【通用版】2021年中考数学专题《分式与分式方程和二次根式》(含解析)最新人教版

合集下载

专题03分式与二次根式(共50题)-2021年中考数学真题分项汇编(解析版)(全国通用)

专题03分式与二次根式(共50题)-2021年中考数学真题分项汇编(解析版)(全国通用)

2021年中考数学真题分项汇编【全国通用】专题3分式与二次根式(共50题) 一.选择题(共13小题)1.(2020•安顺)当x =1时,下列分式没有意义的是( )A .x+1xB .x x−1C .x−1xD .x x+1【分析】直接利用分式有意义的条件分析得出答案.【解析】A 、x+1x ,当x =1时,分式有意义不合题意;B 、x x−1,当x =1时,x ﹣1=0,分式无意义符合题意;C 、x−1x ,当x =1时,分式有意义不合题意;D 、x x+1,当x =1时,分式有意义不合题意;故选:B .2.(2020•遂宁)下列计算正确的是( )A .7ab ﹣5a =2bB .(a +1a )2=a 2+1a 2C .(﹣3a 2b )2=6a 4b 2D .3a 2b ÷b =3a 2【分析】根据整式的加减、乘除分别进行计算,再判断即可.【解析】7ab 与﹣5a 不是同类项,不能合并,因此选项A 不正确;根据完全平方公式可得(a +1a )2=a 2+1a 2+2,因此选项B 不正确;(﹣3a 2b )2=9a 4b 2,因此选项C 不正确;3a 2b ÷b =3a 2,因此选项D 正确;故选:D .3.(2020•金华)分式x+5x−2的值是零,则x 的值为( )A .2B .5C .﹣2D .﹣5 【分析】利用分式值为零的条件可得x +5=0,且x ﹣2≠0,再解即可.【解析】由题意得:x +5=0,且x ﹣2≠0,解得:x =﹣5,故选:D .4.(2020•绥化)化简|√2−3|的结果正确的是( )A .√2−3B .−√2−3C .√2+3D .3−√2【分析】根据绝对值的定义解答即可.【解析】∵√2−3<0,∴|√2−3|=−(√2−3)=3−√2.故选:D .5.(2020•泰州)下列等式成立的是( )A .3+4√2=7√2B .√3×√2=√5C .√36=2√3D .√(−3)2=3【分析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解析】A .3与4√2不是同类二次根式,不能合并,此选项计算错误;B .√3×√2=√6,此选项计算错误;C .√3÷6=√3×√6=3√2,此选项计算错误; D .√(−3)2=3,此选项计算正确;故选:D .6.(2020•聊城)计算√45÷3√3×√35的结果正确的是( )A .1B .53C .5D .9【分析】根据二次根式的性质化简二次根式后,再根据二次根式的乘除法法则计算即可. 【解析】原式=3√5÷3√3×√155 =3√5×√39×√155 =√5×3×1515 =1515=1.故选:A .7.(2020•无锡)下列选项错误的是( )A .cos60°=12B .a 2•a 3=a 5C .√2=√22D .2(x ﹣2y )=2x ﹣2y 【分析】分别根据特殊角的三角函数值,同底数幂的乘法法则,二次根式的除法法则以及去括号法则逐一判断即可.【解析】A .cos60°=12,故本选项不合题意;B .a 2•a 3=a 5,故本选项不合题意;C .√2=√2√2⋅√2=√22,故本选项不合题意; D .2(x ﹣2y )=2x ﹣4y ,故本选项符合题意.故选:D .8.(2020•杭州)√2×√3=( )A .√5B .√6C .2√3D .3√2 【分析】根据二次根式的乘法运算法则进行运算即可.【解析】√2×√3=√6,故选:B .9.(2020•上海)下列二次根式中,与√3是同类二次根式的是( )A .√6B .√9C .√12D .√18【分析】根据同类二次根式的定义,先化简,再判断. 【解析】A .√6与√3的被开方数不相同,故不是同类二次根式;B .√9=3,与√3不是同类二次根式;C .√12=2√3,与√3被开方数相同,故是同类二次根式;D .√18=3√2,与√3被开方数不同,故不是同类二次根式.故选:C .10.(2020•绥化)下列等式成立的是( )A .√16=±4B .√−83=2C .﹣a √1a =√−aD .−√64=−8【分析】分别根据算术平方根的定义,立方根的定义,二次根式的性质逐一化简即可判断.【解析】A .√16=4,故本选项不合题意;B .√−83=−2,故本选项不合题意;C .−a √1a =−√a ,故本选项不合题意;D .−√64=−8,故本选项符合题意.故选:D .11.(2020•济宁)下列各式是最简二次根式的是( )A .√13B .√12C .√a 3D .√53【分析】利用最简二次根式定义判断即可.【解析】A 、√13是最简二次根式,符合题意;B 、√12=2√3,不是最简二次根式,不符合题意;C 、√a 3=|a |√a ,不是最简二次根式,不符合题意;D 、√53=√153,不是最简二次根式,不符合题意.故选:A .12.(2020•重庆)下列计算中,正确的是( )A .√2+√3=√5B .2+√2=2√2C .√2×√3=√6D .2√3−2=√3【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【解析】A .√2与√3不是同类二次根式,不能合并,此选项计算错误;B .2与√2不是同类二次根式,不能合并,此选项计算错误;C .√2×√3=√2×3=√6,此选项计算正确;D .2√3与﹣2不是同类二次根式,不能合并,此选项错误;故选:C .13.(2020•衢州)要使二次根式√x −3有意义,则x 的值可以为( )A .0B .1C .2D .4【分析】根据二次根式有意义的条件可得x ﹣3≥0,再解即可.【解析】由题意得:x ﹣3≥0,解得:x ≥3,故选:D .二.填空题(共12小题)14.(2020•济宁)已如m +n =﹣3,则分式m+n m ÷(−m 2−n 2m −2n )的值是 13 .【分析】根据分式运算法则即可求出答案.【解析】原式=m+n m ÷−(m 2+2mn+n 2)m=m+n m •m −(m+n)2=−1m+n ,当m +n =﹣3时,原式=13故答案为:13 15.(2020•聊城)计算:(1+a 1−a )÷1a 2−a= ﹣a . 【分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.【解析】原式=1−a+a 1−a •a (a ﹣1) =11−a •a (a ﹣1)=﹣a .故答案为:﹣a .16.(2020•南充)若x 2+3x =﹣1,则x −1x+1= ﹣2 . 【分析】根据分式的减法可以将所求式子化简,然后根据x 2+3x =﹣1,可以得到x 2=﹣1﹣3x ,代入化简后的式子即可解答本题.【解析】x −1x+1=x(x+1)−1x+1 =x 2+x−1x+1, ∵x 2+3x =﹣1,∴x 2=﹣1﹣3x ,∴原式=−1−3x+x−1x+1=−2x−2x+1=−2(x+1)x+1=−2, 故答案为:﹣2.17.(2020•重庆)计算:(π﹣1)0+|﹣2|= 3 .【分析】根据零次幂和绝对值的意义,进行计算即可.【解析】(π﹣1)0+|﹣2|=1+2=3,故答案为:3.18.(2020•台州)计算1x −13x 的结果是 23x .【分析】先通分,再相减即可求解.【解析】1x −13x =33x −13x =23x .故答案为:23x.19.(2020•湖州)化简:x+1x2+2x+1=1x+1.【分析】直接将分母分解因式,进而化简得出答案.【解析】x+1x2+2x+1 =x+1(x+1)2=1x+1.故答案为:1x+1.20.(2020•哈尔滨)计算√24+6√16的结果是3√6.【分析】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解析】原式=2√6+√6=3√6.故答案为:3√6.21.(2020•滨州)若二次根式√x−5在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解析】要使二次根式√x−5在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.22.(2020•常德)计算:√92−√12+√8=3√2.【分析】直接化简二次根式进而合并得出答案.【解析】原式=3√22−√22+2√2=3√2.故答案为:3√2.23.(2020•常德)若代数式√2x−6在实数范围内有意义,则x的取值范围是x>3.【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.【解析】由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.24.(2019•衡阳)√27−√3= 2√3 .【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解析】原式=3√3−√3=2√3.故答案为:2√3.25.(2020•苏州)使√x−13在实数范围内有意义的x 的取值范围是 x ≥1 . 【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式得到答案.【解析】由题意得,x ﹣1≥0,解得,x ≥1,故答案为:x ≥1.三.解答题(共25小题)26.(2020•连云港)化简a+31−a ÷a 2+3aa −2a+1.【分析】直接利用分式的性质进而化简进而得出答案.【解析】原式=a+31−a •(a−1)2a(a+3)=a+31−a •(1−a)2a(a+3)=1−a a. 27.(2020•泸州)化简:(x+2x +1)÷x 2−1x. 【分析】根据分式的混合运算顺序和运算法则进行计算.【解析】原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 28.(2020•河南)先化简,再求值:4aa 2−9÷(1+a−3a+3),其中a =√2+3. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【解析】原式=4a (a+3)(a−3)÷(a+3a+3+a−3a+3) =4a (a+3)(a−3)÷2a a+3=4a (a+3)(a−3)•a+32a=2a−3, 当a =√2+3时,原式=2+3−3=2 =√2.29.(2020•达州)求代数式(2x−1x−1−x ﹣1)÷x−2x 2−2x+1的值,其中x =√2+1. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【解析】原式=(2x−1x−1−x 2−1x−1)÷x−2(x−1)2=−x 2+2x x−1)÷x−2(x−1)2 =−x(x−2)x−1•(x−1)2x−2 =﹣x (x ﹣1)当x =√2+1时,原式=﹣(√2+1)(√2+1﹣1)=﹣(√2+1)×√2=﹣2−√2.30.(2020•泰安)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3; (2)解不等式:x+13−1<x−14. 【分析】(1)先计算括号内异分母分式的加法,再将除法转化为乘法,继而约分即可得;(2)根据解一元一次不等式的基本步骤依次计算可得.【解析】(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2)=(a−2)2a−3•a−3(a+2)(a−2)=a−2a+2; (2)去分母,得:4(x +1)﹣12<3(x ﹣1),去括号,得:4x +4﹣12<3x ﹣3,移项,得:4x ﹣3x <﹣3﹣4+12,合并同类项,得:x <5.31.(2020•河南)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解析】(1−1a+1)÷aa2−1=a+1−1a+1×(a−1)(a+1)a=a﹣1,把a=√5+1代入a﹣1=√5+1﹣1=√5.32.(2020•成都)先化简,再求值:(1−1x+3)÷x+2x2−9,其中x=3+√2.【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解析】原式=x+3−1x+3•(x−3)(x+3)x+2=x﹣3,当x=3+√2时,原式=√2.33.(2020•哈尔滨)先化简,再求代数式(1−2x+1)÷x2−12x+2的值,其中x=4cos30°﹣1.【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.【解析】原式=x−1x+1•2(x+1)(x−1)(x+1)=2x+1,∵x=4cos30°﹣1=4×√32−1=2√3−1,∴原式=23−1+1=√33.34.(2020•甘孜州)化简:(3a−2−1a+2)•(a2﹣4).【分析】根据分式的减法和乘法可以解答本题.【解析】(3a−2−1a+2)•(a2﹣4)=3(a+2)−(a−2)(a+2)(a−2)•(a+2)(a﹣2)=3a+6﹣a+2=2a+8.35.(2020•乐山)已知y=2x,且x≠y,求(1x−y+1x+y)÷x2yx2−y2的值.【分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.【解析】原式=2x (x+y)(x−y)÷x 2y x 2−y 2 =2x x 2−y 2×x 2−y 2x 2y=2xy ,∵y =2x ,∴原式=2x⋅2x=1 解法2:同解法1,得原式=2xy , ∵y =2x,∴xy =2,∴原式=22=1. 36.(2020•德州)先化简:(x−1x−2−x+2x )÷4−x x 2−4x+4,然后选择一个合适的x 值代入求值. 【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【解析】(x−1x−2−x+2x )÷4−x x 2−4x+4=[x(x−1)x(x−2)−(x−2)(x+2)x(x−2)]×(x−2)24−x=4−x x(x−2)⋅(x−2)24−x =x−2x ,把x =1代入x−2x =1−2x =−1.37.(2020•滨州)先化简,再求值:1−y−x x+2y ÷x 2−y 2x 2+4xy+4y 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1. 【分析】直接利用分式的混合运算法则化简,再计算x ,y 的值,进而代入得出答案.【解析】原式=1−y−x x+2y ÷(x+y)(x−y)(x+2y)2=1+x−y x+2y •(x+2y)2(x+y)(x−y) =1+x+2y x+y=x+y+x+2y x+y =2x+3y x+y, ∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2, ∴原式=3×3+3×(−2)3−2=0. 38.(2020•无锡)计算:(1)(﹣2)2+|﹣5|−√16;(2)a−1a−b −1+b b−a .【分析】(1)根据乘方的定义,绝对值的定义以及算术平方根的定义计算即可;(2)根据同分母分式的加减法法则计算即可.【解析】(1)原式=4+5﹣4=5;(2)原式=a−1a−b +1+b a−b=a−1+1+b a−b =a+b a−b . 39.(2020•南充)先化简,再求值:(1x+1−1)÷x 2−x x+1,其中x =√2+1. 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【解析】(1x+1−1)÷x 2−x x+1 =1−(x+1)x+1⋅x+1x(x−1) =1−x−1x(x−1)=−x x(x−1)=11−x ,当x =√2+1时,原式=1−2−1=−√22. 40.(2020•自贡)先化简,再求值:x+1x −4•(1x+1+1),其中x 是不等式组{x +1≥05−2x >3的整数解.【分析】根据分式的加法和乘法可以化简题目中的式子,再根据x 是不等式组{x +1≥05−2x >3的整数解,然后即可得到x 的值,再将使得原分式有意义的整数值代入化简后的式子即可解答本题.【解析】x+1x 2−4•(1x+1+1)=x+1(x+2)(x−2)⋅1+x+1x+1=x+2(x+2)(x−2)=1x−2,由不等式组{x +1≥05−2x >3,得﹣1≤x <1, ∵x 是不等式组{x +1≥05−2x >3的整数解, ∴x =﹣1,0,∵当x =﹣1时,原分式无意义,∴x =0,当x =0时,原式=10−2=−12.41.(2020•重庆)计算:(1)(x +y )2+x (x ﹣2y );(2)(1−m m+3)÷m 2−9m 2+6m+9. 【分析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.【解析】(1)(x +y )2+x (x ﹣2y ),=x 2+2xy +y 2+x 2﹣2xy ,=2x 2+y 2;(2)(1−m m+3)÷m 2−9m 2+6m+9, =(m+3m+3−m m+3)×(m+3)2(m+3)(m−3), =3m+3×m+3m−3,=3m−3.42.(2020•遂宁)先化简,(x 2+4x+4x −4−x ﹣2)÷x+2x−2,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【解析】原式=[(x+2)2(x+2)(x−2)−(x +2)]•x−2x+2 =(x+2x−2−x 2−4x−2)•x−2x+2=−x 2+x+6x−2•x−2x+2=−(x+2)(x−3)x−2•x−2x+2 =﹣(x ﹣3)=﹣x +3,∵x ≠±2,∴可取x =1,则原式=﹣1+3=2.43.(2020•常德)先化简,再选一个合适的数代入求值:(x +1−7x−9x )÷x 2−9x. 【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解析】(x +1−7x−9x )÷x 2−9x=x(x+1)−(7x−9)x ⋅x (x+3)(x−3)=x 2+x−7x+9(x+3)(x−3)=(x−3)2(x+3)(x−3) =x−3x+3,当x =2时,原式=2−32+3=−15. 44.(2020•衢州)先化简,再求值:aa 2−2a+1÷1a−1,其中a =3.【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【解析】原式=a (a−1)2•(a ﹣1) =a a−1,当a =3时,原式=33−1=32. 45.(2020•重庆)计算:(1)(x +y )2+y (3x ﹣y );(2)(4−a 2a−1+a )÷a 2−16a−1. 【分析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,【解析】(1)(x +y )2+y (3x ﹣y ),=x 2+2xy +y 2+3xy ﹣y 2,=x 2+5xy ;(2)(4−a 2a−1+a )÷a 2−16a−1, =(4−a 2a−1+a 2−a a−1)×a−1(a+4)(a−4), =4−a a−1×a−1(a+4)(a−4),=−1a+4.46.(2020•黔东南州)(1)计算:(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0; (2)先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 从﹣1,2,3中取一个你认为合适的数代入求值.【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解析】(1)(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0 =4+√2−3+2×1﹣1=4+√2−3+2﹣1=2+√2;(2)(3a+1−a +1)÷a 2−4a 2+2a+1=3−(a−1)(a+1)a+1×(a+1)2(a+2)(a−2)=−(a+2)(a−2)a+1=﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.47.(2020•铜仁市)(1)计算:2÷12−(﹣1)2020−√4−(√5−√3)0.(2)先化简,再求值:(a+3−a2a−3)÷(a2−1a−3),自选一个a值代入求值.【分析】(1)原式利用除法法则,乘方的意义,算术平方根定义,以及零指数幂法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解析】(1)原式=2×2﹣1﹣2﹣1=4﹣1﹣2﹣1=0;(2)原式=a(a−3)+3−a2a−3•a−3(a+1)(a−1)=−3(a−1)a−3•a−3 (a+1)(a−1)=−3a+1,当a=0时,原式=﹣3.48.(2020•黔西南州)(1)计算(﹣2)2﹣|−√2|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(2a+1+a+2a−1)÷aa−1,其中a=√5−1.【分析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.【解析】(1)原式=4−√2−2×√22+1=4−√2−√2+1=5﹣2√2;(2)原式=[2(a−1)(a−1)(a+1)+a+2(a−1)(a+1)]•a−1a=3a(a−1)(a+1)•a−1 a=3a+1,当a=√5−1时,原式=3√5−1+1=3√55.49.(2020•遵义)化简式子x 2−2xx 2÷(x −4x−4x),从0、1、2中取一个合适的数作为x 的值代入求值. 【分析】直接利用分式的性质进行通分运算,进而结合分式的混合运算法则分别化简得出答案.【解析】原式=x(x−2)2÷x 2−4x+4x =x(x−2)x 2•x (x−2)2=1x−2, ∵x ≠0,2,∴当x =1时,原式=﹣1.50.(2020•湖州)计算:√8+|√2−1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解析】原式=2√2+√2−1=3√2−1.。

2021《新中考数学》最新初中数学—分式的知识点总复习含解析

2021《新中考数学》最新初中数学—分式的知识点总复习含解析

一、选择题1.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣52.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个3.下列分式变形中,正确的是( ). A . b a b a b a +=++22 B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 4.在分式ab a b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的12 C .不变 D .不确定5.分式 (a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的6.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥3 7.下列算式,计算正确的有( )①10-3=0.0001; ②(0.0001)0=1; ③3a -2=213a; ④(-2)3÷(-2)5=-2-2. A .1个 B .2个 C .3个 D .4个8.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .﹣12+8B .16﹣8C .8﹣4D .4﹣2 9.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x + C .x +1 D .x ﹣110.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的 11.PM 2.5是指大气中直径小于或等于2.5μm (1μm =0.000001m )的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm 用科学记数法可表示为( )A .23×10﹣5mB .2.3×10﹣5mC .2.3×10﹣6mD .0.23×10﹣7m 12.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( )A .B .C .D .13.在式子31x - 、2xy π 、2334a b c 、2x x 中,分式的个数是( ) A .1个 B .2个 C .3个 D .4个14.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+= D .0.250.25a b a b a b a b ++=++ 15.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3.A .1.239×10﹣3B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣4 16.计算222x y x y y x +--的结果是( ) A .1B .﹣1C .2x y +D .x y + 17.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤ 18.若分式的值为0,则x 的值是( )A .3B -3C .4D .-419.(2015秋•郴州校级期中)下列计算正确的是( )A .B .•C .x÷y•D .20.要使分式有意义,则x 的取值应满足( ) A .x=﹣2 B .x ≠ C .x >﹣2 D .x ≠﹣221.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9 B .227 C .π D .(3)0 22.若将分式(a ,b 均为正数)中a ,b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的C .不变D .缩小为原来的23.若a >-1,则下列各式中错误..的是( ) A .6a >-6 B .2a >-12 C .a +1>0 D .-5a <-524.用科学记数方法表示0.00000601,得( ) A .0.601×10-6 B .6.01×10-6 C .60.1×10-7 D .60.1×10-625.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y 2 B .11a - C .x D .13π【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8.故选B .2.A解析:A【解析】试题分析:根据分式的定义进行解答即可.试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义. 3.C解析:C【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零.考点:分式的约分4.A解析:A【解析】 试题分析:在分式ab a b(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值是原来的2倍,故选A .考点:分式的基本性质. 5.B解析:B【解析】 ,分式的值缩小为原来的 .故选B .6.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.7.A解析:A【解析】分析:本题考查的是负指数幂的运算.解析:①10-3=0.00001,故①错误;②(0.0001)0=1正确;③3a -2=23a ,故③错误;④(-2)3÷(-2)5=2-2,故④错误. 故选A.8.A解析:A【解析】面积分别为16cm 2和12cm 2的两张正方形的边长分别为4cm 、cm ,所以图中空白部分的面积为4(4+)-(12+16)=-12+8 (cm 2),故选A. 点睛:本题考查了二次根式的混合运算在实际中的应用,根据题意正确求得两个正方形的边长是解题的关键.9.A解析:A【分析】根据分式混合运算法则计算即可.【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ . 故选:A .【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.10.B解析:B 【解析】 试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的. 考点:分式的值11.C解析:C【详解】解:2.3μm=2.3×0.000001m=2.3×10﹣6m ,故选C .【点睛】本题考查科学记数法—表示较小的数.12.A解析:A【解析】试题分析:原有的同学每人分担的车费应该为元,而实际每人分担的车费为元,方程应该表示为:.故选A .考点:由实际问题抽象出分式方程. 13.B解析:B2xy π 、2334a b c 的分母中均不含有字母,因此它们是整式,而不是分式. 31x -,2x x 的分母中含有字母,因此是分式. 故选B .14.D解析:D【解析】A 选项错误,x y x y -+=-y x y x-+; B 选项错误, x y y x +-=x y y x y x y x +---()()()()=()222y x x y --; C 选项错误,2a a ab+=1a a ab +()=1a b +; D 选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变.15.A解析:A【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A . 16.A解析:A【解析】2x y 2x y y 2x +--=2x y 2x y 2x y ---=2x y 2x y--=1, 故选:A.17.B解析:B【详解】解:根据题意得:x ﹣2≥0且x ﹣2≠0,解得:x >2.故选B .【点睛】本题考查函数自变量的取值范围.18.A【解析】试题分析:当x-3=0时,分式的值为0,所以x=3,故选:A.考点:分式的值为0的条件.19.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,故选B.考点:分式的乘除法.20.D解析:D【解析】试题分析:根据分母不为零分式有意义,可得答案.解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.21.C解析:C【解析】9=3,227是无限循环小数,π是无限不循环小数,()031=,所以π是无理数,故选C.22.B解析:B【解析】由题意得==,缩小为原来的23.D解析:D【解析】根据不等式的基本性质可知,A. 6a >−6,正确;B. 2a >12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误;故选D.24.B解析:B【解析】试题分析:根据科学记数法表示较小的数,可知a=6.01,n=-6,所以用科学记数法表示为6.01×10-6. 故选:B点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 25.B解析:B【解析】 试题解析:由于11a -中,分母含有字母, 故选B.。

2021《新中考数学》最新初中数学—分式的全集汇编附解析

2021《新中考数学》最新初中数学—分式的全集汇编附解析

一、选择题1.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义2.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( ) A .a b c d <<<B .b a d c <<<C .a b d c <<<D .c a d b <<<3.若代数式()11x --有意义,则x 应满足( ) A .x = 0B .x ≠ 0C .x ≠ 1D .x = 14.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣165.把分式a2a b+中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12C .扩大2倍D .不变6.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。

2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米B .2.5×10–7米C .2.5×10–6米D .25×10–7米7.纳米是一种长度单位,1纳米810-=米,己知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米 B .43.510-⨯米 C .33.510-⨯米D .93.510-⨯8.与分式()()a b a b ---+相等的是( ) A .a ba b +- B .a ba b-+ C .a ba b+-- D .a ba b--+ 9.当x =_____ 时,分式11xx-+无意义.( ) A .0B .1C .-1D .210.下列运算结果最大的是( )A .112-⎛⎫ ⎪⎝⎭B .02C .12-D .()12-11.下列分式运算中,正确的是( )A .111x y x y+=+B .x a ax b b+=+ C .22x y x y x y -=+- D ..a c adb d bc= 12.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯B .80.4 10⨯C .8410⨯D .8410-⨯13.已知11(1,2)a x x x =-≠≠,23121111,,,111n n a a a a a a -==⋯⋯=---,则2017a =( )A .21xx-- B .12x- C .1x - D .无法确定14.化简21211a aa a----的结果为( ) A .11a a +- B .a ﹣1 C .a D .115.下列变形中,正确的是( )A .2211x xy y-=-B .22m m n n=C .2()a b a ba b-=-- D .2233x x +=+ 16.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍 D .不变17.若分式21x -有意义,则( ) A .1x ≠B .1x =C .0x ≠D .0x =18.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只19.下列计算错误的是( ) A .()326327x x -=-B .()()325y y y --=-C .326-=-D .()03.141π-=20.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变21.下列运算正确的是( ) A .1133a a﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=22.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b <<<23.下列计算中错误的是( )A .020181=B .224-=C 2=D .1133-=24.下列等式成立的是( ) A .123a b a b +=+ B .212a b a b =++ C .2ab aab b a b=-- D .a aa b a b=--++ 25.函数y =的自变量x 的取值范围是( ) A .3x >-B .3x ≥-C .3x ≠-D .3x ≤-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断. 【详解】 解:∵a +b =0 ∴a=-b 或a=0,b=0∴ba的值为-1或无意义, 故选:D. 【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.2.B解析:B 【解析】 【分析】分别计算出a 、b 、c 、d 的值,再进行比较即可.因为20.2a =-=-0.04,b=22--=-14,c=212-⎛⎫- ⎪⎝⎭=4,d=015⎛⎫- ⎪⎝⎭=1, 所以b a d c <<<. 故选B. 【点睛】本题考查比较有理数的大小,涉及知识有负整数指数幂、0次幂,解题关键是熟记法则.3.C解析:C 【解析】 【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x 的取值范围; 【详解】解:根据题意可知,x-1≠0且解得x≠1. 故选:C. 【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.4.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可.【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项, ∴2020a a b -=⎧⎨+=⎩,2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.5.D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-8米=3.5×10-4米.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解析:B【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变.【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B.【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质. 9.C解析:C【分析】根据分式无意义的条件,分母等于0,列不等式求解即可.【详解】因为分式11xx-+无意义,所以1+x=0,解得x=-1.故选C.【点睛】本题主要考查分式无意义的条件,解决本题的关键是要熟练掌握分式无意义的条件. 10.A解析:A【解析】【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案.【详解】∵11=22-⎛⎫⎪⎝⎭;02=1;12-=12;()12=2--,2>1>12>-2,∴运算结果最大的是112-⎛⎫⎪⎝⎭,故选A.【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键. 11.C解析:C根据分式的运算法则计算各个选项中的式子,从而可以解答本题. 【详解】 解:∵11,x y x y xy++= 故A 错误; (0)x a ax x b b+≠≠+,故B 错误;. 22()()x y x y x y x y x y x y -+-==+--,故C 正确; ∵.a c ac b d bd =,故D 错误. 故选:C 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.12.D解析:D 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.000 000 04=4×10-8, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.C解析:C 【分析】按照规定的运算方法,计算出前几个数的值,进一步找出数字循环的规律,利用规律得出答案即可. 【详解】解:∵11(1,2)a x x x =-≠≠,∴2111111(1)2a a x x ===----,321121111()2x a a xx-===----,34111211()1a x x a x ===-----… ∴以x−1,12x -,21x x--为一组,依次循环,∵2017÷3=672…1, ∴2017a 的值与a 1的值相同, ∴20171a x =-, 故选:C . 【点睛】此题考查数字的变化规律以及分式的运算,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.14.B解析:B 【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=21211a aa a -+--, =2(1)1a a --, =a ﹣1 故选B .点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15.C解析:C 【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可. 【详解】A ,B ,D 均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C 可以将分子分母同时除以(a-b )到()2a b a b a b-=--,故答案选择C.【点睛】本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.16.A解析:A用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案. 【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a ba b a b ab ab,所以分式缩小到原来的12倍, 故选A. 【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.17.A解析:A 【解析】 【分析】根据分式有意义的条件是分母不等于零求解即可. 【详解】 解:∵要使分式21x -有意义 ∴10x -≠1x ∴≠ 故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.18.B解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只), 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.C解析:C 【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算A . ()326327x x -=-,不符合题意;B . ()()325y y y --=-,不符合题意;C . -312=8,原选项错误,符合题意; D . ()03.141π-=,不符合题意; 故选:C 【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.20.D解析:D 【分析】 根据题意把分式x xy2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断. 【详解】 解:∵分式x xy2中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变. 故选:D 【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.21.D解析:D 【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案. 【详解】 解:A 、133aa-=,故此选项错误; B 、22a a +,不是同类项无法合并;C 、()325aa a -⋅=-,故此选项错误; D 、()()32a a a -÷-=,正确;故选:D .【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.22.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.23.B解析:B【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案.【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案;B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案; 故选:B .【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.24.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.25.A解析:A【分析】根据根式和分母有意义进行判断即可.【详解】要使得该函数有意义分母不能为0且根号内不能为负∴30x +>解得:3x >-故选:A.【点睛】本题主要考查根式和分式的意义,熟练掌握判断有意义的条件是关键.。

2021《新中考数学》最新初中数学—分式的真题汇编含解析

2021《新中考数学》最新初中数学—分式的真题汇编含解析

一、选择题1.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只2.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍3.若代数式()11x --有意义,则x 应满足( ) A .x = 0 B .x ≠ 0 C .x ≠ 1 D .x = 1 4.蜜蜂建造的蜂巢坚固省料,其厚度约为0.000073米,0.000073用科学计数法表示为A .40.7310-⨯B .47.310-⨯C .57.310-⨯D .67.310-⨯5.已知:a ,b ,c 三个数满足,则的值为( ) A .B .C .D .6.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定7.如果把分式2++a ba b中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变B .缩小10倍C .是原来的20倍D .扩大10倍8.已知11(1,2)a x x x =-≠≠,23121111,,,111n n a a a a a a -==⋯⋯=---,则2017a =( ) A .21xx-- B .12x- C .1x -D .无法确定9.下列各分式中,最简分式是( )A .21x x +B .22m n m n-+C .22a ba b +-D .22x yx y xy ++10.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁11.若把分式3xyx y-(,x y 均不为0)中的x 和y 都扩大3倍,则原分式的值是( )A .扩大3倍B .缩小至原来的13C .不变D .缩小至原来的1612.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( )A .a b c d <<<B .b a d c <<<C .a b d c <<<D .c a d b <<< 13.将0.00086用科学记数法表示为( )A .8.6×104 B .8.60×104 C .8.6×10-4 D .8.6×10-6 14.若式子01(1)k k -+-有意义,则一次函数()11y k x k =-+-的图象可能是( )A .B .C .D .15.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<c B .a<c<bC .b<a<cD .c<b<a16.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变17.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<18.下列计算中错误的是( ) A .020181=B .224-=C 42=D .1133-=19.若分式242x x --的值为0,则x 等于( )A .±2 B .±4 C .-2D .220.下列运算正确的是( )A .(﹣x 3)4=x 12B .x 8÷x 4=x 2C .x 2+x 4=x 6D .(﹣x )﹣1=1x21.计算下列各式①(a 3)2÷a 5=1;②(-x 4)2÷x 4=x 4;③(x -3)0=1(x ≠3);④(-a 3b )3÷5212a b =-2a 4b 正确的有( )题 A .4 B .3C .2D .122.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠ B .a 2>-C .2a 2-<<D .a 2≠±23.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-224.下列各式中,正确的是( )A .22x y x y -++=-B .()222x y x y x y x y --=++ C .1a b b ab b++= D .23193x x x -=-- 25.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只),故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据题意,分式中的x和y都扩大2倍,则222()2242x y x y x yx y xy xy+++==⋅;【详解】解:由题意,分式xyyx+中的x和y都扩大2倍,∴222()2242x y x y x yx y xy xy+++==⋅;分式的值是原式的12,即缩小2倍;故选C.【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.3.C解析:C【解析】【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x的取值范围;【详解】解:根据题意可知,x-1≠0且解得x≠1.故选:C.【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.4.C解析:C【解析】【分析】数学术语,a×10的n次幂的形式.将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。

2021《新中考数学》最新初中数学—分式的全集汇编附解析

2021《新中考数学》最新初中数学—分式的全集汇编附解析

一、选择题1.把分式2nm n+中的m 与n 都扩大3倍,那么这个代数式的值A .不变B .扩大3倍C .扩大6倍D .缩小到原来的132.若要使分式23363(1)x x x -+-的值为整数,则整数x 可取的个数为( )A .5个B .2个C .3个D .4个3.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 4.分式的值为0,则x 的值为A .4B .-4C .D .任意实数5.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( ) A .2 B .﹣2 C .﹣2或﹣2 D .2或2 6.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯7.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .a b d c <<<8.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .﹣12+8B .16﹣8C .8﹣4D .4﹣29.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1C .1-D .±110.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的11.下列各式12x y +,52a b a b --,2235a b -,3m ,37xy中,分式共有( )个.A .2B .3C .4D .512.如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A.扩大5倍B.不变C.缩小5倍D.扩大10倍 13.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y2 B .11a - C .xD .13π14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.无论x 取何值,总是有意义的分式是( ) A .21xx + B .221xx + C .331xx + D .21x x+ 16.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3. A .1.239×10﹣3 B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣417.若式子212x x m-+不论x 取任何数总有意义,则m 的取值范围是( ) A .m≥1B .m>1C .m≤1D .m<118.化简﹣的结果是( )m+3 B .m-3 C . D .19.已知实数a ,b ,c 均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c+++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关 20.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9B .227C .πD .(3)021.下列运算错误的是 A .B .C .D .22.计算的结果是( )A .a+bB .2a+bC .1D .-123.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5 C .2.1×10-6 D .21×10-624.若a >-1,则下列各式中错误..的是( ) A .6a >-6 B .2a >-12C .a +1>0D .-5a <-525.如果把分式22a bab+中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 试题解析:分式2nm n+中的m 与n 都扩大3倍,得 6233n nm n m n =++,故选A .2.C解析:C 【解析】试题分析:根据x 为整数,且分式23363(1)x x x -+-的值为整数,可得3是(x-1)的倍数,可得答案.试题解析:由题意得,x-1=-3,1,3,故x-1=-3,x=-2; x-1=1,x=2; x-1=3,x=4, 故选C . 考点:分式的值.3.C解析:C . 【解析】试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值.试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++ =222(1)a a a -+ ∵012=-+a a ∴2-a 2=a+1,21a a +=原式=2211111(1)(1)1a a a a a a a +====+++ 故选C . 考点:分式的值.4.A解析:A 【解析】试题分析:根据分式的值为零的条件可以求出x 的值. 试题解析:若分式的值为0,则|x|-4=0且x+4≠0.得x 1=4,x 2=-4.当x=-4时,分母为0,不合题意,舍去. 故x 的值为4. 故选A .考点:分式的值为零的条件.5.D解析:D 【解析】试题分析:根据题意可得:x-y=0或2x-y=0,则x=y 或2x=y ,当x=y 时,原式=1+1=2;当2x=y 时,原式=21+2=221.考点:(1)、分式的计算;(2)、分类讨论思想6.B解析:B 【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B 【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.7.D解析:D【解析】试题解析:因为a=-3-2=-211=-39, b=-0.32=-0.09, c=(-13)-2=21913=⎛⎫- ⎪⎝⎭, d=(-15)0=1, 所以c >d >a >b . 故选D .【点睛】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.8.A解析:A 【解析】面积分别为16cm 2和12cm 2的两张正方形的边长分别为4cm 、cm ,所以图中空白部分的面积为4(4+)-(12+16)=-12+8(cm 2),故选A.点睛:本题考查了二次根式的混合运算在实际中的应用,根据题意正确求得两个正方形的边长是解题的关键.9.B解析:B 【解析】由题意得:101x x -=⇒= ,故选B.10.B解析:B【解析】试题分析:当a和b都扩大2倍时,原式=,即分式的值缩小为原来的.考点:分式的值11.B解析:B【解析】试题解析:2235a b-,37xy的分母中均不含有字母,因此它们是整式,而不是分式.12 x y +,52a ba b--,3m的分母中含有字母,因此是分式.故选B.12.B 解析:B 【解析】试题分析:如果把223yx y-中的x和y都扩大5倍,则变为()()()252253523y yx y x y=--,分式的值没改变,所以选B考点:分式点评:本题考查分式,本题的关键是掌握分式的性质,本题难度不大,属基础题13.B解析:B【解析】试题解析:由于11a-中,分母含有字母,故选B. 14.C 解析:C 【解析】原式=()()()2111mm m+++=21m+,当m=-3时,原式=-1;当m=-2时,原式=-2;当m=0时,原式=2;当m=1时,原式=1.m的值有4个.故选C.15.B解析:B【解析】A. 当2x+1≠0时,分式有意义,即x≠−12,所以A选项错误;B. 当x为任何实数,分式有意义,所以B选项正确;C. 当3x+1≠0时,分式有意义,即x≠−1,所以C选项错误;D. 当x²≠0时,分式有意义,即x≠0,所以D选项错误.故选B.16.A解析:A【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A.17.B解析:B【解析】试题解析:分式21 2x x m-+不论x取何值总有意义,则其分母必不等于0,即把分母整理成(a+b)2+k(k>0)的形式为(x2-2x+1)+m-1=(x-1)2+(m-1),因为论x取何值(x2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m>1.故选B.18.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.19.C解析:C.【解析】试题解析:∵a+b+c=0,∴a=-(b+c),∴a2=(b+c)2,同理b2=(a+c)2,c2=(a+b)2.∴原式=11111()0 22a b cbc ac ab abc++-++=-⨯=,故选C.考点:分式的运算.20.C【解析】9=3,227是无限循环小数,π是无限不循环小数,()31=,所以π是无理数,故选C .21.D解析:D 【解析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案. 解:A 、==1,故本选项正确; B 、==﹣1,故本选项正确;C 、,故本选项正确;D 、,故本选项错误;故选D .22.C解析:C【解析】试题解析:故选C.23.C解析:C【解析】0.0000021=2.1×10-6,故选C .24.D解析:D 【解析】根据不等式的基本性质可知, A. 6a >−6,正确; B.2a>12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误; 故选D.25.C解析:C分式22a bab+中的a 和b 都扩大了2倍,得: 4212822a b a bab ab ++=⨯, 所以是缩小了2倍. 故选C.。

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.【详解】4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .2.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A【分析】由二次根式的性质,分别进行判断,即可得到答案. 【详解】2==,故A 正确,C 错误;2,故B 、D 错误;故选:A .3.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】解:A2B3C 12为有理数D5故选:C4.(2021·江苏苏州市·中考真题)计算2的结果是()A B.3C.D.9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B.【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a=≥是解答此题的关键.5.(2021·甘肃武威市·中考真题)下列运算正确的是()A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.【详解】=A 错;=B 错;=C 正确;2=,故D 错.故选:C .6.(2021· )A .7B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;【详解】===故选:B .7.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.8.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2+=C =D 3= 【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C.=D. =故选:C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.9.(2021· )A .4B .4±C .D .±【分析】()0,0,a b a b=≥≥直接化简即可得到答案.【详解】==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.10.(2021·江苏苏州市·中考真题)已知点)A m,3,2B n⎛⎫⎪⎝⎭在一次函数21y x=+的图像上,则m与n 的大小关系是()A.m n>B.m n=C.m n<D.无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∵y随x的增大而增大.∵2<94,32<.∵m<n.故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键.11.(2021·浙江台州市·之间的整数有()A.0个B.1个C.2个D.3个【分析】【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.13.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( ) A .2,1--B .1-,0C .0,1D .1,2 【答案】C【分析】1的范围即可得到答案.【详解】<<解:12,∴011,<-<∴==0,1,a b故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.二、填空题14.(2021·天津中考真题)计算1)的结果等于_____.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】2=-=.1)19故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.15.(2021·浙江丽水市·有意义,则x可取的一个数是__________.x≥)【答案】如4等(答案不唯一,3【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵有意义,∵x﹣3≥0,∵x≥3,∵x可取x≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.16.(2021·江苏连云港市·=__________. 【答案】5【分析】直接运用二次根式的性质解答即可.【详解】5.故填5.【点睛】()()00a a a a ⎧-⎪=⎨≥⎪⎩<成为解答本题的关键. 17.(2021·湖南衡阳市·有意义,则x 的取值范围是________.【答案】x ≥3【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,30x -≥,解得,x ≥3,故答案为:x ≥3.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.18.(2021·浙江金华市·x 的取值范围是___.【答案】x 3≥.【详解】x 30x 3-≥⇒≥.19.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___. 【答案】1x 2≥【详解】 试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非在实数范围内有意义,必须12x 10x 2-≥⇒≥.20.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.三、解答题22.(2021·陕西中考真题)计算:0112⎛⎫-+ ⎪⎝⎭【答案】【分析】根据零次幂、算术平方根及二次根式的加减运算可直接进行求解.【详解】解:原式11=-=【点睛】本题主要考查零次幂、算术平方根及二次根式的加减运算,熟练掌握零次幂、算术平方根及二次根式的加减运算是解题的关键.23.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.【答案】﹣【分析】 根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.【详解】解:()020212tan 60π--︒=(12--=12-+=﹣.【点睛】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.24.(2021·四川眉山市·中考真题)计算:(10143tan 602-⎛⎫--︒--+ ⎪⎝⎭【答案】3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.【详解】解:原式=()132123--+=-+=【点睛】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.25.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+--,(112-⨯=31,=2.26.(2021·浙江台州市·中考真题)计算:|-2|【答案】【分析】先算绝对值,化简二次根式,再算加减法,即可求解.【详解】解:原式=2+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.27.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦=【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.28.(2021·甘肃武威市·中考真题)计算:011(2021)()2cos 452π--+-︒.【答案】3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】 解:011(2021)()2cos 452π--+-︒,122=+-3=【点睛】 本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.29.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-. 【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.30.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221-- =3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.31.(2021·江苏苏州市·中考真题)先化简再求值:21111x x x-⎛⎫+⋅ ⎪-⎝⎭,其中1x =.【答案】1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解.【详解】 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.32.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=1142-+⨯=11-+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.33.(2021·江苏苏州市·223--.【答案】-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.【详解】223-- 229=+-5=-.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.34.(2021·江苏扬州市·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭. 【答案】(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【详解】解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+⎪⎝⎭ =()a b a b ab++÷ =()ab a b a b+⨯+ =ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.35.(2021·四川自贡市·0|7|(2-+-.【答案】1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.36.(2021·浙江丽水市·中考真题)计算:0|2021|(3)-+-.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+--202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.。

【中考数学分项真题】分式(共38题)-(解析版)

【中考数学分项真题】分式(共38题)-(解析版)

2021年中考数学真题分项汇编【全国通用】(第01期)专题4分式(共38题)姓名:__________________ 班级:______________ 得分:_________________ 一、单选题1.(2021·陕西中考真题)计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -【答案】A 【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可. 【详解】 解:()23621a ba b-=, 故选:A . 【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键. 2.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A 【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】 原式33a ba b -=-, 3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键.3.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A 【分析】根据分式的混合运算顺序和运算法则计算可得. 【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ =11ab ab ab-⨯- =a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 4.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A 【分析】直接利用同分母分式的减法法则计算即可. 【详解】 解:11111a a aa a a a++--===. 故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.5.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断. 【详解】解:A 、当x =-1时,x +1=0,故不合题意; B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意; D 、当x =-1时,()210x +=,故不合题意; 故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 6.(2021·浙江宁波市·中考真题)要使分式12x +有意义,x 的取值应满足( ) A .0x ≠ B .2x ≠-C .2x ≥-D .2x >-【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】 解:分式12x +有意义, 20,x ∴+≠2.x ∴≠-故选:.B 【点睛】本题考查的是分式有意义的条件,掌握“分式有意义,则分母不为零”是解题的关键. 7.(2021·浙江金华市·中考真题)12a a+=( ) A .3 B .32aC .22aD .3a【答案】D 【分析】根据分式的运算法则即可求出答案. 【详解】 解:原式123a a+==, 故选:D . 【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 8.(2021·四川南充市·中考真题)下列运算正确的是( )A .232496b a b a b ⋅= B .2312332b b ab a ÷=C .11223a a a += D .2112111a a a -=-+- 【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】 解:A.2324916b a a b b⋅=,计算错误,不符合题意; B. 2231213=333221b a ab a ab b b÷=⨯,计算错误,不符合题意;C.23111=2222a a a a a+=+,计算错误,不符合题意; D.+--=--+---22211112=11111a a a a a a a ,计算正确,符合题意; 故选:D 【点睛】本题考查了分式的加减乘除的运算,熟练掌握运算法则是解题的关键9.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( ) A .2- B .1-C .1D .2【答案】A 【分析】先化简式子,再利用配方法变形即可得出结果. 【详解】解:∵22=b a b a a b ab++,∵()2222==a b ab b a b a a b ab ab+-++, ∵两个不等于0的实数a 、b 满足0a b +=,∵()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A . 【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.10.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B 【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】 解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=-- 故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则. 11.(2021·四川遂宁市·中考真题)下列说法正确的是( ) A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x,xπ,985,42ba+,13y+中,1a,42ba+是分式,故选项错误;D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A.【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.二、填空题12.(2021·0(1)π-=__________.【答案】2【分析】根据算数平方根的定义和零指数幂的性质进行计算即可.【详解】(1)3-1=2π-=;故答案为:2【点睛】本题考查了算数平方根和零指数幂,熟练掌握性质是解题的关键.13.(2021·浙江中考真题)计算:122-⨯=_____.【答案】1【分析】根据负整指数幂的意义,可得答案.【详解】解:1122212-⨯=⨯=,故答案为:1. 【点睛】本题考查了负整指数幂,熟知负整数指数为正整数指数的倒数是解题的关键. 14.(2021·四川自贡市·中考真题)化简:22824a a -=-- _________. 【答案】22a + 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:22824a a --- ()()28222a a a =--+- ()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+, 故答案为:22a +. 【点睛】本题考查分式的减法,掌握分式的基本性质是解题的关键.15.(2021·四川遂宁市·中考真题)若20a -=,则b a =_____. 【答案】14【分析】根据非负数的性质列式求出a 、b 的值,然后计算即可求解. 【详解】解:根据题意得, a −2=0,a +b =0,解得a =2,b =-2, ∵2124ba -==. 故答案为:14. 【点睛】本题考查了两个非负数之和为零的性质,绝对值与算术平方根的非负性,负整数指数幂的运算,掌握以上知识是解题的关键.16.(2021·四川乐山市·中考真题)计算:0(2021)π-=__________.【答案】1 【分析】直接利用零指数幂的性质计算得出答案. 【详解】解:0(2021)1π-=. 故答案为:1. 【点睛】本题考查零指数幂,是基础考点,掌握相关知识是解题关键. 17.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3 【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-= ∵21x x -=∵()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.18.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】 解:∵3n mn m+=-, ∵()3n m n m +=-, ∵2n m =,∵22222222417+=44m n m m n m m m += 故答案为:174【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.19.(2021·浙江丽水市·中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题: 已知实数,a b 同时满足2222,22a a b b b a +=++=+,求代数式b aa b+的值.结合他们的对话,请解答下列问题: (1)当a b =时,a 的值是__________. (2)当ab 时,代数式b aa b+的值是__________. 【答案】2-或1 7 【分析】(1)将a b =代入222a a b +=+解方程求出a ,b 的值,再代入222b b a +=+进行验证即可; (2)当a b 时,求出30++=a b ,再把b aa b+通分变形,最后进行整体代入求值即可. 【详解】解:已知222222a a b b b a ⎧+=+⎨+=+⎩①②,实数a ,b 同时满足∵,∵,∵-∵得,22330a b a b -+-= ∵()(3)0a b a b -++= ∵0a b -=或30++=a b ∵+∵得,22+=4a b a b --(1)当a b =时,将a b =代入222a a b +=+得,220a a +-=解得,11a =,22a =- ∵11b =,22b =-把=1a b =代入222b b a +=+得,3=3,成立; 把=2a b =-代入222b b a +=+得,0=0,成立; ∵当a b =时,a 的值是1或-2 故答案为:1或-2; (2)当ab 时,则30++=a b ,即=3a b +-∵22+=4a b a b -- ∵22+=7a b∵222()=+2+9a b a ab b += ∵1ab =∵227=71b a a b a b ab ++== 故答案为:7. 【点睛】此题主要考查了用因式分解法解一元二次方程,完全平方公式以及求代数式的值和分式的运算等知识,熟练掌握运算法则和乘法公式是解答此题的关键.三、解答题20.(2021·四川广安市·中考真题)先化简:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭,再从-1,0,1,2中选择一个适合的数代入求值. 【答案】1a ,12【分析】先根据分式的混合运算法则化简,再取使得分式有意义的a 的值代入计算即可. 【详解】解:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭=()()()()21112111a a a a a a a a -+⎡⎤÷-+-⎢+⎣+⎥⎦=()()()()211111a a a a a a +-+⨯--=1a由原式可知,a 不能取1,0,-1, ∵a =2时,原式=12. 【点睛】此题考查了分式的化简求值,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.21.(2021·湖南邵阳市·中考真题)先化简,再从1-,0,1,21中选择一个合适的x 的值代入求值.2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭. 【答案】1;11x --(答案不唯一) 【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简,再结合分式有意义的条件和除数不为0,即可代值计算.【详解】解:原式()()()()()()2211111=1111111x x x xx x x x x x x +++-⨯=⨯=++-++-- 代数式有意义,分母和除数不为0∴()()110x x +-≠即1x ≠± ∴当0x =时,原式=111101x ==---(答案不唯一). 【点睛】本题考察分式的化简求值、分式有意义的条件、因式分解和分母有理化,属于基础题,难度不大.解题的关键是掌握分式的运算法则和分式有意义的条件.22.(2021·江苏苏州市·中考真题)先化简再求值:21111x x x -⎛⎫+⋅⎪-⎝⎭,其中1x =.【答案】1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解. 【详解】 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.23.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a .【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 【详解】解:2269111a a a a ++⎛⎫+÷⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式3===. 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则. 24.(2021·江苏扬州市·中考真题)计算或化简:(1)013|tan603⎛⎫-+-+︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭.【答案】(1)4;(2)ab 【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算. 【详解】解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭ =()a b a b ab ++÷=()aba b a b+⨯+=ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.25.(2021·甘肃武威市·中考真题)先化简,再求值:2224(2)244x x x x x --÷--+,其中4x =. 【答案】42,23x --+ 【分析】小括号内先通分计算,将除法变成乘法并因式分解,根据乘法法则即可化简,再代值计算即可. 【详解】解:原式2242(2)()22(2)(2)x x x x x x x --=-⨯--+- 4222x x x --=⨯-+ 42x =-+ 当4x =时,原式42423=-=-+. 【点睛】本题考察分式的化简求值,难度不大,属于基础题型.解题的关键在于熟悉运算法则和因式分解. 26.(2021·甘肃武威市·中考真题)计算:011(2021)()2cos 452π--+-︒.【答案】3 【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可. 【详解】解:011(2021)()2cos 452π--+-︒,1222=+-⨯,3=-【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.27.(2021·云南中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 【答案】6 【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法. 【详解】解:201tan 452(3)1)2(6)23-︒-++-+⨯- =1191422++--=6 【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.28.(2021·山东泰安市·中考真题)(1)先化简,再求值:23169111a a a a a a --+⎛⎫-+÷ ⎪++⎝⎭,其中3a =+; (2)解不等式:7132184x x ->--.【答案】(1)3aa --;1-(2)1x < 【分析】(1)先根据分式混合运算法则化简,然后代入条件求值即可; (2)根据解一元一次不等式的步骤求解即可. 【详解】解:(1)原式2231111(3)a a a a a --++=⋅+- 2(3)11(3)a a a a a --+=⋅+-3aa =--当3a =+时,原式1===--(2)8(71)2(3x 2)x -->-87164x x -+>- 7649x x -->-- 1313x ->- 1x <.【点睛】本题考查分式的化简求值,解一元一次不等式等,掌握相应的运算法则,注意分母有理化是解题关键.29.(2021·浙江温州市·中考真题)(1)计算:()0438⨯-+--.(2)化简:()()215282a a a -++. 【答案】(1)-6;(2)22625a a -+. 【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式运算法则计算再合并即可得出答案. 【详解】解:(1)()0438⨯-+-12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++ 22625a a =-+.【点睛】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.30.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13.【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解. 【详解】解:原式=()()()22111111x x x x x x⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦ =211111x x x x x+-⎛⎫-⋅ ⎪--⎝⎭ =211x x x x -⋅- =1x303x x -=∴=将3x =代入原式,原式=13. 【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 31.(2021·重庆中考真题)计算(1)()()22x y x x y -++;(2)2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭. 【答案】(1)222x y +;(2)22a - 【分析】(1)利用完全平方公式和整式的乘法运算法则计算即可; (2)根据分式混合运算的运算法则计算即可. 【详解】解:(1)()()22x y x x y -++ =x 2﹣2xy +y 2+x 2+2xy =2x 2+y 2;(2)2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭ =22(2)(2))22(2)a a a a a a a ++--÷+++( =22(2)2(2)(2)a a a a +⨯++- =22a -. 【点睛】本题考查整式的混合运算、分式的混合运算、平方差公式、完全平方公式,熟练掌握运算法则是解答的关键.32.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可.【详解】解:∵2x y -=, ∵1121y x x y xy xy---===, ∵2xy =-,∵()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.33.(2021·浙江嘉兴市·中考真题)(1)计算:12sin 30-+︒;(2)化简并求值:11a a -+,其中12a =-.【答案】(1)(2)11a +,2【分析】(1)先分别化简负整数指数幂,二次根式,特殊角三角函数,然后再计算; (2)先计算异分母分式的减法进行化简,然后代入求值. 【详解】解:(1)12sin 30-︒1122=+=(2)11aa -+ 11a aa +-=+ =11a + 当12a =-时,原式12112==-+. 【点睛】本题考查负整数指数幂,特殊角三角函数及异分母分式的加减法计算,掌握运算顺序和计算法则准确计算是解题关键.34.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--= 2232m m m m -⋅-= 32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长, ∵3-2<m <3+2,即1<m <5, ∵m 为整数, ∵m =2、3、4, 又∵m ≠0、2、3 ∵m =4, ∵原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则. 35.(2021·四川泸州市·中考真题)化简:141()22a a a a a --+÷++. 【答案】1a -. 【分析】首先将括号里面进行通分运算,进而合并分子化简,再利用分式除法法则计算得出答案. 【详解】 解:141()22a a a a a --+÷++ =22141()222a a a a a a a +--+÷+++ =221122a a a a a -+-÷++ =2(1)221a a a a -++- =1a -. 【点睛】此题主要考查了分式的混合运算,正确进行分式的通分运算是解答此题的关键.36.(2021·四川泸州市·中考真题)计算:0120211423cos304. 【答案】12.【分析】根据零指数幂,负整指数幂,去括号法则,特殊角的三角函数值化简,然后再计算即可.【详解】 解:0120211423cos304314423 144312=.【点睛】本题考查了零指数幂,负整指数幂,去括号法则,特殊角的三角函数值等知识点,熟悉相关知识点是解题的关键37.(2021·重庆中考真题)计算:(1)2(23)()a a b a b ++-; (2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭. 【答案】(1)223++a ab b ;(2)-31x x + 【分析】(1)根据单项式乘以多项式以及完全平方公式计算即可;(2)利用分式的混合运算法则进行计算即可.【详解】解:(1)2(23)()a a b a b ++- 2222+3+2+=a ab a ab b -22=3++a ab b(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭()()()222+3-3+3=11+x x x x x x x ⎛⎫-÷ ⎪++⎝⎭()()()2+3-31=31x x x x x +++ -3=1x x + 【点睛】本题考查了整式的混合运算和分式的混合运算,熟练掌握运算法则是解题的关键.38.(2021·四川乐山市·中考真题)已知2612(1)(2)A B x x x x x --=----,求A 、B 的值. 【答案】A 的值为4,B 的值为-2【分析】根据分式、整式加减运算,以及二元一次方程组的性质计算,即可得到答案.【详解】(2)(1)12(1)(2)(1)(2)A B A x B x x x x x x x ---=+------, ∵(2)(1)26(1)(2)(1)(2)A xB x x x x x x -+--=----, ∵(2)(1)26A x B x x -+-=-,即()(2)26A B x A B x +-+=-.∵226A B A B +=⎧⎨+=⎩,解得:42A B =⎧⎨=-⎩ ∵A 的值为4,B 的值为2-.【点睛】本题考查了分式、整式、二元一次方程组的知识;解题的关键是熟练掌握分式加减运算、整式加减运算、二元一次方程组的性质,从而完成求解.。

专题5二次根式-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)

专题5二次根式-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)

2021年中考数学真题分项汇编【全国通用】(第02期)专题5二次根式姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南株洲市·中考真题)计算:4-=( )A .-B .-2C .D .【答案】A【分析】【详解】解:()44-=-=-故选:A .【点睛】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.2.(2021·湖南)下列运算正确的是( )A .236a a a ⋅=B .()235a a =C 3=D .222()a b a b +=+ 【答案】C【分析】分别根据同底数幂的乘法运算法则、幂的乘方运算法则、二次根式的性质以及完全平方公式分别计算各项后,再进行判断即可得到答案.【详解】解:A . 23235a a a a +⋅==,故选项A 计算错误,不符合题意;B . ()23326aa a ⨯==,故选项B 计算错误,不符合题意;C . |3|3=-=,此选项计算正确,故符合题意;D . 222()2a b a ab b +=++故选项D 计算错误,不符合题意;【点睛】此题主要考查了同底数幂的乘法、幂的乘方运算、二次根式的性质以及完全平方公式,熟练掌握运算法则是解答此题的关键.3.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】C【分析】 先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=512- =2.故选:C .【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键.4.(2021·山东东营市·中考真题)下列运算结果正确的是( )A .235x x x +=B .()2222a b a ab b --=++C .()23636x x =D =【答案】B【分析】根据合并同类项法则、完全平方公式、积的乘方的运算法则、二次根式的运算法则依次计算各项后即可解答.选项A ,2x 和3x 不是同类项,不能够合并,选项A 错误;选项B ,根据完全平方公式可得()()22222a b a b a ab b --=+=++,选项B 正确;选项C ,根据积的乘方的运算法则可得()23639x x =,选项C 错误;选项D 不能够合并,选项D 错误.故选B .【点睛】本题考查了合并同类项法则、完全平方公式、积的乘方的运算法则及二次根式的运算法则,熟练运用公式和法则是解决问题的关键.5.(2021·化为最简二次根式,其结果是( )A .2B .2C .2D .2【答案】D【分析】根据二次根式的化简方法即可得.【详解】解:原式=2=, 故选:D .【点睛】本题考查了二次根式的化简,熟练掌握化简方法是解题关键.6.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.7.(2021·黑龙江绥化市·0在实数范围内有意义,则x 的取值范围是( ) A .–1x >B .1x ≥-且0x ≠C .1x >-且0x ≠D .0x ≠【答案】C【分析】 0在实数范围内有意义,必须保证根号下为非负数,分母不能为零,零指数幂的底数也不能为零,满足上述条件即可.【详解】 0在实数范围内有意义, 必须同时满足下列条件:10x +≥0≠,0x ≠,综上:1x >-且0x ≠,故选:C .【点睛】本题主要考查分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,当上述式子同时出现则必须同时满足.8.(2021·广西柳州市·中考真题)下列计算正确的是( )A=B.3+=C=D.2=【答案】C【分析】根据二次根式的运算性质求解,逐项分析即可【详解】A.B. 3+,不是同类二次根式,不能合并,不符合题意;C. ==D.2,不是同类二次根式,不能合并,不符合题意.故选C.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.9.(2021· 1.442)A.-100B.-144.2C.144.2D.-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442=33-=--=-333(13∴-=-144.2故选B.【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.10.(2021·).A .321-+B .321+-C .321++D .321--【答案】A【分析】 根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.11.(2021·湖北恩施土家族苗族自治州·,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得: (2,==-=∵所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.12.(2021·四川达州市·中考真题)下列计算正确的是( )A =B 3±C .()110a a a -⋅=≠D .()2224436a b a b -=-【答案】C【分析】根据二次根式的性质和运算法则,负整数指数幂,积的乘方法则,逐一判断选项,即可.【详解】解:A.B. 3=,故该选项错误,C. ()110a a a -⋅=≠,故该选项正确,D. ()2224439a b a b -=,故该选项错误,故选C .【点睛】 本题主要考查二次根式的性质和运算,负整数指数幂,积的乘方法则,熟练掌握上述性质和法则,是解题的关键.13.(2021·山东临沂市·中考真题)如图,点A ,B 都在格点上,若B ,则AC 的长为( )A B C .D .【答案】B【分析】 利用勾股定理求出AB ,再减去BC 可得AC 的长.【详解】解:由图可知:AB∵BC∵AC =AB -BC = 故选B .【点睛】 本题考查了二次根式的加减,勾股定理与网格问题,解题的关键是利用勾股定理求出线段AB 的长.14.(2021·内蒙古中考真题)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3- 【答案】C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.15.(2021·广东中考真题)设6的整数部分为a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .【答案】A【分析】a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34<<,∵263<<,∵62a =,∵小数部分624b ==-∵(((22244416106a b =⨯+=-=-=. 故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.16.(2021·黑龙江鹤岗市·中考真题)下列运算中,计算正确的是( )A .2352m m m +=B .()32626a a -=- C .()222a b a b -=- D =【答案】D【分析】根据积的乘方、完全平方公式及二次根式的除法可直接进行排除选项.【详解】解:A 、2m 与3m 不是同类项,所以不能合并,错误,故不符合题意;B 、()32628a a -=-,错误,故不符合题意;C 、()2222a b a ab b -=-+,错误,故不符合题意;D =故选D .【点睛】本题主要考查积的乘方、完全平方公式及二次根式的除法,熟练掌握积的乘方、完全平方公式及二次根式的除法是解题的关键.17.(2021·湖北襄阳市·在实数范围内有意义,则x 的取值范围是( ) A .3x ≥-B .3x ≥C .3x ≤-D .3x >- 【答案】A【分析】根据二次根式有意义的条件,列出不等式,即可求解.【详解】∵在实数范围内有意义,∵x +3≥0,即:3x ≥-,故选A .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键. 18.(2021·内蒙古呼和浩特市·中考真题)下列计算正确的是( )A .224347a a a +=B 11a= C .31812()42-+÷-= D .21111a a a a --=-- 【答案】D【分析】 根据有理数、整式、分式、二次根式的运算公式运算验证即可.【详解】222347a a a +=,故A 错;当a >011a =,当a <011a=-,故B 错; 31812()262-+÷-=-,故C 错; 21111a a a a --=--,D 正确; 故选:D .【点睛】本题主要考查了有理数、整式、分式、二次根式的运算,熟记运算定理和公式是解决问题的额关键. 19.(2021·湖北黄石市·中考真题)函数()02y x =+-的自变量x 的取值范围是( ) A .1x ≥-B .2x >C .1x >-且2x ≠D .1x ≠-且2x ≠ 【答案】C【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.【详解】解:函数()02y x =+-的自变量x 的取值范围是: 10x +>且20x -≠,解得:1x >-且2x ≠,故选:C .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二、填空题20.(2021·广西贺州市·中考真题)x 的取值范围是________.【答案】1x ≥-【分析】根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】有意义10x ∴+≥1x ∴≥-故答案为:1x ≥-【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.21.(2021·山东威海市·____________________.【答案】【分析】根据二次根式的四则运算法则进行运算即可求解.【详解】解:原式==-=,故答案为:【点睛】本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可求解.22.(2021·贵州铜仁市·中考真题)计算=______________;【答案】3【分析】先化简二次根式,再利用平方差公式展开计算即可求出答案.【详解】解:(==⨯322=⨯-3⎡⎤⎢⎥⎣⎦31=⨯=.3故答案为:3.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则,细心运算是解题的关键.23.(2021·x的取值范围是_______________.x≥【答案】7【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x-≥,解得:7x≥;故答案为7x≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.24.(2021·山东聊城市·=_______.【答案】4【分析】根据二次根式的运算法则,先算乘法,再算加减法,即可.【详解】解:原式=1 642-⨯=4.故答案是:4.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.25.(2021·江苏宿迁市·x的取值范围是____________.【答案】任意实数【分析】根据二次根式有意义的条件及平方的非负性即可得解.【详解】解:∵20x≥,∵22x+>0,∵无论x∵x 的取值范围为任意实数,故答案为:任意实数.【点睛】本题考查了二次根式有意义的条件及平方的非负性,熟练掌握二次根式的定义是解决本题的关键.26.(2021·浙江衢州市·x 的值可以是_________.(写出一个即可)【答案】3【分析】由二次根式有意义的条件:被开方数为非负数可得答案.【详解】∵10x -≥,解得:1≥x ,∵x 的值可以是3,故答案为:3【点睛】本题考查二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题关键.27.(2021·江苏南京市·________.【答案】2【分析】【详解】解:原式=2=;.【点睛】本题考查了二次根式的减法运算,涉及到二次根式的化简等知识,解决本题的关键是牢记二次根式的性质和计算法则等.28.(2021·江苏南京市·在实数范围内有意义,则x 的取值范围是________.【答案】x ≥0【分析】根据二次根式有意义的条件得到5x ≥0,解不等式即可求解.【详解】解:由题意得5x ≥0,解得x ≥0.故答案为:x ≥0【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件“被开方数为非负数”是解题关键.29.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解.【详解】解:由题意得:0x ≠且20x ≥, ∵0x >;故答案为0x >.【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.30.(2021·湖南怀化市·中考真题)比较大小:2__________12(填写“>”或“<”或“=”). 【答案】>【分析】12-,结果大于0大;结果小于0,则12大. 【详解】解:11=0222->,∵122, 故答案为:>.【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.31.(2021·湖北荆州市·中考真题)已知:(1012a -⎛⎫=+ ⎪⎝⎭,b ==_____________.【答案】2【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解.【详解】解:∵(1012213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,=2=,故答案是:2.【点睛】本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键.32.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =,b =1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n n S a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得. 【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()nn n na a a ab =+++, 111nn n a a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.三、解答题33.(2021·湖北中考真题)(1)计算:0(346)-⨯-++ (2)解分式方程:212112x x x+=--. 【答案】(1)8;(2)1x =.【分析】(1)先计算零指数幂、去括号、立方根、化简二次根式,再计算实数的混合运算即可得;(2)先将分式方程化成整式方程,再解一元一次方程即可得.【详解】解:(1)原式1462⨯--+=44=+,8=;(2)212112x x x+=--, 方程两边同乘以21x -得:221x x -=-,移项、合并同类项得:33x -=-,系数化为1得:1x =,经检验,1x =是原分式方程的解,故方程的解为1x =.【点睛】本题考查了零指数幂、立方根、化简二次根式、解分式方程,熟练掌握各运算法则和方程的解法是解题关键.34.(2021·湖南娄底市·中考真题)计算:101)2cos 452π-⎛⎫+-︒ ⎪⎝⎭. 【答案】2【分析】直接利用零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值计算即可.【详解】解:101)2cos 452π-⎛⎫+-︒ ⎪⎝⎭1222=+-⨯112=+2=.【点睛】本题考查了零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值的运算法则,解题的关键是:掌握相关的运算法则.35.(2021·北京中考真题)计算:02sin 60(5π--.【答案】4【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.【详解】解:原式=2514+-=. 【点睛】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.36.(2021·湖北黄石市·中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a .【答案】11a +,3【分析】 先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可.【详解】 解:原式=1(1)(1)()aa a a a a 1(1)(1)a a a a a 1=1a +,将31a 代入,原式3===. 【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键.37.(2021·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.【答案】22-+a ,【分析】先对分式进行化简,然后再代入进行求解即可.【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a =代入得:原式==. 【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键.38.(2021·湖南怀化市·中考真题)先化简,再求值:221262443x x x x x x x+-+⋅-++,其中2x =+.【答案】1;22x - 【分析】 先将乘法部分因式分解并约分化简,再通分合并,最后代值计算即可求解.【详解】解:原式=()()()()()223121222132222x x x x x x x x x x x x x +--++⨯=+==+----当2x =+时,原式=12x ===-故答案是:1;22x -. 【点睛】 本题考察分式的化简求值、因式分解和分母有理化,题目难度不大,属于基础计算题.解题的关键是掌握分式的计算法则.。

2021《新中考数学》最新初中数学—分式的知识点总复习含答案

2021《新中考数学》最新初中数学—分式的知识点总复习含答案

一、选择题1.下列运算错误的是( ) A .235a a a ⋅= B .()()422ab ab ab ÷-= C .()222424ab a b -=D .3322aa-=2.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( ) A .a b c d <<<B .b a d c <<<C .a b d c <<<D .c a d b <<<3.若x 2-6xy +9y 2=0,那么x yx y-+的值为( )A .12yB .12y-C .12D .12-4.已知0212,,0.253a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a5.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣166.与分式11a a -+--相等的式子是( ) A .11a a +- B .11a a -+ C .11a a +-- D .11a a --+ 7.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c <<B .b c a <<C .c b a <<D .a c b <<8.下列等式从左到右的变形正确的是( )A .22b by x xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+ 9.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义10.下列变形中,正确的是( )A .2211x xy y-=-B .22m m n n=C .2()a b a ba b-=-- D .2233x x +=+11.函数 y =211x x x -++-的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1 B .x ≠ 1且x ≠ 2C .x ≥ -1且x ≠ 1D .x ≥ -112.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯ B .80.4 10⨯C .8410⨯D .8410-⨯13.若分式21x -有意义,则( ) A .1x ≠B .1x =C .0x ≠D .0x =14.(2017河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4+446=B .004+4+4=6C .34+4=6D .14446-=15.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只16.下列计算错误的是( ) A .()326327x x -=-B .()()325y y y --=-C .326-=-D .()03.141π-=17.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变18.下列运算正确的是( )A .2x -2 =212x B .a 6÷a 3 =a 2 C .(a 2)3 =a 5D .a 3·a =a 4 19.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<20.若分式242x x --的值为0,则x 等于( )A .±2 B .±4 C .-2D .221.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a mn a n+=+,其中正确的个数为( ) A .4个 B .3个C .2个D .1个22.222142x x x÷--的计算结果为( ) A .2x x +B .22x x +C .22x x -D .2(2)x x +23.下列运算正确的是( ) A .(﹣x 3)4=x 12 B .x 8÷x 4=x 2 C .x 2+x 4=x 6D .(﹣x )﹣1=1x24.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠B .a 2>-C .2a 2-<<D .a 2≠±25.+x 的取值范围是( ) A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥3【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意; C . ()222424ab a b -=,计算正确,不符合题意;D . 3322a a -=,计算正确,不符合题意. 故选:B . 【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.2.B解析:B 【解析】 【分析】分别计算出a 、b 、c 、d 的值,再进行比较即可. 【详解】因为20.2a =-=-0.04,b=22--=-14,c=212-⎛⎫- ⎪⎝⎭=4,d=015⎛⎫- ⎪⎝⎭=1, 所以b a d c <<<. 故选B. 【点睛】本题考查比较有理数的大小,涉及知识有负整数指数幂、0次幂,解题关键是熟记法则.3.C解析:C 【解析】 【分析】根据完全平方公式求出x 与y 的关系,代入计算即可. 【详解】 x 2-6xy+9y 2=0, (x-3y )2=0, ∴x=3y ,则x y x y -+=3132y y y y -=+, 故选:C . 【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.4.C解析:C【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】2129==10.25=4342a b c --⎛⎛⎫=-== ⎪ ⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.5.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可. 【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项,∴2020a a b -=⎧⎨+=⎩,2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.6.B解析:B 【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答. 【详解】解:原式= 1)(1)a a --+-( =11a a -+故选:B . 【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.7.C解析:C 【分析】根据零次幂的性质,平方差公式以及积的乘方法则求出a ,b ,c ,再根据有理数的比较法则判断即可. 【详解】解:020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,201720182017454555()()()545444c =-⨯=-⨯⨯=-,∵54-<-1<1, ∴c <b <a . 故选:C . 【点睛】本题主要考查了零次幂的性质,平方差公式以及积的乘方,熟练掌握相关运算法则是解题关键.8.B解析:B 【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】 A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab ba a=,其中左边隐含a≠0,故选项正确; C 、2b ab a a =,故选项错误. D 、根据分式基本性质知道11b b aa ++≠,故选项错误; 故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.9.D解析:D【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断.【详解】解:∵a+b=0∴a=-b或a=0,b=0∴ba的值为-1或无意义,故选:D.【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.10.C解析:C【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可.【详解】A,B,D均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C可以将分子分母同时除以(a-b)到()2a ba ba b-=--,故答案选择C.【点睛】本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.11.C解析:C【分析】根据分母不能为零且被开方数是非负数,可得答案.【详解】解:由题意得:x-1≠0且x+1≥0,解得:x≥-1且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零且被开方数是非负数得出不等式是解题关键.12.D解析:D【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.000 000 04=4×10-8, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.A解析:A 【解析】 【分析】根据分式有意义的条件是分母不等于零求解即可. 【详解】 解:∵要使分式21x -有意义 ∴10x -≠1x ∴≠ 故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.14.D解析:D 【详解】∵4+46=,∴选项A 不符合题意; ∵4+40+40=6,∴选项B 不符合题意;∵,∴选项C 不符合题意;∵144-=1486≠,∴选项D 符合题意, 故选D .15.B解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只), 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.C解析:C 【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算 【详解】 A . ()326327x x -=-,不符合题意;B . ()()325y y y --=-,不符合题意;C . -312=8,原选项错误,符合题意; D . ()03.141π-=,不符合题意; 故选:C 【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.17.D解析:D 【分析】 根据题意把分式x xy2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断. 【详解】 解:∵分式x xy2中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变. 故选:D 【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.18.D解析:D 【分析】根据负指数幂、同底数幂的乘法和除法以及幂的乘方的运算法则逐项排除即可. 【详解】解:A. 2x -2 = 22x,故选项A 错误; B. a 6÷a 3 =a 3,故选项B 错误; C. (a 2)3 =a 6,故选项C 错误;D. a 3·a =a 4 ,D 正确; 故答案为D . 【点睛】本题考查了负指数幂、同底数幂的乘法和除法以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.19.B解析:B 【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案. 【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1,∴-0.25<-0.04<1<4, ∴b <a <d <c , 故选:B . 【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.20.C解析:C 【分析】根据分式为零的条件得到x 2-4=0且x-2≠0,然后分别解方程和不等式即可得到x 的值. 【详解】∵分式242x x --的值为0,∴x 2-4=0且x-2≠0, ∴x=-2. 故选:C . 【点睛】本题考查了分式为零的条件:当分式的分子为零且分母不为零时,分式的值为零.21.D解析:D【分析】利用同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂以及整式的除法逐个判断即可.【详解】解:①336a a a ⋅=,故①错误;②2m 和3m 不是同类项,不能合并,故②错误;③()()()222224-2-24a a a ==,故③错误;④()2104268a a a a a a ⋅÷==⋅,故④正确;⑤()-21-525=,故⑤错误;⑥22m a m n a n+≠+,故⑥错误;只有1正确. 故答案为D .【点睛】本题考查了同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂、整式的除法等知识点,掌握相关运算法则是解答本题的关键.22.B解析:B【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果.【详解】222142x x x÷-- =21(2)(2)(2)x x x x ÷+-- =()()()2·222x x x x -+- =22x x +. 故选:B .【点睛】本题主要考查了分式的除法,约分是解答的关键.23.A解析:A【分析】A 、根据积的乘方法则进行计算;B 、根据同底数幂的除法法则进行计算;C 、不是同类项,不能合并;D 、根据负整数指数幂的法则进行计算.【详解】解:A 、(﹣x 3)4=x 12,所以此选项正确;B 、x 8÷x 4=x 4,所以此选项不正确;C 、x 2与x 4不是同类顶,不能合并,所以此选项不正确;D 、(﹣x )﹣1=111()x x-=-,所以此选项不正确; 故选:A .【点睛】本题考查了幂的乘方和积的乘方等知识点,能求出每个式子的值是解题的关键. 24.D解析:D【分析】分式有意义时,分母a 2-4≠0.【详解】依题意得:a 2-4≠0,解得a≠±2.故选D .【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零25.B解析:B【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【详解】由题意,得:x ﹣3≥0且7﹣2x >0,解得:3≤x 72<. 故选B .【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.。

2021《新中考数学》最新初中数学—分式的全集汇编含解析

2021《新中考数学》最新初中数学—分式的全集汇编含解析

一、选择题1.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A .12- B . 0 C .8 D .128或2.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A . B . C . D .3.若xy y x =+,则yx 11+的值为 ( ) A 、0 B 、1 C 、-1 D 、24.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( ) A . B . C . D .5.分式的值为0,则x 的值为A .4B .-4C .D .任意实数6.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥37.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c 8.7x-有意义的x 的取值范围是( ) A .x≠3B .x <7且x≠3C .x≤7且x ≠2D .x≤7且x≠39.分式(a,b均为正数),字母的值都扩大为原来的2倍,则分式的值()A.扩大为原来2倍B .缩小为原来倍C.不变D .缩小为原来的10.如果把分式22a bab+中的a和b都扩大了2倍,那么分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍11.在物理并联电路里,支路电阻1R、2R与总电阻R之间的关系式为12111R R R=+,若1R R≠,用R、1R表示2R正确的是A.121RRRR R=-B.121RRRR R=-C.121R RRRR-=D.121R RRRR-=12.如图,设k=甲图中阴影部分面积乙图中阴影部分面积(a>b>0),则有()甲乙甲(A )k >2 (B )1<k <2 (C )121<<k (D )210<<k 13.已知为整数,且分式的值为整数,则可取的值有( )A .1个B .2个C .3个D .4个14.下列变形正确的是( )A .x y y xx y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+=D .0.250.25a b a ba b a b++=++15.化简﹣的结果是( )m+3 B .m-3 C . D .16.已知实数a ,b ,c 均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c+++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关 17.(2015秋•郴州校级期中)当x=3,y=2时,代数式的值是( )A .﹣8B .8C .D .乙甲18.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .19.在代数式,,+,,中,分式有( )A .1个B .2个C .3个D .4个 20.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣2 21.在,,中,是分式的有( )A .0个B .1个C .2个D .3个22.若将分式(a ,b 均为正数)中a ,b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的 C .不变 D .缩小为原来的23.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有A .1个B .2个C .3个D .4个24.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ). A .19或﹣1 B .19或1 C .﹣1 D .1 25.在式子31x - 、2xy π 、2334a b c 、2x x 中,分式的个数是( )A .1个B .2个C .3个D .4个【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C试题分析:因为032=-b a ,所以3a=b 2,所以234=83122a b b b b a b b b b ++==--,故选:C .考点:分式的化简求值.2.A解析:A 【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程.3.B解析:B 【解析】试题分析:先被求的代数式通分,在根据已知整体带入即可. y x 11+=1==+xyxyxy y x 考点:分式的通分,整体带入.4.A解析:A 【解析】试题分析:原有的同学每人分担的车费应该为元,而实际每人分担的车费为元,方程应该表示为:.故选A .考点:由实际问题抽象出分式方程.5.A解析:A 【解析】试题分析:根据分式的值为零的条件可以求出x 的值. 试题解析:若分式的值为0,则|x|-4=0且x+4≠0.得x 1=4,x 2=-4.当x=-4时,分母为0,不合题意,舍去. 故x 的值为4.考点:分式的值为零的条件.6.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.7.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a 、b 、c 、d 的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b , 故选B.8.D解析:D 【解析】试题解析:∵代数式7x-有意义, ∴7-x≥0,且2x-6≠0, 解得:x≤7且x≠3, 故选D .9.B解析:B 【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的.考点:分式的值10.C解析:C 【解析】 分式22a bab+中的a 和b 都扩大了2倍,得: 4212822a b a bab ab ++=⨯, 所以是缩小了2倍. 故选C.11.B解析:B试题解析:12111R R R =+, 21111R R R =- 1211R R R RR -= 得R 2═11RR R R-.故选B .12.C解析:C 【解析】试题分析:甲图中阴影部分的面积=22a b -,乙图中阴影部分的面积= ()a a b -,22()1a a b a b k a b a b a b -===--++,∵a >b >0∴0<b a b +<12,∴ 121<<k . 考点:分式的约分. 13.C解析:C 【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3 故选:C.14.D解析:D 【解析】 A 选项错误,x y x y -+=-y xy x-+;B 选项错误, x y y x +-=x y y x y x y x +---()()()()=()222y xx y --;C 选项错误,2a a ab+=1a a ab +()=1a b +;D 选项正确. 故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变.15.A【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.16.C解析:C.【解析】试题解析:∵a+b+c=0,∴a=-(b+c),∴a2=(b+c)2,同理b2=(a+c)2,c2=(a+b)2.∴原式=11111()0 22a b cbc ac ab abc++-++=-⨯=,故选C.考点:分式的运算.17.C解析:C【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x=3,y=2代入进行计算即可.解:原式=•=﹣,当x=3,y=2时,原式=﹣=﹣.故选C.考点:分式的化简求值.18.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,考点:分式的乘除法.19.B解析:B【解析】试题分析:依据分式的定义进行判断即可.解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选B20.D解析:D【解析】试题分析:根据分母不为零分式有意义,可得答案.解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.21.C解析:C【解析】解:的分母中不含有字母,因此它们是整式,而不是分式.,的中分母中含有字母,因此是分式.故选:C.22.B解析:B【解析】由题意得==,缩小为原来的故选B23.C解析:C试题分析:分式是指分母含有字母的代数式. 考点:分式的定义24.D解析:D . 【解析】试题分析:根据分式值为零的条件可得:|x ﹣2|﹣1=0,且269x x -+≠0,再解即可.由题意得:|x ﹣2|﹣1=0,且269x x -+≠0,解得:x=1. 故选:D .考点:分式的值为零的条件;负整数指数幂.25.B解析:B 【解析】2xyπ 、2334a b c 的分母中均不含有字母,因此它们是整式,而不是分式. 31x -,2xx 的分母中含有字母,因此是分式. 故选B .。

2021《新中考数学》最新初中数学—分式的真题汇编及解析

2021《新中考数学》最新初中数学—分式的真题汇编及解析

一、选择题1.下列结论正确的是( ) A .当23x ≠时,分式132x x +-有意义 B .当x y ≠时,分式222xyx y -有意义C .当0x =时,分式22+xx x的值为0D .当1x =-时,分式211x x --没有意义2.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的1103.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍4.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣165.把分式a2a b+中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12C .扩大2倍D .不变6.蜜蜂建造的蜂巢坚固省料,其厚度约为0.000073米,0.000073用科学计数法表示为 A .40.7310-⨯ B .47.310-⨯ C .57.310-⨯ D .67.310-⨯7.下列运算中,正确的是( )A .;B .;C .;D .;8.与分式11a a -+--相等的式子是( ) A .11a a +- B .11a a -+ C .11a a +-- D .11a a --+ 9.3x-有意义的实数x 的取值范围是( ) A x ≤3B x ≤3x ≠0C x 3D x 3x ≠010.函数y =的自变量x 的取值范围是( ) A .3x >-B .3x ≥-C .3x ≠-D .3x ≤-11.下列等式从左到右的变形正确的是( )A .22b by x xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+ 12.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b13.+x 的取值范围是( ) A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥314.下列分式中,属于最简分式的是( ) A .42xB .11xx -- C .211x x +- D .224xx - 15.下列运算错误的是( ) A .235a a a ⋅= B .()()422ab ab ab ÷-= C .()222424ab a b -=D .3322aa -=16.下列运算正确的是( ) A .2x -2 =212x B .a 6÷a 3 =a 2 C .(a 2)3 =a 5 D .a 3·a =a 4 17.下列计算中错误的是( )A .020181=B .224-=C 2=D .1133-=18.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定19.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a mn a n+=+,其中正确的个数为( ) A .4个 B .3个C .2个D .1个20.222142x x x÷--的计算结果为( )A .2x x + B .22xx + C .22xx - D .2(2)x x +21.化简21211a aa a----的结果为( ) A .11a a +- B .a ﹣1 C .a D .122.化简:x x y --yx y+,结果正确的是( )A .1B .2222x y x y +-C .x y x y-+D .22xy +23.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-224.当x 为任意实数时,下列分式中,一定有意义的是( ) A .1xB .11x + C .11x - D .211x + 25.若把分式3xyx y-(,x y 均不为0)中的x 和y 都扩大3倍,则原分式的值是( )A .扩大3倍B .缩小至原来的13C .不变D .缩小至原来的16【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据分式有意义,分母不等于0;分式的值等于0,分子等于0,分母不等于0对各选项分析判断后利用排除法求解. 【详解】A 、分式有意义,3x-2≠0,解得23x ≠,故本选项正确; B 、分式有意义,x 2-y 2≠0,解得x≠±y ,故本选项错误;C 、分式的值等于0,x=0且x 2+2x≠0,解得x=0且x≠0或-2,所以,x=0时分式无意义,故本选项错误;D、分式没有意义,x-1=0,x=1,故本选项错误.故选:A.【点睛】此题考查分式有意义以及分式的值为零的条件,解题关键在于掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.C解析:C【解析】【分析】首先分别判断出x与y都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可.【详解】解:∵x与y都扩大为原来的10倍,∴5xy扩大为原来的100倍,x+y扩大为原来的10倍,∴5xyx y+的值扩大为原来的10倍,即这个代数式的值扩大为原来的10倍.故选:C.【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.3.C解析:C【解析】【分析】根据题意,分式中的x和y都扩大2倍,则222()2242x y x y x yx y xy xy+++==⋅;【详解】解:由题意,分式xyyx+中的x和y都扩大2倍,∴222()2242x y x y x yx y xy xy+++==⋅;分式的值是原式的12,即缩小2倍;故选C.【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.4.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可. 【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项,∴2020a a b -=⎧⎨+=⎩,2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.5.D解析:D 【解析】 【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断. 【详解】 根据题意,得把分式a2a b+中的a 、b 都扩大2倍,得2a 2a a 22a 2b 2(2a b)2a b ==⨯+++,根据分式的基本性质,则分式的值不变. 故选D . 【点睛】此题考查了分式的基本性质.6.C解析:C 【解析】 【分析】数学术语,a×10的n次幂的形式.将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。

分式与二次根式(解析版)-中考数学必考考点与题型专训

分式与二次根式(解析版)-中考数学必考考点与题型专训

分式与二次根式命题趋势分式与二次根式是历年中考的考察重点,年年考查,分值为12分左右。

预计2023年各地中考还将继续重视对分式与根式的有关概念、分式与根式的性质和分式与根式的混合运算等的考查,且考查形式多样,为避免丢分,学生应扎实掌握。

知识梳理1、分式1)分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母.【注】①若B ≠0,则A B 有意义;②若B =0,则A B 无意义;③若A =0且B ≠0,则AB =0.2)分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为A B =A ⋅C B ⋅C (C ≠0)或A B =A ÷CB ÷C (C ≠0),其中A ,B ,C 均为整式.3)约分及约分法则(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.4)最简分式:分子、分母没有公因式的分式叫做最简分式.【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式.5)通分及通分法则(1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.6)最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7)分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示:a b ±c b =a ±cb.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a b ±c d =ad bd ±bc bd =ad ±bcbd.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示:a b ⋅cd=a ⋅cb ⋅d.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示:a b ÷c d =ab⋅d c =a ⋅d b ⋅c .(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示:a b n =a nb n (n 为正整数,b ≠0).(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.2、二次根式1)二次根式的有关概念(1)二次根式的概念:形如a (a ≥0)的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.【注】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0.(2)最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式: 化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式.2)二次根式的性质(1)a ≥0(a ≥0);(2)(a )2=a (a ≥0); (3)a 2=a =a (a >0)0(a =0)-a (a <0) ;3)二次根式的运算(1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除乘法法则:a ⋅b =ab (a ≥0,b ≥0);除法法则:a b=a b(a ≥0,b >0).(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.重点考向考向1分式的有关概念1.分式的三要素:(1)形如AB的式子;(2)A ,B 均为整式;(3)分母B 中含有字母.2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即B ≠0.(2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例引领1.(2022·湖南怀化·中考真题)代数式25x ,1π,2x 2+4,x 2-23,1x ,x +1x +2中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是2x 2+4,1x ,x +1x +2,∴分式有3个,故选:B .【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键.2.(2022·浙江湖州·中考真题)当a =1时,分式a +1a的值是.【答案】2【分析】直接把a 的值代入计算即可.【详解】解:当a =1时,a +1a =1+11=2.故答案为:2.【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可.3.(2023·河南·中考模拟)下列说法错误的是()A.当x ≠3时,分式4x +5x -3有意义 B.当x =1时,分式x +1x -1无意义C.不论a 取何值,分式a 2+1a2都有意义 D.当x =1时,分式x -1x +1的值为0【答案】C【分析】分母不为0时,分式有意义,分母为0时,分式无意义,分子等于0,分母不为0时分式值为0,由此判断即可.【解析】解:A 选项当x -3≠0,即x ≠3时,分式4x +5x -3有意义,故A 正确;B 选项当x -1=0,即x =1时,分式x +1x -1无意义,故B 正确;C 选项当a 2≠0,即a ≠0时,分式a 2+1a 2有意义,故C 错误;D 选项当x -1=0,且x +1≠0即x =1时,分式x -1x +1的值为0,故D 正确.故选C .【点睛】本题主要考查了分式有意义、无意义、值为0的条件,熟练掌握分式的分母不为0是确定分式有意义的关键.变式拓展1.(2022·湖北黄冈·中考真题)若分式2x -1有意义,则x 的取值范围是.【答案】x ≠1【分析】根据分式有意义的条件即可求解.【详解】解:∵分式2x -1有意义,∴x -1≠0,解得x ≠1.故答案为:x ≠1.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.2.(2022·广西·中考真题)当x =时,分式2xx +2的值为零.【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可.【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0,故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.3.(2023·绵阳市·中考模拟)下列关于分式的判断,正确的是()A.当x =2时,x +1x -2的值为零B.无论x 为何值,4x 2+3的值总为正数C.无论x 为何值,3x +1不可能得整数值D.当x =3时,x -33无意义【答案】B【分析】分式有意义的条件是分母不等于0,分式值是0的条件是分子是0,分母不是0.【详解】解:A 、当x =2时,分母x -2=0,分式无意义,故A 错误;B 、分母中x 2+3≥3,因而第二个式子一定成立,故B 正确;C 、当x +1=1或-1时,3x +1的值是整数,故C 错误;D 、x -33不是分式,故D 错误.故选:B .【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式各种结果的判断标准:分式的值是正数的条件是分子、分母同号;值是负数的条件是分子、分母异号;分式值是0的条件是分子是0,分母不是0.考向2分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例引领1.(2020·河北中考真题)若a ≠b ,则下列分式化简正确的是()A.a +2b +2=abB.a -2b -2=abC.a 2b2=ab D.12a 12b =ab【答案】D【分析】根据a ≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题.【详解】∵a ≠b ,∴a +2b +2≠a b ,选项A 错误;a -2b -2≠ab,选项B 错误;a 2b 2≠a b ,选项C 错误;12a 12b =a b ,选项D 正确;故选:D .【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.2.(2022·广东·一模)如果把分式2yx +y中的x 和y 都扩大为原来的2倍,那么分式的值()A.不变B.缩小为原来的12C.扩大为原来的2倍D.扩大为原来的4倍【答案】A【分析】依题意,分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可.【详解】分别用2x 和2y 去代换原分式中的x 和y ,得:2×2y 2x +2y =4y 2(x +y )=2yx +y 化简后的结果和原式相同,故答案为:A .【点睛】本题主要考查了分式的基本性质,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.变式拓展1.(2022·河北·三模)下列各式从左到右的变形中,不正确的是()A.-23a =-23aB.-b -6a =b6aC.3a -4b =-3a4bD.--8a 3b =8a-3b【答案】D【分析】根据分式的基本性质逐个判断即可.【详解】解:A 、-23a =-23a ,故本选项不符合题意;B 、-b -6a =b6a,故本选项不符合题意;C 、3a -4b =-3a 4b ,故本选项不符合题意;D 、--8a 3b =8a 3b ,故本选项符合题意;故选:D【点睛】本题考查了分式的基本性质,能熟记分式的基本性质是解此题的关键,注意:①分式的基本性质是:分式的分子和分母都乘以或除以同一个不为0的整式,分式的值不变,②分式分子的符号,分式分母的符号,分式本身的符号,改变其中的两个符号,分式本身的值不变.2.(2022·浙江·一模)若把分式1x +1y中的x ,y 同时扩大2倍,则分式的值()A.是原来的2倍B.是原来的12C.是原来的14D.不变【答案】B【分析】根据分式的加法进行计算,再把x ,y 同时扩大2倍,观察分式值变化即可.【详解】解:1x +1y =x +y xy ,x ,y 同时扩大2倍得2x +2y 2x ×2y =2(x +y )4xy =12×x +y xy,分式的值是原来的12,故选:B .【点睛】本题考查了分式的加法和分式的基本性质,解题关键是熟练进行分式加法和约分.考向3分式的约分与通分约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例引领1.(2022·江苏·二模)分式m 2m -2n 和3nm -n的最简公分母为.【答案】2(m -n )【分析】利用最简公分母的定义求解,分式m 2m -2n 和3nm -n的分母分别是2(m -n )、(m -n ),故最简公分母是2(m -n )即是本题答案.【详解】解:∵分式m 2m -2n 和3nm -n的分母分别是2(m -n )、(m -n ).∴它们的最简公分母是2(m -n ).故答案为:2(m -n ).【点睛】本题考查最简公分母,将原式的分母正确进行因式分解并掌握最简公分母的定义是解题关键.2.(2022·上海崇明·二模)化简:xx 2-2x=.【答案】1x -2【分析】直接利用分式的性质化简得出答案.【详解】解:x x 2-2x=x x (x -2)=1x -2.故答案为:1x -2.【点睛】此题主要考查了分式的化简,熟练掌握运算法则是解答此题的关键.3.(2022·广西·二模)关于分式的约分或通分,下列哪个说法正确()A.x +1x 2-1约分的结果是1x B.分式1x 2-1与1x -1的最简公分母是x -1C.2xx2约分的结果是1D.化简x 2x 2-1-1x 2-1的结果是1【答案】D【分析】根据分式的基本性质将分式约分,即可判断A 与C ;根据确定最简公分母的方法判断B ;根据分式减法法则计算,即可判断D .【详解】A 、x +1x 2-1=1x -1,故本选项错误;B 、分式1x 2-1与1x -1的最简公分母是x 2-1,故本选项错误;C 、2x x 2=2x ,故本选项错误;D 、x 2x 2-1-1x 2-1=1,故本选项正确;故选D .【点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.变式拓展1.(2023·河北·一模)要把分式32a 2b 与a -bab 2c通分,分式的最简公分母是()A.2a 2b 2cB.2a 3b 3C.2a 3b 3cD.6a 3b 3c【答案】A【分析】根据最简公分母定义是各分母的最小公倍数即可求解.【详解】解:根据最简公分母是各分母的最小公倍数,∵系数2与1的公倍数是2,a 2与a 的最高次幂是a 2,b 与b 2的最高次幂是b 2,对于只在一个单项式中出现的字母c 直接作公分母中的因式,∴公分母为:2a 2b 2c .故选择:A .【点睛】本题考查最简公分母,熟练掌握最简公分母是解题关键.2.(2023·河北滦州·一模)下列分式化简结果为ab的是()A.a +2b +2B.a -2b -2C.a +ab +bD.a ×ab ×b【答案】C【分析】根据分式的化简逐个判断即可.【详解】A .a +2b +2≠a b ,故选项A 错误;B .a -2b -2≠ab,故选项B 错误;C .a +a b +b =2a 2b =a b ,故选项C 正确;D .a ×a b ×b =a 2b 2≠a b ,故选项D 错误;故选:C .【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.熟练掌握分式的基本性质是解题的关键.3.(2022·上海·二模)计算:1a -1b=.【答案】b -aab【分析】将式子通分计算即可.【详解】1a -1b =b ab -a ab =b -aab【点睛】本题考查分式通分,正确寻找分母的最小公倍数是解题关键.考向4分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例引领1.(2022·广西玉林·中考真题)若x 是非负整数,则表示2x x +2-x 2-4(x +2)2的值的对应点落在下图数轴上的范围是()A.①B.②C.③D.①或②【答案】B【分析】先对分式进行化简,然后问题可求解.【详解】解:2x x +2-x 2-4(x +2)2=2x x +2 x +2 2-x 2-4(x +2)2=2x 2+4x -x 2+4x +2 2=x +2 2(x +2)2=1;故选B .【点睛】本题主要考查分式的运算,熟练掌握分式的减法运算是解题的关键.2.(2022·黑龙江牡丹江·中考真题)先化简,再求值:3x x -2-x x +2÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.【答案】2x +8,10.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=3x x +2 -x x -2 x -2 x +2⋅x 2-4x =2x x +4 x -2 x +2⋅x -2 x +2x =2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.3.(2022·山东聊城·中考真题)先化简,再求值:a 2-4a ÷a -4a -4a -2a -2,其中a =2sin45°+12-1.【答案】a a -2,2+1【分析】运用分式化简法则:先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答.【详解】解:a 2-4a ÷a -4a -4a -2a -2=a +2 a -2 a ×a a -22-2a -2=a +2a -2-2a -2=aa -2,∵a =2sin45°+12-1=2×22+2=2+2,代入得:原式=2+22+2-2=2+1;故答案为:aa -2;2+1.【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.变式拓展1.(2022·山东威海·中考真题)试卷上一个正确的式子1a +b +1a -b ÷★=2a +b被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为()A.aa -bB.a -b aC.a a +bD.4a a 2-b 2【答案】A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可.【详解】解:1a +b +1a -b ÷★=2a +b a -b +a +b a +b a -b÷★=2a +b ★=2a a +b a -b÷2a +b =aa -b ,故选A .【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.2.(2022·江苏扬州·中考真题)计算:(1)2cos45°+π-3 0-8(2)2m -1+1÷2m +2m 2-2m +1【答案】(1)1-2(2)m -12【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可;(2)先合并括号里的分式,再对分子和分母分别因式分解即可化简;【详解】(1)解:原式=2×22+1-22=1-2.(2)解:原式=2m -1+m -1m -1 ⋅m -1 22m +1 =m +1m -1⋅m -1 22m +1 =m -12.【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.3.(2022·辽宁营口·中考真题)先化简,再求值:a +1-5+2a a +1 ÷a 2+4a +4a +1,其中a =9+|-2|-12-1.【答案】a -2a +2,15.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再利用算术平方根、绝对值、负整数指数幂计算出a 的值,代入计算即可求出值.【详解】解:a +1-5+2a a +1 ÷a 2+4a +4a +1=(a +1)2-5-2a a +1÷(a +2)2a +1=a2-4 a+1⋅a+1(a+2)2=(a+2)(a-2)a+1⋅a+1(a+2)2=a-2a+2,当a=9+|-2|-12-1=3+2-2=3时,原式=3-23+2=15.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.还考查了算术平方根、绝对值、负整数指数幂.考向5二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例引领1.(2022·广东广州·中考真题)代数式1x+1有意义时,x应满足的条件为()A.x≠-1B.x>-1C.x<-1D.x≤-1【答案】B【分析】根据分式分母不为0及二次根式中被开方数大于等于0即可求解.【详解】解:由题意可知:x+1>0,∴x>-1,故选:B.【点睛】本题考察了分式及二次根式有意义的条件,属于基础题.2.(2022·河北·中考真题)下列正确的是()A.4+9=2+3B.4×9=2×3C.94=32D. 4.9=0.7【答案】B【分析】根据二次根式的性质判断即可.【详解】解:A.4+9=13≠2+3,故错误;B.4×9=2×3,故正确;C.94=38≠32,故错误;D. 4.9≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.3.(2022·四川遂宁·中考真题)实数a,b在数轴上的位置如图所示,化简a+1-b-12+a-b2 =.【答案】2【分析】利用数轴可得出-1<a<0,1<b<2,进而化简求出答案.【详解】解:由数轴可得:-1<a<0,1<b<2,则a+1>0,b-1>0,a-b<0∴a+1-b-12+a-b2=|a+1|-|b-1|+|a-b|=a+1-(b-1)-(a-b)=a+1-b +1-a+b=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a,b的取值范围是解题关键.变式拓展1.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是()A.13B.12C.a2D.53【答案】A【分析】根据最简二次根式的定义即可求出答案.【详解】解:A、13是最简二次根式,故选项正确;B、12=23,不是最简二次根式,故选项错误;C、a2=a ,不是最简二次根式,故选项错误;D、53=153,不是最简二次根式,故选项错误;故选A.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.(2022·四川南充·中考真题)若8-x为整数,x为正整数,则x的值是.【答案】4或7或8【分析】根据根号下的数大于等于0和x为正整数,可得x可以取1、2、3、4、5、6、7、8,再根据8-x为整数即可得x的值.【详解】解:∵8-x≥0∴x≤8∵x为正整数∴x可以为1、2、3、4、5、6、7、8∵8-x为整数∴x为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.3.(2022·山东聊城·中考真题)射击时,子弹射出枪口时的速度可用公式v=2as进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.4×102m/sB.0.8×102m/sC.4×102m/sD.8×102m/s【答案】D【分析】把a=5×105m/s2,s=0.64m代入公式v=2as,再根据二次根式的性质化简即可.【详解】解:v=2as=2×5×105×0.64=8×102m/s,故选:D.【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.考向6二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较;(2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例引领1.(2022·湖北武汉·中考真题)下列各式计算正确的是()A.2+3=5B.43-33=1C.2×3=6D.12÷2=6【答案】C【分析】由合并同类二次根式判断A,B,由二次根式的乘除法判断C,D.【详解】解:A、2+3≠5原计算错误,该选项不符合题意;B、43-33=3原计算错误,该选项不符合题意;C、2×3=6正确,该选项符合题意;D、12÷2=23÷2=3原计算错误,该选项不符合题意;故选:C.【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·重庆·中考真题)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.3.(2022·上海·中考真题)计算:|-3|-13-12+23-1-1212【答案】1-3【分析】原式分别化简|-3|=3,1 3-12=3,23-1=3+1,1212=23,再进行合并即可得到答案.【详解】解:|-3|-13-12+23-1-1212=3-3+3+1-23=1-3【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.变式拓展1.(2022·贵州毕节·中考真题)计算8+|-2|×cos45°的结果,正确的是()A.2B.32C.22+3D.22+2【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.【详解】解:8+|-2|×cos45°=22+2×22=22+2=32.故选:B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.2.(2021·湖南常德市·中考真题)计算:5+12-1⋅5+12=()A.0B.1C.2D.5-12【答案】C 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5+12-1 ⋅5+12=5-12⋅5+12=5-12=2.故选:C .【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键.3.(2022·内蒙古通辽·中考真题)计算:2⋅6+41-3 sin60°-12-1.【答案】4【分析】根据二次根式的乘法,化简绝对值,特殊角的三角函数值,负整数指数幂进行计算即可求解.【详解】解:原式=23+43-1 ×32-2=23+6-23-2=4【点睛】本题考查了实数的混合运算,掌握二次根式的乘法,化简绝对值,特殊角的三角函数值,负整数指数幂是解题的关键.考向7二次根式与分式中的探究规律问题典例引领1.(2022·湖南常德·中考真题)我们发现:6+3=3,6+6+3=3,6+6+6+3=3,⋯,6+6+6+⋯+6+6+3=3n 个根号,一般地,对于正整数a ,b ,如果满足b +b +b +⋯+b +b +a =a n 个根号时,称a ,b 为一组完美方根数对.如上面3,6 是一组完美方根数对.则下面4个结论:①4,12 是完美方根数对;②9,91 是完美方根数对;③若a ,380 是完美方根数对,则a =20;④若x ,y 是完美方根数对,则点P x ,y 在抛物线y =x 2-x 上.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C 【分析】根据定义逐项分析判断即可.【详解】解:∵12+4=4,∴4,12 是完美方根数对;故①正确;∵91+9=10≠9∴9,91 不是完美方根数对;故②不正确;若a ,380 是完美方根数对,则380+a =a 即a 2=380+a 解得a =20或a =-19∵a 是正整数则a =20故③正确;若x ,y 是完美方根数对,则y +x =x ∴y +x =x 2,即y =x 2-x 故④正确故选C 【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.2.(2022·四川眉山·中考真题)将一组数2,2,6,22,⋯,42,按下列方式进行排列:2,2,6,22;10,23,14,4;⋯若2的位置记为(1,2),14的位置记为(2,3),则27的位置记为.【答案】(4,2)【分析】先找出被开方数的规律,然后再求得27的位置即可.【详解】数字可以化成:2,4,6,8;10,12,14,16;∴规律为:被开数为从2开始的偶数,每一行4个数,∵27=28,28是第14个偶数,而14÷4=3⋯2∴27的位置记为(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.3.(2022·四川达州·中考真题)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=5-12,b=5+12,记S1=11+a+11+b,S2=21+a2+2 1+b2,⋯,S100=1001+a100+1001+b100,则S1+S2+⋯+S100=.【答案】5050【分析】利用分式的加减法则分别可求S1=1,S2=2,S100=100,•••,利用规律求解即可.【详解】解:∵a=5-12,b=5+12,∴ab=5-12×5+12=1,∵S1=11+a +11+b=2+a+b1+a+b+ab=2+a+b2+a+b=1,S2=21+a2+21+b2=2×2+a2+b21+a2+b2+a2b2=2×2+a2+b22+a2+b2=2,⋯,S100=1001+a100+1001+b100=100×1+a10+1+b101+a10+b10+a10b10=100∴S1+S2+⋯+S100=1+2+⋯⋯+100=5050故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得ab=1,找出的规律是本题的关键.变式拓展1.(2022·河南驻马店·模拟预测)斐波那契(约1170-1250)是意大利数学家,他研究了一列数,被称为“斐波那契数列”.他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数a n可表示为15[1+52n-1-52 n,且连续三个数a n-1,a n,a n+1之间存在以下关系a n-1+a n=a n+1(n≥2).①第1个数a1=1;②第2个数:a2=2;③“斐波那契数列”中的前8个数是1,1,2,3,5,8,13,21;④若把“斐波那契数列”中的每一项除以4所得的余数按相对应的顺序组成一组新数列,在新数列中,第2017项的值是1.以上说法正确的有.(请把你认为正确的序号全都填上去)【答案】①②④【分析】将n=1和n=2代入15[1+52n-1-52 n即可求得a1和a2,再按照a n-1+a n=a n+1可以求得前八个数,根据“把‘斐波那契数列'中的每一项除以4所得的余数”求出来一部分特殊项,观察规律,即可得到第2017项的值.【详解】①a1=151+52-1-52=15×5=1,故正确;②a2=15[1+522-1-52 2=15×5=1,故错误;③“斐波那契数列”中的前8个数是1,1,2,3,5,8,13,21,故正确;④1,1,2,3,5,8,13,21除以4所得的余数分别是1,1,2,3,1,0,1,1,2,3,1,0,⋯,2017÷6=336⋯1,故在新数列中,第2017项的值是1,故正确.故答案为:①③④.【点睛】本题考查了规律探究题,读懂题意,列出特殊项,观察一般规律是解决本题的关键.2.(2021·四川眉山市·中考真题)观察下列等式:x 1=1+112+122=32=1+11×2;x 2=1+122+132=76=1+12×3;x 3=1+132+142=1312=1+13×4;⋯⋯根据以上规律,计算x 1+x 2+x 3+⋯+x 2020-2021=.【答案】-12016【分析】根据题意,找到第n 个等式的左边为1+1n 2+1(n +1)2,等式右边为1与1n (n +1)的和;利用这个结论得到原式=112+116+1112+⋯+112020×2021-2021,然后把12化为1-12,16化为12-13,12015×2016化为12015-12016,再进行分数的加减运算即可.【详解】解:由题意可知,1+1n 2+1(n +1)2=1+1n (n +1),x 2020=1+12020×2021x 1+x 2+x 3+⋯+x 2020-2021=112+116+1112+⋯+112020×2021-2021=2020+1-12+12-13+⋯+12015-12016-2021=2020+1-12016-2021=-12016.故答案为:-12016.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.热点必刷1.(2022·黑龙江绥化·中考真题)若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-1且x ≠0【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选:C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.2.(2022·广西桂林·中考真题)化简12的结果是()A.23 B.3C.22D.2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为23.【详解】解:12=4×3=22×3=23,故选:A .【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.。

2021《新中考数学》最新初中数学—分式的知识点总复习含解析

2021《新中考数学》最新初中数学—分式的知识点总复习含解析

一、选择题1.下列命题中:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( ) A .①②B .③④C .①③D .②④2.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是( ) A .0.7 ⨯10-6 mB .0.7 ⨯10-7mC .7 ⨯10-7mD .7 ⨯10-6m3.若x 2-6xy +9y 2=0,那么x yx y-+的值为( ) A .12yB .12y-C .12D .12-4.已知0212,,0.2532a b c --⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a5.下列变形正确的是( )A .y x =22y xB .a acb bc= C .ac a bc b= D .x m xy m y+=+ 6.若代数式1xx +有意义,则实数x 的取值范围是( ) A .0x =B .1x =-C .1x ≠D .1x ≠-7.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c << B .b c a <<C .c b a <<D .a c b <<8.下列各式:351,,,,12a b x y a b x a b xπ-+++--中,是分式的共有( ) A .1个B .2个C .3个D .4个9.下列各分式的值可能为零的是( ).A .2211m m +-B .11m +C .211m m +-D .211m m -+10.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁11.若把分式3xyx y-(,x y 均不为0)中的x 和y 都扩大3倍,则原分式的值是( ) A .扩大3倍 B .缩小至原来的13C .不变D .缩小至原来的1612.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5B .4C .3D .213.1372x x-+-x 的取值范围是( ) A .3<x <72B .3≤x <72C .3≤x ≤72D .x ≥314.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-215.若分式21x -有意义,则( ) A .1x ≠ B .1x =C .0x ≠D .0x =16.计算33x yx y x y---的结果是( ) A .1 B .0 C .3 D .6 17.将0.00086用科学记数法表示为( )A .8.6×104 B .8.60×104 C .8.6×10-4 D .8.6×10-6 18.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<c B .a<c<b C .b<a<c D .c<b<a 19.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( ) A .61.0210-⨯B .60.10210-⨯C .71.0210-⨯D .810210-⨯20.下列计算中错误的是( )A .020181=B .224-=C 2=D .1133-=21.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定22.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a mn a n+=+,其中正确的个数为( ) A .4个B .3个C .2个D .1个23.计算下列各式①(a 3)2÷a 5=1;②(-x 4)2÷x 4=x 4;③(x -3)0=1(x ≠3);④(-a 3b )3÷5212a b =-2a 4b 正确的有( )题 A .4 B .3C .2D .124.若115a b =,则a b a b-+的值是( ) A .25B .38C .35D .11525.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍D .不变【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分别写出四个命题的逆命题,利用反例对①和它的逆命题进行判断;利用平行线的性质和判定对②和它的逆命题进行判断;利用直角的定义对③和它的逆命题进行判断;利用分式有意义的条件对④和它的逆命题进行判断. 【详解】解:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;若a =1,b =﹣2,结论不成立,则命题为假命题,其逆命题为:已知两实数a 、b ,如果a 2>b 2,那么a >b ;若a =﹣2,b =1时,结论不成立,所以逆命题为假命题;②同位角相等,两直线平行;则命题为真命题,其逆命题为:两直线平行,同位角相等,所以逆命题为真命题;③如果两个角是直角,那么这两个角相等;此命题为真命题,其逆命题为:如果两个角相等,那么这两个角是直角,所以逆命题为假命题;④如果分式332xx-+无意义,那么x=﹣23;此命题为真命题,其逆命题为:如果x=﹣2 3,那么分式332xx-+无意义,所以逆命题为真命题;故选:D.【点睛】此题主要考查命题的判断,解题的关键是熟知实数的性质、平行线的性质、直角的性质及分式的性质.2.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 7=7×10-7.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C解析:C【解析】【分析】根据完全平方公式求出x与y的关系,代入计算即可.【详解】x2-6xy+9y2=0,(x-3y)2=0,∴x=3y,则x yx y-+=3132y yy y-=+,故选:C.【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.解析:C 【解析】 【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】2129==10.25=434a b c --⎛⎫=-== ⎪⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.5.C解析:C 【解析】试题解析:A 、分式的乘方不等于原分式,故A 错误; B 、当c=0时,结果不成立,故B 错误;C 、分式的分子分母都乘或除以同一个不为零的整式,故C 正确;D 、分式的分子分母都加同一个不为零的数,结果发生变化,故D 错误. 故选C .6.D解析:D 【解析】 【分析】根据分式有意义的条件即分母不等于零可得x+1≠0,从而得解. 【详解】解:由题意得:x+1≠0, 解得:x≠-1, 故选:D . 【点睛】本题考查分式有意义的条件,解题关键是掌握分式有意义的条件:分母不等于零.7.C解析:C 【分析】根据零次幂的性质,平方差公式以及积的乘方法则求出a ,b ,c ,再根据有理数的比较法则判断即可.解:020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,201720182017454555()()()545444c =-⨯=-⨯⨯=-,∵54-<-1<1, ∴c <b <a . 故选:C . 【点睛】本题主要考查了零次幂的性质,平方差公式以及积的乘方,熟练掌握相关运算法则是解题关键.8.C解析:C 【解析】 【分析】根据分式的定义逐一进行判断即可. 【详解】31,,1x a b x a b x ++--是分式 故选:C. 【点睛】本题考查分式的定义,熟练掌握定义是关键.9.D解析:D 【分析】根据分式为零的条件进行计算即可. 【详解】解:∵分式有意义且它的值为零, ∴分子为0,分母不为0A. 2m +10≠,分式的值不可能为零,不符合题意;B. 10≠,分式的值不可能为零,不符合题意;C. 2m+1=0m -10⎧⎨≠⎩无解,分式的值不可能为零,不符合题意;D.当 2m -1=0m+10⎧⎨≠⎩,即m=1时,分式的值为零,符合题意;故选:D 【点睛】本题主要考查分式为零的条件,(1)分子的值为零;(2)分母的值不为零;两个条件必须同时具备,缺一不可.10.B解析:B 【分析】找出题中出错的地方即可. 【详解】乙同学的过程有误,应为()()22a ab ab b a b a b +-++-,故选B . 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.A解析:A 【分析】将原式中x 变成3x ,将y 变成3y ,再进行化简,与原式相比较即可. 【详解】 由题意得3332733333()x y xy xyx y x y x y⋅⋅==⋅---,所以原分式的值扩大了3倍故选择A. 【点睛】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较.12.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】 n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23x -当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数. 故选B . 【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x 的值.13.B解析:B 【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0. 【详解】由题意,得:x ﹣3≥0且7﹣2x >0,解得:3≤x 72<. 故选B . 【点睛】本题考查了二次根式有意义的条件,正确解不等式是解题的关键.14.D解析:D 【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案. 【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D . 【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.15.A解析:A 【解析】 【分析】根据分式有意义的条件是分母不等于零求解即可. 【详解】 解:∵要使分式21x -有意义∴10x -≠1x ∴≠ 故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.16.C解析:C 【分析】根据同分母的分式加减的法则进行计算即可. 【详解】 解:()333=3x y x y x y x y x y--=--- 故选C. 【点睛】本题考查了分式的加减法,掌握分式运算的法则是解题的关键.17.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】将8600用科学记数法表示为:8.6×10-4. 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.C解析:C 【分析】首先计算a 、b 、c 的值,再进行比较即可. 【详解】 a=20180=1,b=2016×2018-20172=222(20171)(20171)20172017120171-+-=--=-,20162017201620162016232332333()()()()()323223222c =-⨯=⨯⨯=⨯⨯=,∵-1<1<32, ∴b<a<c , 故选:C. 【点睛】此题考查零次幂定义,平方差公式,同底数幂乘法的逆运算,积的乘方的逆运算,掌握掌握各计算法则是解题的关键.19.C解析:C 【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0. 【详解】解:0.000000102=71.0210-⨯. 故选:C . 【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.B解析:B 【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案. 【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案; B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案; 故选:B . 【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.21.B解析:B 【分析】使分式211x x -+的值为0,则x 2-1=0,且x+1≠0.【详解】使分式211x x -+的值为0, 则x 2-1=0,且x+1≠0解得x =1故选:B【点睛】考核知识点:考查分式的意义. 要使分式值为0,分子等于0,分母不等于0.22.D解析:D【分析】利用同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂以及整式的除法逐个判断即可.【详解】解:①336a a a ⋅=,故①错误;②2m 和3m 不是同类项,不能合并,故②错误;③()()()222224-2-24a a a ==,故③错误;④()2104268a a a a a a ⋅÷==⋅,故④正确;⑤()-21-525=,故⑤错误;⑥22m a m n a n+≠+,故⑥错误;只有1正确. 故答案为D .【点睛】本题考查了同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂、整式的除法等知识点,掌握相关运算法则是解答本题的关键.23.B解析:B【分析】根据整数指数幂的运算法则解答即可.【详解】解:①(a 3)2÷a 5=a 6÷a 5=a ,故原式错误;②(-x 4)2÷x 4=x 8÷x 4=x 4,故原式正确;③因为x ≠3,所以x -3≠0,(x -3)0=1,故原式正确;④(-a 3b )3÷12a 5b 2=-a 9b 3÷12a 5b 2=-2a 4b ,故原式正确. 所以正确的有3个,故选:B .【点睛】本题主要考查了整数指数幂的运算,熟记法则是解决此题的关键.24.B解析:B【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】 解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.25.A解析:A【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案.【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a b a b a b ab ab ,所以分式缩小到原来的12倍, 故选A.【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.。

全国2021年中考数学试题精选50题分式二次根式含解析

全国2021年中考数学试题精选50题分式二次根式含解析

中考数学试题精选50题:分式、二次根式一、单选题1.(2020·绵阳)若有意义,则a的取值范围是()A. a≥1B. a≤1C. a≥0D. a≤﹣12.(2020·淄博)化简的结果是()A. a+bB. a﹣b C.D.3.(2020·威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统投时精度达到了十亿分之一秒,十亿分之一用科学记数法可以表示为()A. B.C.D.4.(2020·威海)分式化简后的结果为()A. B.C.D.5.(2020·滨州)冠状病毒的直径约为80~120纳米,1纳米=米,若用科学记数法表示110纳米,则正确的结果是()A. 米B.米 C.米 D. 米6.(2020·鄂尔多斯)二次根式中,x的取值范围在数轴上表示正确的是()A. B. C.D.7.(2020·赤峰)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为()A. B.C.D.8.(2020·云南)下列运算正确的是()A. B.C. D.9.(2020·南通)下列运算,结果正确的是()A. B.C. D.10.(2020·上海)下列各式中与是同类二次根式的是()A. B.C.D.11.(2020·呼和浩特)下列运算正确的是()A.B.C. D.12.(2020·包头)的计算结果是()A. 5B.C.D.13.(2020·包头)下列计算结果正确的是()A. B.C. D.14.(2020·长沙)下列运算正确的是()A. B.C. D.15.(2020·邵阳)下列计算正确的是()A.B.C.D.16.(2020·郴州)下列运算正确的是()A. B.C. D.17.(2020·郴州)年月日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空.北斗卫星导航系统可提供高精度的授时服务,授时精度可达纳秒(秒= 纳秒)用科学记数法表示纳秒为()A. 秒B.秒 C.秒 D. 秒18.若关于x的分式方程=+5的解为正数,则m的取值范围为()A. m<﹣10B. m≤﹣10 C. m≥﹣10且m≠﹣6 D. m>﹣10且m≠﹣6二、填空题19.(2020·眉山)关于x的分式方程的解为正实数,则k的取值范围是________.20.(2020·东营)2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授21.(2020·永州)在函数中,自变量x的取值范围是________.22.(2020·南县)若计算的结果为正整数,则无理数m的值可以是________.(写出一个符合条件的即可)23.(2020·昆明)要使有意义,则x的取值范围是________.24.(2020·营口)(3 + )(3 ﹣)=________.25.(2020·山西)计算:________.26.(2020·呼和浩特)分式与的最简公分母是________,方程的解是________.27.(2020·包头)计算:________.28.(2020·包头)在函数中,自变量的取值范围是________.29.(2020·邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空________.21 6330.(2020·郴州)若分式的值不存在,则________.31.(2020·黑龙江)在函数中,自变量x的取值范围是________.三、计算题32.(2020·眉山)先化简,再求值:,其中.33.(2020·烟台)先化简,再求值:÷ ,其中x=+1,y=﹣1.34.(2020·滨州)先化筒,再求值:其中35.(2020·呼伦贝尔)先化简,再求值:,其中.36.(2020·鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:()÷ ,其中a满足a2+2a﹣15=0.37.(2020·赤峰)先化简,再求值:,其中m满足:.38.(2020·永州)先化简,再求值:,其中.39.(2020·南县)先化简,再求值:,其中40.(2020·云南)先化简,再求值:,其中.41.(2020·营口)先化简,再求值:(﹣x)÷ ,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2020·宿迁)先化简,再求值:÷(x﹣),其中x=﹣2.43.(2020·南通)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)44.(2020·娄底)计算:45.(2020·郴州)计算:46.(1)计算:sin30°+ ﹣(3﹣)0+|﹣|(2)因式分解:3a2﹣4847.(2020·长沙)先化简,再求值,其中48.(2020·娄底)先化简,然后从,0,1,3中选一个合适的数代入求值.49.(2020·山西)(1)计算:(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.第一步第二步第三步第四步第五步第六步任务一:填空:①以上化简步骤中,第________步是进行分式的通分,通分的依据是________或填为________;②第________步开始出现不符合题意,这一步错误的原因是________;(3)任务二:请直接写出该分式化简后的正确结果;解;.任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.50.(2020·通辽)用※定义一种新运算:对于任意实数m和n ,规定,如:.(1)求;(2)若,求m的取值范围,并在所给的数轴上表示出解集.答案解析部分一、单选题1.【答案】 A【解析】【解答】解:若有意义,则,解得:.故答案为:A.【分析】直接利用二次根式有意义的条件分析得出答案.2.【答案】 B【解析】【解答】解:原式====a﹣b.故答案为:B.【分析】跟据同分母分式相加减的运算法则计算.同分母分式相加减,分母不变,分子相加减.3.【答案】 B【解析】【解答】,故答案为:B.【分析】根据科学记数法的表示形式(n为整数)进行表示即可求解.4.【答案】 B【解析】【解答】解:故答案为:B.【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.5.【答案】 C【解析】【解答】解:110纳米=110×10-9米=1.1×10-7米.故答案为:C.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.6.【答案】 D【解析】【解答】解:根据题意得3+x≥0,解得:x≥﹣3,故x的取值范围在数轴上表示正确的是.故答案为:D .【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.7.【答案】 C【解析】【解答】解:0. 000 000 009 9用科学记数法表示为.8.【答案】 D【解析】【解答】解:A. ,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确;故答案为:D.【分析】根据一个正数的正的平方根就是该数的算术平方根即可判断A;根据与互为倒数即可判断B;根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘即可判断C;根据同底数幂的除法,底数不变,指数相减即可判断D.9.【答案】 D【解析】【解答】解:A. 与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C. ,此选项错误;D. ,此选项计算正确.故答案为:D.【分析】(1)由同类二次根式的定义可知与不是同类二次根式,所以不能合并;(2)同理可知不能合并;(3)由二次根式的除法法则可得原式=;(4)由二次根式的乘法法则可得原式=.10.【答案】 C【解析】【解答】解:A、和是最简二次根式,与的被开方数不同,故A选项不符合题意;B、,3不是二次根式,故B选项不符合题意;C、,与的被开方数相同,故C选项符合题意;D、,与的被开方数不同,故D选项不符合题意;故答案为:C.【分析】根据同类二次根式的概念逐一判断即可.11.【答案】 C【解析】【解答】解:A、,不符合题意;B、,不符合题意;C、=== ,符合题意;D、,不符合题意;故答案为:C.【分析】分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.12.【答案】 C【解析】【解答】= ,故答案为:C.【分析】根据二次根式的运算法则即可求解.13.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】根据幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算的知识逐项排除即可.14.【答案】 B【解析】【解答】解:A、,故本选项不符合题意;B、,故本选项符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意.故答案为:B.【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用排除法求解.15.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.16.【答案】 A【解析】【解答】A. ,计算符合题意,符合题意;B. ,故本选项不符合题意;C. ,故本选项不符合题意;D. 不能计算,故本选项不符合题意;故答案为:A.【分析】根据积的乘方、同底数幂的乘法、二次根式的减法以及合并同类项法则进行计算得出结果进行判断即可.17.【答案】 A【解析】【解答】∵1秒=1000000000纳秒,∴10纳秒=10÷1000000000秒=0.000 00001秒=1×10-8秒.故答案为:A.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.18.【答案】 D【解析】【解答】解:去分母得,解得,由方程的解为正数,得到,且,,则m的范围为且,二、填空题19.【答案】 k>-2且k≠2【解析】【解答】解:方程两边同乘(x-2)得,1+2x-4=k-1,解得,,且故答案为:且【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.20.【答案】【解析】【解答】因为,故答案为:.【分析】根据科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,进而求解.21.【答案】x≠3【解析】【解答】∵在函数中,x-3≠0,∴x≠3.故答案是:x≠3.【分析】根据分式有意义的条件,即可求解.22.【答案】(答案不唯一)【解析】【解答】解:∵ ,∴ 时的结果为正整数,故答案为:(答案不唯一).【分析】根据为12,即可得到一个无理数m的值.23.【答案】x≠﹣1【解析】【解答】解:要使分式有意义,需满足x+1≠0.即x≠﹣1.故答案为:x≠﹣1.【分析】根据分式的分母不能为0,建立不等式即可求解.24.【答案】 12【解析】【解答】解:原式=(3 )2﹣()2=18﹣6=12.故答案为:12.【分析】直接利用平方差公式去括号,再根据二次根式的性质化简,最后利用有理数的减法计算得出答案.25.【答案】 5【解析】【解答】原式=2+2 +3−2 =5.故答案为5.【分析】灵活运用完全平方公式进行求解.26.【答案】;x=-4【解析】【解答】解:∵ ,∴分式与的最简公分母是,方程,去分母得:,去括号得:,移项合并得:,变形得:,解得:x=2或-4,∵当x=2时,=0,当x=-4时,≠0,∴x=2是增根,∴方程的解为:x=-4.【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解.27.【答案】【解析】【解答】解:=== .故答案为.【分析】先将乘方展开,然后用平方差公式计算即可.28.【答案】【解析】【解答】在函数中,分母不为0,则,即,故答案为:.【分析】在函数中,分母不为0,则x-3≠0,求出x的取值范围即可.29.【答案】【解析】【解答】解:由题意可知,第一行三个数的乘积为:,设第二行中间数为x ,则,解得,设第三行第一个数为y ,则,解得,∴2个空格的实数之积为.故答案为:.【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是,即可求解.30.【答案】 -1【解析】【解答】∵分式的值不存在,∴x+1=0,解得:x=-1,故答案为:-1.【分析】根据分式无意义的条件列出关于x的方程,求出x的值即可.31.【答案】【解析】【解答】解:函数中:,解得:.故答案为:.【分析】直接利用二次根式和分式有意义的条件列出不等式组求解即可.三、计算题32.【答案】解:原式,,.当时,原式【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.33.【答案】解:÷=÷=×=当x=+1,y=﹣1时原式==2﹣.【解析】【分析】根据分式四则运算顺序和运算法则对原式进行化简÷ ,得到最简形式后,再将x=+1、y=﹣1代入求值即可.34.【答案】解:,,,;∵ ,所以,原式.【解析】【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.35.【答案】解:原式== ,将代入得:原式=-4+3=-1,故答案为:-1.【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.36.【答案】(1)解:解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)解:原式=====,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.【解析】【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.37.【答案】解:原式为==== ,又∵m满足,即,将代入上式化简的结果,∴原式= .【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m所满足的条件得出,将其代入化简后的公式,即可求得答案.38.【答案】解:当时,原式【解析】【分析】先根据分式的混合运算步骤进行化简,然后代入求值即可.39.【答案】解:时,原式=【解析】【分析】先利用分式的运算法则化简,然后代入计算即可.40.【答案】解:当上式【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.41.【答案】解:原式===﹣2﹣x.∵x≠1,x≠2,∴在0≤x≤2的范围内的整数选x=0.当x=0时,原式=﹣2﹣0=﹣2.【解析】【分析】先通分计算括号内异分母分式的减法,再将能分解因式的分子、分母分解因式,化除法为乘法进行约分化简,然后根据分式有意义的条件取x的值,代入求值即可.42.【答案】解:原式=÷( ﹣)=÷=·=,当x=﹣2时,原式===.【解析】【分析】先通分计算括号内异分母分式的减法,再将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转变为乘法,约分化为最简形式,最后将x的值代入计算可得.43.【答案】(1)解:原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)解:原式====.【解析】【分析】(1)根据完全平方公式,平方差公式去括号,再合并同类项即可;(2)括号内先通分计算,将各个分式的分子、分母能分解因式的分别分解因式,然后变除为乘,进行约分即可.44.【答案】原式.【解析】【分析】先计算绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.45.【答案】.【解析】【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.46.【答案】(1)sin30°+ ﹣(3﹣)0+|﹣|=+4﹣1+=4;(2)3a2﹣48=3(a2﹣16)=3(a+4)(a﹣4).【解析】【分析】(1)先用特殊角的三角函数值、零指数幂的性质、绝对值的性质、算术平方根的知识化简,然后计算即可;(2)先提取公因式3,再运用平方差公式分解因式即可.四、解答题47.【答案】.将x=4代入可得:原式= .【解析】【分析】先将代数式化简,再代入值求解即可.48.【答案】原式分式的分母不能为0解得:m不能为,0,3则选代入得:原式.【解析】【分析】先计算括号内的分式减法,再计算分式的除法,然后选一个使得分式有意义的x的值代入求值即可.五、综合题49.【答案】(1)原式(2)三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;五;括号前是“ ”号,去掉括号后,括号里的第二项没有变号(3)解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【解析】【解答】(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“ ”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“ ”号,去掉括号后,括号里的第二项没有变号;【分析】(1)先分别计算乘方,与括号内的加法,再计算乘法,再合并即可得到答案;(2)先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,按照同分母分式的加减法进行运算,注意最后的结果必为最简分式或整式.50.【答案】(1)===(2)∵ ,∴解得:将解集表示在数轴上如下:【解析】【分析】(1)根据新定义规定的运算法则列式,再由有理数的运算法则计算可得;(2)根据新定义列出关于x的不等式,解不等式即可得.。

2021年中考数学真题 分式方程(共32题)-(解析版)

2021年中考数学真题 分式方程(共32题)-(解析版)

2021年中考数学真题分项汇编【全国通用】(第01期)8分式方程(共32题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =- C .1x = D .1x =-【答案】A 【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】 解:21133x x x -+=--, 21133x x x --=--, 2113x x --=-,213x x --=-,解得:2x =,检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A . 【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.2.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =- C .34x =D .2x =【答案】D 【分析】先去分母,然后再进行求解方程即可. 【详解】 解:3111x x x +=-- 13x x +-=,∴2x =,经检验:2x =是原方程的解; 故选D . 【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.3.(2021·湖南怀化市·中考真题)定义12a b a b⊗=+,则方程342x ⊗=⊗的解为( )A .15x =B .25x =C .35x =D .45x = 【答案】B 【分析】根据新定义,变形方程求解即可 【详解】 ∴12a b a b⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x =, 经检验25x = 是原方程的根, 故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键4.(2021·湖北十堰市·中考真题)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x 台机器,则下列方程正确的是( )A .400450150x x -=- B .450400150x x -=- C .400450501xx -=+ D .45040051x x-=+ 【答案】B 【分析】设现在每天生产x 台,则原来可生产(x −50)台.根据现在生产400台机器的时间与原计划生产450台机器的时间少1天,列出方程即可. 【详解】解:设现在每天生产x 台,则原来可生产(x −50)台.依题意得:450400150x x-=-. 故选:B . 【点睛】此题主要考查了列分式方程应用,利用本题中“现在生产400台机器的时间与原计划生产450台机器的时间少1天”这一个条件,列出分式方程是解题关键.5.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( )A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x+= D .10010021.53x x =+ 【答案】D 【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可. 【详解】解:设A 型扫地机器人每小时清扫x m 2, 由题意可得:10010021.53x x =+, 故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系.6.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8 C .12 D .15【答案】B 【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①② 解不等式∴得,6x ≥, 解不等式∴得,5+2ax >不等式组的解集为:6x ≥562a+∴< 7a ∴<解分式方程238211y a y y y +-+=--得 238211y a y y y +--=-- 2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠3,a ∴≠-分式方程的解是正整数,502a +∴> 5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5,11358∴-+++= 故选:B . 【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.(2021·浙江嘉兴市·中考真题)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x 元( ) A .4030201.5x x -= B .4030201.5x x -= C .3040201.5x x -= D .3040201.5x x-= 【答案】B 【分析】若设荧光棒的单价为x 元,根据等量关系“缤纷棒比荧光棒少20根”可列方程求解.【详解】解:设荧光棒的单价为x 元,则缤纷棒单价是1.5x 元,由题意可得:4030201.5x x-= 故选:B . 【点睛】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.8.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( ) A .5- B .4- C .3- D .2-【答案】B 【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题. 【详解】 解:331122ax x x x--+=--, 两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=,由于该分式方程的解为正数, ∴64x a =+,其中4043a a +>+≠,; ∴4a >-,且1a ≠-;∴关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由∴得:0y ≤;由∴得:2y a >-; ∴20a -<, ∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,; ∴它们的和为4-; 故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.二、填空题9.(2021·北京中考真题)方程213x x=+的解为______________. 【答案】3x = 【分析】根据分式方程的解法可直接进行求解. 【详解】解:213x x =+ 23x x =+,∴3x =,经检验:3x =是原方程的解. 故答案为:x =3. 【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.10.(2021·江苏宿迁市·中考真题)方程22142xx x -=--的解是_____________.【答案】1x =,2x =【分析】先把两边同时乘以24x -,去分母后整理为230x x +-=,进而即可求得方程的解.【详解】 解:22142xx x -=--, 两边同时乘以24x -,得22(2)4x x x -+=-,整理得:230x x +-=解得:112x -+=,212x -=,经检验,1x =,2x =故答案为:112x -+=,212x -=. 【点睛】本题考查了分式方程和一元二次方程的解法,熟练掌握分式方程和一元二次方程的解法是解决本题的关键.11.(2021·湖北荆州市·中考真题)若关于x 的方程21322x m x x x+-+=--的解是正数,则m 的取值范围为_____________. 【答案】m >-7且m ≠-3 【分析】先用含m 的代数式表示x ,再根据解为正数,列出关于m 的不等式,求解即可.【详解】解:由21322x m x x x +-+=--,得:72m x +=且x ≠2, ∴关于x 的方程21322x m x x x+-+=--的解是正数, ∴702m +>且722m +≠,解得:m >-7且m ≠-3, 故答案是:m >-7且m ≠-3. 【点睛】本题考查了分式方程的解以及解一元一次不等式组,求出方程的解是解题的关键.12.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________.【答案】3x = 【分析】直接利用通分,移项、去分母、求出x 后,再检验即可. 【详解】解:1121(1)x x x x x ++=-- 通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-,30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.13.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500 【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可. 【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=, 400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵, 故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程.14.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1 【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】 解:22411x a x ax x --+-=-+, 22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a =若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±, 故答案是:±1. 【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.15.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2 【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-, 解得3x m =+, ∴x 为正数,∴m +3>0,解得m >-3. ∴x ≠1,∴m +3≠1,即m ≠-2.∴m 的取值范围是m >-3且m ≠-2. 故答案为:m >-3且m ≠-2. 【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.三、解答题16.(2021·浙江中考真题)解分式方程:2113x x -=+. 【答案】4x = 【分析】先将分式方程化成整式方程,然后求解,最后检验即可. 【详解】解:2113x x -=+ 213x x -=+.4x =.经检验,4x =是原方程的解. 【点睛】本题主要考查了分式方程的解法,将将分式方程化成整式方程是解题的关键,检验是解答本题的易错点.17.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解 【分析】将分式去分母,然后再解方程即可. 【详解】 解:去分母得:22141x x整理得22x =,解得1x =,经检验,1x =是分式方程的增根, 故此方程无解. 【点睛】本题考查的是解分式方程,要注意验根,熟悉相关运算法则是解题的关键. 18.(2021·四川自贡市·中考真题)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?【答案】A型机平均每小时运送70件,B型机平均每小时运送50件【分析】设A型机平均每小时运送x件,根据A型机比B型机平均每小时多运送20件,得出B型机平均每小时运送(x-20)件,再根据A型机运送700件所用时间与B 型机运送500件所用时间相等,列出方程解之即可.【详解】解:设A型机平均每小时运送x件,则B型机平均每小时运送(x-20)件,根据题意得:70050020 x x=-解这个方程得:x=70.经检验x=70是方程的解,∴x-20=50.∴A型机平均每小时运送70件,B型机平均每小时运送50件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.19.(2021·山东泰安市·中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务? 【答案】(1)30人;(2)39天 【分析】(1)设当前参加生产的工人有x 人,根据每人每小时完成的工作量不变列出关于x 的方程,求解即可;(2)设还需要生产y 天才能完成任务.根据前面4天完成的工作量+后面y 天完成的工作量=760列出关于y 的方程,求解即可. 【详解】解:(1)设当前参加生产的工人有x 人,依题意得:16158(10)10x x =+,解得:30x =,经检验,30x =是原方程的解,且符合题意. 答:当前参加生产的工人有30人.(2)每人每小时的数量为168400.05÷÷=(万剂). 设还需要生产y 天才能完成任务, 依题意得:41540100.05760y ⨯+⨯⨯⨯=, 解得:35y =,35439+=(天)答:该厂共需要39天才能完成任务. 【点睛】本题考查分式方程的应用和一元一次方程的应用,分析题意,找到合适的数量关系是解决问题的关键.20.(2021·云南中考真题)“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场、车站、出租车、景区、手机短信……,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五·一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用A、B两种客房一天,供当天使用.下面是有关信息:今天用2000元租到A客房的数量与用1600元租到B客房的数量相等.今天每间A客房的租金比每间B客房的租金多40元.请根据上述信息,分别求今年5月1日该旅行社租用的A、B两种客房每间客房的租金.【答案】租用的A种客房每间客房的租金为200元,B种客房每间客房的租金为160元.【分析】设租用的B种客房每间客房的租金为x元,根据用2000元租到A客房的数量与用1600元租到B客房的数量相等列出方程,解之即可.【详解】解:设租用的B种客房每间客房的租金为x元,则A种客房每间客房的租金为x+40元,由题意可得:2000160040x x=+,54160,x x∴=+解得:160x=,经检验:160x=是原方程的解,160+40=200元,∴租用的A 种客房每间客房的租金为200元,B 种客房每间客房的租金为160元. 【点睛】本题考查了分式方程的实际应用,解题的关键是找准等量关系,列出方程. 21.(2021·江苏扬州市·中考真题)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?【答案】40万 【分析】设原先每天生产x 万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可. 【详解】解:设原先每天生产x 万剂疫苗,由题意可得:()2402200.5120%x x +=+,解得:x =40,经检验:x =40是原方程的解, ∴原先每天生产40万剂疫苗. 【点睛】此题主要考查了分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.22.(2021·江苏南京市·中考真题)解方程2111xx x +=+-.【答案】3x = 【分析】先将方程两边同时乘以()()11x x +-,化为整式方程后解整式方程再检验即可. 【详解】解:2111x x x +=+-, ()()()()21111x x x x x -++-=+,22221x x x x -+-=+, 3x =,检验:将3x =代入()()11x x +-中得,()()110x x +-≠, ∴3x =是该分式方程的解. 【点睛】本题考查了分式方程的解法,解决本题的关键是牢记解分式方程的基本步骤,即要先将分式方程化为整式方程,再利用“去括号、移项、合并同类项、系数化为1”等方式解整式方程,最后不能忘记检验等.23.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A 种花卉与用900元购买B 种花卉的数量相等,且B 种花卉每盆比A 种花卉多0.5元. (1)A ,B 两种花卉每盆各多少元?(2)计划购买A ,B 两种花卉共6000盆,其中A 种花卉的数量不超过B 种花卉数量的13,求购买A 种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?【答案】(1)A 种花弃每盆1元,B 种花卉每盆1.5元;(2)购买A 种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元【分析】(1)设A种花弃每盆x元,B种花卉每盆(x+0.5)元,根据题意列分式方程,解出方程并检验;(2)设购买A种花卉∴t盆,购买这批花卉的总费用为w元,则t≤13(6000-t),w=t+1.5(6000-t)=-0.5t+9000,w随t的增大而减小,所以根据t的范围可以求得w的最小值.【详解】解:(1)设A种花弃每盆x元,B种花卉每盆(x+0.5)元.根据题意,得6009000.5x x=+.解这个方程,得x=1.经检验知,x=1是原分式方程的根,并符合题意.此时x+0.5=1+0.5=1.5(元).所以,A种花弃每盆1元,B种花卉每盆1.5元.(2)设购买A种花卉∴t盆,购买这批花卉的总费用为w元,则t≤13(6000-t),解得∴t≤1500.由题意,得w=t+1.5(6000-t)=-0.5t+9000.因为w是t的一次函数,k=-0.5<0,w随t的增大而减小,所以当t=1500 盆时,w最小.w=-0.5×1500+9000=8250(元).所以,购买A种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元.【点睛】本题主要考查了分式方程解决实际问题和一次函数求最值,根据等量关系列出方程和函数关系式及取值范围是解题关键.24.(2021·山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.【答案】25分钟【分析】设走路线一到达太原机场需要x分钟,用含x的式子表示路线一、二的速度,再根据路线二平均速度是路线一的53倍列等式计算即可.【详解】解:设走路线一到达太原机场需要x分钟.根据题意,得5253037x x⨯=-.解得:25x=.经检验,25x=是原方程的解.答:走路线一到达太原机场需要25分钟.【点睛】本题主要考查分式方程的应用,根据题意找出等量关系是解决本题的关键,注意分式方程需要验根.25.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B 奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...预算资金且购买A奖品的资金不少于...720元,A,B两种奖品共100件.求购买A,B两种奖品的数量,有哪几种方案?【答案】(1)A,B奖品的单价分别是40元,15元;(2)购买A奖品23件,B 奖品77件;购买A奖品24件,B奖品76件;购买A奖品25件,B奖品75件.【分析】(1)设B奖品的单价为x元,则A奖品的单价为(x+25)元,根据“购买B奖品的数量是A奖品的3倍”,列出分式方程,即可求解;(2)设购买A奖品a件,则购买B奖品(100-a)件,列出一元一次不等式组,即可求解.【详解】(1)解:设B奖品的单价为x元,则A奖品的单价为(x+25)元,由题意得:8001700800325x x-⨯=+,解得:x=15,经检验:x=15是方程的解,且符合题意,15+25=40,答:A,B奖品的单价分别是40元,15元;(2)设购买A奖品a件,则购买B奖品(100-a)件,由题意得:400.8150.8(100)1700400.8720a aa⨯+⨯-≤⎧⎨⨯≥⎩,解得:22.5≤a≤25,∴a取正整数,∴a=23,24,25,答:购买A奖品23件,B奖品77件;购买A奖品24件,B奖品76件;购买A 奖品25件,B奖品75件.【点睛】本题主要考查分式方程以及一元一次不等式组的实际应用,找准数量关系,列出方程和不等式组,是解题的关键.26.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品,A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.【答案】(1)每盒产品的成本为30元.(2)210140033000=-+-w x x;(3)当70a≥时,每天的最大利润为16000元;当6070a<<时,每天的最大利润为()210140033000a a -+-元.【分析】(1)设B 原料单价为m 元,则A 原料单价为1.5m 元.然后再根据“用900元收购A 原料会比用900元收购B 原料少100kg ”列分式方程求解即可;(2)直接根据“总利润=单件利润×销售数量”列出解析式即可;(3)先确定210140033000=-+-w x x 的对称轴和开口方向,然后再根据二次函数的性质求最值即可.【详解】解:(1)设B 原料单价为m 元,则A 原料单价为1.5m 元. 依题意,得9009001001.5m m-=. 解得,3m =,1.5 4.5m =.经检验,3m =是原方程的根.∴每盒产品的成本为:4.5243930⨯+⨯+=(元).答:每盒产品的成本为30元.(2)()()305001060w x x =---⎡⎤⎣⎦210140033000x x =-+-;(3)∴抛物线210140033000=-+-w x x 的对称轴为w =70,开口向下∴当70a ≥时,a =70时有最大利润,此时w=16000,即每天的最大利润为16000元;当6070a <<时,每天的最大利润为()210140033000a a -+-元.【点睛】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键.27.(2021·陕西中考真题)解方程:213111x x x --=+-. 【答案】12x =-【分析】按照解分式方程的方法和步骤求解即可.【详解】解:去分母(两边都乘以()()11x x +-),得,22(1)31x x --=-. 去括号,得,222131x x x -+-=-,移项,得,222113x x x --=--+.合并同类项,得,21x -=.系数化为1,得,12x =-. 检验:把12x =-代入()()110x x +-≠. ∴12x =-是原方程的根. 【点睛】本题考查了分式方程的解法,熟知分式方程的解法步骤是解题的关键,尤其注意解分式方程必须检验.28.(2021·四川广安市·中考真题)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同. (1)求x 的值;(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?【答案】(1)16;(2)购进甲种水果75千克,则乙种水果25千克,获得最大利润425元【分析】(1)根据用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同列出分式方程,解之即可;(2)设购进甲种水果m 千克,则乙种水果100-m 千克,利润为y ,列出y 关于m 的表达式,根据甲种水果的重量不低于乙种水果重量的3倍,求出m 的范围,再利用一次函数的性质求出最大值.【详解】解:(1)由题意可知:120015004x x =+, 解得:x =16,经检验:x =16是原方程的解;(2)设购进甲种水果m千克,则乙种水果100-m千克,利润为y,由题意可知:y=(20-16)m+(25-16-4)(100-m)=-m+500,∴甲种水果的重量不低于乙种水果重量的3倍,∴m≥3(100-m),解得:m≥75,即75≤m<100,在y=-m+500中,-1<0,则y随m的增大而减小,∴当m=75时,y最大,且为-75+500=425元,∴购进甲种水果75千克,则乙种水果25千克,获得最大利润425元.【点睛】本题考查了分式方程和一次函数的实际应用,解题的关键是读懂题意,列出方程和函数表达式.29.(2021·湖南岳阳市·中考真题)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.【答案】妈妈开车的平均速度是48km/h.【分析】设妈妈开车的平均速度为x km/h ,根据小明行驶的时间比妈妈多用1小时列出方程,求解并检验可得结论.【详解】解:设妈妈开车的平均速度为x km/h ,则小明的速度为4x km/h ,根据题意得, 161614x x -=解得,48x =经检验,48x =是原方程的根,答:妈妈开车的平均速度是48km/h .【点睛】此题主要考查了分式方程的应用,找出等量关系“小明用时-1=妈妈用时”是解答此题的关键.30.(2021·江西中考真题)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是______元/件,乙两次购买这种商品的平均单价是______元/件. (3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同______加油更合算(填“金额”或“油量”).【答案】(1)这种商品的单价为60元/件;(2)48,50;(3)金额【分析】(1)根据题意设这种商品的单价为x 元/件,通过甲乙之间购买的商品数量间的数量关系列分式方程进行求解即可;(2)利用两次购买总价÷两次购买总数量=平均单价,列式分别求出甲乙两次购买的平均单价即可;(3)对比(2)中的计算数据总结即可得解.【详解】(1)设这种商品的单价为x 元/件,3000240010x x-=,解得60x =,经检验60x =是原分式方程的解, 则这种商品的单价为60元/件;(2)甲,乙两人第二次再去采购该商品时,单价为602040-=元/件,∴甲两次购买总价为240024800⨯=元,购买总数量为240024001006040+=件, ∴甲两次购买这种商品的平均单价是480048100=元/件; ∴乙两次购买总价为30003000+40500060⨯=元,购买总数量为3000210060⨯=件, ∴乙两次购买这种商品的平均单价是500050100=元/件; 故答案为:48,50;(3)∴4850<,∴按照甲两次购买商品的总价相同的情况下更合算,∴建议按相同金额加油更合算,故答案为:金额.【点睛】本题主要考查了分式方程的实际应用,通过题目找准数量关系,利用总价÷数量=单价的基本等量关系式进行求解是解决本题的关键.。

全国各地2021年中考数学试卷解析版分类汇编 分式与分式方程

全国各地2021年中考数学试卷解析版分类汇编 分式与分式方程

分式与分式方程一、选择题1. (2021•四川巴中,第4题3分)要使式子成心义,那么m 的取值范围是( ) A .m >﹣1 B . m ≥﹣1 C . m >﹣1且m ≠1 D . m ≥﹣1且m ≠1考点:二次根式及分式的意义.分析:依照二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,能够求出x 的范围. 解答:依照题意得:,解得:m ≥﹣1且m ≠1.应选D .点评:此题考查的知识点为:分式成心义,分母不为0;二次根式的被开方数是非负数.2. (2021•山东潍坊,第5题3分)假设代数式2)3(1-+x x 成心义,那么实数x 的取值范围是( ) A.x ≥一1 B .x ≥一1且x ≠3 C.x >-l D .x >-1且x ≠3考点:二次根式成心义的条件;分式成心义的条件.分析:依照二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,能够求出x 的范围.解答:依照题意得:⎩⎨⎧≠-≥+0301x x 解得x ≥-1且x ≠3. 应选B .点评:此题考查的知识点为:分式成心义,分母不为0;二次根式的被开方数是非负数.3.(2021山东济南,第7题,3分)化简211m m m m -÷- 的结果是 A .m B .m1 C .1-m D .11-m 【解析】m m m m m m m m m =-⨯-=-÷-111122,应选 A . 4. (2021•浙江杭州,第7题,3分)假设(+)•w=1,那么w=( ) A .a+2(a≠﹣2)B . ﹣a+2(a≠2)C . a ﹣2(a≠2)D .﹣a ﹣2(a≠﹣2) 考分式的混合运算点:专题:计算题.分析:原式变形后,计算即可确定出W.解答:解:根据题意得:W===﹣(a+2)=﹣a﹣2.故选:D.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5. (2014•山东淄博,第2题4分)方程﹣=0解是()A.x= B.x= C.x= D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6. (2014•山东临沂,第6题3分)当a=2时,÷(﹣1)的结果是()A.B.﹣C.D.﹣考点:分式的化简求值.分析:通分、因式分解后将除法转化为乘法约分即可.解答:解:原式=÷=•=,当a=2时,原式==﹣.故选D.点评:本题考查了分式的化简求值,熟悉因式分解和分式除法是解题的关键.7. (2014•山东临沂,第8题3分)某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B 型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程分析:设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.解答:解:设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得,=.故选D.点本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知评: 数,找出合适的等量关系,列方程.8.(2014•四川凉山州,第8题,4分)分式的值为零,则x 的值为( ) A . 3 B . ﹣3 C . ±3 D . 任意实数 考点:分式的值为零的条件 分析:分式的值为零:分子等于零,且分母不等于零. 解答: 解:依题意,得|x |﹣3=0且x +3≠0,解得,x =3.故选:A .点评: 本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.(2014•福建福州,第8题4分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是 【 】A .600450x 50x =+B .600450x 50x =-C .600450x x 50=+D .600450x x 50=- 2.(2014•广州,第6题3分)计算,结果是( ).(A ) (B ) (C ) (D )【考点】分式、因式分解【分析】【答案】B二、填空题1. (2021•上海,第8题4分)函数y=的概念域是x≠1.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2. (2021•四川巴中,第12题3分)假设分式方程﹣=2有增根,那么那个增根是.考点:分式方程的增根.分析:分式方程变形后,去分母转化为整式方程,依照分式方程有增根,取得x﹣1=0,求出x的值,代入整式方程即可求出m的值.解答:依照分式方程有增根,取得x﹣1=0,即x=1,那么方程的增根为x=1.故答案为:x=1点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确信增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. (2021•山东烟台,第14题3分)在函数中,自变量x的取值范围是.考点:二次根式及分式成心义的条件.分析:依照二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就能够够求解.解答:依照二次根式成心义,分式成心义得:1﹣x ≥0且x +2≠0,解得:x ≤1且x ≠﹣2.点评:此题考查的知识点为:分式成心义,分母不为0;二次根式的被开方数是非负数.4.(2021•湖南怀化,第12题,3分)分式方程=的解为 x=1 . 考点: 解分式方程专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解答: 解:去分母得:3x ﹣6=﹣x ﹣2,移项合并得:4x=4,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5. (2021山东济南,第19题,3分)假设代数式21-x 和123+x 的值相等,那么=x . 【解析】解方程12321+=-x x ,的7=x ,应填7. 6.(2021•遵义13.(4分))计算:+的结果是 ﹣1 . 考点:分式的加减法. 专题:计算题. 分析:原式变形后利用同分母分式的减法法则计算即可得到结果.解解:原式=﹣答:==﹣1.故答案为:﹣1.点此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.评:.7. (2021•年山东东营,第15题4分)若是实数x,y 知足方程组,那么代数式(+2)÷的值为1 .考点:分式的化简求值;解二元一次方程组.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.解答:解:原式=•(x+y)=xy+2x+2y,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为:1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8. (2021•江苏盐城,第13题3分)化简:﹣= 1 .分式的加减法.考点:专计算题.题:分原式利用同底数幂的减法法则计算即可得到结果.析:解答:解:原式==1.故答案为:1.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.(2021•四川宜宾,第10题,3分)分式方程﹣=1的解是x=﹣1.5 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x+2)﹣1=x2﹣4,整理得:x2+2x﹣1=x2﹣4,移项合并得:2x=﹣3解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解.故答案为:x=﹣1.5点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(2021•四川南充,第11题,3分)分式方程=0的解是.分析:分式方程去分母转化为整式方程,求出整式方程的解取得x的值,经查验即可取得分式方程的解.解:去分母得:x+1+2=0,解得:x=﹣3经查验x=﹣3是分式方程的解.故答案为:x=﹣3点评:此题考查了解分式方程,解分式方程的大体思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程必然注意要验根.11.(2021•四川凉山州,第25题,5分)关于x的方程=﹣1的解是正数,那么a的取值范围是a>﹣1 .考点:分式方程的解分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得答案.解答:解:=﹣1,解得x=,=﹣1的解是正数,a>﹣1,故答案为:a>﹣1.点评:本题考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.12.(2021•四川内江,第22题,6分)已知+=3,那么代数式的值为﹣.考点:分式的化简求值分析:根据+=3,得出a+2b=6ab,再把ab=(a+2b)代入要求的代数式即可得出答案.解答:解:∵+=3,∴a+2b=6ab,∴ab=(a+2b),把ab代入原式====﹣,故答案为﹣.点评:本题考查了分式的化简求值,要注意把ab看作整体,整体代入才可以.13.(2021•甘肃白银、临夏,第12题4分)化简:= .考点:分式的加减法.专题:计算题.分析:先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.14.(2021•广州,第13题3分)代数式成心义时,应知足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,那么【答案】三、解答题1. (2021•上海,第20题10分)解方程:﹣=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:(x+1)2﹣2=x﹣1,整理得:x2+x=0,即x(x+1)=0,解得:x=0或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=0.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.2. (2021•四川巴中,第23题5分)先化简,再求值:(+2﹣x)÷,其中x知足x2﹣4x+3=0.考点:分式的化简,一元二次的解法,分式的意义.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:原式=÷=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无心义;当x=3时,原式=﹣=﹣.点评:此题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式的值成心义.3. (2021•山东威海,第21题9分)端午节期间,某食堂依照职工食用适应,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?考点:分式方程的应用分析:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,根据甲粽子比乙种粽子少用100元,可得甲粽子用了300元,乙粽子400元,根据共购进甲、乙两种粽子260个,列方程求解.解答:解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100个,乙粽子为:=160个.答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.4. (2021•山东枣庄,第19题4分)(2)化简:(﹣)÷.考点:分式的混合运算专题:计算题.分析:(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(2)原式=•(x﹣1)=•(x﹣1)=﹣.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则解本题的关键.5. (2021•山东烟台,第19题6分)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.考点:分式的化简,极差.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分取得最简结果,求出数据的极差确信出x ,代入计算即可求出值. 解答:原式=÷=•=,当x =2﹣(﹣3)=5时,原式==.点评:此题考查了分式的化简求值,熟练把握运算法那么是解此题的关键.6. (2021•山东烟台,第23题8分)山地自行车愈来愈受到中学生的喜爱,各类品牌接踵投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,假设卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元?(用列方程的方式解答)(2)该车打算新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A ,B 两种型号车的进货和销售价钱如下表:考点:分式方程的应用,一次函数的应用.分析: (1)设今年A 型车每辆售价x 元,那么去年售价每辆为(x +400)元,由卖出的数量相同成立方程求出其解即可;(2)设今年新进A 行车a 辆,那么B 型车(60﹣x )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就能够够求出y 的最大值.解答:(1)设今年A 型车每辆售价x 元,那么去年售价每辆为(x +400)元,由题意,得,解得:x =1600.经查验,x =1600是元方程的根.答:今年A 型车每辆售价1600元;A 型车B 型车进货价格(元) 11001400 销售价格(元)今年的销售价格2000(2)设今年新进A行车a辆,那么B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.点评:此题考查了列分式方程解实际问题的运,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.7.(2021•湖南张家界,第18题,6分)先化简,再求值:(1﹣)+,其中a=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则变形,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=÷=•=,当a=时,原式==1+.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8.(2021•湖南张家界,第22题,8分)国家实施高效节能电器的财政补助政策,某款空调在政策实施后.每购买一台,客户每购买一台可获补助500元.假设一样用11万元所购买此款空调,补助后可购买的台数比补助前前多20%,那么该款空调补助前的售价为每台多少元? 考点: 分式方程的应用.版权所有 专题: 应用题.分析: 设该款空调补贴前的售价为每台x 元,根据补贴后可购买的台数比补贴前前多20%,可建立方程,解出即可.解答: 解:设该款空调补贴前的售价为每台x 元,由题意,得:×(1+20%)=,解得:x=3000.经检验得:x=3000是原方程的根. 答:该款空调补贴前的售价为每台3000元.点评: 本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 9. (2021•江西抚州,第16题,5分)先化简:34211x x x x x ---÷--() ,再任选一个你喜爱的数x 代入求值. 解析:原式=x x x x x x x ⎛⎫---- ⎪---⎝⎭2341112=x x x x x -+-⋅--244112=()x x --222=x -2 取x =10 代入,原式=8 (注:x 不能取1和2)10.(2021•山东聊城,第18题,7分)解分式方程:+=﹣1.考点: 解分式方程.分析: 解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答: 解:去分母得:﹣(x+2)2+16=4﹣x 2,去括号得:﹣x 2﹣4x ﹣4+16=4﹣x 2, 解得:x=2,经检验x=2是增根,分式方程无解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.11. (2021年贵州黔东南18.(8分))先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.(2021•十堰17.(6分))化简:(x2﹣2x )÷.分式的混合运算.考点:专计算题.题:原式利用除法法则变形,约分即可得到结果.分析:解:原式=x(x﹣2)•=x.解答:点此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.评:13.(2021•十堰19.(6分))甲、乙两人预备整理一批新到的图书,甲单独整理需要40分钟完工;假设甲、乙一起整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?考点:分式方程的应用.分析:将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可.解答:解:设乙单独整理x分钟完工,根据题意得:+=1,解得x=100,经检验x=100是原分式方程的解.答:乙单独整理100分钟完工.点评:本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.14.(2021•娄底21.(8分))先化简÷(1﹣),再从不等式2x﹣3<7的正整数解当选一个使原式成心义的数代入求值.考点:分式的化简求值;一元一次不等式的整数解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式的解集,找出解集中的正整数解得到x的值,代入计算即可求出值.解答:解:原式=÷=•=,不等式2x﹣3<7,解得:x<5,其正整数解为1,2,3,4,当x=1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.(2021•娄底24.(8分))娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚动身1小时,最后两车同时抵达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘动身时,求小张离长沙还有多远?考点:分式方程的应用.分析:(1)由题意,设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,根据“小刘比张晚出发1小时,最后两车同时到达长沙,”列出方程解决问题;(2)利用(1)中小张开着大货车的速度,即可求得答案.解答:解:(1)设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,由题意得﹣=1解得x=60,则1.5x=90,答:大货车速度为60km/h,则小轿车的速度为90km/h.(2)180﹣60×1=120km答:当小刘出发时,小张离长沙还有120km . 点评: 此题考查分式方程的运用,注意题目蕴含的数量关系,设出未知数,列方程解决问题.16. (2021年湖北咸宁17.(8分))(1)计算:(﹣2)2+4×2﹣1﹣|﹣8|; (2)化简:﹣.考点: 实数的运算;分式的加减法;负整数指数幂.分析: (1)本题涉及负整指数幂、乘方、绝对值化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)依照分式的性质,可化成同分母的分式,依照分式的加减,可得答案. 解答: 解:(1)原式=4+2﹣8=﹣2; (2)原式=.点评: 本题考查了实数的运算,本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17. ( ( 2021年河南) 16.8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x =2-1 解:原式=()()()2x 1x 12x x 1x x 1x+-++÷-…………………4分 =()2x 1xx x 1++ =1x 1+…………………………………………………………………6分 当x =2-1时,原式=1211-+=12=22……………………………8分18.(2021•江苏苏州,第21题5分)先化简,再求值:,其中.考点:分式的化简求值.分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.解答:解:=÷(+)=÷=×=,把,代入原式====.点评:此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.19.(2021•江苏苏州,第22题6分)解分式方程:+=3.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20. (2021•山东淄博,第18题5分)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.21. (2021•江苏徐州,第24题8分)几个小伙伴打算去音乐厅观看演出,他们预备用360元购买门票.下面是两个小伙伴的对话:依照对话的内容,请你求出小伙伴们的人数.考点:分式方程的应用.分析:设票价为x 元,根据图中所给的信息可得小伙伴的人数为:,依照小伙伴的人数不变,列方程求解.解答:解:设票价为x元,由题意得,=+2,解得:x=60,那么小伙伴的人数为:=8.答:小伙伴们的人数为8人.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22. (2021•江苏盐城,第19题4分)(2)解方程:=.考点:解分式方程专题:计算题.分析:(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(2)去分母得:3x+3=2x﹣2,解得:x=﹣5,经检验x=﹣5是分式方程的解.点评:此题考查了解分式方程.23. (2021•年山东东营,第23题8分)为顺利通过“国家文明城市”验收,东营市政府拟对称取部份路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,依照市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队成心承包这项工程,经调查明白,乙工程队单独完成此项工程的时刻是甲工程队单独完成此项工程时刻的2倍,假设甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)假设甲工程队天天的工程费用是4.5万元,乙工程队天天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.考点:一次函数的应用;分式方程的应用.分析:(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)第一依照(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情形,别离计算出所需的工程费用.解答:解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经查验,x=15是原分式方程的解,2x=30答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元;方案二:由乙工程队单独完成需要2.5×30=75万元;方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元.因此选择甲工程队,既能按时完工,又能使工程费用最少.点评:本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. (2021•江苏徐州,第19题5分)(2)计算:(a+)÷(1+).考点:分式的混合运算.专题:计算题.分析:(2)原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分即可取得结果.解答:解:(2)原式=÷=•=a﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则解本题的关键.25.(2021•四川遂宁,第18题,7分)先化简,再求值:(+)÷,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=•=,当x=﹣1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.(2021•四川宜宾,第17题,10分)(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂.分析:(1)分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据分式混合运算的法则进行计算即可.解答:解:(1)原式=2﹣1+3=4;(2)原式=•=•=•=2a+12.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、绝对值的性质是解答此题的关键.27.(2021•四川凉山州,第19题,6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.考点:分式的化简求值分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,已知方程变形后代入计算即可求出值.。

《分式与二次根式》专项练习和中考真题(含答案解析及点睛)

《分式与二次根式》专项练习和中考真题(含答案解析及点睛)

《分式与二次根式》专项练习1.若代数式13x x +-有意义,则实数x 的取值范围是( ) A .1x =-B .3x =C .1x ≠-D .3x ≠ 【答案】D【分析】分式有意义的条件是分母不为0.【解析】Q 代数式13x x +-有意义,∴30x -≠,∴3x ≠故选D .【点睛】本题运用了分式有意义的条件知识点,关键要知道分母不为0是分式有意义的条件. 2.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 【答案】B【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解析】原式()211a a a =-+-22111a a a a -=---11a =-.故选B . 【点睛】本题考查分式的通分和分式的约分的运用,解题关键在于在解答的过程中注意符号的运用及平方差公式的运用.3.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0 【答案】B【分析】根据分式的值为零的条件可以求出x 的值.【解析】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列式子中,属于最简二次根式的是A B C D 【答案】B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件 (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.3==属于最简二次根式.故选B. 5.下列运算,结果正确的是( )A =B .3=C 3=D = 【答案】D【分析】根据二次根式的运算性质进行计算即可.【解析】A 不是同类二次根式,不能合并,此选项错误;B .3不是同类二次根式,不能合并,此选项错误;C ==,此选项错误;D ==,此选项计算正确;故选:D .【点睛】本题考查了二次根式加减乘除计算,熟知以上计算是解题的关键.6.已知x 是整数,当x x 的值是( )A .5B .6C .7D .8 【答案】A最接近的整数,可得结论.【解析】<<,∴56<<5,∴当x x 的值是5,故选:A .【点睛】本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.下列各数中与2的积是有理数的是( )A .2B .2CD .2- 【答案】D【分析】利用平方差公式可知与2+的积是有理数的为2;【解析】Q (22431-=-=;故选:D .【点睛】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.8.已知1a -,a 介于两个连续自然数之间,则下列结论正确的是( ) A .12a <<B .23a <<C .34a <<D .45a <<【答案】C的范围,即可得出答案.【解析】解:∵45<<,∴314<<1在3和4之间,即34a <<.故选:C .【点睛】本题考查了估算无理数的大小.9.A.0 B【答案】B【分析】根据二次根式的性质化简第一项【解析】解:原式==【点睛】本题考查了二次根式的混合运算10.实数a、b在数轴上的位置如图所示A.2a+b B.-2a+b【答案】C【解析】利用数轴得出a+b的符号,进而利∵由数轴可知,b>0>a,且|a|>|b|考点:1.绝对值;2.二次根式的性质与化简11.计算113x x-的结果是_____.【答案】23x【分析】先通分,再相加即可求得结果.【解析】解:1131333x x x x-=-3=,【点睛】此题考察分式的加法,先通分化为12.计算:221y xx y x y⎛⎫÷-⎪-+⎝⎭的结果是【答案】1x y-【分析】先计算括号内分式的减法、将被除【解析】解:221y xx y x y⎛⎫÷-⎪-+⎝⎭(的范围是解题的关键.)C.D.12一项,根据二次根式的乘法化简第二项,然后合并即-B.运算,熟练掌握二次根式的运算法则是解答本题的关所示,且|a|>|b|a b-+的结果为(C.b D.2a-b进而利用绝对值和二次根式的性质得出即可:()a b a a b b-+=-++=.故选C.与化简;3.实数与数轴..2x,故答案为:23x.分化为同分母分式再相加即可.结果是____________.将被除式分母因式分解,再将除法转化为乘法,最后)()y x y xx y x y x y x y⎛⎫+=÷-⎪+-++⎝⎭()(yx y x y=+-合并即可.题的关键.)最后约分即可得.)yx y÷+()()yx y x y x y y +=⋅+-1x y =-,故答案为:1x y-. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.13.若,x y 4y ++==_______.【答案】2【分析】根据二次根式有意义的条件可得关于x 的不等式组,解不等式组可求得x 的值,继而可求得y 的值,将x 、y 的值代入所求式子进行计算即可.【解析】4y +=,所以1010x x -≥⎧⎨-≥⎩,解得:x=1,所以y=4,2==,故答案为:2.【点睛】本题考查了二次根式有意义的条件,算术平方根等,正确求出x 、y 的值是解题的关键. 14.分式212a b 与21ab 的最简公分母是__________. 【答案】2a 2b 2 【解析】212a b 与21ab 的分母分别是2a 2b 、ab 2,故最简公分母是2a 2b 2,故答案为 2a 2b 2. 【点睛】本题考查了最简公分母的确定,确定最简公分母的关键是:各分母所含的所有因式的最高次幂的积即为最简公分母.15._______.【答案】3【分析】根据二次根式的性质进行求解即可.3-=3,故答案为3.a =是解题的关键.16.若分式1x x-的值为0,则x 的值为______. 【答案】1. 【分析】根据分式的值为零的条件即可得出.【解析】解:∵分式1x x-的值为0,∴x-1=0且x≠0,∴x=1.故答案为1. 【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.17.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=_____.【答案】1 【分析】先计算出()()()()21212A B x A B A B x x x x +-++=----,再根据已知等式得出A 、B 的方程组,解之可得. 【解析】()()()()()()()()()()21212121212A x B x A B x A B A B x x x x x x x x --+-++=+=--------, ∵()()3x 4x 1x 2---=A x 1-+B x 2-,∴324A B A B +=⎧⎨+=⎩,解得:12A B =⎧⎨=⎩,故答案为1. 【点睛】本题考查了分式的加减法运算,熟练掌握分式加减运算的法则、得出关于A 、B 的方程组是解本题的关键.18.已知3y =++,则x y -=_________.【答案】2-【分析】根据被开方数是非负数,可得x ,y ,根据有理数的减法,可得答案. 【解析】解:由题意得1010x x -≥⎧⎨-≥⎩,解得x=1,y=3,∴x-y=1-3=-2,故答案为:-2. 【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,可得x ,y 是解题关键.19.a =____.【答案】﹣1.【分析】根据题意,它们的被开方数相同,列出方程求解.【解析】a +6=a 2﹣4a ,解得:a =6或﹣1.∵当a =6===a =6(不符题意,舍去).∵当a =﹣1==,a =﹣1符合题意.故答案为:﹣1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.20.已知a b 、为有理数,m n 、分别表示5-且21amn bn +=,则2a b +=_________. 【答案】52【解析】因为2<3,所以2<5-<3,故m=2,n=5.把m=2,代入amn+bn 2=1得,2()a+()2b=1化简得(6a+16b )(2a+6b )=1,所以6a+16b=1且2a+6b=0,解得a=1.5,b=-0.5.所以2a+b=3-0.5=2.5.考点:1.二次根式的混合运算;2.估算无理数的大小.21.若分式21x +的值不存在,则x 的值为_____. 【答案】﹣1【分析】直接利用分式无意义的条件得出x 的值,进而得出答案.【解析】若分式2x 1+的值不存在,则x+1=0,解得:x=﹣1,故答案为﹣1. 【点睛】本题考查了分式无意义的条件,熟知分母为0时分式无意义是解题的关键.22.计算:21|2|2-⎛⎫---÷= ⎪⎝⎭_________.【答案】2+【分析】根据根式的计算法则计算即可.【解析】解:原式422=-++=+2+.【点睛】本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视. 23.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2. 【答案】11a -,1. 【分析】先将分式进行化简,再把a 的值代入化简的结果中求值即可. 【解析】213(2)211a a a a a +-÷+-+-212(1)3(1)1a a a a a +-+-=÷--211(1)1a a a a ++=÷--211(1)1a a a a +-=⨯-+11a =- 当a=2时,原式1121==-. 【点睛】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.24.先化简,再求值:2112224a a a a +⎛⎫+÷ ⎪+--⎝⎭,其中a =【答案】22a ,1. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,代入计算即可求出值.【解析】原式22(1)(2)2442a a a a a +-++-=⋅-2222a a a --++=22a =当a =1==. 【点睛】本题考查了分式的化简求值,解题的关键是选择正确的计算方法,对通分、分解因式、约分等知识点熟练掌握.25.先化简,再求代数式的值:24224x x x x x x ⎛⎫-÷⎪-+-⎝⎭,其中1cos 606x -=︒+. 【答案】310x +,12.【分析】先利用分式的减法与除法法则化简分式,再根据特殊角的余弦值、负整数指数幂求出x 的值,然后代入求值即可. 【解析】原式4(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x x =⎡⎤+--÷⎢⎥+-+-+-⎣⎦22482(2)(2)(2)(2)x x x x x x x x x +-+÷-+-=+ 2310(2)(2)(2)(2)x x x x x x x++-⋅+-=(310)(2)(2)(2)(2)x x x x x x x +⋅-=+-+310x =+ 1112cos 606263x -=++==︒ 将23x =代入得:原式2310123⨯+==. 【点睛】本题考查了分式的减法与除法、特殊角的余弦值、负整数指数幂等知识点,熟记各运算法则是解题关键.26.先化简,再求值:22244242x x x x x x -+-÷-+,其中12x =. 【答案】2.【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.【解析】解:22244242x x x x x x -+-÷-+()()()()222222x x x x x x -+=∙+-- 1x= 当1,2x = 上式11 2.2=÷= 【点睛】本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键. 27.先化简22339m m m m m m ⎛⎫-÷ ⎪+--⎝⎭,然后从3-,0,1,3中选一个合适的数代入求值. 【答案】9m --,10-.【分析】先计算括号内的分式减法,再计算分式的除法,后选一个使得分式有意义的x 的值代入求值即可.【解析】原式(3)2(3)(3)(3)(3)(3)(3)(3)m m m m m m m m m m m =⎡⎤-+-÷⎢⎥+-+-+-⎣⎦2226(3)(3)(3)(33)m m m m m m m m m --+=-⋅-+-29m mm --=(9)m m m -+=9m =--Q 分式的分母不能为00,30,30m m m ≠-≠+≠∴解得:m 不能为3-,0,3则选1m =代入得:原式91910m =--=--=-.【点睛】本题考查了分式的减法与除法、分式有意义的条件等知识点,掌握分式的运算法则是解题关键.28.先化简,再求值:222111x x x x x ++---,其中5x =. 【答案】11x -,14. 【分析】先根据分式的减法法则进行化简,再将5x =代入求值即可.【解析】原式2(1)(1)(1)1x x x x x +=-+--111x x x x +=---11x x x +--=11x =- 将5x =代入得:原式11514==-. 【点睛】本题考查了分式的减法运算与求值,熟练掌握分式的减法运算法则是解题关键. 《分式与二次根式》中考真题1. 估计(的值应在 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【答案】A【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【解析】(+=+,∵4<6<6.25, <2.5, ∴<5,故选:A .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.2.a 的取值范围是( )A .a ≥1B .a ≤1C .a ≥0D .a ≤﹣1【答案】A【分析】直接利用二次根式有意义的条件分析得出答案.【解析】有意义,则10a -…,解得:1a ….故选:A . 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.1在实数范围内有意义,则x 满足的条件是A . 12x ≥B .12x ≤C .12x =D .12x ≠ 【答案】C【解析】1++有意义,则必满足2x -1≥0,且1-2x ≥0,故12x =,故选C. 考点:二次根式有意义的条件.4.下列二次根式中,是最简二次根式的是( )AB C D【答案】B【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解析】A =不是最简二次根式,错误;BC =不是最简二次根式,错误;D =不是最简二次根式,错误,故选B .【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:()1被开方数不含分母;()2被开方数不含能开得尽方的因数或因式. 5.若分式211x x -+的值为0,则x 的值为( ) A .0B .1C .﹣1D .±1【答案】B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得. 【解析】∵分式2x 1x 1-+的值为零,∴21010x x -=⎧⎨+≠⎩,解得:x=1,故选B . 【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.6.÷的结果正确的是( ). A .1B .53C .5D .9 【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.【解析】÷==1=,故选:A . 【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A.2xx y+-B.22yxC.3223yxD.222()yx y-【答案】D【分析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【解析】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、23233x xx y x y++≠--,错误;B、22629y yx x≠,错误;C、3322542273y yx x≠,错误;D、()()22221829y yx y x y--,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.8.下列运算正确的是()A12==±B.()325ab ab=C.22422()xy xy yx y x y x yx y y x⎛⎫⎛⎫--+++=+⎪⎪--⎝⎭⎝⎭D.223152845c a c cab ab a-÷=-【答案】C【分析】分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.【解析】解:A12===,故选项错误;B、()3236ab a b=,故选项错误;C、2422xy xy yx y x yx y y x⎛⎫⎛⎫--+++⎪⎪--⎝⎭⎝⎭=()()()22422x y x y y xxy xy yx y x y y x y x⎛⎫-+-⎛⎫-++⎪ ⎪⎪----⎝⎭⎝⎭=()()22x y x yx y y x+-⋅---=()2x y+,故选项正确;D、22222315348481510c a c c ab cab ab ab a c a-÷=⨯=--,故选项错误;故选C.【点睛】本题考查了二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则,解题的关键是学会计算,掌握运算法则.9.一辆货车送上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.1()2a b+B.aba b+C.2a bab+D.2aba b+【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【解析】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为x b小时, 则上、下山的平均速度22xab xxa b a b =++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.10.分式22a a a+化简的结果为 . 【答案】12a +. 【解析】原式=(2)a a a +=12a +.故答案为12a +. 【点评】本题考查了利用分式性质约分.11.计算:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【解析】解:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+ ()()yx y x y x y y +=⋅+-1x y =-,故答案为:1x y-. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.12.在实数范围内有意义,则x 的取值范围是_____. 【答案】x >3【分析】本题考查二次根式是否有意义以及分式是否有意义,按照对应自变量要求求解即可.【解析】因为二次根式有意义必须满足被开方数为非负数所以有260x -≥.又因为分式分母不为零所以260x -≠.故综上:26x ->0 则:3x >.故答案为:x >3【点睛】二次根式以及分式的结合属于常见组合,需要着重注意分母不为零的隐藏陷阱. 13.要使51x +有意义,则x 的取值范围是_____. 【答案】x ≠﹣1【分析】根据分式的性质即可求解.【解析】解:要使分式51x +有意义,需满足x +1≠0.即x ≠﹣1.故答案为:x ≠﹣1. 【点睛】此题主要考查分式的性质,解题的关键是熟知分式的分母不为零.14.当x= 时,分式3x 2-无意义. 【答案】2【解析】根据分式分母为0分式无意义的条件,要使3x 2-在实数范围内有意义,必须x ﹣2=0,即x=2. 【点睛】本题考查了分式无意义的条件,熟知分母为0时分式无意义是解题的关键.15.=_____.【答案】【分析】直接化简二次根式进而合并得出答案.【解析】=.故答案为:. 【点睛】本题主要考查了二次根式的混合运算,正确化简二次根式是解答的关键.16.+的结果是________. 【答案】2【分析】利用二次根式的乘除法则运算.【解析】解:原式+=4233+=2.故答案是:2. 【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.17.计算-的结果是___.【答案】4【分析】根据二次根式的混合运算计算即可.【解析】解:2=4-.故答案为4. 【点睛】本题考查二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.18.若1001a a -+=,则21001a -=_____.【答案】1002.【分析】根据绝对值的性质和二次根式的性质,即可解答【解析】∵10020a -≥,∴1002a ≥.由1001a a -+=,得1001a a -++=,1001=,∴210021001a -=.∴210011002a -=.故答案是:1002.【点睛】此题考查绝对值的非负性,二次根式的性质,解题关键在于掌握运算法则19.已知5y x =-+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.【答案】2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【解析】545y x x x =+=--+当4x <时,4592y x x x =--+=-当4x ≥时,451y x x =--+=则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++L 75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.20.m 的结果为正整数,则无理数m 的值可以是__________.(写出一个符合条件的即可)(答案不唯一)【分析】根据2为12,即可得到一个无理数m 的值.【解析】解:∵212=,∴m =m (答案不唯一).【点睛】本题考查了二次根式,注意2a =是解题的关键.21.2318-- 【答案】-3.【分析】根据绝对值的性质,二次根式的混合运算,进行运算即可【解析】1243--+-=-【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则22.化简:222111a a a a a ⎛⎫--÷ ⎪--⎝⎭. 【答案】12a a+【分析】先计算括号内异分母分式的减法,再将除法转化为乘法,继而约分即可得.【解析】解:原式=22(1)111)12(a a a a a a a ⎛⎫--÷ ⎪--⎝-+⎭=(1)(111)2a a a a ⨯+--=12a a +. 【点睛】本题主要考查了分式的混合运算,熟记分式混合运算的顺序和各类运算法则是解题的关键.23.先化简,再求值:21211a a a a ÷-+-,其中a =3. 【答案】1a a -,32【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【解析】解:原式=2(1)a a -•(a ﹣1)=1a a -,当a=3时,原式=33=312-. 【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.24.先化简,再求值:2112111x x x x +⎛⎫-÷ ⎪-+-⎝⎭,然后从1-,0,1中选择适当的数代入求值. 【答案】22x +,1. 【分析】根据分式的运算法则进行运算求解,最后代入0x =求值即可.【解析】原式112(1)(1)(1)(1)(1)(1)x x x x x x x x x ⎡⎤+-+=-÷⎢⎥-+-+-+⎣⎦11(1)(1)(1)(1)2⎡⎤+-+-+=⨯⎢⎥-++⎣⎦x x x x x x x 2(1)(1)(1)(1)2⎡⎤-+=⨯⎢⎥-++⎣⎦x x x x x 22x =+. ∵x+1≠0且x-1≠0且x+2≠0,∴x ≠-1且x ≠1且x ≠-2,当0x =时,分母不为0,代入:原式2=102=+. 【点睛】本题考查分式的加减乘除混合运算,注意运算顺序为:先算乘除,再算加减,有括号先算括号内的;另外本题选择合适的数时要注意选择的数不能使分母为0.25.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a =+【答案】1a -【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 值代入计算即可.【解析】原式=(1)(1)1a a a a a+-+g =1a -,当1a =时,原式11+-= 【点睛】本题考查的是分式的化简求值,解答的关键是熟练掌握分式的混合运算顺序和运算法则,注意运算结果要化成最简分式或整式.26.先化简,再求值:23193m m m ⎛⎫÷+ ⎪--⎝⎭,其中2m =-. 【答案】13m +,1 【分析】根据分式的加减乘除运算法则进行运算即可化简,最后将2m =-代入求解即可.【解析】解:原式233933m m m m m -⎛⎫=÷+ ⎪---⎝⎭293m m m m =÷--()()333m m m m m -=⋅+-13m =+ 当2m =-时代入,原式1123==-+.故答案为:1. 【点睛】本题考查分式的加减乘除运算法则及化简求值,先乘除,再加减,有括号先算括号内的,熟练掌握运算法则及运算顺序是解决此类题的关键.27.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+=(,善于思考的小明进行了以下探索:设(2a m +=+(其中a b m n 、、、均为整数),则有22a m 2n +=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ; (2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + )2;(3)若(2a m +=+,且ab m n 、、、均为正整数,求a 的值. 【答案】(1)22m 3n +,2mn ;(2)13,4,2,1(答案不唯一);(3)a =7或a =13.【解析】 (1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.。

专题03分式与二次根式(共50题)-2021年中考数学真题分专题训练(教师版含解析)(全国通用)

专题03分式与二次根式(共50题)-2021年中考数学真题分专题训练(教师版含解析)(全国通用)

2021年中考数学真题分项汇编【全国通用】专题3分式与二次根式(共50题)一.选择题(共13小题)1.(2020•安顺)当x =1时,下列分式没有意义的是( )A .x+1xB .x x−1C .x−1xD .x x+1【分析】直接利用分式有意义的条件分析得出答案.【解析】A 、x+1x ,当x =1时,分式有意义不合题意;B 、x x−1,当x =1时,x ﹣1=0,分式无意义符合题意;C 、x−1x ,当x =1时,分式有意义不合题意;D 、x x+1,当x =1时,分式有意义不合题意;故选:B .2.(2020•遂宁)下列计算正确的是( )A .7ab ﹣5a =2bB .(a +1a )2=a 2+1a 2C .(﹣3a 2b )2=6a 4b 2D .3a 2b ÷b =3a 2【分析】根据整式的加减、乘除分别进行计算,再判断即可.【解析】7ab 与﹣5a 不是同类项,不能合并,因此选项A 不正确;根据完全平方公式可得(a +1a )2=a 2+1a 2+2,因此选项B 不正确;(﹣3a 2b )2=9a 4b 2,因此选项C 不正确;3a 2b ÷b =3a 2,因此选项D 正确;故选:D .3.(2020•金华)分式x+5x−2的值是零,则x 的值为( ) A .2 B .5 C .﹣2 D .﹣5【分析】利用分式值为零的条件可得x +5=0,且x ﹣2≠0,再解即可.【解析】由题意得:x +5=0,且x ﹣2≠0,解得:x =﹣5,故选:D .4.(2020•绥化)化简|√2−3|的结果正确的是( )A .√2−3B .−√2−3C .√2+3D .3−√2【分析】根据绝对值的定义解答即可.【解析】∵√2−3<0,∴|√2−3|=−(√2−3)=3−√2.故选:D .5.(2020•泰州)下列等式成立的是( )A .3+4√2=7√2B .√3×√2=√5C .√31√6=2√3D .√(−3)2=3【分析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解析】A .3与4√2不是同类二次根式,不能合并,此选项计算错误;B .√3×√2=√6,此选项计算错误;C .√3÷1√6=√3×√6=3√2,此选项计算错误; D .√(−3)2=3,此选项计算正确;故选:D .6.(2020•聊城)计算√45÷3√3×√35的结果正确的是( )A .1B .53C .5D .9【分析】根据二次根式的性质化简二次根式后,再根据二次根式的乘除法法则计算即可. 【解析】原式=3√5÷3√3×√155=3√5×√39×√155=√5×3×1515=1515=1.故选:A.7.(2020•无锡)下列选项错误的是()A.cos60°=12B.a2•a3=a5C.√2=√22D.2(x﹣2y)=2x﹣2y【分析】分别根据特殊角的三角函数值,同底数幂的乘法法则,二次根式的除法法则以及去括号法则逐一判断即可.【解析】A.cos60°=12,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.√2=√2√2⋅√2=√22,故本选项不合题意;D.2(x﹣2y)=2x﹣4y,故本选项符合题意.故选:D.8.(2020•杭州)√2×√3=()A.√5B.√6C.2√3D.3√2【分析】根据二次根式的乘法运算法则进行运算即可.【解析】√2×√3=√6,故选:B.9.(2020•上海)下列二次根式中,与√3是同类二次根式的是() A.√6B.√9C.√12D.√18【分析】根据同类二次根式的定义,先化简,再判断.【解析】A.√6与√3的被开方数不相同,故不是同类二次根式;B.√9=3,与√3不是同类二次根式;C.√12=2√3,与√3被开方数相同,故是同类二次根式;D.√18=3√2,与√3被开方数不同,故不是同类二次根式.故选:C.10.(2020•绥化)下列等式成立的是( )A .√16=±4B .√−83=2C .﹣a √1a =√−aD .−√64=−8【分析】分别根据算术平方根的定义,立方根的定义,二次根式的性质逐一化简即可判断.【解析】A .√16=4,故本选项不合题意;B .√−83=−2,故本选项不合题意;C .−a √1a =−√a ,故本选项不合题意;D .−√64=−8,故本选项符合题意.故选:D .11.(2020•济宁)下列各式是最简二次根式的是( )A .√13B .√12C .√a 3D .√53 【分析】利用最简二次根式定义判断即可.【解析】A 、√13是最简二次根式,符合题意;B 、√12=2√3,不是最简二次根式,不符合题意;C 、√a 3=|a |√a ,不是最简二次根式,不符合题意;D 、√53=√153,不是最简二次根式,不符合题意.故选:A .12.(2020•重庆)下列计算中,正确的是( )A .√2+√3=√5B .2+√2=2√2C .√2×√3=√6D .2√3−2=√3【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【解析】A .√2与√3不是同类二次根式,不能合并,此选项计算错误;B .2与√2不是同类二次根式,不能合并,此选项计算错误;C .√2×√3=√2×3=√6,此选项计算正确;D .2√3与﹣2不是同类二次根式,不能合并,此选项错误;故选:C .13.(2020•衢州)要使二次根式√x −3有意义,则x 的值可以为( )A .0B .1C .2D .4【分析】根据二次根式有意义的条件可得x ﹣3≥0,再解即可.【解析】由题意得:x ﹣3≥0,解得:x ≥3,故选:D .二.填空题(共12小题)14.(2020•济宁)已如m +n =﹣3,则分式m+n m ÷(−m 2−n 2m −2n )的值是 13 .【分析】根据分式运算法则即可求出答案.【解析】原式=m+n m ÷−(m 2+2mn+n 2)m =m+n m •m −(m+n) =−1m+n, 当m +n =﹣3时,原式=13故答案为:1315.(2020•聊城)计算:(1+a 1−a )÷1a 2−a= ﹣a . 【分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.【解析】原式=1−a+a 1−a •a (a ﹣1) =11−a •a (a ﹣1)=﹣a .故答案为:﹣a .16.(2020•南充)若x 2+3x =﹣1,则x −1x+1= ﹣2 .【分析】根据分式的减法可以将所求式子化简,然后根据x 2+3x =﹣1,可以得到x 2=﹣1﹣3x ,代入化简后的式子即可解答本题.【解析】x −1x+1 =x(x+1)−1x+1 =x 2+x−1x+1, ∵x 2+3x =﹣1,∴x 2=﹣1﹣3x ,∴原式=−1−3x+x−1x+1=−2x−2x+1=−2(x+1)x+1=−2, 故答案为:﹣2.17.(2020•重庆)计算:(π﹣1)0+|﹣2|= 3 .【分析】根据零次幂和绝对值的意义,进行计算即可.【解析】(π﹣1)0+|﹣2|=1+2=3,故答案为:3.18.(2020•台州)计算1x −13x 的结果是 23x .【分析】先通分,再相减即可求解.【解析】1x −13x =33x −13x =23x .故答案为:23x .19.(2020•湖州)化简:x+1x 2+2x+1= 1x+1 .【分析】直接将分母分解因式,进而化简得出答案.【解析】x+1x 2+2x+1 =x+1(x+1)2 =1x+1.故答案为:1x+1.20.(2020•哈尔滨)计算√24+6√16的结果是 3√6 .【分析】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解析】原式=2√6+√6=3√6.故答案为:3√6.21.(2020•滨州)若二次根式√x −5在实数范围内有意义,则x 的取值范围为 x ≥5 .【分析】根据二次根式有意义的条件得出x ﹣5≥0,求出即可.【解析】要使二次根式√x −5在实数范围内有意义,必须x ﹣5≥0,解得:x ≥5,故答案为:x ≥5.22.(2020•常德)计算:√92−√12+√8= 3√2 . 【分析】直接化简二次根式进而合并得出答案.【解析】原式=3√22−√22+2√2=3√2.故答案为:3√2.23.(2020•常德)若代数式√2x−6在实数范围内有意义,则x 的取值范围是 x >3 .【分析】根据二次根式有意义的条件可得2x ﹣6>0,再解即可.【解析】由题意得:2x ﹣6>0,解得:x >3,故答案为:x >3.24.(2019•衡阳)√27−√3= 2√3 .【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解析】原式=3√3−√3=2√3.故答案为:2√3.25.(2020•苏州)使√x−13在实数范围内有意义的x 的取值范围是 x ≥1 . 【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式得到答案.【解析】由题意得,x ﹣1≥0,解得,x ≥1,故答案为:x ≥1.三.解答题(共25小题)26.(2020•连云港)化简a+31−a ÷a 2+3aa −2a+1.【分析】直接利用分式的性质进而化简进而得出答案.【解析】原式=a+31−a •(a−1)2a(a+3)=a+31−a •(1−a)2a(a+3) =1−aa .27.(2020•泸州)化简:(x+2x +1)÷x 2−1x . 【分析】根据分式的混合运算顺序和运算法则进行计算.【解析】原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1.28.(2020•河南)先化简,再求值:4aa 2−9÷(1+a−3a+3),其中a =√2+3.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【解析】原式=4a (a+3)(a−3)÷(a+3a+3+a−3a+3)=4a (a+3)(a−3)÷2a a+3=4a (a+3)(a−3)•a+32a=2a−3,当a =√2+3时,原式=2+3−3=2 =√2.29.(2020•达州)求代数式(2x−1x−1−x ﹣1)÷x−2x 2−2x+1的值,其中x =√2+1. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【解析】原式=(2x−1x−1−x 2−1x−1)÷x−2(x−1)=−x 2+2x x−1)÷x−2(x−1)2 =−x(x−2)x−1•(x−1)2x−2 =﹣x (x ﹣1)当x =√2+1时,原式=﹣(√2+1)(√2+1﹣1)=﹣(√2+1)×√2=﹣2−√2.30.(2020•泰安)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3; (2)解不等式:x+13−1<x−14. 【分析】(1)先计算括号内异分母分式的加法,再将除法转化为乘法,继而约分即可得;(2)根据解一元一次不等式的基本步骤依次计算可得.【解析】(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2) =(a−2)2a−3•a−3(a+2)(a−2)=a−2a+2;(2)去分母,得:4(x +1)﹣12<3(x ﹣1),去括号,得:4x +4﹣12<3x ﹣3,移项,得:4x ﹣3x <﹣3﹣4+12,合并同类项,得:x <5.31.(2020•河南)先化简,再求值:(1−1a+1)÷a a 2−1,其中a =√5+1. 【分析】先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【解析】(1−1a+1)÷a a 2−1 =a+1−1a+1×(a−1)(a+1)a=a ﹣1,把a =√5+1代入a ﹣1=√5+1﹣1=√5.32.(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解析】原式=x+3−1x+3•(x−3)(x+3)x+2=x ﹣3,当x=3+√2时,原式=√2.33.(2020•哈尔滨)先化简,再求代数式(1−2x+1)÷x2−12x+2的值,其中x=4cos30°﹣1.【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.【解析】原式=x−1x+1•2(x+1)(x−1)(x+1)=2x+1,∵x=4cos30°﹣1=4×√32−1=2√3−1,∴原式=223−1+1=√33.34.(2020•甘孜州)化简:(3a−2−1a+2)•(a2﹣4).【分析】根据分式的减法和乘法可以解答本题.【解析】(3a−2−1a+2)•(a2﹣4)=3(a+2)−(a−2)(a+2)(a−2)•(a+2)(a﹣2)=3a+6﹣a+2=2a+8.35.(2020•乐山)已知y=2x,且x≠y,求(1x−y+1x+y)÷x2yx−y的值.【分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.【解析】原式=2x(x+y)(x−y)÷x2yx2−y2=2x x2−y2×x2−y2x2y=2xy,∵y=2 x,∴原式=2x⋅2x=1解法2:同解法1,得原式=2 xy,∵y=2 x,∴xy=2,∴原式=22=1. 36.(2020•德州)先化简:(x−1x−2−x+2x )÷4−xx 2−4x+4,然后选择一个合适的x 值代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【解析】(x−1x−2−x+2x )÷4−x x 2−4x+4=[x(x−1)x(x−2)−(x−2)(x+2)x(x−2)]×(x−2)24−x=4−x x(x−2)⋅(x−2)24−x =x−2x ,把x =1代入x−2x =1−2x =−1.37.(2020•滨州)先化简,再求值:1−y−x x+2y ÷x 2−y 2x 2+4xy+4y 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1. 【分析】直接利用分式的混合运算法则化简,再计算x ,y 的值,进而代入得出答案.【解析】原式=1−y−x x+2y ÷(x+y)(x−y)(x+2y)2=1+x−y x+2y •(x+2y)2(x+y)(x−y) =1+x+2y x+y=x+y+x+2y x+y =2x+3y x+y, ∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2, ∴原式=3×3+3×(−2)3−2=0. 38.(2020•无锡)计算:(1)(﹣2)2+|﹣5|−√16;(2)a−1a−b −1+b b−a .【分析】(1)根据乘方的定义,绝对值的定义以及算术平方根的定义计算即可;(2)根据同分母分式的加减法法则计算即可.【解析】(1)原式=4+5﹣4=5;(2)原式=a−1a−b +1+b a−b =a−1+1+b a−b =a+b a−b. 39.(2020•南充)先化简,再求值:(1x+1−1)÷x 2−x x+1,其中x =√2+1. 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【解析】(1x+1−1)÷x 2−x x+1 =1−(x+1)x+1⋅x+1x(x−1) =1−x−1x(x−1) =−x x(x−1) =11−x, 当x =√2+1时,原式=1−2−1=−√22. 40.(2020•自贡)先化简,再求值:x+1x 2−4•(1x+1+1),其中x 是不等式组{x +1≥05−2x >3的整数解. 【分析】根据分式的加法和乘法可以化简题目中的式子,再根据x 是不等式组{x +1≥05−2x >3的整数解,然后即可得到x 的值,再将使得原分式有意义的整数值代入化简后的式子即可解答本题. 【解析】x+1x 2−4•(1x+1+1)=x+1(x+2)(x−2)⋅1+x+1x+1=x+2(x+2)(x−2)=1x−2, 由不等式组{x +1≥05−2x >3,得﹣1≤x <1, ∵x 是不等式组{x +1≥05−2x >3的整数解, ∴x =﹣1,0,∵当x =﹣1时,原分式无意义,∴x =0,当x =0时,原式=10−2=−12. 41.(2020•重庆)计算:(1)(x +y )2+x (x ﹣2y );(2)(1−m m+3)÷m 2−9m 2+6m+9. 【分析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.【解析】(1)(x +y )2+x (x ﹣2y ),=x 2+2xy +y 2+x 2﹣2xy ,=2x 2+y 2;(2)(1−m m+3)÷m 2−9m 2+6m+9, =(m+3m+3−m m+3)×(m+3)2(m+3)(m−3), =3m+3×m+3m−3,=3m−3. 42.(2020•遂宁)先化简,(x 2+4x+4x −4−x ﹣2)÷x+2x−2,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【解析】原式=[(x+2)2(x+2)(x−2)−(x +2)]•x−2x+2 =(x+2x−2−x 2−4x−2)•x−2x+2=−x 2+x+6x−2•x−2x+2 =−(x+2)(x−3)x−2•x−2x+2=﹣(x ﹣3)=﹣x +3,∵x ≠±2,∴可取x =1,则原式=﹣1+3=2.43.(2020•常德)先化简,再选一个合适的数代入求值:(x +1−7x−9x )÷x 2−9x. 【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解析】(x +1−7x−9x )÷x 2−9x=x(x+1)−(7x−9)x ⋅x (x+3)(x−3)=x 2+x−7x+9(x+3)(x−3)=(x−3)2(x+3)(x−3) =x−3x+3,当x =2时,原式=2−32+3=−15.44.(2020•衢州)先化简,再求值:aa 2−2a+1÷1a−1,其中a =3.【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【解析】原式=a (a−1)2•(a ﹣1) =a a−1, 当a =3时,原式=33−1=32.45.(2020•重庆)计算:(1)(x +y )2+y (3x ﹣y );(2)(4−a 2a−1+a )÷a 2−16a−1. 【分析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,【解析】(1)(x +y )2+y (3x ﹣y ),=x 2+2xy +y 2+3xy ﹣y 2,=x 2+5xy ;(2)(4−a 2a−1+a )÷a 2−16a−1, =(4−a 2a−1+a 2−a a−1)×a−1(a+4)(a−4), =4−a a−1×a−1(a+4)(a−4),46.(2020•黔东南州)(1)计算:(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0; (2)先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 从﹣1,2,3中取一个你认为合适的数代入求值. 【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解析】(1)(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0 =4+√2−3+2×1﹣1=4+√2−3+2﹣1=2+√2;(2)(3a+1−a +1)÷a 2−42 =3−(a−1)(a+1)a+1×(a+1)2(a+2)(a−2) =−(a+2)(a−2)a+1=﹣a ﹣1,要使原式有意义,只能a =3,则当a =3时,原式=﹣3﹣1=﹣4.47.(2020•铜仁市)(1)计算:2÷12−(﹣1)2020−√4−(√5−√3)0.(2)先化简,再求值:(a +3−a 2a−3)÷(a 2−1a−3),自选一个a 值代入求值. 【分析】(1)原式利用除法法则,乘方的意义,算术平方根定义,以及零指数幂法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【解析】(1)原式=2×2﹣1﹣2﹣1=4﹣1﹣2﹣1=0;(2)原式=a(a−3)+3−a 2a−3•a−3(a+1)(a−1)=−3(a−1)a−3•a−3(a+1)(a−1)当a =0时,原式=﹣3.48.(2020•黔西南州)(1)计算(﹣2)2﹣|−√2|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(2a+1+a+2a 2−1)÷a a−1,其中a =√5−1.【分析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.【解析】(1)原式=4−√2−2×√22+1=4−√2−√2+1=5﹣2√2;(2)原式=[2(a−1)(a−1)(a+1)+a+2(a−1)(a+1)]•a−1a=3a (a−1)(a+1)•a−1a=3a+1,当a =√5−1时,原式=3√5−1+1=3√55. 49.(2020•遵义)化简式子x 2−2x x 2÷(x −4x−4x),从0、1、2中取一个合适的数作为x 的值代入求值. 【分析】直接利用分式的性质进行通分运算,进而结合分式的混合运算法则分别化简得出答案.【解析】原式=x(x−2)x 2÷x 2−4x+4x =x(x−2)x 2•x (x−2) =1x−2, ∵x ≠0,2,∴当x =1时,原式=﹣1.50.(2020•湖州)计算:√8+|√2−1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解析】原式=2√2+√2−1=3√2−1.。

2021年数学中考数学分式方程与二次根式方程

2021年数学中考数学分式方程与二次根式方程

第8课分式方程与二次根式方程〖知识点〗分式方程、二次根式的概念、解法思路、解法、增根〖大纲要求〗了解分式方程、二次根式方程的概念。

掌握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一般方法;会用换元法解方程;会检验。

内容分析1.分式方程的解法(1)去分母法用去分母法解分式方程的一般步骤是:(i)在方程的两边都乘以最简公分母;约去分母;化成整式方程;(ii)解这个整式方程;(iii)把整式方程的根代入最简公分母;看结果是不是零;使最简公分母不为零的根是原方程的根;使最简公分母为零的根是增根;必须舍去.在上述步骤中;去分母是关键;验根只需代入员简公分母.(2)换元法用换元法解分式方程;也就是把适当的分式换成新的未知数;求出新的未知数后求出原来的未知数.2.二次根式方程的解法(1)两边平方法用两边平方法解无理方程的—般步骤是:(i)方程两边都平方;去掉根号;化成有理方程;(ii)解这个有理方程;(iii)把有理方程的根代入原方程进行检验;如果适合;就是原方程的根;如果不适合;就是增根;必须舍去.在上述步骤中;两边平方是关键;验根必须代入原方程进行.(2)换元法用换元法解无理方程;就是把适当的根号下台有未知数的式子换成新的未知数;求出新的未知数后再求原来的未知数.〖考查重点与常见题型〗考查换元法解分式方程和二次根式方程;有一部分只考查换元的能力;常出现在选择题中另一部分习题考查完整的解题能力;习题出现在中档解答题中。

考题类型1.(1)用换元法解分式方程3xx2-1+x2-13x=3时;设3xx2-1=y;原方程变形为()(A)y2-3y+1=0(B)y2+3y+1=0(C)y2+3y-1=0(D)y2-y+3=02.用换元法解方程x2+8x+x2+8x-11 =23;若设y=x2+8x-11 ;则原方程可化为()(A)y2+y+12=0(B)y2+y-23=0(C)y2+y-12=0(D)y2+y-34=03.若解分式方程2x x -1 -m +1x 2+x =x +1x产生增根;则m 的值是( ) (A )-1或-2 (B )-1或2 (C )1或2 (D )1或-24.解方程4x -1x -1=1时;需将方程两边都乘以同一个整式(各分母的最简公分母);约去分母;所乘的这个整式为( )(A )x -1 (B )x (x -1) (C )x (D )x +15.先阅读下面解方程x +x -2 =2的过程;然后填空.解:(第一步)将方程整理为x -2+x -2 =0;(第二步)设y =x -2 ;原方程可化为y2+y =0;(第三步)解这个方程的 y 1=0;y 2=-1(第四步)当y =0时;x -2 =0;解得 x =2;当y =-1时;x -2 =-1;方程无解;(第五步)所以x =2是原方程的根以上解题过程中;第二步用的方法是___;第四步中;能够判定方程x -2 =-1无解原根据是__。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【通用版】中考数学精选真题
专题01 分式与分式方程
学校:___________姓名:___________班级:___________
1.【湖北衡阳中考数学试卷】若分式1
2
+-x x 的值为0,则x 的值为( ).
A .2或-1
B .0
C .2
D .-1 【答案】C 【解析】
试题分析:根据12
+-x x 的值为0时,则分子x -2=0,得x=2.
故选C.
考点:分式值为零.
2.【湖南益阳中考数学试题】下列等式成立的是( )
A.123
a b a b B.2
1
2a b
a b C.2ab
a a
b b a b
D.a a a b
a b 【答案】C 【解析】
考点:分式的混合运算.
3.【山东省济南市中考二模】分式方程
3
1
1(1)(2)
x
x x x
-=
--+的解是()
A.x=1
B.x=-1+5
C.x=2
D.无解【答案】D.
【解析】
考点:解分式方程.
4.【河北省石家庄市中考一模】货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()
A.2535
20
x x
=
- B.
2535
20
x x
=
- C.
2535
20
x x
=
+ D.
2535
20
x x
=
+
【答案】C.【解析】
试题分析:根据题意,得x 25=2035
+x ;
故选C .
考点:由实际问题抽象出分式方程.
5.【吉林省中考数学试题】计算:
22
x x y x y x -⋅-= . 【答案】x y +. 【解析】
试题分析:原式=()()
x x y x y x y x +-⋅
-=x y +.故答案为:x y +.
考点:分式的乘除法.
6.【黑龙江绥化中考数学试题】若代数式626
5x 2-+-x x 的值等于0 ,则
x=_________. 【答案】x=2 【解析】
试题分析:当⎩⎨
⎧≠-=+-0620652x x x 时,代数式62652-+-x x x 的值等于0,解得:x=2.
考点:分式的值等于0.
7.【山东省潍坊中考三模】已知方程35
5x a
x x =-
--有增根,则a 的值为 . 【答案】﹣5. 【解析】
考点:分式方程的增根.
8.【河北省承德市中考二模】在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xcm ,则根据题意可得方程 .
【答案】24002400
8(120%)x x -=+.
【解析】
试题分析:原计划用的时间为:2400
x ,实际用的时间为:2400(120%)x +.根
据等量关系原计划用的时间-实际用的时间=8,所列方程为
24002400
8(120%)x x -=+.
考点:由实际问题抽象出分式方程.
9.【黑龙江哈尔滨中考数学试题】先化简,再求代数式
2
122
()
3x x y
x xy x 的值,其中x=2+tan60°,y=4sin30°.
【答案】3
x y ,3. 【解析】
试题分析:首先将括号里面的分式进行通分,然后将除法改成乘法进
行约分化简,最后将x 和y 根据三角函数的计算法则求出x 和y 的值,最后代入进行计算.
试题解析:原式=23()2x x x x y x =3x y
∵x=2+3,y=4×21
=2 , ∴原式3
2
32=3.
考点:分式的化简求值.
10.【浙江省杭州市
5月中考模拟】(1)计算:0
122sin 60|13|2012-︒+-+
(2)解分式方程:12
33x x =
-+.
【答案】(1)23;(2)x=9. 【解析】
考点:1.实数的运算;2.零指数幂;3.解分式方程;4.特殊角的三角函数值.
专题02 二次根式
学校:___________姓名:___________班级:___________
1.【湖北武汉中考数学试卷】若代数式2
-x 在实数范围内有意义,
则x 的取值范为是( )
A .x ≥-2
B .x >-2
C .x ≥2
D .x ≤2 【答案】C 【解析】
考点:二次根式的性质.
2.【湖北荆门中考数学试题】当12a <<时,代数式2(2)10a a -+-=的
值是( )
A .1-
B .1
C .23a -
D .32a - 【答案】B . 【解析】
试题分析:∵1<a<2,∴a-2<0,1-a<0,∴()2
2-a +|1-a|=2-a+a-1=1.
故选B .
考点:二次根式的性质与化简.
3.【湖南省邵阳市中考二模】下列二次根式中,最简二次根式是( )
A .6
B .8
C .12
D .12
【答案】A. 【解析】
试题解析:6是最简二次根式,A 正确;8=22,B 不正确;12=23,
C 不正确;22
21=
,D 不正确,
故选A .
考点:最简二次根式.
4.【四川省成都市外国语学校中考模拟】已知0<a <b ,a b b +b b a -x ,y 的大小关系是( )
A .x >y
B .x=y
C .x <y
D .与a 、b 的取值有关 【答案】C . 【解析】
考点:二次根式的化简求值.
5.【黑龙江哈尔滨中考数学试题】计算2
243
3-=
【答案】6 【解析】
试题分析:原式=26-3×6
3=26-6=6.
考点:二次根式的计算.
6.【辽宁葫芦岛中考数学试题】若代数式1x
x -有意义,则实数x 的取
值范围是 . 【答案】x ≥0且x ≠1. 【解析】
试题分析:∵1x
x -有意义,∴x ≥0,x ﹣1≠0,∴实数x 的取值范围
是:x ≥0且x ≠1.故答案为:x ≥0且x ≠1.
考点:1.二次根式有意义的条件;2.分式有意义的条件. 7.【湖北省黄冈市中考模拟】计算32278+-+的结果为 .
【答案】2+43.
【解析】
:原式=22+33﹣2+3=2+43. 考点:二次根式的加减法.
8.【江苏省南京市高淳区中考二模】计算(62-)×
2= .
【答案】23-2. 【解析】
考点:二次根式的混合运算.
9.【辽宁大连中考数学试题】计算:(
)(
)
2124131
3⎪
⎭⎫
⎝⎛-+-+
【答案】26+1. 【解析】
试题分析:先计算平方差、二次根式化简、0指数幂,然后按顺序计算即可; 试




(
)(
)
2124131
3⎪
⎭⎫
⎝⎛-+-+=
()162
132
2
-+-=3-1+26-1=26+1.
考点:1.实数的计算;2.二次根式的化简.
10.-2
1123--sin 602⎛⎫
-+︒
⎪⎝⎭. 【答案】23
+4.
【解析】
考点:1.实数的运算;2.负整数指数幂;3.特殊角的三角函数值.。

相关文档
最新文档