非线性回归分析(教案)

合集下载

《非线性回归分析》课件

《非线性回归分析》课件
• 常用的过滤方法包括皮 尔逊相关系数、方差分 析和卡方检验等。
封装式
• 基于模型的错误率和复 杂性进行特征选择。
• 常用的封装方法包括递 归特征消除法和遗传算 法等。
嵌入式
• 特征选择和模型训练同 时进行。
• 与算法结合在一起的特 征选择方法,例如正则 化(Lasso、Ridge)。
数据处理方法:缺失值填充、异常值 处理等
1
网格搜索
通过预定义的参数空间中的方格进行搜
随机搜索
2
索。
在预定义的参数空间中进行随机搜索。
3
贝叶斯调参
使用贝叶斯优化方法对超参数进行优化。
集成学习在非线性回归中的应用
集成学习是一种将若干个基学习器集成在一起以获得更好分类效果的方法,也可以用于非线性回归建模中。
1 堆叠
使用多层模型来组成一个 超级学习器,每个模型继 承前一模型的输出做为自 己的输入。
不可避免地存在数据缺失、异常值等问题,需要使用相应的方法对其进行处理。这是非线性回归 分析中至关重要的一环。
1 缺失值填充
常见的方法包括插值法、代入法和主成分分析等。
2 异常值处理
常见的方法包括删除、截尾、平滑等。
3 特征缩放和标准化
为了提高模型的计算速度和准确性,需要对特征进行缩放和标准化。
偏差-方差平衡与模型复杂度
一种广泛用于图像识别和计算机 视觉领域的神经网络。
循环神经网络
一种用于处理序列数据的神经网 络,如自然语言处理。
sklearn库在非线性回归中的应用
scikit-learn是Python中最受欢迎的机器学习库之一,可以用于非线性回归的建模、评估和调参。
1 模型建立
scikit-learn提供各种非线 性回归算法的实现,如 KNN回归、决策树回归和 支持向量机回归等。

生物统计学可直线化的非线性回归分析PPT教案

生物统计学可直线化的非线性回归分析PPT教案
生物统计学可直线化的非线性回归分析
会计学
1
如果缩小研究范围,则任意非直线关系最 后都可以用线性关系来近似,但范围过小 ,使用上不方便。
(1)不能对变量间的关系有一个整体上的认识 。
(2)在不同取值范围内还要换用不同的方程 。
两变量间的非线性关系 用来表示双变量间的关系有多种曲线。
曲线类型
直线类型
一、确定曲线类型的方法
非线性回归分为两种情况
已知曲线(公式)类型
未知曲线(公式)类型
对于已知曲线类型,其回归效果有保证。同时 在多数情况下,我们对所研究的对象有一定的 了解,可以根据理论或经验给出可能的曲线类 型,因此常用的是已知曲线类型的回归。
一、确定曲线类型的方法
1 专业知识、经验或文献确定曲线类型
二、线性化的方法
直接引入新变量。
yˆ a blg x
x' lg x
yˆ a bx'
数学变换后,引入新变量。
yˆ axb
lg yˆ lg a b lg x
y' a'bx'
三、常见的可线性化的曲线类型
对数函数 yˆ a blg x
指数函数
yˆ aebx
幂函数
yˆ axb
双曲线
1 ab
y = 0.1457e-0.0304x
15
30
45
60
R2 = 0.7333
r r0.01(9) 0.735
第五节:Logistic生长曲线
特点
开始增长缓慢,而在以后的某一范围内 迅速增长,达到某限度后,增长又缓慢 下来,曲线略呈拉长的“S”,因此,也 称为S型曲线。
y

1
K ae bx

人教A版高中数学选修非线性回归分析教学课件

人教A版高中数学选修非线性回归分析教学课件
人教A版高中数学选修2-3第三章3.2.3 非线性 回归分 析教学 课件 (共24张PPT)
课外阅读 人教A版高中数学选修2-3第三章3.2.3非线性回归分析教学课件 (共24张PPT)
6、美国总统奥巴马的竞选团队依据选民 的微博,实时分析选民对总统竞选人的喜 好。 大数据时代已经来临,你准备好了吗?
人教A版高中数学选修2-3第三章3.2.3 非线性 回归分 析教学 课件 (共24张PPT)
人教A版高中数学选修2-3第三章3.2.3 非线性 回归分 析教学 课件 (共24张PPT)
方案二
指数函数模型
产卵数
气 温
人教A版高中数学选修2-3第三章3.2.3 非线性 回归分 析教学 课件 (共24张PPT)
1.怎样通过散点图选择适当的函数模型? 2.如何求常见的非线性回归模型?
人教A版高中数学选修2-3第三章3.2.3 非线性 回归分 析教学 课件 (共24张PPT)
合作探究——能力提升 人教A版高中数学选修2-3第三章3.2.3非线性回归分析教学课件 (共24张PPT)
通过适当变换,将下列函数转化成线性型函数 ⑴ 幂函数曲线 y=axb
分析和预测
最小二乘法
提出问题
一只红铃虫的产卵数y与温度x 有关,现收集了7组观测数据如下:
温度x 21 23 25 27 29 32 35 产卵数y 7 11 21 24 66 115 325
试建立y与x之间的回归方程; 预测温度为28℃时红铃虫的产卵数目。
问题解决
建立数模型
产卵数 气 温
人教A版高中数学选修2-3第三章3.2.3 非线性 回归分 析教学 课件 (共24张PPT)
方案一
温度x 21 23 25 27 29 32 35 t=x2 441 529 625 729 841 1024 1225

第十二章 非线性回归分析 《试验设计与统计分析》PPT课件

第十二章  非线性回归分析  《试验设计与统计分析》PPT课件

• 然后作数据转换
y’=ln(y-K), a’=lna
• y’=ln(y-K), a’=lna
即可将其线性化并估计a和b值了
(12.8)
二、幂函数曲线 y x
• 其图形见图12.4。
β <0
0<β <1 β =1 β >1
图12.4 幂函数曲线
• 幂函数曲线常用于描述体积、重量等倍数 性资料的变化规律。采用与指数曲线回归 模 型 类 似 的 方 法 , 令 y’=lny, x’=lnx, a’=lna,’=ln (12.10) 即可将幂函数曲线回归模型线性化
表12.3 棉红铃虫不同时期x(以5月31日为0)的化蛹进度y(%) x 5 10 15 20 25 30 35 40 45 50 Σ 275 y 3.5 6.4 14.6 31.4 45.6 60.4 75.2 90.2 95.4 97.5 y’ 3.1881 3.4780 3.9463 4.5155 4.8895 5.2637 5.6808 6.2930 6.6849 6.9600 50.8998 x2 xy’ y’ 2 10.1640 12.0965 15.5733 20.3897 23.9072 27.7065 32.2715 39.6019 44.6879 48.4416 274.8401
四、不对称S形曲线回归
• 动植物生长的普遍规律是先越来越快,过
了生长高峰以后由于内外条件的限制则越
来越慢直至停止。生长速度的变化呈不对
称的单峰曲线,因此累积生长量呈不对称
的S形曲线。有许多描述不对称S形曲线的
方程,如
y K exp[ exp( x )] y ( e )
ˆ 0.0213e y

高中数学选修23《回归分析的初步应用探究非线性回归模型》教案

高中数学选修23《回归分析的初步应用探究非线性回归模型》教案

回归分析的初步应用(教案)——探究非线性回归模型一、教材分析1. 教材的地位与作用:“回归分析的初步应用”是人民教育出版社A版《数学选修2-3》统计案例一章的内容,是《必修3》“线性回归分析”的延伸。

根据高中课程标准,这里准备安排4个课时,本次说课的内容为第3课时。

虽然线性回归分析具有广泛的应用,但是大量实际问题的两个变量不一定都呈线性相关关系,所以有必要探究如何建立非线性回归模型,进行更有效的数据处理。

2. 教学重点、难点:教学重点:探究用线性回归模型研究非线性回归模型。

教学难点:如何选择不同的模型建模,以及如何将非线性回归模型转化为线性回归模型。

二、学情分析教学对象是高二的学生,通过前面的学习,具有一定的线性回归分析、相关指数和残差分析的知识,这为探究非线性模型奠定了良好的基础,但由于学生较少接触数学建模的思想,思路不够开阔,为模型间的转化带来了一定的困难。

三、教学目标知识与技能目标:能根据散点图的特点选择回归模型,通过函数变换,借助线性回归模型研究非线性回归模型。

过程与方法目标:经历非线性回归模型的探索过程,掌握建立非线性模型的基本步骤,体会统计方法的特点。

情感、态度与价值观:以探究问题为中心,感受研究非线性回归模型的必要意义,体验数学的文化内涵,形成学习数学的积极态度。

四、教学方法1. 教法分析主要采用“引导发现,合作探究”的教学方法,通过组织学生观察、分析、计算、交流、归纳,让学生在探究学习的过程中经历知识形成的全过程。

利用多媒体辅助教学,优化了教学过程,大大提高了课堂教学效率。

2.学法分析重点指导学生通过观察思考、类比联想,形成“自主探究、合作交流”的学习形式,培养学生从“学会知识”到“会学知识”。

五、教学过程(一)知识回顾首先以07年广东的一道高考题引入新课:下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;=+;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程ˆy bx a(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?师:回忆并叙述建立线性回归模型的基本步骤?生:选取变量、画散点图、选择模型、估计参数、分析与预测。

非线性回归分析(1)幻灯片PPT

非线性回归分析(1)幻灯片PPT

n
都取决于残差平方和(yi yi )2,从而,两种选择准
i1
n
则是一致的,只是从两个不同侧面作出评价。(yi yi)2
i1
14
表给出第一个曲线回归方程的残差平方和的
计算过程, 由于n=13, 13(yi y)20.5743

i1
故其决定系数及剩余标准差分别为:
R 2 1 0 .5 7 4 3 0 .9 7 2 9 , s 0 .5 7 4 3 0 .2 2 8 5
n u 2 0 .3 2 3 5 4 7 4 4 n u v 0 .0 1 8 6 5 7 7 8
lu u0 .2 1 3 6 7 0 5 4 luv0.00017717
b ˆ lu v/lu u 0 .0 0 0 8 2 9 1 7
a ˆ v u b ˆ 0 .0 0 8 9 6 6 6 3
y
8
对上述非线性函数,参数估计最常用的方法 是“线性化”方法。
以1/y=a+b/x为例,为了能采用一元线性回 归分析方法,我们作如下变换u=1/x,v=1/y 则曲线函数就化为如下的直线v=bu
这是理论回归函数。对数据而言,回归方程为
vi=a+ bui + i 于是可用一元线性回归的方法估计出a,b。
1.观察散点图 2.判断是什么关系; 3. 回归参数计算; 4. 判断系数; 5.显著性检验(注意H0) 6.失拟合检验(注意需要的条件)
相关系数,判断系数
显著性检验 H0假设的含义;方差分析表;F(1,n-2)
失拟合检验 条件?F(m-2,n-m)
2
回归分析内容
一元线性
一元非线性 带虚拟变量
步骤: 1.观察散点图,2.判断是什么关 系,3. 回归,4. 判断系数;5。显著 性检查(注意H0),6.失拟合检验 (注意需要的条件)

非线性回归问题教学设计

非线性回归问题教学设计

非线性回归问题教学设计引言:非线性回归是统计学和机器学习中的一个重要概念。

与线性回归不同,非线性回归模型的自变量和因变量之间的关系不是线性的,而是可以通过非线性函数来描述。

非线性回归问题具有很高的实际应用价值,例如在金融、经济学、生物学等领域中,非线性回归模型可以更好地拟合数据,进行预测和分析。

本文将介绍非线性回归问题的基本概念和方法,并设计一套教学方案,帮助学生理解和应用非线性回归模型。

一、非线性回归问题的基本概念1.1 非线性回归模型的定义非线性回归模型是指自变量和因变量之间的关系不能通过线性函数来描述的回归模型。

通常情况下,非线性回归模型可以表示为:y = f(x; θ) + ε,其中y表示因变量,x表示自变量,f(x; θ)表示非线性函数,θ表示待估计的参数,ε表示噪声项。

1.2 非线性回归模型的特点与线性回归模型相比,非线性回归模型具有以下特点:- 非线性回归模型的参数估计更加复杂,通常需要使用优化算法进行求解。

- 非线性回归模型的预测能力更强,可以更好地拟合复杂的数据。

- 非线性回归模型的解释性较差,因为非线性函数的形式通常比较复杂,难以直观地解释。

二、非线性回归问题的解决方法2.1 非线性回归模型的建立为了解决非线性回归问题,需要选择合适的非线性函数来描述自变量和因变量之间的关系。

一般情况下,非线性函数可以通过以下方式来选择:- 根据经验和领域知识选择合适的非线性函数形式。

- 根据拟合效果和模型评估指标选择最优的非线性函数形式。

2.2 参数估计和模型评估确定非线性函数形式之后,需要使用合适的方法来估计模型参数。

常用的参数估计方法包括最小二乘法、最大似然估计和梯度下降法等。

估计得到模型参数之后,还需要进行模型评估,评估模型的拟合效果和预测能力。

常用的模型评估指标包括均方误差、残差分析和决定系数等。

三、非线性回归问题的教学设计基于以上理论基础,我们设计了以下教学方案,帮助学生理解和应用非线性回归模型:3.1 理论讲解首先,我们将对非线性回归问题的基本概念和特点进行理论讲解。

非线性回归分析(教案)

非线性回归分析(教案)

非线性回归分析(教案)第一章:非线性回归分析简介1.1 非线性回归的定义与意义1.2 非线性回归与线性回归的比较1.3 非线性回归分析的应用领域1.4 本章小结第二章:非线性回归模型建立2.1 非线性回归模型的形式2.2 非线性回归模型的建立方法2.3 非线性回归模型的参数估计2.4 模型检验与优化2.5 本章小结第三章:非线性回归分析软件介绍3.1 非线性回归分析软件的选择3.2 非线性回归分析软件的操作步骤3.3 非线性回归分析软件的应用案例3.4 本章小结第四章:非线性回归在实际问题中的应用4.1 非线性回归在生物医学领域的应用4.2 非线性回归在经济学领域的应用4.3 非线性回归在环境科学领域的应用4.4 本章小结第五章:非线性回归分析的扩展与改进5.1 非线性回归模型的扩展5.2 非线性回归分析方法的改进5.3 非线性回归分析的发展趋势5.4 本章小结第六章:非线性回归模型的选择与评估6.1 模型选择的原则与方法6.2 模型评估指标6.3 模型选择的实际案例6.4 本章小结第七章:非线性回归分析的编程实现7.1 非线性回归分析的编程基础7.2 常见非线性回归模型的编程实现7.3 非线性回归分析的编程实践7.4 本章小结第八章:非线性回归分析在数据挖掘中的应用8.1 数据挖掘与非线性回归分析8.2 非线性回归分析在数据挖掘中的案例分析8.3 非线性回归分析在数据挖掘中的挑战与应对8.4 本章小结第九章:非线性回归分析在多变量分析中的应用9.1 多变量分析与非线性回归分析9.2 非线性回归分析在多变量数据分析中的方法与应用9.3 非线性回归分析在多变量分析中的案例研究9.4 本章小结第十章:非线性回归分析的未来展望10.1 非线性回归分析的发展趋势10.2 非线性回归分析在科学研究中的潜在应用10.3 非线性回归分析的教育与培训10.4 本章小结重点和难点解析一、非线性回归的定义与意义:理解非线性回归的基本概念,掌握非线性回归与线性回归的本质区别,以及非线性回归在实际问题中的应用场景。

非线性回归分析(教案)

非线性回归分析(教案)

1.3非线性回归问题,知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。

能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。

情感目标:体会数学知识变化无穷的魅力。

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程:一、复习准备:对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课:1. 探究非线性回归方程的确定:1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的/y 个2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系.① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y=,则21ln z c x c =+,可以用线性回归方程来拟合.④ 利用计算器算得 3.843,0.272ab =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x 与增大的容积y 之间的关系.【解】先根据试验数据作散点图,如图所示:z =a ′+bt ,t 、z 的数值对应表为:【题后点评】作出散点图,由散点图选择合适的回归模型是解决本题的关键,在这里线性回归模型起了转化的作用.例2:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程./y 个 2、讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量呈非线性相关关系,所以不能直接....用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型.......来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.z =a ′+bt ,t 、z 的数值对应表为:从图中可以看出x 与y 之间不存在线性相关关系. 但仔细分析一下,知道钢包开始使用时侵蚀速度快, 然后逐渐减慢.显然,钢包容积不会无限增大,它必 有一条平行于x 轴的渐近线.于是根据这一特点,我们试设指数型函数曲线y =a e bx.对它两边取对数得ln y =ln a +bx .令z =ln y ,t =1x,a ′=ln a ,则上式可写为线性方程:③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的关系如下:观察z 与x以用线性回归方程来拟合.④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2. 小结:用回归方程探究非线性回归问题的方法、步骤. 3、常见的非线性回归模型 ⑴ 幂函数曲线 y=ax b处理方法:两边取自然对数得:lny=lna+blnx; 再设{yy x x ln ln ,,==则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b ⑵ 指数曲线 y=ae bx处理方法: 两边取自然对数得:lny=lna+bx; 再设{yy x x ln ,,==则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b⑶ 倒指数曲线 xb ae y =处理方法:两边取自然对数得:lny=lna+x b; 再设⎩⎨⎧==y y xx ln 1,,则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b ⑷ 对数曲线 y=a+blnx 处理方法:设{yy xx ==,,ln 则原方程变成 y ′=a+bx ′,再根据一次线性回归模型的方法得出a 和b三、巩固练习:为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下: 1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy=e x +.) 四、作业布置:课本第13页的练习题。

高中数学选修1-2教案:1.1回归分析的初步应用——非线性回归模型(一)

高中数学选修1-2教案:1.1回归分析的初步应用——非线性回归模型(一)

教学方案精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

实验三-非线性回归分析

实验三-非线性回归分析
'系数的估计值' '检验的P值'
8.1896 1.0e-16 *
0.1756 0.0000
0.9250
稳健回归得出的回归方程为 。常数项和回归系数的t检验的p值分别为0, ,均小于显著性水平0.0001,可知线性关系是极显著的。
(2)绘制残差与权重的散点图
图3.5残差与权重的散点图
与图3.2相比较,从图3.5可知残差绝对值显著减小,残差的数量级为 ,并且权重集中在1附近的点比之前多。这说明拟合的稳健性显著加强。
从上图可以看出拟合效果还是很不错的。但非线性回归,不能像线性回归那样对回归方程作显著性检验。所以,非线性回归模型为 对该药物反应拟合回归模型是合理的。
六、实验内容
Logistic回归函数常用于拟合某种消费品的拥有率,下表是北京市每百户家庭平均拥有的照相机数,试针对以下两种拟合Logistic回归函数:
1
4862.4
10
18547.9
2
5294.7
11
21617.8
3
5934.5
12
26638.1
4
7171
13
34634.4
5
8964.4
14
46759.4
6
10202.2
15
58478.1
7
11962.5
16
67884.6
8
14928.3
1774462.69源自16909.218
79395.7
解:第一步:一元线性回归模型
一般使用非线性最小二乘估计方法,并用Newton迭代求解其中的正规方程组。
五、实验举例
例1、对GDP(国内生产总值)的拟合。选取GDP指标为因变量,单位为亿元,拟合GDP关于时间t的趋势曲线。以1981年为基准年,取值为t=1,1998年t=18,1991-1998年的数据如下:

非线性回归分析(教案)

非线性回归分析(教案)

非线性回归分析(教案)第一章:非线性回归分析简介1.1 非线性回归的定义与意义1.2 非线性回归与线性回归的比较1.3 非线性回归分析的应用领域1.4 本章概要第二章:非线性模型的选择2.1 常见非线性模型介绍2.2 模型选择的方法与原则2.3 利用软件选择非线性模型2.4 本章概要第三章:非线性回归的计算方法3.1 数值解法简介3.2 梯度下降法3.3 牛顿法3.4 拟牛顿法3.5 本章概要第四章:非线性回归的参数估计与检验4.1 参数估计的原理与方法4.2 参数估计的算法实现4.3 参数检验的方法与准则4.4 模型诊断与改进4.5 本章概要第五章:非线性回归在实际问题中的应用5.1 实例一:人口增长模型5.2 实例二:药物动力学模型5.3 实例三:经济预测模型5.4 实例四:生物医学信号处理模型5.5 本章概要第六章:非线性回归软件的使用6.1 常见非线性回归软件介绍6.2 非线性回归软件的使用方法6.3 利用软件进行非线性回归分析的步骤6.4 本章概要第七章:非线性回归在生物学中的应用7.1 生物学中常见非线性模型介绍7.2 非线性回归在生物学研究中的应用案例7.3 生物学数据处理与非线性回归分析7.4 本章概要第八章:非线性回归在经济与管理科学中的应用8.1 经济与管理科学中的非线性模型介绍8.2 非线性回归在经济预测中的应用案例8.3 非线性回归在管理决策中的应用案例8.4 本章概要第九章:非线性回归在工程与应用科学中的应用9.1 工程与应用科学中的非线性模型介绍9.2 非线性回归在工程设计中的应用案例9.3 非线性回归在应用科学研究中的应用案例9.4 本章概要第十章:非线性回归分析的扩展与前沿10.1 非线性回归分析的局限性与改进10.2 非线性回归分析的新方法与发展趋势10.3 非线性回归分析与其他统计方法的结合10.4 本章概要第十一章:非线性回归的优化策略11.1 优化算法概述11.2 常见优化算法介绍11.3 非线性回归的优化策略11.4 本章概要第十二章:非线性回归在医学中的应用12.1 医学中的非线性模型介绍12.2 非线性回归在医学诊断中的应用案例12.3 非线性回归在医学治疗方案设计中的应用案例12.4 本章概要第十三章:非线性回归在地球科学中的应用13.1 地球科学中的非线性模型介绍13.2 非线性回归在地球物理勘探中的应用案例13.3 非线性回归在气候学研究中的应用案例13.4 本章概要第十四章:非线性回归在化学与材料科学中的应用14.1 化学与材料科学中的非线性模型介绍14.2 非线性回归在化学反应动力学分析中的应用案例14.3 非线性回归在材料性能预测中的应用案例14.4 本章概要第十五章:非线性回归分析的实践与挑战15.1 非线性回归分析的实际操作技巧15.2 非线性回归分析面临的挑战与问题15.3 未来非线性回归分析的发展方向15.4 本章概要重点和难点解析第一章:非线性回归分析简介重点:非线性回归的定义与意义,非线性回归与线性回归的比较。

非线性回归分析(教案)

非线性回归分析(教案)

非线性回归分析(教案)第一章:非线性回归分析简介1.1 非线性回归的定义与意义1.2 非线性回归与线性回归的比较1.3 非线性回归分析的应用领域1.4 本章内容安排第二章:非线性模型的选择2.1 常见非线性模型介绍2.2 模型选择的依据与方法2.3 利用统计软件进行模型选择2.4 案例分析:选择合适的非线性模型第三章:非线性回归的参数估计3.1 非线性回归参数估计的基本方法3.2 初值的选择与影响3.3 参数估计的算法与优化3.4 案例分析:利用非线性回归估计参数第四章:非线性模型的检验与评估4.1 非线性模型的拟合度评估4.2 模型诊断与改进4.3 模型参数的显著性检验4.4 案例分析:评估非线性模型的性能第五章:非线性回归在实际应用中的案例分析5.1 非线性回归在生物学领域的应用5.2 非线性回归在经济学领域的应用5.3 非线性回归在环境科学领域的应用5.4 非线性回归在其他领域的应用第六章:多变量非线性回归分析6.1 多变量非线性回归的定义与特点6.2 多变量非线性回归模型的建立6.3 多变量非线性回归的参数估计与检验6.4 案例分析:多变量非线性回归在实际应用中的应用第七章:非线性回归的软件实现7.1 非线性回归软件的选择与使用7.2 常见非线性回归软件的比较与评价7.3 利用非线性回归软件进行数据分析实例7.4 案例分析:非线性回归软件在实际研究中的应用第八章:非线性回归分析的扩展与应用8.1 非线性回归分析在时间序列数据中的应用8.2 非线性回归分析在图像处理中的应用8.3 非线性回归分析在机器学习中的应用8.4 案例分析:非线性回归分析在交叉学科领域的应用第九章:非线性回归分析的局限性与改进9.1 非线性回归分析的局限性9.2 非线性回归分析的改进方法9.3 非线性回归分析的发展趋势9.4 案例分析:克服非线性回归分析局限性的实践方法第十章:非线性回归分析在科学研究中的应用案例精选10.1 非线性回归分析在物理学中的应用案例10.2 非线性回归分析在化学领域的应用案例10.3 非线性回归分析在生物学领域的应用案例10.4 非线性回归分析在其他科学领域中的应用案例第十一章:非线性回归分析在社会科学中的应用11.1 非线性回归分析在社会学中的应用11.2 非线性回归分析在心理学中的应用11.3 非线性回归分析在教育学中的应用11.4 案例分析:非线性回归分析在社会科学研究中的应用第十二章:非线性回归分析在医学与健康领域的应用12.1 非线性回归分析在医学研究中的应用12.2 非线性回归分析在公共卫生领域中的应用12.3 非线性回归分析在生物医学工程中的应用12.4 案例分析:非线性回归分析在医学与健康研究中的应用第十三章:非线性回归分析在工程领域的应用13.1 非线性回归分析在土木工程中的应用13.2 非线性回归分析在机械工程中的应用13.3 非线性回归分析在电子工程中的应用13.4 案例分析:非线性回归分析在工程领域的应用实例第十四章:非线性回归分析在金融与经济领域的应用14.1 非线性回归分析在金融市场预测中的应用14.2 非线性回归分析在宏观经济分析中的应用14.3 非线性回归分析在企业财务分析中的应用14.4 案例分析:非线性回归分析在金融与经济领域的应用第十五章:非线性回归分析的的未来与发展趋势15.1 非线性回归分析在数据科学中的应用与发展15.2 与非线性回归分析的结合与发展15.3 非线性回归分析在新兴领域的应用前景15.4 案例分析:非线性回归分析在未来发展趋势中的机遇与挑战重点和难点解析重点:1. 非线性回归的定义与意义,以及与线性回归的比较。

人教A版 选修1-2 回归分析的初步应用——非线性回归模型(一) 教案

人教A版  选修1-2 回归分析的初步应用——非线性回归模型(一) 教案
教学方案
章节
课时
备课人
二次备课人
课题名称
回归分析的初步应用——非线性回归模型(一)
三维目标
重点目标
探究用线性回归模型研究非线性回归模型
难点目标
如何选择非线性回归模型,如何将非线性回归模型转化为线性回归模型
导入示标
目标三导
学做思一:知识总结
对于以前,我们知道能够设一次函数模型去假设线性模型,但是对于上述非线性问题,如何去假设方程和求出回归模型?
学做思三:方法归纳
对于非线性回归方程的求法,是将非线性回归方程转化为线性回归方程,利用回归系数公式求出回归系数。
达标检测
反思总结
课后练习
解答: ,
于是y与x的回归方程为
例2:在实验中得到变量y与x的数据如下:
x
0.0667
3.0388
0.0333
0.0273
0.0225
y
39.4
42.9
41.0
43.1
42.9
由以上数据发现y与 之间具有线性相关系,试求y与x之间的回归方程;预测当x0=0.038时,求预测值?
解答:令 将数据进一步整理,利用上题方法求出回归系数
学做思二:讨论(师生互动)
非线性回归问题
例题示范:
例1:某食品每公斤的生产成本y(元)与该食品生产的重量x(公斤)有关,仅生产统计得到一下数据
x
1
2
3
5
10
20
30
50
100
200
y
10.15
5.52
4.08
2.852Biblioteka 111.621. 41
1.3
1.21
1.15

非线性回归分析

非线性回归分析

课题:非线性回归分析课型:新授课编写人:万保军班级:时间:2013.5.25 审核人:王小平学习目标1.进一步体会回归分析的基本思想;2.通过非线性回归分析,判断几种不同模型的拟合程度。

知识要点:1.如果两个变量不呈现线性相关关系,常见的两个变量间的关系还有指数关系,二次函数关系.2.两个变量间的非线性关系可以通过对解释变量的变换(对数变换、平方变换等)转化为另外两个变量的关系.3.比较不同模型的拟合效果,可以通过的大小,的大小.问题探究一非线性回归模型问题1有些变量间的关系并不是线性相关,怎样确定回归模型?问题2如果两个变量呈现非线性相关关系,怎样求出回归方程?典例精析:例1某地区不同身高的未成年男性的体重平均值如下表:试建立y问题探究二非线性回归分析问题1对于两个变量间的相关关系,是否只有唯一一种回归模型来拟合它们间的相关关系?问题2对同一个问题建立的两种不同回归模型,怎样比较它们的拟合效果?例2为了研究某种细菌随时间x变化时,繁殖个数y的变化,收集数据如下:(2)描述解释变量x与预报变量y之间的关系;(3)计算相关指数.当堂检测:1.在一次试验中,当变量x的取值分别为1,12,13,14时,变量y的值分别为2,3,4,5,则y与1x的回归曲线方程为()A.y^=1x+1 B.y^=2x+3 C.y^=2x+1 D.y^=x-12.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程y^=b^x+a^必过样本点的中心(x,y)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2的值越小,说明模的拟合效果越好D.若变量y和x之间的相关系数r=-0.936 2,则变量y和x之间具有线性相关关系3.若一组观测值(x1,y1),(x2,y2),…,(x n,y n)之间满足y i=a+bx i+e i(i=1,2,…,n),若e i恒为0,则R2为________.课堂小结:布置作业:《步步高》作业篇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3非线性回归问题,
知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。

能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。

情感目标:体会数学知识变化无穷的魅力。

教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的
过程中寻找更好的模型的方法.
教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程:
一、复习准备:
对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课:
1. 探究非线性回归方程的确定:
1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的C
/y 个 (学生描述步骤,教师演示)2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系.
① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.
② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.
③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y
=,则21ln z c x c =+,可以用线性回归方程来拟合.
④ 利用计算器算得 3.843,0.272a
b =-=,z 与x 间的线性回归方程为
0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.
⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.
其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究
例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数
x 与增大的容积y 之间的关系.
【解】先根据试验数据作散点图,如图所示:
z =a ′+bt ,t 、z 的数值对应表为:
【题后点评】作出散点图,由散点图选择合适的回归模型是解决本题的关键,在这里线性回归模型起了转化的作用.
例2:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.
C
/y 个 2、讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量呈非线性相关关系,所以不能直接....
用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型.......
来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.
z =a ′+bt ,t 、z 的数值对应表为:
从图中可以看出x 与y 之间不存在线性相关关系. 但仔细分析一下,知道钢包开始使用时侵蚀速度快, 然后逐渐减慢.显然,钢包容积不会无限增大,它必 有一条平行于x 轴的渐近线.于是根据这一特点,我
们试设指数型函数曲线y =a e b
x
.对它两边取对数得
ln y =ln a +b
x .
令z =ln y ,t =1
x
,a ′=ln a ,则上式可写为线性方程:
③ 在上式两边取对数,得
21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的关系如下:
观察z 与x
以用线性回归方程来拟合.
④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.
⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2. 小结:用回归方程探究非线性回归问题的方法、步骤. 3、常见的非线性回归模型 ⑴ 幂函数曲线 y=ax b
处理方法:两边取自然对数得:lny=lna+blnx; 再设{
y
y x x ln ln ,,==
则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b ⑵ 指数曲线 y=ae bx
处理方法: 两边取自然对数得:lny=lna+bx; 再设{
y
y x x ln ,,==
则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b
⑶ 倒指数曲线 x
b ae y =
处理方法:两边取自然对数得:lny=lna+x b
; 再设⎩⎨⎧==y y x
x ln 1,,
则原方程变成 y ′=lna+bx ′,再根据一次线性回归模型的方法得出lna 和b ⑷ 对数曲线 y=a+blnx 处理方法:设{
y
y x
x ==,,ln 则原方程变成 y ′=a+bx ′,再根据一次线性回归模型的方法得出a 和b
三、巩固练习:
为了研究某种细菌随时间x 变
化,繁殖的个数,收集数据如下: 1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;
2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy
=e x +.) 四、作业布置:课本第13页的练习题。

相关文档
最新文档