高中数学必修4三角函数常考题型正切函数的性质与图像

合集下载

正切函数的图象和性质_课件ppt_新课标高中(必修4)

正切函数的图象和性质_课件ppt_新课标高中(必修4)

tan1670 tan1730
y tan x在 , 上是增函数, 2
167 173 180
0 0
4
0
5
2 tan tan 4 5 11 13 tan( ) tan( ). 4 5

反馈演练
1、比较大小:
0 < (1)tan138 _____tan143 。 13π 17π (2)tan()_____tan() > 4 5 2、求函数 y 3 tan(3x 3 ) 的定义域,值域, 单调区间、对称中心坐标及渐近线方程。 0
非奇非偶函数
最小正周期是

3
补充练习
1. 已知
a tan1, b tan 2, c tan 3,则( c )
B.c<b<a C .b<c<a D. b<a<c
A.a<b<c
2.求y (tan x) 2 4 tan x 1 的值域; -5,+
3. 已知 是三角形的一个内角,且有 tan 1, 则的取值范围是 ( c )
例题分析
例3 求函数
y tan 3x 的周期.
解:
因为 tan(3x ) tan 3x,
T 3 形如 y A tan(x ) k 的周期是 T
反馈练习:求下列函数的周期:
即tan3(x+ )=tan3x, f ( x ) f ( x) 3 3
O1
A O
-1
3
2 3

4 3
5 3
2
x
y
1
-4
-3

高中数学 1.4.3正切函数的性质与图象课件 新人教A版必修4(2)

高中数学 1.4.3正切函数的性质与图象课件 新人教A版必修4(2)

利用正切函数的图象,写出使下列不等式成立的x的集 合:
(1)tanx≥ 33;(2)1+tanx≤0.
解:(1)在同一直角坐标系中作出正切函数在(-
π 2

π 2
)
上的图象和直线y=
3 3
,如图(1),显然在(-
π 2

π 2
)上满足
tanx= 33的是x=6π.
由图可知在(-2π,π2)上使不等式成立的x的取值范围是π6
tan-95π=-tan2π-π5=tan5π, 又0<5π<4π<2π,y=tanx在0,π2内单调递增, ∴tan5π<tan4π,∴tan-74π>tan-95π.
答案:(1)- 22-1, 22+1 (2)>
提高篇03
自我超越
——规范解答系列—— 正切函数图象与性质的综合应用 【例】 函数f(x)=tan(3x+φ)图象的一个对称中心是 (4π,0),其中0<φ<2π,试求函数f(x)的单调区间.
(6)对称性:正切函数的图象关于原点对称,正切曲线都 是中心对称图形,其对称中心坐标是(2kπ,0)(k∈Z),正切函 数无对称轴.
3.y=tanx 在定义域上是增函数吗? 答:y=tanx 在每个开区间(-2π+kπ,π2+kπ),k∈Z 内 都是增函数,但在整个定义域上不具有单调性.
4.正切函数图象与 x 轴有无数个交点,交点的坐标为 (kπ,0)(k∈Z),因此有人说正切函数图象的对称中心为(kπ, 0),这种说法对吗?
第一章
三角函数
1.4 三角函数的图象与性质
பைடு நூலகம்
1.4.3 正切函数的性质与图象
预习篇
提高篇

正切函数的图像与性质PPT课件

正切函数的图像与性质PPT课件

u解 1 2:x( k1 )4 令 为 2u u增 1 2kx ;2且 函 2 y4 , k,数 则 t4Zayu n 的 3t单 aun 调:区 令 解 u间 :因 2x为 4为 ;k所 原 以 yut函 aknu:的 y数 2 ,k单 3可 Zt4 调 an2化 递 (4增 )为 :; 区
(2)变y题 3ta1 nx();
解 :f(x)3ta2 nx4 ()
3tan2(x4)
3tan2([x4)]
f (x ) 2 4
2 周期T
2
24
解 :f(x)3ta1nx()
3tan1(x24)
3tan12([x24)]
2
4
f(x2)
周T 期 2
面两例,你能得到函数y=Atan(ωx+Ф)的周期吗
Ø把单位圆右半圆中
作出正切线。
2
Ø找交叉点。
Ø连线。
2021/10/10
3
3
2
2
2021/10/10
3 2
4
3
3
2
2
2
(1)定义域:
x|x2k,kZ
(2)值域:
tax n ) (tax)n(
全体实数R
正切函数是奇函数,正切曲线
关于原点0对称
(3) t周a期x n 性) (:tax)n(
由u1x得:
24
k1xk
22 4 2
2
2
由u1x得:
24
k1xk
22 4 2
y3tan1(x)的单调递增区 : 间y为 3tan(1x)的单调递减区 :
24
24
2k3x2k
2
2
2kx2k3
2

高中数学必修4;正切函数的图象和性质_课件ppt_

高中数学必修4;正切函数的图象和性质_课件ppt_
<
>
2单、调求区函间数、对y 称3t中an(心3x坐标3 )及的渐定近义线域方,程值。域,
第十二页,编辑于星期日:二十三点 三十九分。
例题分析
例3 求函数 y tan 3x 的周期.
解: 因为tan(3x ) tan 3x,
即tan3(x+ )=tan3x,
3
f (x ) f (x)
4
,
0
第九页,编辑于星期日:二十三点 三十九分。
例5画出函数 y tan x的图像,并指出其单调区间、奇偶性和周期。
3
2
2
3
2
3 2
2
3
2
第十页,编辑于星期日:二十三点 三十九分。
例6、比较下列每组数的大小。
解: (1)
(2)tan(-
11π) 4

tan(-
13π) 5
900 1670 1730 1800
24
例2关于正切函数 y tan x, 下列判断不正确的是( )
• A 是奇函数
• B 在整个定义域上是增函数
• C 在定义域内无最大值和最小值
• D 平行于 x轴的的直线被正切曲线各支所截线段相等
例3.函数 y tan(3x的) 一个对称中心是( )
A.9Biblioteka ,0B.4
,
0
C.
6
,
0
D.
k
3
,
k
2
(k
Z
)
第十四页,编辑于星期日:二十三点 三十九分。
反馈演练
1、 解不等式 1+tanx 0
2、解不等式:1- tan x 0
3、解不等式:tan(x ) 3

人教A版高中数学必修四课件1.4.3正切函数的性质与图像新.pptx

人教A版高中数学必修四课件1.4.3正切函数的性质与图像新.pptx

三、例题研究
2020/4/18
研修班
8
2020/4/18
研修班
9
2020/4/18
研修班
10
(1)定义域:
为奇函数
(4)单调性:增区间:
2020/4/18
研修班
11
2020/4/18Fra bibliotek研修班
12
2020/4/18
研修班
13
空白演示
在此输入您的封面副标题
2020/4/18
研修班
2
一、回顾
请问:研究正弦函数、余弦函数之后 你积累了那些经验?
单位圆技法 诱导公式、函数性质
平移正弦线、余弦线
五点法 描点法
画函数图象
2020/4/18
研修班
3
1、周期性
2、奇偶性
作图
正切函数是奇函数
2020/4/18
研修班
4
例1、判断下列函数的奇偶性并求周期:
(1)
(2)
(3)
(4)
(5)
(偶函数,T = p )
2020/4/18
研修班
5
利用正切线画出函数在的图象
2020/4/18
研修班
6
定义域: 值域:
周期性: 奇偶性:奇函数
单调性:在开区间内递增
在每一个开区间内都是单调增函数.能不能说 20正20/4/1切8 函数在整个定研义修班域上单调递增? 7

人教版数学必修四.3正切函数的性质和图象PPT课件

人教版数学必修四.3正切函数的性质和图象PPT课件

定义ta域n;yx0 的 终 边 不 在 y 轴 上
kx(kz)
思考
2
2、正切函数 ytaxn是否为周期函数?
由诱导公式知
f x t x a n tx a f x n , x R , x k , k Z
2
∴ ytaxn是周期函数, 是它的一个周期.
3、正切函数 ytanx 是否具有奇偶性? 思考 由诱导公式知 f x t a x n tx a f x n , x R , x k , k Z 2
人 教 版 数 学 必修四 .3正切 函数的 性质和 图象PP T课件
回顾:函数 y sx i,x n 0 ,2图象的几何作法
y
作法: (1) 等分
(2) 作正弦线
1-
P1
p1/
(3) 平移 (4) 连线
6
o1
M-11 A
o 6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-1
T
x
o
(1,0)
A
x
人 教 版 数 学 必修四 .3正切 函数的 性质和 图象PP T课件
观察下图中的正切线,当角x在 ( , )内增加
22
时,正切函数值发生什么变化?由此反映出一个
什么性质?
y
T2
()
O
O
Ax
T1
正切函数在开区间
(-π+kπ,π+kπ) 22
kZ,
内都是增函数
人 教 版 数 学 必修四 .3正切 函数的 性质和 图象PP T课件
⑶ 周期性:
⑷ 奇偶性: 奇函数,图象关于原点对称。

高一数学必修四课件时正切函数的图象与性质

高一数学必修四课件时正切函数的图象与性质

正切函数的定义域是 除去余弦函数等于0 的点,即θ≠π/2+kπ (k∈Z)。
与其他三角函数复合关系
正切函数与余切函数互为倒数,即tanθ·cotθ=1。
正切函数与正割函数、余割函数之间有关系,即tanθ=1/cotθ=secθ/cscθ。
正切函数在三角恒等式中的应用
在三角恒等式中,正切函数经常与其他三角函数一起出现,如tan^2θ+1=sec^2θ ,1-tan^2θ=cot^2θ等。
在解三角不等式时,正切函数的单调性可以 帮助确定解的范围。
在解三角形中的应用
在解直角三角形时,正切函数可 以用来求解锐角或钝角的度数。
对于一般三角形,可以通过正切 定理求解三角形的边长或角度。
正切函数还可以应用于三角形的 面积计算,如利用半长轴和半短
轴计算椭圆面积。
在实际问题中的应用
在物理中,正切函数可以用来 描述简谐振动、波动等现象。
03
正切函数性质探讨
奇偶性
正切函数是奇函数,即满足$f(-x)=-f(x)$。
正切函数的图像关于原点对称,即如果$(x,y)$在图像上,则$(-x,-y)$也在图像上 。
单调性
在每一个开区间$(frac{pi}{2}+kpi,frac{pi}{2}+kpi)$( $kin Z$)内,正切函数是增函数。
正切函数在x = π/2 + kπ(k为 整数)处存在间断点,即在这些 点上函数值不存在。因此,正切 函数的图象在这些点上是不连续
的。
渐近线
正切函数的图象具有无数条渐近 线,即当x趋向于π/2 + kπ(k为 整数)时,函数值趋向于无穷大 或无穷小。这些渐近线与x轴平 行,且相邻两条渐近线之间的距

【高中数学必修四】专题1.4.3 正切函数的性质与图象

【高中数学必修四】专题1.4.3 正切函数的性质与图象

第一章 三角函数1.4.3 正切函数的性质与图象一、正切函数的性质 1.周期性由诱导公式可知,πtan πtan ,π,2()x x x x k k +=∈≠+∈R Z ,,因此 是正切函数的一个周期. 一般地,函数()(tan 0)y A x k A ωϕω=++≠的最小正周期π||T ω=.2.奇偶性正切函数的定义域为π{|,π,}2x x x k k ∈≠+∈R Z ,关于原点对称,由于()()()()sin tan cos x f x x x --=-=- ()sin tan cos xx f x x-==-=-,因此正切函数是 .学科-网 3.单调性和值域单位圆中的正切线如下图所示.利用单位圆中的正切线研究正切函数的单调性和值域,可得下表:角xππ022-→→ π3ππ22→→正切线AT 0-∞→→+∞ 0-∞→→+∞tan x增函数 增函数由上表可知正切函数在(,)22-,(,)22上均为增函数,由周期性可知正切函数的增区间为π(π,2k -+ ππ)()2k k +∈Z .此外由其变化趋势可知正切函数的值域为(,)-∞+∞或R ,因此正切函数 最值. 二、正切函数的图象利用正切线作出函数ππtan ,(,)22y x x =∈-的图象(如图). 作法如下:(1)作直角坐标系,并在y 轴左侧作单位圆.(2)把单位圆右半圆分成8等份,分别在单位圆中作出正切线. (3)描点.(横坐标是一个周期的8等分点,纵坐标是相应的正切线) (4)连线.根据正切函数的周期性,把上述图象向左、右扩展,就可以得到正切函数tan ,y x x =∈R ,且ππ(2x k k ≠+∈Z)的图象,我们把它叫做正切曲线(如图).正切曲线是被相互平行的直线ππ()2x k k =+∈Z 所隔开的无穷多支曲线组成的.K 知识参考答案:一、1.π 2.奇函数 3.没有K —重点 正切函数的性质与图象K —难点 正切函数的性质的应用,正切函数的图象的应用 K —易错不能正确利用正切函数的图象与性质解题1.正切函数的性质熟练掌握正切函数tan ,y x x =∈R 的性质: (1)定义域:π{|,π,}2x x x k k ∈≠+∈R Z ; (2)值域:R ; (3)最小正周期:π; (4)奇偶性:奇函数; (5)单调性:在每一个开区间π(π,2k -+ππ)()2k k +∈Z 内均为增函数. 【例1】下列函数中,最小正周期为π2的是 A .y =sin(2x -π3) B .y =tan(2x -π3) C .y =cos(2x +π6)D .y =tan(4x +π6)【答案】B【解析】函数y =tan(2x -π3)的最小正周期T =π2,故选B .【例2】求函数πtan(3)3y x =-的定义域、值域,并判断它的奇偶性和单调性.正切函数tan y x =在区间π(π,2k -+ππ)()2k k +∈Z 上为增函数, 因此令πππ323k x -+<-ππ2k <+,解得ππ183k x -+<5ππ183k <+()k ∈Z , 即函数πtan(3)3y x =-的单调递增区间为ππ5ππ(,)()183183k k k -++∈Z .【易错启示】正切函数是奇函数,但是函数()tan y x ωϕ=+一般不具有奇偶性, 需要先求出定义域,再进行判断.【名师点睛】(1)正切函数tan y x =的定义域为π{|,π,}2x x x k k ∈≠+∈R Z ,这是解决正切函数相关问题首先要关注的地方.(2)求函数(n )ta y A x ωϕ=+的单调区间时,将x ωϕ+视为整体,代入函数tan y x =的单调区间即可,注意,A ω的符号对单调区间的影响. 2.正切函数的性质的应用(1)利用正切函数的单调性比较两个正切值的大小,实际上是将两个角利用函数的周期性或诱导公式放在一个单调区间内比较大小.(2)三角函数与二次函数的综合问题,一般是研究函数的值域或最值,求解方法是通过换元或整体代换将问题转化为二次函数型的函数值域问题,对于新引入的元或整体,要注意其范围的变化. 【例3】比较下列各组数的大小: (1)13πtan4与17πtan 5; (2)tan1,tan 2,tan 3,tan 4.【名师点睛】(1)比较三角函数值的大小,主要利用函数单调性及单位圆,有时可以利用引进中间量等方法.(2)有关正切函数值大小的比较,一般将角化到同一单调区间内,再利用函数的单调性处理. 【例4】求函数y =-tan 2x +10tan x -1,x ∈[π4,π3]的值域.【解析】由x ∈[π4,π3],得tan x ∈[1,3],令tan x =t ,则t ∈[1,3].∴y =-tan 2x +10tan x -1=-t 2+10t -1=-(t -5)2+24.由于1≤t ≤3, ∴8≤y ≤103-4,故函数的值域是[8,103-4].【名师点睛】利用换元法求解问题时,往往容易忽视元的范围的变化,导致错解.如该题,如果不注意元的取值范围的限制,直接求解二次函数的值域,显然就会扩大所求函数的值域而得到错解. 3.正切函数的图象及其应用 (1)tan y x =的周期性:函数sin y x =及cos y x =的周期是其对应函数sin ,cos y x y x ==周期的一半,而函数tan y x =的图象是把tan y x =在x 轴下方的图象翻折到x 轴上方,但其周期与tan y x =的周期相等,均为π. (2)解三角不等式的方法一般有两种:一是利用三角函数线,借助于单位圆在直角坐标系中找出角的区域,再求出不等式的解集;二是利用三角函数图象,先在一个周期内求出x 的范围,再在整个定义域上求出不等式的解集.利用正切函数的图象求角的范围时,主要是利用其单调性.这是数形结合思想方法的一个具体应用. 【例5】作出函数y =|tan x |的图象,并根据图象求其最小正周期和单调区间. 【答案】B【解析】y =|tan x |=⎩⎨⎧tan x ,x ∈⎣⎡⎭⎫k π,k π+π2k ∈Z -tan x ,x ∈⎝⎛⎦⎤k π-π2,k πk ∈Z,其图象如图所示.由图象可知,函数y =|tan x |的最小正周期T =π,单调增区间的⎣⎡⎭⎫k π,k π+π2(k ∈Z );单调减区间为⎝⎛⎦⎤k π-π2,k π(k ∈Z ). 【名师点睛】要作出函数y =|tan x |的图象,可先作出y =tan x 的图象,然后将其在x 轴上方的图象保留,而将其在x 轴下方的图象翻到上方(即作出其关于x 轴对称的图象),就可得到y =|tan x |的图象.【例6】求下列函数的定义域: (1)函数y =tan x +1+lg(1-tan x );(2)函数y =tan(sin x ).【解析】(1)要使函数有意义,应满足⎩⎪⎨⎪⎧tan x +1≥01-tan x >0,∴⎩⎪⎨⎪⎧tan x ≥-1tan x <1, ∴⎩⎨⎧k π-π4≤x <k π+π2,k ∈Z k π-π2<x <k π+π4,k ∈Z ,∴k π-π4≤x <k π+π4,k ∈Z ,故函数y =tan x +1+lg(1-tan x )的定义域为[k π-π4,k π+π4)k ∈Z .(2)∵对任意x ∈R ,-1≤sin x ≤1, ∴函数y =tan(sin x )总有意义, 故函数y =tan(sin x )的定义域为R . 4.正确利用函数性质求解【例7】若函数y =tan(2x +θ)的图象的一个对称中心为(π3,0),且-π2<θ<π2,则θ的值是________. 【错解】因为函数y =tan x 的图象的对称中心为(k π,0),其中k ∈Z ,所以2x +θ=k π,其中x =π3.所以θ=k π-2π3,k ∈Z .由于-π2<θ<π2,∴k =1时,θ=π-2π3=π3.【错因分析】错解主要是误认为正切函数图象的对称中心的坐标是(k π,0)(其中k ∈Z ),但由正切函数的图象发现:点(k π+π2,0)(其中k ∈Z )也是正切曲线的对称中心,因此正切函数图象的对称中心的坐标是(k π2,0)(其中k ∈Z ).【正解】易知函数y =tan x 的图象的对称中心为(k π2,0),其中k ∈Z ,所以2x +θ=k π2,其中x =π3,即θ=k π2-2π3,k ∈Z .因为-π2<θ<π2,所以当k =1时,θ=-π6;当k =2时,θ=π3.即θ=-π6或π3.【答案】-π6或π3.1.下列说法中,正确的是 A .y =tan x 是增函数B .y =tan x 在第一象限内是增函数C .y =tan x 在区间(k π-π2,k π+π2)(k ∈Z )上是增函数D .y =tan x 在某一区间内是减函数 2.函数y =tan(π4-x )的定义域是A .{x |x ≠π4,x ∈R }B .{x |x ≠-π4,x ∈R }C .{x |x ≠k π+π4,k ∈Z ,x ∈R }D .{x |x ≠k π+3π4,k ∈Z ,x ∈R }3.下列函数中,在区间[0,π2]上为减函数的是A .y =sin(x -π3)B .y =sin xC .y =tan xD .y =cos x4.下列不等式中,正确的是 A .tan 4π7>tan 3π7B .tan 2π5<tan 3π5C .tan(-13π7)>tan(-15π8)D .tan(-13π4)<tan(-12π5)5.函数tan(2)3y x π=-的单调递减区间是________. 6.函数y =tan(2x -π4)的对称中心坐标是________.7.已知函数f (x )=2tan(ωx +π3)(ω>0)的最小正周期为π2,求函数f (x )的单调区间.8.根据三角函数图象,写出满足下列条件的x 的取值范围. (1)-32<cos x <0;(2)3tan x -3≥0.9.与函数y =tan ⎝⎛⎭⎫2x +π4的图象不相交的一条直线是 A .x =π2B .y =π2C .x =π8D .y =π810.函数y =tan ⎝⎛⎭⎫12x -π3在一个周期内的大致图象是11.直线y =3与函数y =tan ωx (ω>0)的图象相交,则相邻两交点间的距离是A .πB .2πωC .πωD .π2ω12.已知函数y =tan(2x +φ)的图象过点(π12,0),则φ可以是A .-π6B .π6C .-π12D .π1213.已知函数()πtan 23f x x ⎛⎫=+⎪⎝⎭,则下列说法正确的是 A .()f x 在定义域内是增函数B .()f x 的对称中心是()ππ,046k k ⎛⎫-∈⎪⎝⎭Z C .()f x 是奇函数D .()f x 的对称轴是()ππ212k x k =+∈Z 14.函数y =tan(cos x )的值域是________. 15.判断函数f (x )=lg tan x +1tan x -1的奇偶性.学!科网16.若函数f(x)=tan2x-a tan x(|x|≤π4)的最小值为-6,求实数a的值.17(1)求f(x)的最小正周期和单调递减区间;(2)试比较()πf与1 2 3 4 9 10 11 12 13 CCDCCACAB1.【答案】C【解析】令x 1=π3,x 2=13π6,则tan x 1=3,tan x 2=33,即x 1<x 2,而tan x 1>tan x 2,故函数y =tan x 在第一象限内不是增函数,排除A 、B ;由正切函数的图象知,函数y =tan x 在某一区间内不可能是减函数,排除D ,故选C . 2.【答案】C【解析】y =tan(π4-x )=-tan(x -π4),由x -π4≠π2+k π,k ∈Z ,得x ≠3π4+k π,k ∈Z ,故选D .3.【答案】D【解析】函数y =cos x 在[0,π2]上单调递减,故选D .5.【答案】5(,)()212212k k k ππππ-+∈Z 【解析】(1)把函数tan(2)3y x π=-变为tan(2)3y x π=--,由2,232k x k k ππππ-<-<π+∈Z ,得2,66k x k k π5ππ-<<π+∈Z , 即5,212212k k x k ππππ-<<+∈Z, 故函数tan(2)3y x π=-的单调减区间为5(,)()212212k k k ππππ-+∈Z . 6.【答案】(k π4+π8,0),k ∈Z【解析】由2x -π4=k π2,k ∈Z ,得x =k π4+π8,k ∈Z ,∴函数y =tan(2x -π4)的对称中心坐标为(k π4+π8,0),k ∈Z .8.【解析】(1)如图所示.由图象可知,满足不等式的x 的取值范围为(2k π+π2,2k π+5π6)∪(2k π+7π6,2k π+3π2),k ∈Z .(2)如图所示.由3tan x -3≥0,得tan x ≥33. 由图象可知,满足不等式的x 的取值范围为[π6+k π,π2+k π),k ∈Z .9.【答案】C【解析】由正切函数图象知2x +π4≠k π+π2,k ∈Z ,∴x ≠k π2+π8,k ∈Z ,故符合题意的只有C 选项.10.【答案】A【解析】∵函数y =tan ⎝⎛⎭⎫12x -π3的最小正周期为2π,因此可排除B 、D ,选项C 中,当x =π3时,y ≠0,因此排除C ,故选A . 11.【答案】C【解析】相邻两交点间的距离,即为函数y =tan ωx (ω>0)的最小正周期T =πω,故选C .13.【答案】B【解析】()f x 在定义域内不单调,且不具有奇偶性,没有对称轴,所以A 、C 、D 错误; 由ππ232k x +=,得ππ,64k x k =-+∈Z ,即()f x 的对称中心是()ππ,046k k ⎛⎫-∈ ⎪⎝⎭Z ,所以B 正确,故选B.14.【答案】[-tan1,tan1]【解析】∵x ∈R ,∴cos x ∈[-1,1],又函数y =tan x 在⎝⎛⎭⎫-π2,π2上是增函数,且-π2<-1<1<π2, ∴tan(cos x )∈[-tan1,tan1].15.【解析】由tan x +1tan x -1>0,得tan x >1或tan x <-1.故函数f (x )的定义域为(k π-π2,k π-π4)∪(k π+π4,k π+π2)(k ∈Z ).又f (-x )+f (x )=tan()1lg tan()1x x -+--+lg tan x +1tan x -1=tan 1tan 1lg()tan 1tan 1x x x x -+⋅+-=0,即f (-x )=-f (x ).∴f (x )为奇函数. 16.【解析】设t =tan x ,∵|x |≤π4,∴t ∈[-1,1]. 则原函数化为y =t 2-at =(t -a 2)2-a 24,对轴称为t =a 2. ①若-1<a 2<1,即-2<a <2时.则当t =a 2时,y min =-a 24=-6,∴a 2=24(舍去,不合题意).②若a2≤-1,即a ≤-2时,二次函数在[-1,1]上单调递增,∴y min =1+a =-6, ∴a =-7.③若a2≥1,即a ≥2时,二次函数在[-1,1]上单调递减,∴y min =1-a =-6, ∴a =7,综上所述,a =-7或7. 17.【解析】(1)∵()ππ3tan()3tan()6446x x f x =-=--, ∴函数的最小正周期为4πT =. 由πππππ,2462x k k k -<-<+∈Z ,得4π8π4π4π,33k x k k -<<+∈Z , ∴函数()π3tan 64x f x ⎛⎫-⎪⎝⎭=的单调增区间为4π8π4π,4π,33k k k ⎛⎫-+∈ ⎪⎝⎭Z ,∴函数()π3tan 64x f x ⎛⎫-⎪⎝⎭=的单调减区间为4π8π4π,4π,33k k k ⎛⎫-+∈ ⎪⎝⎭Z ,(2)()πππππ3tan 3tan 3tan 641212f ⎛⎫⎛⎫=-=-=-⎪ ⎪⎝⎭⎝⎭,3ππ3π5π5π3tan 3tan 3tan 2682424f ⎛⎫⎛⎫⎛⎫=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵π5ππ012242<<<, ∴π5πtan tan1224<, ∴π5π3tan3tan 1224->-,即()3ππ2f f ⎛⎫> ⎪⎝⎭.【名师点睛】解决函数()tan()f x A x ωϕ=+有关问题的思路:学科!网(1)采用整体代换的解题方法,即把x ωϕ+看作一个整体,然后根据正切函数的有关性质求解. (2)解题时要注意参数,A ω的符号对解题结果的影响,特别是解决与单调性有关的问题时一定要注意.。

高中数学 第一章 三角函数 1.7.1-1.7.2 正切函数的定义、正切函数的图像与性质课件 北师大版必修4

高中数学 第一章 三角函数 1.7.1-1.7.2 正切函数的定义、正切函数的图像与性质课件 北师大版必修4

K12课件
7
做一做3 已知角α的正切线是单位长度的有向线段,那么角α的终 边( ) A.在x轴上 B.在y轴上 C.在直线y=x上 D.在直线y=x或y=-x上
解析:由题意可知tan α=±1,所以角α的终边在直线y=x或y=-x上.故
选D. 答案:D
K12课件
8
三、正切函数的图像
根据正切函数的定义域,我们可选择区间
+
3π 4
,������∈Z
解析:y=tan π -������ =-tan ������- π ,因此,应有 x-π≠kπ+π(k∈Z),即
4
4
4
2
x≠kπ+34π(k∈Z).
答案:D
K12课件
12
做一做 6
函数 f(x)=tan
������ + π
4
的单调增区间为
A. ������π- π ,������π + π ,k∈Z
22
θ=
.
答案: 3 做一做 2 若角 α 的终边上有一点 P(2,x),且 tan α=-3,则 x 的值等于
()
A.6
B.-2
3
答案:D
C.2
D.-6
3
K12课件
6
二、正切线 如图,在直角坐标系中,设单位圆与x轴正半轴的交点为A(1,0),任意 角α的终边与单位圆交于点P,过点A(1,0)作x轴的垂线,与角的终边 或终边的延长线相交于点T.从图中容易看出:当角α位于第一和第 三象限时,点T位于x轴的上方;当角α位于第二和第四象限时,点T位 于x轴的下方.过点P作x轴的垂线,与x轴交于点M,那么,不论角α的终 边在第几象限,都有∠AOT与∠MOP的正切值相等.我们称线段AT为 角α的正切线.

高中数学 第一章 三角函数 1.4 三角函数的图象与性质 1.4.3 正切函数的性质与图像习题课件 新人教A版必修4

高中数学 第一章 三角函数 1.4 三角函数的图象与性质 1.4.3 正切函数的性质与图像习题课件 新人教A版必修4

(2)y=|tanx|=t-antxa,nx,x∈x[∈kπ(,kπkπ-+π2π,2 )kπ(]k(∈kZ∈)Z.).
可作出其图像(如图),由图像知函数 y=|tanx|的单调递减区 π
间 为 (k π - 2 , k π ](k∈Z) , 单 调 递 增 区 间 为 [k π , k π + π 2 )(k∈Z).
π 是[0,+∞);单调递增区间是[kπ,kπ+ 2 )(k∈Z);周期 T=
π.
课后巩固
1.函数
y=ta1nx(-π4
π <x< 4
)的值域是(
)
A.[-1,1]
B.(-∞,-1)∪(1,+∞)
C.(-∞,1]
D.[-1,+∞)
答案 B
2.函数 y=tanx+sinx-|tanx-sinx|在区间(π2 ,3π2 )内的图 像大致是( )
π
⇒kπ-
x≠kπ+ 2 (k∈Z)
2
<x<kπ+
3

π
π
∴定义域为(kπ- 2 ,kπ+ 3 )(k∈Z),值域为 R.
题型二 正切函数的奇偶性 例 2 判断下列函数的奇偶性: (1)y=tanx(-π4 ≤x<π4 ); (2)y=xtan2x+x4; (3)y=sinx+tanx.
【思路分析】 先分别求出各个函数的定义域,看是否关于原点
思考题 4 作出函数 y=tanx+|tanx|的图像,并求其定义 域、值域、单调区间及最小正周期.
【解析】 y=tanx+|tanx|= 2tanx,tanx≥0,且x≠kπ+π2 ,k∈Z. 0,tanx<0,且x≠kπ+π2 ,k∈Z.
其图像如图所示,
π

高一数学必修4正切函数的图象与性质ppt1

高一数学必修4正切函数的图象与性质ppt1


2
O
x
2
2
思考4:正切函数在整个定义域内的图象 叫做正切曲线.因为正切函数是奇函数, 所以正切曲线关于原点对称,此外,正 切曲线是否还关于其它的点和直线对称?
正切曲线关于点 (k p , 0)对称. 2
思考5:根据正切曲线如何理解正切函数 的基本性质?一条平行于x轴的直线与相 邻两支曲线的交点的距离为多少?
理论迁移
例1 求函数 y tan( x ) 的定义域、 周期和单调区间. 2
例2 试比较tan8 和tan( 28 )的
大小.

例3 若 1 tan x 3,求x 的取值范 围.
小结作业
1.正切函数的图象是被互相平行的直线 所隔开的无数支相同形状的曲线组成,且 关于点 (k p , 0对) 称, 正切函数的性质应 结合图象去2 理解和记忆.
2

都是增函数
思考7:正切函数在整个定义域内是增函 数吗?正切函数会不会在某一区间内是 减函数?
思切2 值考时如8,:何正当变切x化大值?于又当如2x且何小无变于限化2接?且近由无此限2 接分时近析,,正 正切函数的值域是什么?
y
T2
正切函数的值域是R.
O
O
Ax
T1
知识探究(一):正切函数的图象
1.4.3 正切函数的图象与性质
问题提出
1.正、余弦函数的图象是通过什么方法 作出的?
2.正、余弦函数的基本性质包括哪些内 容?这些性质是怎样得到的?
3.三角函数包括正、余弦函数和正切函 数,我们已经研究了正、余弦函数的图 象和性质, 因此, 进一步研究正切函数 的性质与图象就成为学习的必然.
知识探究(一):正切函数的性质

专题4 三角函数的图象与性质-重难点题型精讲(举一反三)(新高考地区专用)(解析版)

专题4 三角函数的图象与性质-重难点题型精讲(举一反三)(新高考地区专用)(解析版)

专题4.7 三角函数的图象与性质-重难点题型精讲1.正弦函数与余弦函数的图象(1)正弦函数的图象①根据三角函数的定义,利用单位圆,我们可以得到函数y=,x∈[0,2π]的图象,如图所示.②五点法观察图,在函数y=,x∈[0,2π]的图象上,以下五个点:,1),( π,0),(-1),(2π,0)在确定图象形状时起关键作用.描出这五个点,函数y=,x∈[0,2π]的图象形状就基本确定了.因此,在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种作图的方法叫做“五点(画图)法”.(2)余弦函数的图象①图象变换法作余弦函数的图象由诱导公式六,我们知道,而函数x∈R的图象可以通过正弦函数y=,x∈R的图象向左平移个单位长度而得到.所以将正弦函数的图象向左平移个单位长度,就得到余弦函数的图象,如图所示.②五点法作余弦函数的图象类似于正弦函数图象的作法,从余弦函数y=,x∈R的图象可以看出,要作出函数y=在[0,2]上的图象,起关键作用的五个点是:(0,1),(,0),(,-1),(,0),(2,1).先描出这五个点,然后把这五个点用一条光滑的曲线连接起来就得到了函数y=在[0,2]上的简图,再通过左右平移(每次移动2个单位长度)即可得到余弦函数y=,x∈R的图象.(3)正弦曲线、余弦曲线正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.它们是具有相同形状的“波浪起伏”的连续光滑曲线.2.正弦函数与余弦函数的性质(1)周期函数①定义:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.②最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.(2)正弦函数与余弦函数的性质正弦函数与余弦函数的图象与性质如下表:3.正弦型函数的性质的性质4.正切函数的性质与图象(1)正切函数的图象及性质(2)三点两线法作正切曲线的简图类比于正、余弦函数图象的五点法,我们可以采用三点两线法作正切函数的简图.“三点”是指点(-,-1),(0,0),(,1);“两线”是指直线x=-和x=.在三点、两线确定的情况下,可以大致画出正切函数在区间(-上的简图.5.余切函数的图象及性质正切函数的图象及性质:的图象先向右平移个单位长度,再以x轴为对称轴上下翻折,可得的图象.余切函数的图象与性质如下表:【题型1 三角函数的定义域和值域(最值)】【方法点拨】求与三角函数有关的函数的值域(最值)的常用方法有:(1)借助三角函数的有界性、单调性求解;(2)转化为关于的二次函数求解.注意求三角函数的最值对应的自变量x的值时,要考虑三角函数的周期性.【例1】(2022·甘肃·高二开学考试)函数f(x)=tan(x+π4)的定义域为()A.{x|x≠kπ+π4,k∈Z}B.{x|x≠2kπ+π4,k∈Z}C.{x|x≠kπ−π4,k∈Z}D.{x|x≠kπ,k∈Z}【解题思路】根据正切函数的定义域可得结果.【解答过程】因为x+π4≠kπ+π2,k∈Z,所以x≠kπ+π4,k∈Z.故f(x)的定义域为{x|x≠kπ+π4,k∈Z}.故选:A.【变式1-1】(2022·四川省高三阶段练习(理))若x∈[π4,2π3],则函数f(x)=3sin x cos x+√3sin2x的值域为( ) A .[0,3√32]B .[0,√32] C .[0,√3]D .[0,3+√3]【解题思路】利用二倍角公式和辅助角公式化简原式为f (x )=√3sin(2x -π6)+√32,结合正弦函数的图像和性质,求解即可. 【解答过程】由题意,f (x )=3sin x cos x +√3sin 2x =32sin2x +√32(1-cos2x )=√3×(√32sin2x -12cos2x )+√32=√3×(cos π6sin2x -sin π6cos2x )+√32=√3sin(2x -π6)+√32,当x ∈[π4,2π3]时,有2x -π6∈[π3,7π6],当2x -π6=π2,即x =π3时,f (x )max =f (π3)=√3+√32=3√32; 当2x -π6=7π6,即x =2π3时,f (x )min =f (2π3)=0.即函数f (x )的值域为[0,3√32].故选:A.【变式1-2】(2022·福建省高二阶段练习)函数f (x )=sinx +cos (x +π6)的值域为( ) A .[−2,2]B .[−√3,√3]C .[−1,1]D .[−√32,√32] 【解题思路】利用两角和的余弦公式和辅助角公式进行化简,即可得到答案 【解答过程】解:函数f (x )=sinx +cos (x +π6)=sinx +√32cosx −12sinx =√32cosx +12sinx =cos (x −π6),∵x ∈R ,∴cos (x −π6)∈[−1,1],∴函数的值域为[−1,1], 故选:C .【变式1-3】(2022·全国·高一单元测试)若x ∈[−π3,2π3],则函数y =cos 2(x +π6)+sin (x +2π3)的最大值与最小值之和为( )A .12B .1C .74D .√2【解题思路】利用诱导公式可化简函数为y =(cos (x +π6)+12)2−14,根据余弦型函数值域的求法可求得cos(x+π6)∈[−√32,1],结合二次函数最值的求法可求得y的最大值和最小值,加和即可求得结果.【解答过程】y=cos2(x+π6)+sin(x+2π3)=cos2(x+π6)+sin(π2+x+π6)=cos2(x+π6)+cos(x+π6)=(cos(x+π6)+12)2−14,当x∈[−π3,2π3]时,x+π6∈[−π6,5π6],∴cos(x+π6)∈[−√32,1],∴当cos(x+π6)=1时,y max=94−14=2;当cos(x+π6)=−12时,y min=−14;∴y max+y min=2−14=74.故选:C.【方法点拨】证明一个函数是否为周期函数或求函数周期的大小常用以下方法:(1)定义法:即对定义域内的每一个x值,看是否存在非零常数T使f(x+T)=f(x)成立,若成立,则函数是周期函数且T是它的一个周期.(2)公式法:利用三角函数的周期公式来求解.(3)图象法:画出函数的图象,通过图象直观判断即可.【例2】(2023·广东·高三学业考试)函数f(x)=sin(x2−π4)的最小正周期是()A.π2B.πC.2πD.4π【解题思路】利用正弦函数的周期求解.【解答过程】f(x)的最小正周期为T=2π12=4π.故选:D.【变式2-1】(2023·广东·高三学业考试)函数f(x)=cos(12x+π6)的最小正周期为()A.π2B.πC.2πD.4π【解题思路】利用余弦型函数的周期公式进行求解.【解答过程】∵f(x)=cos(12x+π6),∴f(x)最小正周期T=2π12=4π.故A,B,C错误.故选:D.【变式2-2】(2022·甘肃临夏·高二期末(理))函数f(x)=cos(ωx+π6)(ω>0)的最小正周期为π,则f(π2)=()A.−√32B.−12C.12D.√32【解题思路】由周期求出ω,从而可求出f(x),进而可求出f(π2).【解答过程】因为函数f(x)的最小正周期为π,ω>0,所以ω=2ππ=2,得f(x)=cos(2x+π6),所以f(π2)=cos(2×π2+π6)=−cosπ6=−√32.故选:A.【变式2-3】(2022·广东佛山·高三阶段练习)在下列函数中,最小正周期为π且在(0,π2)为减函数的是()A.f(x)=sin|2x|B.f(x)=cos(2x+π6)C.f(x)=|cosx|D.f(x)=tan(2x−π4)【解题思路】根据三角函数的图像性质,逐个选项进行判断即可得出答案.【解答过程】对于A,f(x)=sin|2x|的图像关于y轴对称,在(0,π2)为增函数,不符题意,故A错;对于B,f(x)=cos(2x+π6)的最小正周期为π,x∈(0,π2),2x+π6∈(π6,7π6),不是减函数,不符题意,故B错;对于C,f(x)=|cosx|的最小正周期为π,在(0,π2)为减函数,符合题意,故C对;对于D,f(x)=tan(2x−π4)的最小正周期为π2,不符题意,故D错;故选:C.【题型3 三角函数的奇偶性】【方法点拨】掌握正弦、余弦、正切函数的奇偶性相关知识,结合具体题目,灵活求解.【例3】(2022·广东·高三学业考试)若函数f(x)=sin(x+φ)是偶函数,则φ可取一个值为()A.−πB.−π2C.π4D.2π【解题思路】根据偶函数的定义得φ=kπ+π2,k∈Z,结合选项可确定答案.【解答过程】∵函数f(x)=sin(x+φ)是偶函数,∴f(−x)=f(x),即sin(−x+φ)=sin(x+φ).∴−x+φ=x+φ+2kπ或−x+φ+x+φ=π+2kπ,k∈Z.当−x+φ=x+φ+2kπ时,可得x=−kπ,不满足函数定义.当−x+φ+x+φ=π+2kπ时,φ=kπ+π2,k∈Z,若φ=kπ+π2=−π,解得k=−32∉Z,故A错误;若φ=kπ+π2=−π2,解得k =−1∈Z ,故B 正确; 若φ=kπ+π2=π4,解得k =−14∉Z ,故C 错误;若φ=kπ+π2=2π,解得k =32∉Z ,故D 错误;故选:B.【变式3-1】(2022·全国·高一)下列函数中,在其定义域上是偶函数的是( ) A .y =sinxB .y =|sinx |C .y =tanxD .y =cos (x −π2)【解题思路】根据奇偶性定义,结合三角函数的奇偶性可直接得到结果.【解答过程】对于A ,∵y =sinx 定义域为R ,sin (−x )=−sinx ,∴y =sinx 为奇函数,A 错误;对于B ,∵y =|sinx |定义域为R ,|sin (−x )|=|−sinx |=|sinx |,∴y =|sinx |为偶函数,B 正确;对于C ,∵y =tanx 定义域为(kπ−π2,kπ+π2)(k ∈Z ),即定义域关于原点对称,tan (−x )=−tanx ,∴y =tanx 为奇函数,C 错误;对于D ,∵y =cos (x −π2)=sinx 定义域为R ,sin (−x )=−sinx ,∴y =cos (x −π2)为奇函数,D 错误. 故选:B.【变式3-2】(2022·北京高三阶段练习)函数f (x )=cos x +cos2x 是( ) A .奇函数,且最大值为2 B .偶函数,且最小值为-98 C .奇函数,且最小值为-98D .偶函数,且最大值为98【解题思路】利用函数奇偶性的定义可判断出函数f (x )的奇偶性,利用二次函数的基本性质可求得函数f (x )的最值.【解答过程】函数f (x )的定义域为R ,f (-x )=cos (-x )+cos (-2x )=cos x +cos2x =f (x ), 故函数f (x )为偶函数,因为-1≤cos x ≤1,则f (x )=2cos 2x +cos x -1=2(cos x +14)2-98, 所以,f (x )min =-98,f (x )max =2+1-1=2.故选:B.【变式3-3】(2022·广西·模拟预测(理))若将函数f (x )=sin2x −√3cos2x 的图象向右平移m (m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A .π6B .π3C .2π3D .5π6【解题思路】首先对f (x )化简得到f (x )=2sin (2x −π3),再写出平移后的解析式y =2sin (2x −2m −π3),因为其为奇函数,则−2m −π3=k π,k ∈Z ,解出m 即可得到最小值.【解答过程】f (x )=sin2x −√3cos2x =2(12sin2x −√32cos2x)=2sin (2x −π3),向右平移m(m >0)个单位后得到函数y =2sin [2(x −m )−π3]=2sin (2x −2m −π3),由于是奇函数,因此,得−2m −π3=k π,k ∈Z ,m =−π6−k π2,k ∈Z.又∵m >0,则当k =−1时,m 的最小值是π3,故选:B.【方法点拨】掌握正弦、余弦、正切函数的对称性相关知识,结合具体题目,灵活求解.【例4】(2022·安徽·高三开学考试)函数f (x )=tan (2x −π3)的图象的一个对称中心为( ) A .(π12,0)B .(7π12,0)C .(−5π12,0)D .(−π12,0)【解题思路】根据正切型函数的对称中心为(k π2,0) k ∈Z ,求解即可. 【解答过程】由2x −π3=k π2,k ∈Z ,可得x =k π4+π6,k ∈Z ,当k =0时,x =π6,当k =1时,x =π4+π6=5π12,当k =2时,x =8π12=23π, 当k =−1时,x =−π4+π6=−π12, 当k =−2时,x =−4π12=−13π, 当k =−3时,x =−7π12,所以(−π12,0)为f (x )图象的一个对称中心, 故选:D.【变式4-1】(2022·河南·高三阶段练习(理))已知函数f (x )=2cos (ωx −π6)(ω>0)在[0,2π]内恰有三条对称轴,则ω的取值范围是( ) A .[43,116)B .(43,116]C .[1312,1912)D .(1312,1912]【解题思路】根据余弦函数的性质可得2π≤2ωπ−π6<3π,进而即得. 【解答过程】因为0≤x ≤2π, 所以−π6≤ωx −π6≤2ωπ−π6, 所以2π≤2ωπ−π6<3π, 解得1312≤ω<1912.故选:C.【变式4-2】已知函数f(x)=sin (12x −π6),则结论正确的是( )A .f (x )的图象关于点(5π3,0)中心对称B .f (x )的图象关于直线x =−π3对称C .f (x )在区间(−π,π)内有2个零点D .f (x )在区间[−π2,0]上单调递增【解题思路】A 、B 应用代入法判断对称轴和对称中心;C 、D 根据给定区间求12x −π6的范围,结合正弦型函数的性质求零点和单调性. 【解答过程】A :f(5π3)=sin (12×5π3−π6)=sin2π3≠0,故(5π3,0)不是对称中心,错误;B :f(−π3)=sin[12×(−π3)−π6]=−sin π3≠±1,故x =−π3不是对称轴,错误;C :在x ∈(−π,π),则12x −π6∈(−2π3,π3),故f(x)=0,可得12x −π6=0,所以x =π3为f (x )在(−π,π)内的唯一零点,错误;D :在x ∈[−π2,0],则12x −π6∈[−5π12,−π6],故f(x)=sin (12x −π6)递增,正确. 故选:D.【变式4-3】(2022·贵州·高三阶段练习(文))已知函数f (x )=2cos (ωx +φ)(ω>0,0<φ<π)的相邻两条对称轴之间的距离为2π,且为奇函数,将f (x )的图象向右平移π3个单位得到函数g (x )的图象,则函数g (x )的图象( ) A .关于点(−5π3,0)对称B .关于点(π2,0)对称 C .关于直线x =−π3对称D .关于直线x =π2对称【解题思路】两个相邻对称轴的为半个周期,奇函数可以确定f (x )为正弦函数,由此条件得出f (x )的解析式,再根据平移得出g (x )的解析式,根据解析式写出对称中心和对称轴的通式即可得出答案.【解答过程】由相邻两条对称轴之间的距离为2π可知T2=2π,即T =4π,ω=2πT ,ω=12, 因为f (x )为奇函数,根据0<φ<π可知φ=π2,f (x )=2sin 12x , g (x )=2sin (12(x −π3))=2sin (12x −π6),对称中心:12x −π6=k π(k ∈Z ),x =2k π+π3(k ∈Z ),故A 正确,B 错误;对称轴:12x −π6=π2+k π(k ∈Z ),x =2k π+4π3(k ∈Z ),故C 、D 错误;故选:A.【方法点拨】三角函数的单调性问题主要有:三角函数的单调区间的求解、比较函数值的大小、根据三角函数的单调性求参数;结合具体条件,根据三角函数的图象与性质进行求解即可.【例5】(2022·江西·高三阶段练习(理))函数y =sin (π6−2x)(x ∈[0,π])为增函数的区间是( ) A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]【解题思路】根据三角函数单调性的求法求得正确答案. 【解答过程】y =sin (π6−2x)=−sin (2x −π6),2k π+π2≤2x −π6≤2k π+3π2,k π+π3≤x ≤k π+5π6,k ∈Z , 令k =0可的y =sin (π6−2x)(x ∈[0,π])的递增区间为[π3,5π6]. 故选:C.【变式5-1】(2022·河南信阳·一模(理))已知函数f (x )=2√3cos (x -π2)cos x -2sin 2x ,若f (x )在区间[m ,π4]上单调递减,则实数m 的取值范围( )A .[π6,π4]B .[π3,π2]C .[π6,π4)D .[π6,π3)【解题思路】利用三角恒等变换,化简三角函数,利用正弦型函数的单调性,建立不等式组,可得答案.【解答过程】f (x )=2√3cos (x -π2)cos x -2sin 2x =2√3sin x cos x -2·1-cos2x 2=√3sin2x -1+cos2x=2(√32sin2x +12cos2x)-1 =2sin (2x +π6)-1,由x ∈[m ,π4],则2x +π6∈[2m +π6,2π3],由题意,[2m +π6,2π3]⊆[π2,3π2],则π2≤2m +π6<2π3,解得π6≤m <π4. 故选:C.【变式5-2】(2022·江苏·高三阶段练习)已知a =log 168,b =πln0.8,c =sin2.5,则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .a <b <cD .a <c <b【解题思路】由对数的运算法则求出a ,又πln0.8,sin2.5分别可看做y =πx ,y =sinx 的函数值,考虑构造指数函数和正弦函数,利用函数的单调性对其值进行估计,又因为ln0.8估值困难,故考虑利用与函数y =lnx 近似的有理函数y =1−1x 对其大小进行估值,最后求得答案.【解答过程】由题意,a =log 168=log 2423=34=0.75, 设f (x )=lnx +1x −1,则f ′(x )=1x −1x 2=x−1x 2,当0<x <1时,f ′(x )<0,函数f (x )在(0,1)上单调递减,当x >1时,f ′(x )>0,函数f (x )在(1,+∞)上单调递增,所以f (0.8)>f (1),即ln0.8+54−1>0,所以ln0.8>−14,因为函数y =πx 在(−∞,+∞)上单调递增,所以πln0.8>π−14,又(π−14)−4=π,(34)−4=25681≈3.16,所以(34)−4>(π−14)−4,因为y =x−4在(0,+∞)单调递减,所以34<π−14,所以πln0.8>34,故b >a , 因为3π4<2.5<5π6,函数y =sinx 在(π2,π)上单调递减,所以sin 5π6<sin2.5<sin3π4,所以12<sin2.5<√22,所以sin2.5<34,即c <a ,所以c <a <b , 故选:A.【变式5-3】(2022·内蒙古·高三阶段练习(文))若函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,则ω的最大值为( )A .37 B .34C .14D .1【解题思路】由题知ωx +π4∈(π4,7π4ω+π4),再根据函数y =√2cosx 在(0,π)上单调递减可得7π4ω+π4≤π,进而解不等式求解即可.【解答过程】解:因为函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,所以7π4≤12T =πω,解得0<ω≤47,因为x ∈(0,7π4),所以ωx +π4∈(π4,7π4ω+π4),因为函数y =√2cosx 在(0,π)上单调递减, 所以,函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,则有7π4ω+π4≤π,解得ω≤37,所以ω的取值范围是ω∈(0,37],即ω的最大值为37. 故选:A.【方法点拨】解决正(余)弦型函数性质的综合应用问题的思路: (1)熟练掌握函数或的图象,利用基本函数法得到相应的函数性质,然后利用性质解题.(2)直接作出函数图象,利用图象形象直观地分析并解决问题. 【例6】已知函数f (x )=4sinxcos (x +π6)+1.(1)求f (x )的最小正周期及单调区间; (2)求f (x )在区间[−π6,π4]上的最大值与最小值.【解题思路】(1)先利用三角恒等变换化简得到f (x )=2sin (2x +π6),从而利用T =2π|ω|求出最小正周期,再利用整体法求解函数的单调区间;(2)根据x ∈[−π6,π4]求出2x +π6∈[−π6,2π3],从而结合函数图象求出最大值为2,最小值为−1.【解答过程】(1)因为f (x )=4sinx (cosxcos π6−sinxsin π6)+1=2√3sinxcosx −2sin 2x +1 =√3sin2x +cos2x =2sin (2x +π6) 所以f (x )的最小正周期T =2π2=π;令−π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得:[−π3+k π,π6+k π],k ∈Z , 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得:[π6+k π,2π3+k π],k ∈Z ,单调增区间为[−π3+k π,π6+k π],k ∈Z ,单调减区间为[π6+k π,2π3+k π],k ∈Z ;(2)已知x ∈[−π6,π4],所以2x +π6∈[−π6,2π3],当2x +π6=π2,即x =π6时,f (x )取得最大值,最大值为2, 当2x +π6=−π6,即x =−π6时,f (x )取得最小值,最小值为-1, 所以f (x )在区间[−π6,π4]上的最大值为2,最小值为−1.【变式6-1】(2022·陕西·高三阶段练习(文))已知函数f (x )=4sin (ωx +φ)(ω>0,|φ|<π2)图象的一条对称轴为直线x =−π12,这条对称轴与相邻对称中心之间的距离为π8.(1)求f (x );(2)求f (x )在[−π24,π4]上的值域.【解题思路】(1)先求出周期,由此求出ω的值,利用对称轴方程求出φ,即可得到函数的解析式;(2)根据自变量的范围求得4x −π6∈[−π3,5π6],根据正弦函数的取值求得函数的值域【解答过程】(1)因为函数f(x)图象的对称轴与相邻对称中心之间的距离为π8, 所以T =π2,故ω=2πT=4,又f(x)的图象的一条对称轴方程为x =−π12, 则4×(−π12)+φ=π2+k π,k ∈Z ,即φ=5π6+k π,k ∈Z ,又|φ|<π2,所以φ=−π6, 故f(x)=4sin (4x −π6);(2)因为x ∈[−π24,π4],所以4x −π6∈[−π3,5π6],所以sin (4x −π6)∈[−√32,1],所以4sin (4x −π6)∈[−2√3,4], 故f (x )在[−π24,π4]上的值域为[−2√3,4].【变式6-2】(2021·天津·高一期末)已知函数f (x )=2√3cos 2(π2+x)-2sin(π+x )cos x -√3 (1)求f (x )的最小正周期及单调递减区间; (2)求f (x )在区间[π4,π2]上的最值;(3)若f (x 0-π6)=1013,x 0∈[3π4,π],求sin2x 0的值.【解题思路】(1)根据三角恒等变换可得f (x )=2sin (2x -π3),然后根据三角函数的性质即得;(2)根据正弦函数的性质即得;(3)由题可得sin (2x 0-2π3)=513,然后根据同角关系式及和差角公式即得. 【解答过程】(1)因为f (x )=2sin x cos x +2√3sin 2x -√3 =sin2x -√3cos2x =2sin (2x -π3). 所以f (x )的最小正周期T =2π2=π,∵π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,∴5π12+k π≤x ≤11π12+k π,所以f (x )的单调递减区间为[5π12+k π,11π12+k π](k ∈Z);(2)由(1)知f (x )的单调递减区间为[5π12+k π,11π12+k π](k ∈Z),∵x ∈[π4,π2],∴f (x )在[π4,5π12]上单调递增,在[5π12,π2]上单调递减,又f (5π12)=2sin π2=2,f (π4)=2sin π6=1,f (π2)=2sin2π3=√3,故f (x )min =1,f (x )max =2; 另解:∵x ∈[π4,π2], ∴t =2x -π3∈[π6,2π3],∵y =sin t 在t ∈[π6,π2]单调递增,在[π2,2π3]上单调递减, ∴当t =π2时,(sin t )max =1,f (x )max =2×1=2, ∴当t =π6时,(sin t )min =12,f (x )min =2×12=1; (3)∵f (x 0-π6)=1013,∴sin (2x 0-2π3)=513, 由x 0∈[3π4,π],得2x 0-2π3∈[5π6,4π3],∴cos (2x 0-2π3)=-1213, ∴sin2x 0=sin [(2x 0-2π3)+2π3]=sin (2x 0-2π3)cos2π3+cos (2x 0-2π3)sin 2π3=513×(-12)+(-1213)×√32=-5+12√326. 【变式6-3】(2022·黑龙江·高三阶段练习)已知函数f (x )=[(1+√2)sin x -cos x]⋅[(1-√2)sin x -cos x]. (1)求f (x )的最小正周期T 和单调递减区间;(2)四边形ABCD 内接于⊙O ,BD =2,锐角A 满足f (3A4)=-1,求四边形ABCD 面积S 的取值范围.【解题思路】(1)利用三角函数恒等变换公式对函数化简变形得f (x )=√2cos (2x +π4),从而可求出最小正周期,再由2kπ≤2x +π4≤2kπ+π(k ∈Z )求出其单调区间,(2)由f (3A4)=-1,求得A =π3,再由圆的性质可得C =2π3,设AB =a ,AD =b ,BC =c ,CD =d ,分别在△ABD 和△CBD 中利用余弦定理结合基本不等式可得0<ab ≤4,0<cd ≤43,从而可求出四边形ABCD 面积S 的取值范围.【解答过程】(1)[(1+√2)sin x -cos x]⋅[(1-√2)sin x -cos x]=[(sin x -cos x )+√2sin x]⋅[(sin x -cos x )-√2sin x]=(sin x -cos x )2-2sin 2x =sin 2x -2sin x cos x +cos 2x -2sin 2x=1-2sin 2x -sin2x =cos2x -sin2x=√2cos (2x +π4), ∴f (x )=√2cos (2x +π4) ∴T =π.由2kπ≤2x +π4≤2kπ+π(k ∈Z ),得kπ-π8≤x ≤kπ+3π8(k ∈Z ),所以f (x )单调递减区间为[kπ-π8,kπ+3π8](k ∈Z ). (2)由于f (3A4)=-1,根据(1)得√2cos (2×3A 4+π4)=-1,∵0<A <π2,∴A =π3,C =2π3.分别设AB =a ,AD =b ,BC =c ,CD =d .因BD =2,分别在△ABD 和△CBD 中由余弦定理得a 2+b 2-2ab cos π3=4,c 2+d 2-2cd cos2π3=4,∴a 2+b 2=4+ab ,c 2+d 2=4-cd .∵a 2+b 2≥2ab ,c 2+d 2≥2cd ,等号在a =b =2,c =d =2√33时成立,∴4+ab ≥2ab ,4-cd ≥2cd ,解得0<ab ≤4,0<cd ≤43. ∴0<ab +cd ≤163.等号在a =b =2,c =d =2√33时成立,∵S =12ab sin A +12cd sin C =√34(ab +cd ), 所以S 的取值范围是(0,4√33].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正切函数的性质与图像
【知识梳理】
1.正切函数的性质
函数 y =tan x
定义域 ⎩⎨⎧
x ⎪⎪⎭
⎬⎫
x ≠k π+π2,k ∈Z
函数 y =tan x 值域 (-∞,+∞)
周期 T =π 奇偶性 奇函数
单调性
在每个开区间⎝
⎛⎭⎫k π-π2,k π+π
2(k ∈Z )上都是增函数 2.(1)正切函数的图像:
(2)正切函数的图像叫做正切曲线. (3)正切函数的图像特征:
正切曲线是被相互平行的直线x =π
2
+k π,k ∈Z 所隔开的无穷多支曲线组成的.
【常考题型】
题型一、正切函数的定义域、值域问题
【例1】 求下列函数的定义域和值域: (1)y =tan ⎝⎛⎭
⎫x +π
4;(2)y =3-tan x .
[解] (1)由x +π4≠k π+π
2(k ∈Z )得,
x ≠k π+π
4
,k ∈Z ,
所以函数y =tan ⎝⎛⎭⎫x +π4的定义域为xx ≠k π+π
4,k ∈Z ,其值域为(-∞,+∞). (2)由3-tan x ≥0得,tan x ≤ 3.
结合y =tan x 的图像可知,在⎝⎛⎭⎫-π2,π
2上, 满足tan x ≤3的角x 应满足-π2<x ≤π
3,
所以函数y =
3-tan x 的定义域为
⎩⎨⎧
x ⎪⎪⎭⎬⎫
k π-π2<x ≤k π+π3,k ∈Z ,其值域为[0,+∞).
【类题通法】
求正切函数定义域的方法及求值域的注意点
求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y =tan x 有意义,即x ≠π
2+k π,k ∈Z .而对于构建的三角不等式,常利用三角函数的图像求解.解
形如tan x >a 的不等式的步骤:
【对点训练】 求函数y =
1
1+tan x
的定义域.
解:要使函数有意义,则有1+tan x ≠0, ∴tan x ≠-1,∴x ≠k π-π4且x ≠k π+π
2,k ∈Z .
因此,函数y =
1
1+tan x 的定义域为
⎩⎨⎧
x ⎪⎪⎭
⎬⎫
x ≠k π-π4且x ≠k π+π2,k ∈Z .
题型二、正切函数的单调性及应用
【例2】 (1)求函数y =tan ⎝⎛⎭⎫
12x -π4的单调区间; (2)比较tan ⎝⎛⎭⎫-13π4与tan ⎝⎛⎭⎫-12π
5的大小. [解] (1)由k π-π2<12x -π4<k π+π
2(k ∈Z )得,
2k π-π2<x <2k π+3π
2
,k ∈Z ,
所以函数y =tan ⎝⎛⎭⎫12x -π4的单调递增区间是⎝
⎛⎭⎫2k π-π2,2k π+3π
2(k ∈Z ). (2)由于tan ⎝⎛⎭⎫-13π4=tan ⎝⎛⎭⎫-4π+3π4=tan 3π4=-tan π4,tan ⎝⎛⎭⎫-12π5=-tan ⎝⎛⎭⎫2π+2π5=-tan 2π5, 又0<π4<2π5<π
2

而y =tan x 在⎝⎛⎭⎫0,π
2上单调递增, 所以tan π4<tan 2π5,-tan π4>-tan 2π
5,
即tan ⎝⎛⎭⎫-13π4>tan ⎝⎛⎭⎫-12π5. 【类题通法】
1.求函数y =A tan(ωx +φ)(A ,ω,φ都是常数)的单调区间的方法
(1)若ω>0,由于y =tan x 在每一个单调区间上都是增函数,故可用“整体代换”的思想,令k π-π2<ωx +φ<k π+π
2
,求得x 的范围即可.
(2)若ω<0,可利用诱导公式先把y =A tan(ωx +φ)转化为y =A tan [-(-ωx -φ)]=-A tan(-ωx -φ),即把x 的系数化为正值,再利用“整体代换”的思想,求得x 的范围即可.
2.运用正切函数单调性比较大小的方法
(1)运用函数的周期性或诱导公式将角化到同一单调区间内. (2)运用单调性比较大小关系. 【对点训练】
1.比较tan 1,tan 2,tan 3的大小.
解:因为tan 2=tan(2-π),tan 3=tan(3-π).
又因为π2<2<π,所以-π
2<2-π<0.
因为π2<3<π,所以-π
2<3-π<0.
显然-π2<2-π<3-π<1<π2,
又y =tan x 在⎝⎛⎭⎫-π2,π
2内是增函数, 所以tan(2-π)<tan(3-π)<tan 1, 即tan 2<tan 3<tan 1.
2.求函数y =3tan ⎝⎛⎭⎫π
4-2x 的单调区间. 解:y =3tan ⎝⎛⎭⎫π4-2x =-3tan ⎝⎛⎭⎫2x -π4, 由-π2+k π<2x -π4<π
2+k π得,
-π8+k 2π<x <3π8+k
2
π(k ∈Z ), 所以y =3tan ⎝⎛⎭⎫π4-2x 的单调递减区间为
⎝⎛⎭⎫-π8+k 2
π,3π8+k 2π(k ∈Z ).
题型三、与正切函数有关的周期性、奇偶性问题
【例3】 (1)求f (x )=tan ⎝⎛⎭⎫2x +π
3的周期; (2)判断y =sin x +tan x 的奇偶性. [解] (1)∵tan ⎝⎛⎭⎫2x +π3+π=tan ⎝⎛⎭⎫2x +π
3, 即tan ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2+π3=tan ⎝⎛⎭⎫2x +π3, ∴f (x )=tan ⎝⎛⎭⎫2x +π3的周期是π2
. (2)定义域为⎩⎨⎧⎭
⎬⎫
x ⎪

x ≠k π+π
2,k ∈Z ,关于原点对称, ∵f (-x )=sin(-x )+tan(-x )=-sin x -tan x =-f (x ), ∴它是奇函数.
【类题通法】
与正切函数有关的函数的周期性、奇偶性问题的解决策略
(1)一般地,函数y =A tan(ωx +φ)的最小正周期为T =π
|ω|,常常利用此公式来求周期.
(2)判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称.若不对称,则该函数无奇偶性,若对称,再判断f (-x )与f (x )的关系.
【对点训练】
关于x 的函数f (x )=tan(x +φ)有以下几种说法:
①对任意的φ,f (x )都是非奇非偶函数;②f (x )的图像关于⎝⎛⎭⎫π
2-φ,0对称;③f (x )的图像关于(π-φ,0)对称;④f (x )是以π为最小正周期的周期函数.
其中不正确的说法的序号是________.
解析:①若取φ=k π(k ∈Z ),则f (x )=tan x ,此时,f (x )为奇函数,所以①错;观察正切函数y =tan x 的图像,可知y =tan x 关于⎝⎛⎭⎫k π2,0(k ∈Z )对称,令x +φ=k π2得x =k π
2-φ,分别令k =1,2知②、③正确,④显然正确.
答案:①
【练习反馈】
1.函数y =tan x ⎝⎛⎭⎫x ≠k π+π
2,k ∈Z 的单调性为( ) A .在整个定义域上为增函数 B .在整个定义域上为减函数
C .在每一个开区间⎝⎛⎭⎫-π2+k π,π
2+k π(k ∈Z )上为增函数 D .在每一个开区间⎝⎛⎭⎫-π2+2k π,π
2+2k π(k ∈Z )上为增函数 解析:选C 由正切函数的图像可知选项C 正确. 2.函数y =tan(cos x )的值域是( ) A.⎣⎡⎦
⎤-π4,π
4 B.⎣
⎡⎦


22,
22 C .[-tan 1,tan 1]
D .以上均不对
解析:选C ∵-1≤cos x ≤1,且函数y =tan x 在[-1,1]上为增函数,∴tan(-1)≤tan x ≤tan 1.
即-tan 1≤tan x ≤tan 1.
3.函数y =5tan ⎝⎛⎭⎫-x
2的最小正周期是________. 解析:T =
π
⎪⎪⎪
⎪-12=2π.
答案:2π
4.函数y =3tan(π+x ),-π4<x ≤π
6
的值域为________.
解析:函数y =3tan(π+x )=3tan x ,因为正切函数在⎝⎛⎭⎫-π2,π
2上是增函数,所以-3<y ≤3,所以值域为(-3,3].
答案:(-3, 3 ]
5.求函数y =tan ⎝⎛⎭⎫
12x -π6的定义域、周期及单调区间. 解:由12x -π6≠π
2+k π,k ∈Z ,
得x ≠4π
3
+2k π,k ∈Z ,
所以函数y =tan ⎝⎛⎭⎫
12x -π6的定义域为
⎩⎨⎧⎭
⎬⎫x ⎪⎪
x ≠4π
3+2k π,k ∈Z .
T =π
1
2=2π,所以函数y =tan ⎝⎛⎭⎫12x -π6的周期为2π. 由-π2+k π<12x -π6<π
2+k π,k ∈Z ,得
-2π3+2k π<x <4π
3
+2k π,k ∈Z . 所以函数y =tan ⎝⎛⎭⎫12x -π6的单调递增区间为
⎝⎛⎭
⎫-2π3+2k π,4π3+2k π(k ∈Z ).。

相关文档
最新文档