年的空气质量情况,估计该年(366天)大约有多少天的空气质量达到一级或二级.20.(本小题满分13分)已知函数f(x)=x 2-2(n +1)x +n 2+5n -7.(Ⅰ)设函数y =f(x)的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列; (Ⅱ)设函数y =f(x)的图象的顶点到x 轴的距离构成数列{b n },求{b n }的前n 项和S n .21.(理)(本小题满分13分)已知函数f(x)=ax sin x +cos x ,且f(x)在x =π4处的切线斜率为2π8.(1)求a 的值,并讨论f(x)在[-π,π]上的单调性; (2)设函数g(x)=ln (mx +1)+1-x1+x,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈[0,π2],使得g(x 1)≥f(x 2)成立,求m 的取值范围.(文)(本小题满分12分)已知函数f(x)=12x 2-13ax 3(a >0),函数g(x)=f(x)+e x (x -1),函数g(x)的导函数为g ′(x). (1)求函数f(x)的极值; (2)若a =e ,(ⅰ)求函数g(x)的单调区间;(ⅱ)求证:x >0时,不等式g ′(x)≥1+ln x 恒成立.22.(本小题满分12分)如图,已知椭圆C :x 24+y 23=1,直线l 的方程为x =4,过右焦点F 的直线l ′与椭圆交于异于左顶点A 的P ,Q 两点,直线AP 、AQ 交直线l 分别于点M 、N.(Ⅰ)当AP →·AQ →=92时,求此时直线l ′的方程;(Ⅱ)试问M 、N 两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.山东省数学高考模拟试题精编三【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答. 题号一二 三 总分13141516171819202122得分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若复数z 满足3-iz =1+i ,i 是虚数单位,则z =( ) A .2-2i B .1-2i C .2+i D .1+2i2.若集合A ={x ∈Z |2<2x +2≤8},B ={x ∈R |x 2-2x >0},则A ∩(∁R B )所含的元素个数为( ) A .0 B .1 C .2 D .3 3.若三棱锥的三视图如右图所示,则该三棱锥的体积为( ) A .80 B .40 C.803 D.4034.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 5.设l 、m 是两条不同的直线,α,β是两个不同的平面,有下列命题: ①l ∥m ,m ⊂α,则l ∥α ②l ∥α,m ∥α,则l ∥m ③α⊥β,l ⊂α,则l ⊥β ④l ⊥α,m ⊥α,则l ∥m其中正确的命题的个数是( ) A .1 B .2C .3D .46.已知双曲线C 的中心在原点,焦点在坐标轴上,P (1,-2)是C 上的点,且y =2x 是C 的一条渐近线,则C 的方程为( ) A.y 22-x 2=1 B .2x 2-y 22=1C.y 22-x 2=1或2x 2-y 22=1 D.y 22-x 2=1或x 2-y 22=17.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为( ) A .0.852 B .0.819 2 C .0.8 D .0.758.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0),把函数f (x )的图象向右平移π6个单位长度,所得图象的一条对称轴方程是x =π3,则ω的最小值是( ) A .1 B .2 C .4 D.329.按右面的程序框图运行后,输出的S 应为( ) A .26 B .35 C .40 D .5710.(理)设不等式组⎩⎪⎨⎪⎧π4≤x ≤5π4|y |≤1所表示的平面区域为D ,现向区域D 内随机投掷一点,且该点又落在曲线y =sin x 与y =cos x 围成的区域内的概率是( ) A.22π B.2π C .2 2 D .1-2π(文)函数f (x )=lg|sin x |是( )A .最小正周期为π的奇函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数11.(理)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A .1 B .2 C .3 D .4(文)在直角三角形ABC 中,∠C =π2,AC =3,取点D 、E 使BD→=2DA →,AB →=3BE →,那么CD →·CA →+CE →·CA →=( ) A .3 B .6 C .-3 D .-612.一个赛跑机器人有如下特性:(1)步长可以人为地设置成0.1米,0.2米,0.3米,…,1.8米,1.9米;(2)发令后,机器人第一步立刻迈出设置的步长,且每一步的行走过程都在瞬时完成;(3)当设置的步长为a 米时,机器人每相邻两个迈步动作恰需间隔a 秒.则这个机器人跑50米(允许超出50米)所需的最少时间是( ) A .48.6秒 B .47.6秒 C .48秒 D .47秒 答题栏二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上)13.(理)在(4x -2-x )6的展开式中,常数项为________.(文)若实数x ,y 满足-1<x +y <4,且2<x -y <3,则p =2x -3y 的取值范围是________.14.已知△ABC 中,BC =1,AB =3,AC =6,点P 是△ABC 的外接圆上一个动点,则BP →·BC→的最大值是________. 15.(理)若曲线y =x -12在点⎝ ⎛⎭⎪⎫m ,m -12处的切线与两坐标轴围成三角形的面积为18,则m =________.(文)已知点P (x ,y )在直线x +2y =3上移动,当2x +4y 取得最小值时,过点P 引圆⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +142=12的切线,则此切线段的长度为________. 16.已知数列a n :11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,则a 99+a 100的值为________.三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程及演算步骤)17.(本小题满分12分)已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,3sin C cos C -cos 2C =12,且c =3. (1)求角C ;(2)若向量m =(1,sin A )与n =(2,sin B )共线,求a 、b 的值. 18.(理)(本小题满分12分)如图,已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,AB ⊥AC ,M 、N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上,且A 1P →=λA 1B 1→(1)证明:无论λ取何值,总有AM ⊥PN ;(2)当λ=12时,求直线PN 与平面ABC 所成角的正切值.(文)(本小题满分12分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,∠ABC =∠ADC =90°,∠BAD =120°,AD =AB =1,AC 交BD 于O 点.(1)求证:平面PBD ⊥平面P AC ;(2)求三棱锥D -ABP 和三棱锥B -PCD 的体积之比.19.(理)(本小题满分12分)某地近年来持续干旱,为倡导节约用水,该地采用了阶梯水价计费方法,具体为:每户每月用水量不超过a吨的每吨2元;超过a吨而不超过(a+2)吨的,超出a吨的部分每吨4元;超过(a+2)吨的,超出(a+2)吨的部分每吨6元.(1)写出每户每月用水量x(吨)与支付费y(元)的函数关系;(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:将12费用,求Y的分布列和数学期望(精确到元);(3)今年干旱形势仍然严峻,该地政府决定适当下调a的值(3<a<4),小明家响应政府号召节约用水,已知他家前3个月的月平均水费为11元,并且前3个月用水量x的分布列为:请你求出今年调整的(文)(本小题满分12分)某地近年来持续干旱,为倡导节约用水,该地采用了阶梯水价计费方法,具体为:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x(吨)与支付费y(元)的函数关系;(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:据此估计该地“节约用水家庭”的比例.20.(本小题满分13分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数a.①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出常数a;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.21.(本小题满分13分)已知函数f(x)=12ax2-(2a+1)x+2ln x(a∈R).(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.22.(本小题满分12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,点F1,F2分别是椭圆C的左,右焦点,以原点为圆心,椭圆C的短半轴为半径的圆与直线x-y+6=0相切.(1)求椭圆C的方程;(2)若过点F2的直线l与椭圆C相交于M,N两点,求△F1MN的内切圆面积的最大值和此时直线l的方程.山东省数学高考模拟试题精编四【说明】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数z =1+i2-i (其中是虚数单位),则复数z 在坐标平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(理)已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( ) A .p 是真命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )>0 B .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0(文)已知命题p :∃x 0∈R ,x 20+2x 0+2≤0,则綈p 为( )A .∃x 0∈R ,x 20+2x 0+2>0B .∃x 0∈R ,x 20+2x 0+2<0C .∀x ∈R ,x 2+2x +2≤0D .∀x ∈R ,x 2+2x +2>0 3.(理)如图所示,要使电路接通即灯亮,开关不同的闭合方式有( ) A .11种 B .20种 C .21种 D .12种(文)已知向量a 、b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=( ) A .3 2 B .2 2 C. 2 D .14.“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件5.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )6.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( ) A.14 B.13 C.12 D.327.(理)下列四个判断:①某校高三(1)班的人数和高三(2)班的人数分别是m 和n ,某次测试数学平均分分别是a ,b ,则这两个班的数学平均分为a +b 2;②从总体中抽取的样本(1,2.5),(2,3.1),(3,3.6),(4,3.9),(5,4.4),则回归直线y ∧=b ∧x +a ∧必过点(3,3.6);③已知ξ服从正态分布N (1,22),且p (-1≤ξ≤1)=0.3,则p (ξ>3)=0.2 其中正确的个数有( ) A .0个 B .1个 C .2个 D .3个(文)某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ∧=0.66x +1.562,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( ) A .83% B .72% C .67% D .66%8.阅读程序框图(如图),如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是( )A.{x∈R|0≤x≤log23}B.{x∈R|-2≤x≤2}C.{x∈R|0≤x≤log23或x=2}D.{x∈R|-2≤x≤log23或x=2}9.已知点M(a,b)(a>0,b>0)是圆C:x2+y2=1内任意一点,点P(x,y)是圆上任意一点,则实数ax+by-1()A.一定是负数B.一定等于0C.一定是正数D.可能为正数也可能为负数10.过抛物线y2=2px(p>0)的焦点F作直线l交抛物线于A,B两点,O为坐标原点,则△AOB的形状为()A.不确定B.钝角三角形C.锐角三角形D.直角三角形11.(理)设方程10x=|lg(-x)|的两个根分别为x1、x2,则()A.x1x2<0 B.x1x2=1C.x1x2>1 D.0<x1x2<1(文)定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则()A.f(-1)<f(3) B.f(0)>f(3)C.f(-1)=f(3) D.f(0)=f(3)12.等差数列{a n}的前n项和为S n,公差为d,已知(a8+1)3+2013(a8+1)=1,(a2006+1)3+2013(a2006+1)=-1,则下列结论正确的是()A.d<0,S2013=2013 B.d>0,S2013=2013C.d<0,S2013=-2013 D.d>0,S2013=-2013答题栏题号 1 2 3 4 5 6 7 8 9 10 11 12 答案第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上)13.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为________. 14.(理)如图,阴影部分由曲线y =x 与y 轴及直线y =2围成,则阴影部分的面积S =________.(文)曲线y =x 3-2x +3在x =1处的切线方程为________.15.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm 3.16.观察下面两个推理过程及结论:(1)若锐角A ,B ,C 满足A +B +C =π,以角A ,B ,C 分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:sin 2A =sin 2B +sin 2C -2sin B sin C cos A , (2)若锐角A ,B ,C 满足A +B +C =π,则⎝ ⎛⎭⎪⎫π2-A 2+⎝ ⎛⎭⎪⎫π2-B 2+⎝ ⎛⎭⎪⎫π2-C 2=π,以角π2-A 2,π2-B 2,π2-C2分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:cos2A2=cos2B2+cos2C2-2cosB2cosC2sinA2.则:若锐角A,B,C满足A+B+C=π,类比上面推理方法,可以得到的一个等式是________.三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程及演算步骤)17.(本小题满分12分)在△ABC中,内角A,B,C的对边分别是a,b,c,已知c=1,C=π3.(1)若cos(α+C)=-35,0<α<2π3,求cos α;(2)若sin C+sin(A-B)=3sin 2B,求△ABC的面积S.18.(理)(本小题满分12分)如图已知:菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H,G分别是线段EF,BC的中点.(1)求证:平面AHC⊥平面BCE;(2)点M在直线EF上,且GM∥平面AFD,求平面ACH与平面ACM所成角的余弦值.(文)(本小题满分12分)如图,已知三棱柱ABC-A1B1C1.(1)若M、N分别是AB、A1C的中点,求证:MN∥平面BCC1B1;(2)若三棱柱ABC-A1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B 上的动点,当P A+PC最小时,求证:B1B⊥平面APC.19.(理)(本小题满分12分)空气质量指数PM2.5(单位:μg/m 3)表示每立方米空气中入肺颗粒物的含量,这个值越高,就代表空气污染越严重(如下表): PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250 空气质量级别 一级 二级 三级四级五级六级空气质量类别 优良轻度污染 中度污染 重度污染 严重污染某市某年8月8日~9月6日(30天)对空气质量指数PM2.5进行监测,获得数据后得到如图所示的条形图:(1)以该数据为依据,求该城市一个月内空气质量类别为良的概率;(2)在上述30个监测数据中任取2个,设X 为其中空气质量类别为优的天数,求X 的分布列和数学期望.(文)(本小题满分12分)某车间将10名技术工人平均分为甲、乙两个小组加工某种零件.已知甲组每名技术工人加工的零件合格的分别为4个、5个、7个、9个、10个,乙组每名技术工人加工的零件合格的分别为5个、6个、7个、8个、9个. (1)分别求出甲、乙两组技术工人加工的合格零件的平均数及方差,并由此比较这两组技术工人加工这种零件的技术水平;(2)假设质检部门从甲、乙两组技术工人中分别随机抽取1人,对他们加工的零件进行检测,若抽到的2人加工的合格零件之和超过12个,则认为该车间加工的零件质量合格,求该车间加工的零件质量合格的概率.20.(本小题满分13分)已知数列{a n }的前n 项和S n 和通项a n 满足S n =12(1-a n ). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =na n ,求证:b 1+b 2+…+b n <34.21.(理)(本小题满分13分)已知函数g (x )=2a ln(x +1)+x 2-2x (1)当a ≠0时,讨论函数g (x )的单调性;(2)若函数f (x )的图象上存在不同两点A ,B ,设线段AB 的中点为P (x 0,y 0),使得f (x )在点Q (x 0,f (x 0))处的切线与直线AB 平行或重合,则说函数f (x )是“中值平衡函数”,切线叫做函数f (x )的“中值平衡切线”.试判断函数g (x )是否是“中值平衡函数”?若是,判断函数g (x )的“中值平衡切线”的条数;若不是,说明理由. (文)(本小题满分12分)已知函数f (x )=ax 3+bx 2+cx +d (a >0)的零点的集合为{0,1},且x =13是f (x )的一个极值点. (1)求ba 的值;(2)试讨论过点P (m,0)且与曲线y =f (x )相切的直线的条数.22.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点D .求证:直线l 过定点,并求出该定点的坐标.山东省数学高考模拟试题精编五【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数1+2ii 的共轭复数是a +b i(a ,b ∈R ),i 是虚数单位,则点(a ,b )为( ) A .(1,2) B .(2,-1) C .(2,1) D .(1,-2)2.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题C.已知x∈R,则“x>1”是“x>2”的充分不必要条件D.命题“∃x∈R,x2-x>0”的否定是:“∀x∈R,x2-x≤0”3.已知a=0.7-13,b=0.6-13,c=log2.11.5,则a,b,c的大小关系是()A.c<a<b B.c<b<aC.a<b<c D.b<a<c4.一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()A.48+12 2 B.48+24 2C.36+12 2 D.36+24 25.(理)如图,A、B两点之间有4条网线连接,每条网线能通过的最大信息量分别为1,2,3,4.从中任取2条网线,则这2条网线通过的最大信息量之和等于5或6的概率是()A.56 B.12C.13 D.16(文)已知变量x ,y 满足约束条件⎩⎨⎧y ≤2x +y ≥1x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-16.将函数y =sin ⎝ ⎛⎭⎪⎫x +π6(x ∈R )图象上所有的点向左平行移动π6个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π3B .y =sin ⎝ ⎛⎭⎪⎫x 2+π3C .y =sin x 2D .y =cos x27.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为( ) A .8 B .7 C .6 D .5 8.某程序框图如图所示,现输入下列四个函数:f (x )=1x ,f (x )=log 3(x 2+1),f (x )=2x +2-x ,f (x )=2x -2-x ,则输出的函数是( ) A .f (x )=1x B .f (x )=log 3(x 2+1) C .f (x )=2x +2-x D .f (x )=2x -2-x9.(理)将5名学生分到A ,B ,C 三个宿舍,每个宿舍至少1人至多2人,其中。
【创新设计】2015届高考数学一轮总复习 必考解答题 模板成形练 理 苏教版
必考解答题——模板成形练(一) 三角函数、平面向量及解三角形(建议用时:60分钟)1.在△ABC 中,cos A =63,a ,b ,c 分别是角A ,B ,C 所对的边. (1)求sin 2A ; (2)若sin ⎝⎛⎭⎪⎫3π2+B =-223,c =22,求△ABC 的面积.解 (1)因为cos A =63,A ∈(0,π),∴sin A =33. ∴sin 2A =2sin A cos A =223.(2)由sin ⎝ ⎛⎭⎪⎫3π2+B =-223,得cos B =223,由于B ∈(0,π),∴sin B =13.则sin C =sin(A +B )=sin A cos B +cos A sin B =63. 由正弦定理,得a =c sin Asin C=2, ∴△ABC 的面积为S =12ac sin B =223.2.设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m =⎝ ⎛⎭⎪⎫cos C 2,sin C 2,n =⎝⎛⎭⎪⎫cos C 2,-sin C2,m 与n 的夹角为π3.(1)求角C 的大小;(2)已知c =72,△ABC 的面积S =332,求a +b 的值.解 (1)由条件得m ·n =cos 2C2-sin 2C2=cos C ,又m ·n =|m ||n |cos π3=12,∴cos C =12,0<C <π,因此C =π3.(2)S △ABC =12ab sin C =34ab =332,∴ab =6.由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab ,得出(a +b )2=1214,∴a +b =112.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且cos 2C =1-8b2a2.(1)求1tan A +1tan C的值;(2)若tan B =815,求tan A 及tan C 的值.解 (1)∵cos 2C =1-8b 2a 2,∴sin 2C =4b 2a2.∵C 为三角形内角,∴sin C >0,∴sin C =2ba.∵asin A =b sin B ,∴b a =sin B sin A∴2sin B =sin A sin C . ∵A +B +C =π,∴sin B =sin(A +C )=sin A cos C +cos A sin C . ∴2sin A cos C +2cos A sin C =sin A sin C . ∵sin A ·sin C ≠0,∴1tan A +1tan C =12.(2)∵1tan A +1tan C =12,∴tan A =2tan Ctan C -2.∵A +B +C =π, ∴tan B =-tan(A +C ) =-tan A +tan C 1-tan A tan C=tan 2C2tan 2C -tan C +2. ∴815=tan 2C 2tan 2C -tan C +2整理得tan 2C -8tan C +16=0 解得,tan C =4,tan A =4.4.已知向量m =(3sin x -cos x,1),n =⎝ ⎛⎭⎪⎫cos x ,12,若f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)已知△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c 且c =3,f ⎝ ⎛⎭⎪⎫C 2+π12=32(C 为锐角),2sin A =sin B ,求C ,a ,b 的值.解 (1)f (x )=m ·n =3sin x cos x -cos 2x +12=32sin 2x -1+cos 2x 2+12=32sin 2x -12cos 2x =sin ⎝⎛⎭⎪⎫2x -π6,∴f (x )的最小正周期为π.(2)f ⎝ ⎛⎭⎪⎫C 2+π12=sin C =32,∵0<C <π2,∴C =π3,∵2sin A =sin B ,由正弦定理得b =2a .① ∵c =3,由余弦定理,得9=a 2+b 2-2ab cos π3,②解①②组成的方程组,得⎩⎨⎧a =3,b =2 3.∴C =π3,a =3,b =2 3.必考解答题——模板成形练(二) (对应学生用书P411)立体几何(建议用时:60分钟)1.如图,在四棱柱ABCD A 1B 1C 1D 1中,已知平面AA 1C 1C ⊥平面ABCD ,且AB =BC =CA =3,AD =CD =1.(1)求证:BD ⊥AA 1;(2)若E为棱BC的中点,求证:AE∥平面DCC1D1.证明(1)在四边形ABCD中,因为BA=BC,DA=DC,所以BD⊥AC,又平面AA1C1C⊥平面ABCD,且平面AA1C1C∩平面ABCD=AC,BD⊂平面ABCD,所以BD⊥平面AA1C1C,又因为AA1⊂平面AA1C1C,所以BD⊥AA1.(2)在三角形ABC中,因为AB=AC,且E为BC中点,所以AE⊥BC,又因为在四边形ABCD 中,AB=BC=CA=3,DA=DC=1,所以∠ACB=60°,∠ACD=30°,所以DC⊥BC,所以AE∥DC,因为DC⊂平面DCC1D1,AE⊄平面DCC1D1,所以AE∥平面DCC1D12.如图,在四棱锥P-ABCD中,底面ABCD为矩形,BC⊥平面PAB,∠APB=90°,PB=BC,N 为PC的中点.(1)若M为AB的中点,求证:MN∥平面ADP;(2)求证:平面BDN⊥平面ACP.证明(1)设AC∩BD=G,连接NG,MG,易知G是AC,BD的中点,又N是PC的中点,M为AB的中点,∴NG∥PA,MG∥AD,∴平面GMN∥平面APD.又MN⊂平面GMN,∴MN∥平面APD.(2)∵BC⊥平面PAB,AP⊂平面PAB,∴BC⊥PA,∵∠APB=90°,∴BP⊥PA.∵BC∩BP=B,∴PA⊥平面PBC,∴BN⊥PA.∵PB=BC,点N为PC的中点,∴BN⊥PC.∵PC∩PA=P,∴BN⊥平面ACP.又BN⊂平面BDN,∴平面BDN⊥平面ACP.3.如图,已知PA ⊥矩形ABCD 所在平面,E ,F 分别是AB ,PC 的中点. (1)求证:EF ∥平面PAD ; (2)求证:EF ⊥CD ;证明 (1)取PD 的中点G ,连接AG ,FG .因为FG 为△PCD 的中位线,所以FG ∥CD ,且FG =12CD ,又AE ∥CD ,且AE =12CD ,所以AE ∥FG ,且AE =FG ,故四边形AEFG 为平行四边形,所以EF ∥AG . 又AG ⊂平面PAD ,EF ⊄平面PAD , 所以EF ∥平面PAD .(2)因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA ⊥CD .在矩形ABCD 中,AD ⊥CD , 又PA ∩AD =A ,所以CD ⊥平面PAD . 因为AG ⊂平面PAD ,所以CD ⊥AG . 又EF ∥AG ,所以EF ⊥CD . 4.如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E ,M 分别为AB ,DE 的中点,将△ADE 沿直线DE 翻折成△A ′DE ,连接A ′C ,A ′B ,F 为A ′C 的中点,A ′C =4. (1)求证:平面A ′DE ⊥平面BCD ; (2)求证:FB ∥平面A ′DE .证明 (1)由题意得△A ′DE 是△ADE 沿DE 翻折而成,∴△A ′DE ≌△ADE . ∵∠ABC =120°,四边形ABCD 是平行四边形, ∴∠A =60°.又∵AD =AE =2,∴△A ′DE 和△ADE 都是等边三角形.连接A ′M ,MC . ∵M 是DE 的中点,∴A ′M ⊥DE ,A ′M = 3.在△DMC 中,MC 2=DC 2+DM 2-2DC ·DM ·cos 60°=42+12-2×4×1·cos 60°,∴MC =13. 在△A ′MC 中,A ′M 2+MC 2=(3)2+(13)2=42=A ′C 2. ∴△A ′MC 是直角三角形,∴A ′M ⊥MC . 又∵A ′M ⊥DE ,MC ∩DE =M ,∴A ′M ⊥平面BCD . 又∵A ′M ⊂平面A ′DE , ∴平面A ′DE ⊥平面BCD . (2)取DC 的中点N ,连接FN ,NB .∵A ′C =DC =4,F ,N 分别是A ′C ,DC 的中点, ∴FN ∥A ′D .又∵N ,E 分别是平行四边形ABCD 的边DC ,AB 的中点, ∴BN ∥DE .又∵A ′D ∩DE =D ,FN ∩NB =N , ∴平面A ′DE ∥平面FNB .∵FB ⊂平面FNB ,∴FB ∥平面A ′DE .必考解答题——模板成形练(三) (对应学生用书P413)直线与圆及圆锥曲线(建议用时:60分钟)1.已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M 、N 两点.(1)求k 的取值X 围:(2)设Q (m ,n )是线段MN 上的点,且2|OQ |2=1|OM |2+1|ON |2.请将n 表示为m 的函数.解 (1)将y =kx 代入x 2+(y -4)2=4,得(1+k 2)x 2-8kx +12=0(*),由Δ=(-8k )2-4(1+k 2)×12>0得k 2>3.所以k 的取值X 围是(-∞,-3)∪(3,+∞).(2)因为M 、N 在直线l 上,可设点M 、N 的坐标分别为(x 1,kx 1),(x 2,kx 2),则|OM |2=(1+k 2)x 21,|ON |2=(1+k 2)x 22,又|OQ |2=m 2+n 2=(1+k 2)m 2, 由2|OQ |2=1|OM |2+1|ON |2得,21+k2m2=11+k2x 21+11+k2x 22,所以2m 2=1x 21+1x 22=x 1+x 22-2x 1x 2x 21x 22由(*)知x 1+x 2=8k 1+k 2,x 1x 2=121+k 2,所以m 2=365k 2-3, 因为点Q 在直线l 上,所以k =n m ,代入m 2=365k 2-3可得5n 2-3m 2=36,由m 2=365k 2-3及k 2>3得0<m 2<3,即m ∈(-3,0)∪(0,3).依题意,点Q 在圆C 内,则n >0, 所以n =36+3m 25=15m 2+1805, 综上,n 与m 的函数关系为n =15m 2+1805(m ∈(-3,0)∪(0,3).2.已知圆C :(x +3)2+y 2=16,点A (3,0),Q 是圆上一动点,AQ 的垂直平分线交CQ 于点M ,设点M 的轨迹为E . (1)求轨迹E 的方程;(2)过点P (1,0)的直线l 交轨迹E 于两个不同的点A ,B ,△AOB (O 是坐标原点)的面积S =45,求直线AB 的方程.解 (1)由题意|MC |+|MA |=|MC |+|MQ |=|CQ |=4>23,所以轨迹E 是以A ,C 为焦点,长轴长为4的椭圆, 即轨迹E 的方程为x 24+y 2=1.(2)记A (x 1,y 1),B (x 2,y 2),由题意,直线AB 的斜率不可能为0,而直线x =1也不满足条件, 故可设AB 的方程为x =my +1,由⎩⎪⎨⎪⎧x 2+4y 2=4,x =my +1,消x 得(4+m 2)y 2+2my -3=0,所以y 1=-m +23+m 24+m 2,y 2=-m -23+m 24+m 2. S =12|OP ||y 1-y 2|=2m 2+3m 2+4.由S =45,解得m 2=1,即m =±1.故直线AB 的方程为x =±y +1, 即x +y -1=0或x -y -1=0为所求.3.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B ,C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值X 围.解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y-4,联立⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴y 1=8+p +p 2+16p 4,y 2=8+p -p 2+6p 4由已知AC →=4AB →,∴y 2=4y 1, ∴可得p 2+16p -36=0∵p >0可得y 1=1,y 2=4,p =2, ∴抛物线G 的方程为x 2=4y .(2)由题意知直线l 的斜率存在,且不为0, 设l :y =k (x +4),BC 中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4kx -16k =0,由Δ>0得k <-4或k >0,x =2k ±2k 2+4k .∴x B +x C =2k ∴x 0=x B +x C2=2k ,y 0=k (x 0+4)=2k 2+4k .BC 中垂线方程为y -2k 2-4k =-1k(x -2k ),∴b =2(k +1)2,∴b >2.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为22.以原点为圆心,椭圆的短轴长为直径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)如图,若斜率为k (k ≠0)的直线l 与x 轴、椭圆C 顺次相交于A ,M ,N (A 点在椭圆右顶点的右侧),且∠NF 2F 1=∠MF 2A .求证直线l 过定点(2,0),并求出斜率k 的取值X 围.解 (1)由题意知e =c a =22,∴e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2.又∵b =21+1=1,∴a 2=2,b 2=1,∴椭圆方程为x 22+y 2=1.(2)由题意,设直线l 的方程为y =kx +m (k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=2得(2k 2+1)x 2+4kmx +2m 2-2=0.由Δ=16k 2m 2-4(2k 2+1)(2m 2-2)>0,得m 2<2k 2+1, ∵x 1=-2km +4k 2-2m 2+12k 2+1,x 2-2km -4k 2-2m 2+22k 2+1 则有x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1.∵∠NF 2F 1=∠MF 2A ,且∠MF 2A ≠90°,kMF 2+kNF 2=0. 又F 2(1,0),则y 1x 1-1+y 2x 2-1=0, 即kx 1+m x 1-1+kx 2+mx 2-1=0, 化简得2kx 1x 2+(m -k )(x 1+x 2)-2m =0.将x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1代入上式得m =-2k ,∴直线l 的方程为y =kx -2k ,即直线过定点(2,0). 将m =-2k 代入m 2<2k 2+1,得4k 2<2k 2+1,即k 2<12,又∵k ≠0,∴直线l 的斜率k 的取值X 围是⎝ ⎛⎭⎪⎫-22,0∪⎝⎛⎭⎪⎫0,22.必考解答题——模板成形练(四) (对应学生用书P415)实际应用题(建议用时:60分钟)1.在边长为a 的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?解 (1)设箱底边长为x ,则箱高为h =33×a -x2(0<x <a ), 箱子的容积为V (x )=12x 2×sin 60°×h =18ax 2-18x 3(0<x <a ).由V ′(x )=14ax -38x 2=0解得x 1=0(舍),x 2=23a ,且当x ∈⎝ ⎛⎭⎪⎫0,23a 时,V ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫23a ,a 时,V ′(x )<0, 所以函数V (x )在x =23a 处取得极大值.这个极大值就是函数V (x )的最大值:V ⎝ ⎛⎭⎪⎫23a =18a ×⎝ ⎛⎭⎪⎫23a 2-18×⎝ ⎛⎭⎪⎫23a 3=154a 3.所以当箱子底边长为23a 时,箱子容积最大,最大值为154a 3.2.如图,某小区有一边长为2(单位:百米)的正方形地块OABC ,其中OAE 是一个游泳地,计划在地块OABC 内修一条与池边AE 相切的直路l (宽度不计),切点为M ,并把该地块分为两部分,现以点O 为坐标原点,以线段OC 所在直线为x 轴,建立平面直角坐标系,若池边AE 满足函数y =-x 2+2(0≤x ≤2)的图象,且点M 到边OA 距离为t ⎝ ⎛⎭⎪⎫23≤t ≤43.(1)当t =23时,求直路l 所在的直线方程;(2)当t 为何值时,地块OABC 在直路l 不含泳池那侧的面积取到最大,最大值是多少?解 (1)M ⎝ ⎛⎭⎪⎫23,149,l :12x +9y -22=0(2)M (t ,-t 2+2),过切点M 的切线l :y -(-t 2+2)=-2t (x -t )即y =-2tx +t 2+2,令y =2得x =t 2,故切线l 与AB 交于点⎝ ⎛⎭⎪⎫t2,2;令y =0,得x =t 2+1t ,又x =t 2+1t 在⎣⎢⎡⎦⎥⎤23,43递减,所以x =t 2+1t ∈⎣⎢⎡⎦⎥⎤1712,116故切线l 与OC 交于点⎝ ⎛⎭⎪⎫t 2+1t ,0.∴地块OABC 在切线l 右上部分区域为直角梯形,面积S =12⎝ ⎛⎭⎪⎫2-t 2-1t +2-t 2·2=4-t -1t =4-⎝ ⎛⎭⎪⎫t +1t ≤2,t =1时取到等号,S max =2. 3.某某市“两会”召开前,某政协委员针对自己提出的“环保提案”对某处的环境状况进行了实地调研.据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为k (k >0).现已知相距36 km 的A ,B 两家化工厂(污染源)的污染强度分别为正数a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km). (1)试将y 表示为x 的函数;(2)若a =1时,y 在x =6处取得最小值,试求b 的值.解 (1)设点C 受A 污染源污染指数为ka x ,点C 受B 污染源污染指数为kb36-x ,其中k 为比例系数,且k >0.从而点C 处污染指数y =ka x +kb36-x (0<x <36).(2)因为a =1,所以,y =k x +kb36-x,y ′=k ⎣⎢⎡⎦⎥⎤-1x2+b 36-x 2,令y ′=0,得x =361+b,当x ∈⎝ ⎛⎭⎪⎫0,361+b 时,函数单调递减;当x ∈⎝ ⎛⎭⎪⎫361+b ,+∞时,函数单调递增;∴当x =361+b 时,函数取得最小值.又此时x =6,解得b =25,经验证符合题意. 所以,污染源B 的污染强度b 的值为25.4.某个公园有个池塘,其形状为直角△ABC ,∠C =90°,AB =200米,BC =100米. (1)现在准备养一批供游客观赏的鱼,分别在AB 、BC 、CA 上取点D ,E ,F ,如图(1),使得EF ∥AB ,EF ⊥ED ,在△DEF 喂食,求△DEF 面积S △DEF 的最大值;(2)现在准备新建造一个荷塘,分别在AB ,BC ,CA 上取点D ,E ,F ,如图(2),建造△DEF 连廊(不考虑宽度)供游客休憩,且使△DEF 为正三角形,求△DEF 边长的最小值.解 (1)Rt △ABC 中,∠C =90°,AB =200米,BC =100米.∴cos B =BC AB =12,可得B =60°∵EF ∥AB ,∴∠CEF =∠B =60°设CE CB=λ(0<λ<1),则CE =λCB =100λ米, Rt △CEF 中,EF =2CE =200λ米,C 到FE 的距离d =32CE =503λ米, ∵C 到AB 的距离为32BC =503米, ∴点D 到EF 的距离为h =503-503λ=503(1-λ)米可得S △DEF =12EF ·h =5 0003λ(1-λ)米2∵λ(1-λ)≤14[λ+(1-λ)]2=14,当且仅当λ=12时等号成立,∴当λ=12时,即E 为AB 中点时,S △DEF 的最大值为1 2503米2(2)设正△DEF 的边长为a ,∠CEF =α, 则CF =a ·sin α,AF =3-a ·sin α. 设∠EDB =∠1,可得∠1=180°-∠B -∠DEB =120°-∠DEB ,α=180°-60°-∠DEB =120°-∠DEB ∴∠ADF =180°-60°-∠1=120°-α在△ADF 中,a sin 30°=3-a sin αsin ∠ADF即a12=3-a sin αsin 120°-α,化简得a [2sin(120°-α)+sin α]= 3 ∴a =32sin α-3cos α=37sin α-φ≥37=217(其中φ是满足tan φ=32的锐角).∴△DEF 边长最小值为217米. 必考解答题——模板成形练(五) (对应学生用书P417)数 列(建议用时:60分钟)1.已知数列{a n }的前n 项和为S n ,且2S n =1-a n . (1)求数列{a n }的通项公式;(2)记b n =log 13a n ,数列{b n }的前n 项和为T n ,求证∑k =1n1T k<2.解 (1)当n =1时,2S 1=1-a 1,2a 1=1-a 1,∴a 1=13;当n ≥2时,⎩⎪⎨⎪⎧2S n =1-a n ,2S n -1=1-a n -1,两式相减得2a n =a n -1-a n (n ≥2), 即3a n =a n -1(n ≥2),又a n -1≠0,∴a n a n -1=13(n ≥2), ∴数列{a n }是以13为首项,13为公比的等比数列.∴a n =13·⎝ ⎛⎭⎪⎫13n -1=⎝ ⎛⎭⎪⎫13n.(2)由(1)知b n =log 13⎝ ⎛⎭⎪⎫13n=n ,∴T n =1+2+3+…+n =n 2+n2,∑k =1n1T k =21×2+22×3+…+2n n +1=2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2⎝⎛⎭⎪⎫1-1n +1<2. 2.数列{a n }的前n 项和为S n ,若a 1=2,且S n =S n -1+2n (n ≥2,n ∈N *). (1)求S n ;(2)是否存在等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 9?若存在,求出数列{b n }的通项公式;若不存在,说明理由. 解 (1)因为S n =S n -1+2n ,所以有S n -S n -1=2n 对n ≥2,n ∈N *成立, 即a n =2n 对n ≥2成立,又a 1=2·1. 所以a n =2n 对n ∈N *成立.所以a n +1-a n =2对n ∈N *成立,所以{a n }是等差数列, 所以有S n =a 1+a n2·n =n 2+n ,n ∈N *.(2)存在.由(1),得a n =2n ,n ∈N *成立, 所以有a 3=6,a 9=18,又a 1=2,所以由b 1=a 1,b 2=a 3,b 3=a 9,则b 2b 1=b 3b 2=3.所以存在以b 1=2为首项,公比为3的等比数列{b n }, 其通项公式为b n =2·3n -1.3.已知数列{a n }是首项a 1=1的等差数列,其前n 项和为S n ,数列{b n }是首项b 1=2的等比数列,且b 2S 2=16,b 1b 3=b 4. (1)求a n 和b n ;(2)令c 1=1,c 2k =a 2k -1,c 2k +1=a 2k +kb k (k =1,2,3,…),求数列{}的前2n +1项和T 2n +1. 解 (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 则a n =1+(n -1)d ,b n =2qn -1.由b 1b 3=b 4,得q =b 4b 3=b 1=2, 由b 2S 2=2q (2+d )=16,解得d =2. ∴a n =2n -1,b n =2n.(2)∵T 2n +1=c 1+a 1+(a 2+b 1)+a 3+(a 4+2·b 2)+…+a 2n -1+(a 2n +nb n )=1+S 2n +(b 1+2b 2+…+nb n ).令A =b 1+2b 2+…+nb n ,则A =2+2·22+…+n ·2n, ∴2A =22+2·23+…+(n -1)2n +n ·2n +1,∴-A =2+22+…+2n -n ·2n +1,∴A =n ·2n +1-2n +1+2.又S 2n =2n1+a 2n 2=4n 2,∴T 2n +1=1+4n 2+n ·2n +1-2n +1+2=3+4n 2+(n -1)2n +1.4.已知数列{a n }满足:a n ≠±1,a 1=12,3(1-a 2n +1)=2(1-a 2n ),b n =1-a 2n ,=a 2n +1-a 2n (n ∈N *).(1)证明数列{b n }是等比数列,并求数列{b n }、{}的通项公式.(2)是否存在数列{}的不同项c i ,c j ,c k (i <j <k )使之成为等差数列?若存在,请求出这样的不同项c i ,c j ,c k (i <j <k );若不存在,请说明理由.(3)是否存在最小的自然数M ,对一切n ∈N *都有(n -2)<M 恒成立?若存在,求出M 的值,若不存在,说明理由.(1)证明 因为a n ≠±1,a 1=12,3(1-a 2n +1)=2(1-a 2n ),b n =1-a 2n ,所以b n +1b n =1-a 2n +11-a 2n =23(n ∈N *),b 1=1-a 21=34,所以{b n }是以34为首项,23为公比的等比数列,所以b n =34×⎝ ⎛⎭⎪⎫23n -1(n ∈N *),所以a 2n =1-b n =1-34×⎝ ⎛⎭⎪⎫23n -1(n ∈N *)所以=a 2n +1-a 2n =14×⎝ ⎛⎭⎪⎫23n -1(n ∈N *)(2)解 假设存在c j ,c j ,c k (i <j <k )满足题意,则有2c j =c i +c k 代入得 2×14×⎝ ⎛⎭⎪⎫23j -1=14×⎝ ⎛⎭⎪⎫23i -1+14×⎝ ⎛⎭⎪⎫23k -1化简得2j -i +1=3j -1+2k +j -i , 即2j -i +1-2k +j -i=3j -1,左边为偶数,右边为奇数不可能相等.所以假设不成立,这样的三项不存在. (3)∵(n -2)-(n -1)+1=14×⎝ ⎛⎭⎪⎫23n -1×n -43,∴(1-2)c 1<(2-2)c 2<(3-2)c 3<(4-2)c 4,(4-2)c 4=(5-2)c 5,(5-2)c 5>(6-2)c 6>(7-2)c 7>……即在数列{(n -2)}中,第4项和第5项是最大项,当n =4时(n -2)=2×14×⎝ ⎛⎭⎪⎫233=427,所以存在最小自然数M =1符合题意.必考解答题——模板成形练(六) (对应学生用书P419)函数与导数(建议用时:60分钟)1.已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,某某数b 的取值X 围. 解 (1)因为f (x )=-x 3+ax 2+b ,所以f ′(x )=-3x 2+2ax =-3x ⎝⎛⎭⎪⎫x -2a 3.当a =0时,f ′(x )≤0,函数f (x )没有单调递增区间; 当a >0时,令f ′(x )>0,得0<x <2a3.故f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,23a ; 当a <0时,令f ′(x )>0,得2a3<x <0.故f (x )的单调递增区间为⎝ ⎛⎭⎪⎫23a ,0. 综上所述,当a =0时,函数f (x )没有单调递增区间;当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,23a ;当a <0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫23a ,0. (2)由(1)知,a ∈[3,4]时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,23a ,单调递减区间为(-∞,0)和⎝ ⎛⎭⎪⎫23a ,+∞, 所以函数f (x )在x =0处取得极小值f (0)=b , 函数f (x )在x =2a 3处取得极大值f ⎝ ⎛⎭⎪⎫2a 3=4a 327+b ,由于对任意a ∈[3,4],函数f (x )在R 上都有三个零点,所以⎩⎪⎨⎪⎧f 0<0,f ⎝ ⎛⎭⎪⎫2a 3>0,即⎩⎪⎨⎪⎧b <0,4a327+b >0,解得-4a327<b <0,因为对任意a ∈[3,4],b >-4a327恒成立,所以b >⎝ ⎛⎭⎪⎫-4a 327max =-4×3327=-4, 所以实数b 的取值X 围是(-4,0). 2.已知函数f (x )=a x+ln x -1,a ∈R .(1)若曲线y =f (x )在点P (1,y 0)处的切线平行于直线y =-x +1,求函数y =f (x )的单调区间;(2)若a >0,且对x ∈(0,2e]时,f (x )>0恒成立,某某数a 的取值X 围. 解 (1)直线y =-x +1的斜率k =-1,函数y =f (x )的导数为f ′(x )=-a x2+1x,f ′(1)=-a +1=-1,即a =2.∴f (x )=2x +ln x -1,f ′(x )=-2x 2+1x =x -2x2.∵f (x )的定义域为(0,+∞).由f ′(x )>0,得x >2;由f ′(x )<0,得0<x <2.∴函数f (x )的单调增区间是(2,+∞),单调减区间是(0,2). (2)∵a >0,f (x )>0对x ∈(0,2e]恒成立, 即a x+ln x -1>0对x ∈(0,2e]恒成立. 即a >x (1-ln x )对x ∈(0,2e]恒成立, 设g (x )=x (1-ln x )=x -x ln x ,x ∈(0,2e].g ′(x )=1-ln x -1=-ln x ,当0<x <1时,g ′(x )>0,g (x )为增函数, 当1<x ≤2e 时,g ′(x )<0,g (x )为减函数,所以当x =1时,函数g (x )在x ∈(0,2e]上取到最大值. ∴g (x )≤g (1)=1-ln 1=1,∴a 的取值X 围是(1,+∞).3.已知函数f (x )=13x 3+bx 2+cx -3,y =f ′(x )为f (x )的导函数,满足f ′(2-x )=f ′(x );f ′(x )=0有解,但解却不是函数f (x )的极值点.(1)求f (x ); (2)设g (x )=x f ′x ,m >0,求函数g (x )在[0,m ]上的最大值;(3)设h (x )=ln f ′(x ),若对于一切x ∈[0,1],不等式h (x +1-t )<h (2x +2)恒成立,某某数t 的取值X 围.解 (1)f ′(x )=x 2+2bx +c ,∵f ′(2-x )=f ′(x ),∴函数f (x )的图象关于直线x =1对称,b =-1. 由题意,f ′(x )=x 2-2x +c =0中Δ=4-4c =0,故c =1. 所以f (x )=13x 3-x 2+x -3.(2)∵f ′(x )=x 2-2bx +1 =(x -1)2, ∴g (x )=x |x -1|=⎩⎪⎨⎪⎧x 2-x ,x ≥1,x -x 2,x <1.当0<m ≤12时,g (x )max =g (m )=m -m 2当12<m ≤1+22时,g (x )max =g ⎝ ⎛⎭⎪⎫12=14, 当m >1+22时,g (x )max =g (m )=m 2-m ,综上g (x )max=⎩⎪⎨⎪⎧m -m 20<m ≤121412<m ≤1+22m 2-mm >1+22(3)h (x )=2ln|x -1|,h (x +1-t )=2ln|x -t |,h (2x +2)=2ln|2x +1|当x ∈[0,1]时,|2x +1|=2x +1,所以不等式等价于0<|x -t |<2x +1恒成立, 解得-x -1<t <3x +1,且x ≠t ,由x ∈[0,1],得-x -1∈[-2,-1],3x +1∈[1,4],所以-1<t <1, 又x ≠t ,∴t ∈[0,1],∴所求的实数t 的取值X 围是(-1,0). 4.已知函数f (x )=k [(log a x )2+(log x a )2]-(log a x )3-(log x a )3,g (x )=(3-k 2)(log a x +log x a ),(其中a >1),设t =log a x +log x a .(1)当x ∈(1,a )∪(a ,+∞)时,试将f (x )表示成t 的函数h (t ),并探究函数h (t )是否有极值;(2)当∈(1,+∞)时,若存在x 0∈(1,+∞),使f (x 0)>g (x 0)成立,试求k 的X 围. 解 (1)∵(log a x )2+(log x a )2=(log a x +log x a )2-2 =t 2-2,(log a x )3+(log x a )3=(log a x +log x a )[(log a x +log x a )2-3]=t 3-3t , ∴h (t )=-t 3+kt 2+3t -2k ,(t >2). ∴h ′(t )=-3t 2+2kt +3设t 1,t 2是h ′(t )=0的两根,则t 1t 2<0,∴h ′(t )=0在定义域内至多有一解, 欲使h (t )在定义域内有极值,只需h ′(t )=-3t 2+2kt +3=0在(2,+∞)内有解,且h ′(t )的值在根的左右两侧异号,∴h ′(2)>0得k >94.综上:当k >94时h (t )在定义域内有且仅有一个极植,当k ≤94时h (t )在定义域内无极值.(2)∵存在x 0∈(1,+∞),使f (x 0)>g (x 0)成立等价于f (x )-g (x )的最大值大于0. ∵t =log a x +log x a ,∴m (t )=-t 3+kt 2+k 2t -2k ,(t ≥2), ∴m ′(t )=-3t 2+2kt +k 2=0得t 1=k ,t 2=-k3.当k >2时,m (t )max =m (k )>0得k >2; 当0<k ≤2时,m (t )max =m (2)>0得17-12<k ≤2; 当k =0时,m (t )max =m (2)<0不成立. 当-6≤k <0时,m (t )max =m (2)>0得-6≤k <-17-12; 当k <-6时,m (t )max =m ⎝ ⎛⎭⎪⎫-k 3>0得k <-6.综上得:k 的取值X 围是⎝ ⎛⎭⎪⎫-∞,-17-12∪⎝ ⎛⎭⎪⎫17-12,+∞.必考附加题——模板成形练(一)1.如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =2,AA 1=6,点E ,F 分别在棱BB 1,CC 1上,且BE =13BB 1,C 1F =13CC 1.(1)求异面直线AE 与A 1F 所成角的大小; (2)求平面AEF 与平面ABC 所成角的余弦值.解 (1)建立如图所示的直角坐标系,则A (0,0,0),E (2,0,2),A 1(0,0,6),F (0,2,4), 从而AE →=(2,0,2),A 1F →=(0,2,-2).记AE →与A 1F →的夹角为θ,则有cos θ=AE →·A 1F →|AE →|·|A 1F →|=-48·8=-12.又由异面直线AE 与A 1F 所成角的X 围为(0,π), 可得异面直线AE 与A 1F 所成的角为60°.(2)记平面AEF 和平面ABC 的法向量分别为n 和m ,则由题设可令n =(1,y ,z ),且有平面ABC 的法向量为m =AA 1→=(0,0,6),AF →=(0,2,4),AE →=(2,0,2).由n ·AF →=0,得2y +4z =0;由n ·AE →=0,得2+2z =0. 所以z =-1,y =2,即n =(1,2,-1). 记平面AEF 与平面ABC 所成的角为β,有cos β=n ·m |n |·|m |=-66·6=-66.由图形可知β为锐角,所以cos β=66. 2.已知数列{b n }满足b 1=12,1b n+b n -1=2(n ≥2,n ∈N *).(1)求b 2,b 3,猜想数列{b n }的通项公式,并用数学归纳法证明; (2)设x =b nn ,y =b n +1n ,比较x x与y y的大小. 解 (1)当n =2时,1b 2+12=2,解得b 2=23;当n =3时,1b 3+23=2,解得b 3=34. 猜想b n =nn +1.证明:①当n =1时,b 1=12. ②假设当n =k (k ∈N *)时,即b k =k k +1, 则当n =k +1时,1b k +1+b k =2,即1b k +1+k k +1=2, ∴1b k +1=2-k k +1=k +2k +1,b k +1=k +1k +2也成立. 由①②得b n =nn +1. (2)x =b n n =⎝ ⎛⎭⎪⎫n n +1n , x x =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n n +1n ⎝ ⎛⎭⎪⎫n n +1n =⎝ ⎛⎭⎪⎫n n +1n ⎝ ⎛⎭⎪⎫n n +1n y =b n+1n =⎝ ⎛⎭⎪⎫n n +1n +1, y y =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n n +1n +1⎝ ⎛⎭⎪⎫n n +1n +1=⎝ ⎛⎭⎪⎫n n +1(n +1)n n +1⎝ ⎛⎭⎪⎫n n +1n =⎝ ⎛⎭⎪⎫n n +1n ⎝ ⎛⎭⎪⎫n n +1n ∴x x =y y .3.三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =3.D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值;(2)求二面角B 1-A 1D -C 1的大小的正弦值.解 (1)由题意,A (0,0,0),B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的法向量为n =(x ,y ,z ).∵n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0.∴x =3z ,y =0.令z =1,得x =3.n =(3,0,1).设直线DB 1与平面A 1C 1D 所成角为θ,∵DB 1→=(1,-2,3),∴sin θ=|cos 〈DB 1→,n 〉|=|3×1+0×-2+1×3|10×14=33535. (2)设平面A 1B 1D 的法向量为m =(a ,b ,c ).A 1B 1→=(2,0,0),∵m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0.∴a =0,2b =3c .令c =2,得b =3.m =(0,3,2).设二面角B 1-A 1D -C 1的大小为α,∴|cos α|=|cos 〈m ,n 〉|=|m ·n ||m |·|n |=|0×3+3×0+2×1|13×10=265, 则sin α=3765=345565, ∴二面角B 1-A 1D -C 1的大小的正弦值为345565. 4.已知整数n ≥4,集合M ={1,2,3,…,n }的所有3个元素的子集记为A 1,A 2,…,A C (C ∈N *).(1)当n =5时,求集合A 1,A 2,…,A C 中所有元素之和;(2)设m i 为A i 中的最小元素,设P n =m 1+m 2+…+m C ,试求P n (用n 表示).解 (1)当n =5时,含元素1的子集中,必有除1以外的两个数字,两个数字的选法有C 24=6个,所以含有数字1的集合有6个.同时含2,3,4,5的子集也各有6个.于是所求元素之和为(1+2+3+4+5)×C 24=15×6=90.(2)证明 不难得到1≤m i ≤n -2,m i ∈Z ,并且以1为最小元素的子集有C 2n -1个,以2为最小元素的子集有C 2n -2个,以3为最小元素的子集有C 2n -3个,…,以n -2为最小元素的子集有C 22个,则P n =m 1+m 2+…+m C 3n=1×C 2n -1+2C 2n -2+3C 2n -3+…+(n -2)C 22=(n -2)C 22+(n -3)C 23+(n -4)C 2n +…+C 2n -1=C 22+(n -3)(C 22+C 23)+(n -4)C 24+…+C 2n -1=C 22+(n -3)(C 33+C 23)+(n -4)C 24+…+C 2n -1=C 22+(n -3)C 34+(n -4)C 24+…+C 2n -1=C 22+C 34+(n -4)(C 34+C 24)+…+C 2n -1=C 22+C 34+(n -4)C 35+…+C 2n -1=C 44+C 34+C 35+…+C 3n =C 4n +1.必考附加题——模板成形练(二) (对应学生用书P423)1.如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF ⊥DE .(1)求异面直线EF 与BD 所成角的余弦值;(2)求二面角O -DF -E 的余弦值.解 (1)以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的直线为y 轴,OP 所在的直线为z 轴,建立空间直角坐标系,则B (0,2,0),P (0,0,4),D (0,0,2),E (0,1,2). 设F (x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4,则EF →=(x 0,y 0-1,-2),DE →=(0,1,0),∵EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴F (3,1,0),EF →=(3,0,-2),BD →=(0,-2,2).设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2)设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n ⊥OD →,n ⊥OF →,即⎩⎨⎧ z 1=0,3x 1+y 1=0.令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0).设平面DEF 法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝ ⎛⎭⎪⎫1,0,32.设二面角O -DF -E 的平面角为β,则|cos β|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77, ∴sin β=427. 2.已知数列{a n }满足a 1=2,a n +1=a n +1n -(n +1).(1)证明:a n >n (n ≥3);(2)证明:2+33+44+…+n n <2.证明 (1)因为a 1=2,a 2=2,所以a 3=a 32-3=5>3.假设当n =k 时,a k >k (k ≥3),则a k +1k >k k +1>k 2·k ≥9k >2k +2, 那么,当n =k +1时,有a k +1=a k+1k -(k +1)>2k +2-(k +1)=k +1.这就是说,当n =k +1时,结论也成立.所以当n ≥3时,a n >n .(2)当n =2时,2<2显然成立,由(1)知,当n ≥3时,a n =a n n -1-n >0,得a n n -1>n ,所以a n -1>n n ,所以a n -1n -2-(n -1)>n n ,即a n -1n -2>(n -1)+nn , 所以a n -2>n -1n -1+n n ,以此类推,得2=a 1> 2+33+44+…+nn ,问题得证.3.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AD ,DC 的中点.(1)求直线BC 1与平面EFD 1所成角的正弦值;(2)设直线BC 1上一点P 满足平面PAC ∥平面EFD 1,求PB 的长.解 (1)建立以D 点为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴的空间直角坐标系.D 1(0,0,2),A (2,0,0),B (2,2,0),E (1,0,0),C 1(0,2,2),F (0,1,0),BC 1→=(-2,0,2),D 1E →=(1,0,-2),EF →=(-1,1,0).设平面D 1EF 的法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n ·D 1E →=0,n ·EF →=0⇒⎩⎪⎨⎪⎧ x 1-2z 1=0,-x 1+y 1=0,令x 1=2,则n =(2,2,1),cos 〈n ,BC 1→〉=-222×3=-26, ∴直线BC 1与平面EFD 1所成角的正弦值为26. (2)BP →=λBC 1→=(-2λ,0,2λ),AP →=AB →+BP →=(-2λ,2,2λ), n ·AP →=-4λ+4+2λ=0,∴λ=2.∵AP 不在平面EFD 1内,AP ∥平面EFD 1,又AC ∥EF ,EF ⊆平面EFD 1,∴AC ∥平面EFD 1.又AP 与AC 相交于点A ,∴平面PAC ∥平面EFD 1,BP →=(-4,0,4),|BP →|=4 2.4.已知数集A ={a 1,a 2,…,a n },其中0≤a 1<a 2<…<a n ,且n ≥3,若∀i ,j (1≤i ≤j ≤n ),a j +a i 与a j -a i 两数中至少有一个属于A ,则称数集A 具有性质P .(1)分别判断数集{0,1,3}与数集{0,2,4,6}是否具有性质P ,说明理由;(2)已知数集A ={a 1,a 2,…,a n }具有性质P ,判断数列a 1,a 2,…,a 8是否为等差数列,若是等差数列,请证明;若不是,请说明理由.解 (1)由于3-1和3+1都不属于集合{0,1,3},所以该数集不具有性质P ;由于2+0,4+0,6+0,4+2,6-2,6-4,0-0,2-2,4-4,6-6都属于集合{0,2,4,6},所以该数集具有性质P .(2)∵A ={a 1,a 2,…,a 8}具有性质P ,所以a8+a8与a8-a8中至少有一个属于A,由0≤a1<a2<…<a8,有a8+a8>a8,故a8+a8∉A,∴0=a8-a8∈A,故a1=0.∵0=a1<a2<…<a8,∴k≥2时,a8+a k>a8,故a8+a k∉A(k=2,3,…,8).由A具有性质P知,a8-a k∈A(k=2,3,…,8),又∵a8-a8<a8-a7<…<a8-a2<a8-a1,∴a8-a8=a1,a8-a7=a2,…,a8-a2=a7,a8-a1=a8,即a i+a9-i=a8(i=1,2,…,8).①由a2+a7=a8知,a3+a7,a4+a7,…,a7+a7均不属于A,由A具有性质P,a7-a3,a7-a4,…,a7-a7均属于A,∴a7-a7<a7-a6<…<a7-a4<a7-a3<a8-a3,而a8-a3=a6,∴a7-a7=a1,a7-a6=a2,a7-a5=a3,…,a7-a3=a5,即a i+a8-i=a7(i=1,2,…,7).②由①②可知a i=a8-a9-i=a8-(a7-a i-1)(i=2,3,…,8),即a i-a i-1=a8-a7=a2(i=2,3,…,8).故a1,a2,…,a8构成等差数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案96
7.(2014·德州模拟)在区间[-2,3]上任取一个数a,则函数f(x)=x3-ax2+(a+2)x有极值的概率为________.
专题六概率与统计
第1讲 统计与概率拟)从8名女生和4名男生中,抽取3名学生参加某档电视节目,如果按性别比例分层抽样,则不同的抽取方法数为().
A.224B.112
C.56D.28
解析根据分层抽样,应抽取男生1名,女生2名,抽取2名女生1名男生的方法有CC=112.
B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
C.有97.5%以上的把握认为“爱好该项运动与性别有关”
D.有97.5%以上的把握认为“爱好该项运动与性别无关”
解析因为4.762>3.841,所以在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”,或者认为有95%以上的把握认为“爱好该项运动与性别有关”,因此,只能选A.
④对分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.
其中真命题的有____________(填序号).
解析①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,不是分层抽样.故①是假命题;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1.故②是真命题;
答案B
2.(2014·北京顺义区统练)某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为().
A.8万元B.10万元
C.12万元D.15万元
解析由频率分布直方图知,9时至10时的销售额的频率为0.1,故销售总额为=30(万元),又11时至12时的销售额的频率为0.4,故销售额为0.4×30=12万元.
答案C
3.随机询问100名性别不同的大学生是否爱好踢毽子运动,得到如下的列联表:
男
女
总计
爱好
10
40
50
不爱好
20
30
50
总计
30
70
100
附表:
P(K2≥k0)
0.10
0.05
0.025
k0
2.706
3.841
5.024
经计算,统计量K2=4.762,参照附表,得到的正确结论是().
A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
答案②③
三、解答题
9.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本均值;
(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?
(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个球,记第一次取出小球标号为a,第二次取出的小球标号为b.
①记“a+b=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
解(1)由题意可得==,解得n=2.
(2)①由于是不放回抽取,事件A只有两种情况:第一次取0号球,第二次取2号球;第一次取2号球,第二次取0号球,所以P(A)=+==.
二、填空题
5.(2014·广东卷)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.
解析十个数中任取七个不同的数共有C种情况,七个数的中位数为6,那么6只有处在中间位置,有C种情况,于是所求概率P==.
答案
6.(2014·青岛质量检测)在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有________种.
解析区间[-2,3]的长度为5,f′(x)=x2-2ax+a+2.函数f(x)=x3-ax2+(a+2)x有极值等价于f′(x)=x2-2ax+a+2=0有两个不等实根,即Δ=4a2-4(a+2)>0,解得a<-1或a>2,又∵a∈[-2,3],∴-2≤a<-1或2<a≤2,范围区间的长度为2,所以所求概率P=.
答案A
4.(2014·北京市朝阳区综合练习)如图,设区域D={(x,y)|0≤x≤1,0≤y≤1},向区域D内随机投一点,且投入到区域内任一点都是等可能的,则点落入到阴影区域M={(x,y)|0≤x≤1,0≤y≤x3}的概率为().
A.B.
C.D.
解析阴影部分的面积
S=x3dx=x4=,故P=.
答案A
解(1)样本平均值为==22,故样本均值为22.
(2)由(1)知样本中优秀工人占的比例为=,
故推断该车间12名工人中有12×=4名优秀工人.
(3)设事件A:“从该车间12名工人中,任取2人,恰有1名优秀工人”,则P(A)==.
所以恰有1名优秀工人的概率为.
10.袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子中随机抽取1个小球,取到标号为2的小球的概率是.
答案
8.(2014·长沙模拟)以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),则分布密度曲线关于直线x=1对称,所以P(0<ξ<1)=P(1<ξ<2),即P(0<ξ<2)=P(0<ξ<1)+P(1<ξ<2)=0.4+0.4=0.8.故③是真命题;
④对分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越小.故④是假命题.