第九章 习题及答案教学文稿

合集下载

管理学第九章课后习题答案

管理学第九章课后习题答案

管理学第九章课后习题答案在管理学的学习过程中,课后习题是非常重要的一部分。

通过解答习题,我们可以更好地理解和掌握课堂上所学到的知识。

本文将为大家提供管理学第九章课后习题的答案,希望能够对大家的学习有所帮助。

第一题:什么是组织结构?它的作用是什么?组织结构是指组织中各个部门、岗位和个人之间的关系和相互联系的方式和形式。

它决定了组织中权力和责任的分配、信息流动的路径以及决策的层次和过程。

组织结构的作用是实现组织的目标和任务,提高组织的效率和竞争力。

第二题:什么是职权集中和职权分散?它们各自的特点是什么?职权集中是指权力和决策集中在组织的高层管理者手中。

这种结构下,高层管理者对组织的各项决策和权力具有绝对控制权,下属只需按照上级的指示执行即可。

职权集中的特点是决策速度快,执行效率高,适用于环境变化较快的情况。

职权分散是指权力和决策下放到组织的各个层级和部门。

这种结构下,下属具有一定的自主权和决策权,可以根据自己的判断和能力来执行任务。

职权分散的特点是灵活性强,适应性好,能够充分发挥下属的创造力和积极性。

第三题:什么是部门化组织结构?它的优缺点是什么?部门化组织结构是指将组织按照不同的职能或任务划分为若干个部门,每个部门负责特定的职能或任务。

部门化组织结构的优点是可以实现各个部门的专业化和分工,提高工作效率;可以便于管理者对各个部门进行监督和控制;可以适应不同的环境和任务需求。

缺点是部门之间的沟通和协调相对困难,可能会导致信息不畅通和决策不一致的问题。

第四题:什么是跨国公司?它的特点和挑战是什么?跨国公司是指在一个以上国家开展业务和经营活动的企业。

跨国公司的特点是具有全球化的视野和战略,可以在不同的国家和市场中获取资源和市场份额;具有多元化的文化和团队,可以融合不同国家和地区的人才和经验;具有全球化的供应链和价值链,可以实现资源的优化配置和价值的最大化。

跨国公司面临的挑战包括文化差异和管理难题,需要处理不同国家和地区的文化差异和管理方式;法律和政策风险,需要遵守不同国家和地区的法律和政策;市场和竞争压力,需要在全球市场中与其他跨国公司竞争。

结构化学课后答案第9章晶体的结构习题解答

结构化学课后答案第9章晶体的结构习题解答

第9章 晶体结构和性质习题解答【9.1】若平面周期性结构系按下列单位并置重复堆砌而成,试画出它们的点阵结构,并指出结构基元。

●●●●●●●●●●●●●●●●●●●●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○解:用虚线画出点阵结构如下图,各结构基元中圈和黑点数如下表:1234567○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○●●●●●●●●●●●●●●●●●●●●图序号 1 2 3 4 5 6 7 结构基元数 1 1 1 1 1 1 1 黑点数 1 1 1 1 0 2 4 圈数1112313【评注】 从实际周期性结构中抽取出点阵的关键是理解点阵的含义,即抽取的点按连接其中任意两点的向量平移后必须能够复原。

如果不考虑格子单位的对称性,任何点阵均可划出素单位来,且素单位的形状并不是唯一的,但面积是确定不变的。

如果考虑到格子单位的对称形,必须选取正当单位,即在对称性尽量高的前提下,选取含点阵点数目尽量少的单位,也即保持格子形状不变的条件下,格子中点阵点数目要尽量少。

例如,对2号图像,如果原图是正方形,对应的正当格子单位应该与原图等价(并非现在的矩形素格子),此时结构基元包含两个黑点与两个圆圈。

【9.2】有一AB 型晶体,晶胞中A 和B 的坐标参数分别为(0,0,0)和(12,12,12)。

指明该晶体的空间点阵型式和结构基元。

解:晶胞中只有一个A 和一个B ,因此不论该晶体属于哪一个晶系,只能是简单点阵,结构基元为一个AB 。

【9.3】已知金刚石立方晶胞的晶胞参数a =356.7pm 。

请写出其中碳原子的分数坐标,并计算C —C 键的键长和晶胞密度。

解:金刚石立方晶胞中包含8个碳原子,其分数坐标为:(0,0,0),1(2,12,0),(12,0,1)2,(0,12,1)2,(14,14,1)4,3(4,34,1)4,(34,14,3)4,(14,34,3)4(0,0,0)与(14,14,14)两个原子间的距离即为C -C 键长,由两点间距离公式求得:C-C 356.7154.4pm r ====密度-13-10323-1812.0g mol 3.51 g cm (356.710cm)(6.022 10mol )A ZM D N V -⨯⋅==⋅⨯⨯⨯ 【9.4】立方晶系金属钨的粉末衍射线指标如下:110,200,211,220,310,222,321,400。

高等数学(同济第七版)第九章课后答案

高等数学(同济第七版)第九章课后答案

-.《高"tt雪;')( ;r,乞履>rm习IA全航44, ’ ’i,、、J·.,-一,rr-T令,,、-M-·.‘FEE-’‘....l i··付守年,2-·’、fp····.,...、付’创刊令,-2、.四.,。

-H‘.,.JA、。

当”、句,‘-、,.-.-----号ri咱也k fi'l企:,i(r'J ;(,) f尔1’在.i!Iii i ra、2所l'..t全微分r.. l.主R F列的数的全做分:l I ) :二X)... ...:.. ; (2):=··-:14)u=‘., .( 3): sτ兰==:、f叶’.,.I·.·、-= .,ii: ”l' .‘Ez---虫”·飞”( I ) I晏为t;_=(,-干)‘1曹寸、-于)r1r.ii·i i·dz =ι二,I x+ , _ •h,,店,问向f t:l曾il=,l: \-二-.....,..,.h’,:1 2 l I崎').J...+二二,I‘冉、,1: d‘。

‘1’fr l'..lt、,I‘.“i,)dε =-飞、··....( l、牛+‘.}‘ii:_ -J '们飞!-+\1、厅可丁2( 3 > I叫11• , Iv飞+,--,--咱自---,电·、,、句’‘‘. t I--,l:,l 1、·"l1..t..1...-F‘{’. .,..,.,1: ·=、·,1‘φ. • ,I,A‘.11.,MFa,.’}iuyt吁《-Itl48 一、o,�舷学’{第七版)"F筋习忍金’E8ε27.6 一二一一-二I.JO 号i S 2 127. 8 !:, · 12.钊JU 1: l校纷iaF I乎):内政之佣的地(,j i克i:丁j宫。

高等数学课后习题答案--第九章

高等数学课后习题答案--第九章

9. 设 x n >0,
10. 讨论下列级数的收敛性(包括条件收敛与绝对收敛)
182
⑴ ⑶ ⑸ ⑺ ⑼
x sin ; n n =1 ∞ n (−1) n −1 n −1 ; ∑ 3 n =1 n +1 ∞ (−1) ( x > 0 ); ∑ n =1 n + x
∑ (−1)

n +1
⑵ ⑷ ⑹ ⑻ ⑽
180
(4) (6)



n =1 ∞

n =1
ln n ln n 1 ln n 1 n 1 , = = 3 . 收敛; < 2 2 n n n n n n n2 1 1 1 , < , 收敛; n ln (n + 2) ln(n + 2) 2
n
(5)
收敛;
(7) (8) (13) (14)
∑ (
n =1
n −1
)
n
发散
由于 lim (10
a −1
1 n
n →∞
= ln a , 而 n n − 1 > n a − 1 ;
(11)
发散;

n =1



n =1
( n + 1 − n − 1 ), ( n + 1 − (2n − n + 1 − n − 1) = (n −
2 2 2 2 2
(9) 收敛;
收敛;
5.利用级数收敛的必要条件,证明: nn (1) lim = 0, (2) n →∞ ( n !) 2

n →∞
lim
( 2 n) ! = 0. 2 n ( n +1)

第九章课后题答案

第九章课后题答案

《第九章压强》《9.1压强》1.估测你站立时对地面的压强。

根据你的体重可以得到你对地面的压力,再测量你站立时鞋底和地面的接触面积。

为简单起见,假设双脚站立时,整个鞋印范围都与地面接触(如图)。

测量时,在方格纸上画出鞋底的轮廓,看鞋底占有多少个小格(不满一个时,大于半格的算一格,小于半格的不算),再乘以每一小格的面积。

根据得到的数据,计算你对地面的压强。

如果图中每个小格的边长是1cm,某同学的质量为 50kg,他对地面的压强是多大?与你对地面的压强相比哪个大?-4 2 -2 2S=133x1x10 m x2=2.66 xIO mF=G=mg=50kg x9.8N/kg=490N£.=——490 -------- = x 4P a x hH 1.84 10 Ha° 22.66 10 m略2.解释下列现彖锯、剪刀、斧头,用过一段时间就要磨一磨,为什么?书包为什么要用宽的背带, 用细绳?啄木鸟有个坚硬而细长的嘴,这对它的生存为什么特别重要?(1)通过减小受力面积来增大压强;(2)通过增大受力面积来减小压强;(3)由于受力面积小,可以对树产生较大的压强。

再加上比较坚硬,更容易将树啄开,捉到树内的小虫子。

3.骆驼的体重比马大不了一倍,而它的脚掌面积是马蹄的三倍。

这位它在沙漠行走提供了什么有利条件?骆驼与马虽然对地产生的压力差不到一倍,但由于骆驼与沙漠的受力面积却是马蹄与沙漠的受力面积的三倍,根据P F可知,骆驼对地面的压强要比马蹄对沙漠的压强小,使得骆驼在沙漠上行走时不易陷入沙屮。

召图钉尖的面积是 5x102,手指对钉帽的压力使 20N,手4.一个图钉帽的面积是0.8cmcm _ Y对图钉帽的压强和佟I钉矣对墙的压强各是多少?而不F 20N25 1Q5 Pa= -5-=0.8 10 4 =帽X _ 2mF 20NP 小 5 8 8墙S 4 10 Pa墙284 10Pa10 m《9.2液体的压强》1.一个空的塑料药瓶,瓶口扎上橡皮膜,竖直的浸入水中,一次瓶口朝上,一次瓶口朝下, 这两次药瓶在水里的位置相同(如图)。

高等数学 课后习题答案第九章

高等数学 课后习题答案第九章

习题九1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ,,343αβγ===的方向导数。

解:(1,1,2)(1,1,2)(1,1,2)cos cos cos u u u uy l x z αβγ∂∂∂∂=++∂∂∂∂22(1,1,2)(1,1,2)(1,1,2)πππcoscos cos 5.(2)()(3)343xy xz y yz z xy =++=---2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。

解:{4,3,12},13.AB AB ==AB的方向余弦为4312cos ,cos ,cos 131313αβγ=== (5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105uyz x uxz yuxy z ∂==∂∂==∂∂==∂故4312982105.13131313u l∂=⨯+⨯+⨯=∂ 3. 求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点处沿曲线22221x y a b +=在这点的内法线方向的方向导数。

解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为2222220,x y b x y y a b a y ''+==-所以在点处切线斜率为2.b y a a '==-法线斜率为cos ab ϕ=.于是tan sin ϕϕ== ∵2222,,z z x y x a y b ∂∂=-=-∂∂∴2222zl a b⎛∂=--=∂⎝4.研究下列函数的极值:(1)z=x3+y3-3(x2+y2); (2)z=e2x(x+y2+2y);(3)z=(6x-x2)(4y-y2); (4)z=(x2+y2)22()e x y-+;(5)z=xy(a-x-y),a≠0.解:(1)解方程组22360360xyz x xz y y⎧=-=⎪⎨=-=⎪⎩得驻点为(0,0),(0,2),(2,0),(2,2).z xx=6x-6, z xy=0, z yy=6y-6在点(0,0)处,A=-6,B=0,C=-6,B2-AC=-36<0,且A<0,所以函数有极大值z(0,0)=0.在点(0,2)处,A=-6,B=0,C=6,B2-AC=36>0,所以(0,2)点不是极值点.在点(2,0)处,A=6,B=0,C=-6,B2-AC=36>0,所以(2,0)点不是极值点.在点(2,2)处,A=6,B=0,C=6,B2-AC=-36<0,且A>0,所以函数有极小值z(2,2)=-8.(2)解方程组222e(2241)02e(1)0xxxyz x y yz y⎧=+++=⎪⎨=+=⎪⎩得驻点为1,12⎛⎫-⎪⎝⎭.22224e(21)4e(1)2exxxxxyxyyz x y yz yz=+++=+=在点1,12⎛⎫-⎪⎝⎭处,A=2e,B=0,C=2e,B2-AC=-4e2<0,又A>0,所以函数有极小值e1,122z⎛⎫=--⎪⎝⎭. (3) 解方程组22(62)(4)0(6)(42)0xyz x y yz x x y⎧=--=⎪⎨=--=⎪⎩得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).Z xx=-2(4y-y2),Z xy=4(3-x)(2-y)Z yy=-2(6x-x2)在点(3,2)处,A=-8,B=0,C=-18,B2-AC=-8×18<0,且A<0,所以函数有极大值z(3,2)=36. 在点(0,0)处,A=0,B=24,C=0,B2-AC>0,所以(0,0)点不是极值点.在点(0,4)处,A=0,B=-24,C=0,B2-AC>0,所以(0,4)不是极值点.在点(6,0)处,A=0,B=-24,C=0,B2-AC>0,所以(6,0)不是极值点.在点(6,4)处,A=0,B=24,C=0,B2-AC>0,所以(6,4)不是极值点.(4)解方程组2222()22()222e(1)02e(1)0x yx yx x yy x y-+-+⎧--=⎪⎨--=⎪⎩得驻点P0(0,0),及P(x0,y0),其中x02+y02=1,在点P0处有z=0,而当(x,y)≠(0,0)时,恒有z>0,故函数z在点P0处取得极小值z=0.再讨论函数z=u e-u由de(1)duzuu-=-,令ddzu=得u=1,当u>1时,ddzu<;当u<1时,ddzu>,由此可知,在满足x 02+y 02=1的点(x 0,y 0)的邻域内,不论是x 2+y 2>1或x 2+y 2<1,均有2222()1()e e x y z x y -+-=+≤.故函数z 在点(x 0,y 0)取得极大值z =e -1(5)解方程组(2)0(2)0x y z y a x y z x a y x =--=⎧⎨=--=⎪⎩ 得驻点为12(0,0),,33a a P P ⎛⎫⎪⎝⎭z xx =-2y , z xy =a -2x -2y , z yy =-2x .故z 的黑塞矩阵为222222ya x y H a x y x ---⎡⎤=⎢⎥---⎣⎦ 于是122033(),().0233aa a H P H P a a a ⎡⎤--⎢⎥⎡⎤==⎢⎥⎢⎥⎣⎦⎢⎥--⎢⎥⎣⎦ 易知H (P 1)不定,故P 1不是z 的极值点,H (P 2)当a <0时正定,故此时P 2是z 的极小值点,且3,2733a a a z ⎛⎫=⎪⎝⎭,H (P 2)当a >0时负定,故此时P 2是z 的极大值点,且3,2733a a a z ⎛⎫=⎪⎝⎭.5. 设2x 2+2y 2+z 2+8xz -z +8=0,确定函数z =z (x ,y ),研究其极值。

习题解答 第九章 欧氏空间(定稿)

习题解答  第九章 欧氏空间(定稿)
定理 1 (柯西—布涅柯夫斯基不等式)设 V 是欧氏空间,则 , V , 有 (,)
当且仅当 与 线性相关时,等号成立. 2. 标准正交基
定义 6 称欧氏空间 V 中一组两两正交的非零向量组1,2 , ,m 为一个正交向量组. 定义 7 设1,2,L ,n 是 n 维欧氏空间 V 中的一组基,若它们两两正交,则称 1,2,L ,n 为 V 的一组正交基;若正交基中的向量1,2,L ,n 都为单位向量,则称为标
n
( A, A) 0 ai2j 0 A 0 i, j1
此即证V是欧式空间。
(1)证:Eij是(i, j)元为1,其余一元皆为0的n阶方阵,那么可证 B11 E11, B12 E12 E21,L , B1n E1n En1 B22 E22 , B2n E2n En2 ,L , Bnn Enn 为V的一组基,于是
故○1 成立,且
V =S (S )
故S和(S)是同一子空间S的正交补,由正交补的唯一性,即证 ○2 .
4.设 是欧式空间V的线性变换,设 是V的一个变换,且, V ,都有(( ), )=(,( )). 证明:
(1) 是V的线性变换 (2)的值域 Im 等于的核ker的正交补。
四、典型题解析
例1.设A, B是n阶实对称阵,定义
(A, B) trAB
○1
证明:所有n阶实对称阵V 关于( A, B)成一欧式空间。 (1)求V的维数。 (2)求使trA=0的空间S的维数。 (3)求S的维数。
证 首先可证V {A Rnn | A A}是R上的一个线性空间。 再证○1 是V 的内积,从而得证V 是关于内积○1 的欧式空间. 事实上A,B,CV ,k R,有

部编数学七年级下册第9章不等式与不等式组(解析版)含答案

部编数学七年级下册第9章不等式与不等式组(解析版)含答案

第9章 不等式与不等式组一、单选题1.如图在数轴上表示是哪一个不等式的解( )A .1x ³-B .1x £-C . 2.5x ³-D . 2.5x £-【答案】A 【分析】直接根据数轴写出不等式的解集,判断即可.【详解】解:根据数轴可得:1x ³-,故选:A .【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法是“,>³”向右画,“,<£”向左画,注意在表示解集时,“,³£”要用实心圆点表示;“,<>”要用空心圆点表示.2.“x 的2倍与3的和是非负数”列成不等式为( )A .230x +³B .230x +>C .230x +£D .230x +<【答案】A【分析】非负数就是大于或等于零的数,再根据x 的2倍与3的和是非负数列出不等式即可.【详解】解:“x 的2倍与3的和是非负数”列成不等式为:230,x +³故选:.A 【点睛】本题考查的是列不等式,掌握“非负数是正数或零,用不等式表示就是大于或等于零”是解题的关键.3.某次篮球联赛中,火炬队与月亮队要争夺一个出线权,火炬队目前的战绩是17胜13负(其中有1场以4分之差负于月亮队),后面还要比赛6场(其中包括再与月亮队比赛1场);月亮队目前的战绩是15胜16负,后面还要比赛5场.如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么它在后面的其他比赛中至少胜( )场就一定能出线?A .1B .2C .3D .4【答案】A【分析】利用火炬队在后面对月亮队1场比赛中至少胜月亮队5分,则火炬队胜场数不低于月亮队列出不等式即可得出答案.【详解】解设火炬队在后面的比赛中胜x 场就一定能出线.∵火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么火炬队目前的战绩是18胜13负,后面还要比赛5场;月亮队目前的战绩为15胜17负,后面还要比赛4场;月亮队在后面的比赛中至多胜4场,所以整个比赛它至多胜15419+=场.需有1819x +³.解得1³x .因此火炬队在后面的比赛中至少胜1场就一定能出线,故选:A .【点睛】本题考查的是一元一次不等式的应用,解题关键是设出未知数再根据题意列出不等式.4.已知方程组2420x ky x y +=ìí-=î有正数解,则k 的取值范围是( )A .4k <B .4k >C .4k <-D .4k >-【答案】D【分析】先将方程组标号,用含y 的代数式表示x ,利用代入消元法求出44+y k=,根据方程组2420x ky x y +=ìí-=î有正数解,可得不等式404+y k =>,解不等式即可.【详解】解:2420x ky x y +=ìí-=î①②,由方程20x y -=变形得2x y =③,把③代入①得44y ky +=,解得44+y k=,方程组2420x ky x y +=ìí-=î有正数解,∴404+y k=,∴4+0k >,∴4k >-.故选择D .【点睛】本题考查二元一次方程组的解法与不等式综合运用题,掌握二元一次方程组的解法与不等式的解法是解题关键.5.若()1a b x a +>+的解集是1x <,则a 必须满足是( )A .0a <B .1a >-C .1a <-D .1a £【答案】C【分析】由()1a b x a +>+的解集是1x <,可得0a b +<,再利用不等式的解集可得11a a b+=+,再利用两数相除,同号得正,可得10a +<,从而可得答案.【详解】解:Q ()1a b x a +>+的解集是1x <,\ 0a b +<,\ 不等式的解集为:x <1,a a b++ \ 11a a b +=+,∴10a +<,∴a <1,-故选:.C 【点睛】本题考查的是利用不等式的基本性质解不等式,以及利用不等式的解集确定字母系数的范围,掌握不等式的基本性质是解题的关键.6.不等式324x -<中,x 可取的最大整数值是( )A .0B .1C .2D .3【答案】B【分析】首先解不等式,再从不等式的解集中找出适合条件的最大正整数即可.【详解】解:324x -<,342x <+36x <2x <,\最大整数解是1.故选为:B .【点睛】本题考查解一元一次不等式,一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.7.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g )的取值范围在数轴上可表示( )A .B .C .D .【答案】D【分析】根据图示,可得不等式组的解集,可得答案.【详解】解:由图示得1A >,2A <,故选:D .【点睛】本题考查了在数轴上表示不等式的解集,先求出不等式的解集,再在数轴上表示出来,注意,不包括点1、2,用空心点表示.8.若数a 使关于x 的方程12ax +=﹣73x ﹣1有非负数解,且关于y 的不等式组172222212y y y a y--ì-<ïíï+>-î恰好有两个偶数解,则符合条件的所有整数a 的和是( )A .﹣22B .﹣18C .11D .12【答案】B【分析】依题意,表示出分式方程的解,由分式方程有非负数解确定出a 的值,表示不等式组的解集,由不等式组恰好有两个偶数解,得到a 的值即可.【详解】由题知:原式:17123ax x +=-- ,去分母得:33146ax x +=--,得:9314x a =-+,又关于x 的方程17123ax x +=--有非负数解,∴ 3140a +<,∴ 143a <-;不等式组整理得:414y a y <ìïí->ïî,解得:144a y -<<,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0;∴ 1204a --£<,可得71a -£<∴1473a -£<-,则满足题意a 的值有﹣7,﹣6,﹣5,则符合条件的所有整数a 的和是﹣18.故选:B ;【点睛】本题考查一元一次不等式组的整数解、一元一次方程的解,难点在熟练掌握求解的运算过程.9.已知关于x ,y 的方程组343x y a x y a+=-ìí-=î,其中31a -££,下列结论:①当2a =-时,x ,y 的值互为相反数;②51x y =ìí=-î是方程组的解;③当1a =-时,方程组的解也是方程1x y +=的解;④若14y ££,则30a -££.其中正确的是( )A .①②B .②③C .②③④D .①③④【答案】D【分析】将原方程求解,用a 表示x 和y ,然后根据a 的取值范围,求出x 和y 的取值范围,然后逐一判断每一项即可.【详解】由343x y a x y a +=-ìí-=î,解得121x a y a=+ìí=-î∵31a -££∴53x -££,04y ££①当2a =-时,解得33x y =-ìí=î,故①正确;②51x y =ìí=-î不是方程组的解,故②错误;③当1a =-时,解得12x y =-ìí=î,此时1x y +=,故③正确;④若14y ££,即114a £-£,解得30a -££,故④正确;故选D .【点睛】本题考查了二元一次方程组,解一元一次不等式,熟练掌握二元一次方程组的解法和不等式的解法是本题的关键.10.如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?( )A .112B .121C .134D .143【答案】C 【详解】分析:设妮娜需印x 张卡片,根据利润=收入﹣成本结合利润超过成本的2成,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其内最小的整数即可得出结论.详解:设妮娜需印x 张卡片,根据题意得:15x ﹣1000﹣5x >0.2(1000+5x ),解得:x >13313,∵x 为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.故选C .点睛:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.二、填空题11.已知等腰三角形的周长为12cm ,则这个等腰三角形的腰长x 的范围是________.【答案】3cm 6cmx <<【分析】设等腰三角形的底边长为y cm ,根据三角形三边的不等关系及周长,可得关于x 的不等式,解不等式即可.【详解】设等腰三角形的底边长为y cm ,由已知得2x y >,212x y +=,∴2122x x >-,解得:x >3,∵y =12-2x >0,∴x <6∴36x <<故答案为:36cm x cm<<【点睛】本题是一元一次不等式的简单应用,考查了三角形三边的不等关系、等腰三角形的定义,解一元一次不等式,关键是清楚三角形三边的不等关系及实际问题中三角形的边长为正这个隐含条件.12.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.现有27元钱,最多可以购买该商品的件数是________.【答案】10件【分析】设购买该商品x 件,先判断购买件数在5件之上,再根据总价=3×5+3×0.8×超过5件的数量,结合总价不超过27元,即可得出关于x 的一元一次不等式,求出x 的解集即可得出结论.【详解】解:设购买该商品x 件,因为共有27元,所以最多购买的件数超过5件,依题意得:3×5+3×0.8(x -5)≤27,解得:x ≤10,故答案为:10件.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.不等式23510x x -³-的正整数解________.【答案】1和2【分析】求出不等式的解集,然后在解集中找出正整数即可.【详解】解:23510x x -³-解得:73x £,∴符合条件的正整数为:1和2,故答案为:1和2.【点睛】本题考查了求一元一次不等式的整数解,正确求出不等式的解集是解题的关键.14.已知关于x 的不等式组0321x a x -³ìí->-î有9个整数解,则a 的取值范围是________.【答案】87a -<£-【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:0321x a x -³ìí->-î解不等式组可得2a x £<,∴9个整数解为1,0,1-,2-,3-,4-,5-,6-,7-,∴87a -<£-.故答案为:87a -<£-【点睛】本题主要考查了学生对不等式组知识点的掌握,先求出不等式组范围,再根据具体解逆推出a 的取值范围.15.382x -的值不大于7x -的值,x 的取值范围是________.【答案】6x £【分析】根据题意列出不等式,解不等式即可.【详解】由题意,得:3872x x -£-解得:6x £故答案为:6x £【点睛】本题考查了一元一次不等式的应用,关键是理解不大于即小于或等于.16.已知0a <,10b -<<,请将a ,ab ,2ab 从小到大依次排列________.【答案】2a ab ab<<【分析】根据不等式的性质和乘法法则进行判断即可.【详解】解:∵a <0, b <0,∴ab >0,∵﹣1<b <0,∴0<b 2<1;两边同时乘a ,0>ab 2>a ,∴a <ab 2<ab .【点睛】本题考查了不等式的性质,明确(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变是解题关键.17.当m ________时,代数式342423m m +--的值是非负数.【答案】4³-【分析】根据题意,列出不等式解不等式即可.【详解】依题意342423m m +--0³去分母得:()()3342240m m +--³去括号得:912480m m +-+³移项,合并同类项得:520m ³-化系数为1,得:4m ³-故答案为:4³-【点睛】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键.18.定义一种法则“Ä”如下:()()a a b a b b a b >ìÄ=í£î,如:122Ä=,若(25)33m -Ä=,则m 的取值范围是_______.【答案】4m £【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m £.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.三、解答题19.解下列不等式,并把它们的解集在数轴上表示出来:(1)3(27)23+>x ;(2)124(31)2(216)x x --£-;(3)325153x x +-<-;(4)213153212x x ---³.【答案】(1)13x >;(2)3x ³;(3)7x >;(4)310x £-,见解析【分析】(1)去括号,移项、合并同类项,系数化为1求得一元一次不等式的解集,再根据所求解集在数轴上表示即可;(2)去括号,移项、合并同类项,系数化为1求得一元一次不等式的解集,再根据所求解集在数轴上表示即可;(3)去分母,去括号,移项、合并同类项,系数化为1求得一元一次不等式的解集,再根据所求解集在数轴上表示即可;(4)去分母,去括号,移项、合并同类项,系数化为1求得一元一次不等式的解集,再根据所求解集在数轴上表示即可;【详解】(1)去括号,得:62123x +>,移项、合并同类项,得:62x >,系数化为1,得:13x >,在数轴上表示不等式解集,如图:(2)去括号,得:1212+4432x x -£-,移项、合并同类项,得:1648x -£-,系数化为1,得:3x ³,在数轴上表示不等式解集,如图:;(3)去分母,得:()()3352515x x +<--,去括号,得:39102515x x +<--,移项、合并同类项,得:749x -<-,系数化为1,得:7x >,在数轴上表示不等式解集,如图:;(4)去分母,得:()()4216315x x ---³,去括号,得:841865x x --+³,移项、合并同类项,得:103x -³,系数化为1,得:310x £-,在数轴上表示不等式解集,如图:.【点睛】本题考查解一元一次不等式及用数轴表示不等式的解集,解题的关键是熟练掌握解一元一次不等式的一般步骤:去分母,去括号,移项、合并同类项,系数化为1.20.赵军说不等式2a a >永远不会成立,因为如果在这个不等式两边同除以a ,就会出现12>这样的错误结论.他的说法对吗?【答案】不对,见解析【分析】根据不等式的性质可知当0a <时,不等号方向发生改变即可求解.【详解】解:赵军的说法不对.理由如下:当0a <时,根据不等式的性质:“不等式的两边同时除以一个负数,不等号的方向改变”可知此时得到:12<.【点睛】本题考查一元一次不等式的基本性质:不等式两边同时除以一个负数,不等号的方向发生改变,熟练掌握不等式的性质是解题的关键.21.解不等式组()262311x x x x ì-£ï>-íï-<+î①②③,请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是: .(2)解不等式③,得 .(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .【答案】(1)x≥﹣3、不等式的性质3;(2)x <2;(3)作图见解析;(4)﹣2<x <2.【详解】试题分析:分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,确定不等式组的解集.试题解析:(1)解不等式①,得x ≥﹣3,依据是:不等式的性质3,故答案为x≥﹣3、不等式的性质3;(2)解不等式③,得x <2,故答案为x <2;(3)把不等式①,②和③的解集在数轴上表示出来,如图所示:(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:﹣2<x <2,故答案为﹣2<x <2.【点睛】本题考查了解一元一次不等式组、在数轴上表示不等式的解集,关键是先求出每个不等式的解集,分别在数轴上表示每一个不等式的解集,然后再确定出不等式组的解集.22.一艘轮船从某江上游的A 地匀速行驶到下游的B 地用了10h ,从B 地匀速返回A 地用了不到12h ,这段江水流速为3km /h ,轮船在静水里的往返速度v 不变,v 满足什么条件?【答案】v 满足的条件是大于33千米每小时.【分析】直接利用总路程不变得出不等关系进而得出答案.【详解】解:由题意得,从A 到B 的速度为:()3v +千米/时,从B 到A 的速度为:()3v -千米/时∵从B 地匀速返回A 地用了不到12小时,∴()()123103v v ->+,解得:33v >.答:v 满足的条件是大于33千米每小时.【点睛】此题主要考查了一元一次不等式的实际应用,正确得出不等关系是解题关键.23.每年的5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息.根据此信息,解答下列问题:1.快餐的成分:蛋白质,脂肪、矿物质、碳水化合物;2.快餐总质量为400g ;3.脂肪所占的百分比为5%;4.所含蛋白质质量是矿物质质量的4倍.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.【答案】(1)20g ;(2)176g ;(3)180g【分析】(1)用总质量乘以5%即可;(2)设所含矿物质的质量为g x ,根据题意列方程42040040%400x x +++´=,求出解即可得到答案;(3)设所含矿物质的质量为g y ,则所含碳水化合物的质量为(3805)g -y ,根据题意列不等式解答.【详解】解:(1)这份快餐中所含脂肪质量为4005%=20´(g );(2)设所含矿物质的质量为g x ,由题意得42040040%400x x +++´=,解得44x =,故4176=x .∴这份快餐所含蛋白质的质量为176g ;(3)设所含矿物质的质量为g y ,则所含碳水化合物的质量为(3805)g -y ,∴4(3805)40085%+-£´y y ,解得40y ³,故3805180-£y .∴所含碳水化合物质量的最大值为180g .【点睛】本题主要考查学生用不等式解决实际问题的能力,列一元一次方程解决实际问题,正确理解题意设定未知数列出方程及不等式是解题的关键.24.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:销售数量销售时段A 种型号B 种型号销售收入第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,列二元一次方程组,解方程组即可得到答案;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台,利用超市准备用不多于7500元,列不等式160a +120(50﹣a )≤7500,解不等式可得答案;(3)由超市销售完这50台电风扇实现利润超过1850元,列不等式(200﹣160)a +(150﹣120)(50﹣a )>1850,结合(2)问,得到a 的范围,由a 为非负整数,从而可得答案.【详解】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:341200561900x y x y +=ìí+=î①②,①5´-②3´得:2300,y =150,y \=把150y =代入①得:200,x =解得:200150x y =ìí=î,答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.依题意得:160a +120(50﹣a )≤7500,401500,a \£解得:a ≤1372.因为:a 为非负整数,所以:a 的最大整数值是37.答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a +(150﹣120)(50﹣a )>1850,10a \>350,解得:a >35,∵a ≤1372,35\<a 1372£,Q a 为非负整数,36a =或37.a =∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式,一元一次不等式组的应用的方案问题,掌握以上知识是解题的关键.25.对于三个数a ,b ,c ,M{a ,b ,c}表示a ,b ,c 这三个数的平均数,min{a ,b ,c}表示a ,b ,c 这三个数中最小的数,如:1234{1,2,3}33M -++-==,min {﹣1,2,3}=﹣1;121{1,2,}33a a M a -+++-==,min {﹣1,2,a }=(1)11a a a £-ìí->-î;解决下列问题:(1)填空:min {﹣22,2﹣2,20130}= ;(2)若min {2,2x +2,4﹣2x }=2,求x 的取值范围;(3)①若M {2,x +1,2x }=min {2,x +1,2x },那么x = ;②根据①,你发现结论“若M {a ,b ,c }=min {a ,b ,c },则 ”(填a ,b ,c 的大小关系);③运用②解决问题:若M {2x +y +2,x +2y ,2x ﹣y }=min {2x +y +2,x +2y ,2x ﹣y },求x +y 的值.【答案】(1)-4;(2)01x ££;(3)①1;②a =b =c ;③-4【分析】(1)先求出﹣22,2﹣2,20130这些数的值,再根据运算规则即可得出答案;(2)先根据运算规则列出不等式组,再进行求解即可得出答案;(3)根据题中规定的M {a 、b 、c }表示这三个数的平均数,min {a 、b 、c }表示a 、b 、c 这三个数中的最小数,列出方程组即可求解.【详解】(1)∵﹣22=﹣4,2﹣2=14,20130=1,∴min {﹣22,2﹣2,20130}=﹣4;故答案为:﹣4;(2)由题意得:222422x x +³ìí-³î,解得:0≤x ≤1,则x 的取值范围是0≤x ≤1;故答案为0≤x ≤1;(3)①M {2,x +1,2x }=2123x x +++=x +1=min {2,x +1,2x },∴1212x x x +£ìí+£î,∴11x x £ìí³î,∴x =1.②若M {a ,b ,c }=min {a ,b ,c },则a =b =c ;③根据②得:2x +y +2=x +2y =2x ﹣y ,解得:x=﹣3,y=﹣1,则x+y=﹣4.故答案为:①1;②a=b=c;③﹣4.【点睛】本题主要考查了一元一次不等式组及二元一次方程组的应用,读懂题目信息并理解新定义“M”与“min”的意义是解题的关键.。

人教版高中物理选修3-3教学案:第九章 第3、4节含答案

人教版高中物理选修3-3教学案:第九章 第3、4节含答案

第3、4节饱和汽与饱和汽压__物态变化中的能量交换1.在密闭容器中的液体不断地蒸发,液面上的蒸汽也不断地凝结,当这两个同时存在的过程达到动态平衡时,宏观的蒸发也停止了,这种与液体处于动态平衡的蒸汽叫做饱和汽。

2.在一定温度下,饱和汽的分子数密度是一定的,因而饱和汽的压强也是一定的,这个压强叫做这种液体的饱和汽压。

3.在某一温度下,水蒸气的压强与同一温度下水的饱和汽压之比称为空气的相对湿度。

4.某种晶体熔化过程中所需的能量与其质量之比,称做这种晶体的熔化热。

5.某种液体汽化成同温度的气体时所需的能量与其质量之比,称做这种物质在这个温度下的汽化热。

一、汽化1.汽化物质从液态变成气态的过程。

2.汽化的两种方式比较蒸发沸腾区别特点只在液体表面进行,在任何温度下都能发生;是一种缓慢的汽化过程在液面和内部同时发生;只在一定的温度下发生;沸腾时液体温度不变;是一种剧烈的汽化过程影响因素液体温度的高低;液体表面积的大小;液体表面处空气流动的快慢液体表面处大气压的大小,大气压较高时,沸点也比较高相同点都是汽化现象,都要吸热二、饱和汽与饱和汽压1.动态平衡在相同时间内,回到水中的分子数等于从水面飞出去的分子数,这时水蒸气的密度不再增大,液体水也不再减少,液体与气体之间达到了平衡状态。

2.饱和汽与液体处于动态平衡的蒸汽。

3.未饱和汽没有达到饱和状态的蒸汽。

4.饱和汽压一定温度下饱和汽的压强。

5.饱和汽压的变化随温度的升高而增大。

饱和汽压与蒸汽所占的体积无关,和蒸汽体积中有无其他气体无关。

三、空气的湿度和湿度计1.绝对湿度概念空气中所含水蒸气的压强。

2.相对湿度概念空气中水蒸气的压强与同一温度时水的饱和汽压之比。

相对湿度=水蒸气的实际压强同温度水的饱和汽压。

3.常用湿度计干湿泡湿度计、毛发湿度计、传感器湿度计。

四、熔化热与汽化热1.物态变化中的能量交换2.熔化热(1)某种晶体熔化过程中所需的能量与其质量之比,称做这种晶体的熔化热。

第九章、十章作业答案教学教材

第九章、十章作业答案教学教材

第九章、十章作业答

第九章参考答案
二、选择题:
1-7:CAACBBC
三、判断题。

1-7:√√××√×√
四、计算题
1、设实际储蓄率为0.4,实际资本—产量比率为3,合意储蓄率为0.5,合意的资本—产量比率为4,自然增长率为8%,请计算:
A: (1)实际增长率; (2)有保证的增长率; (3)最适宜的储蓄率。

B: (1)在以上的假设时,短期中经济中会出现累积性扩张,还是累积性收缩,或稳定增长?
(2)长期中是长期停滞,或是长期繁荣,或稳定增长?
C: 如果实际和合意的资本—产量比率都为4,实际储蓄率和合意储蓄率为多少才能实现长期的稳定增长?
解:A :(1)实际增长率%3.1315
234.0≈===
C S G (2)有保证增长率%5.1245.0===Cr S G d w (3) 自然增长率r
n C S G 0=, 最适宜的储蓄率32.04%80=⨯=•=r n C G S
B :(1)在以上的假设时,短期中经济中会出现累积性扩张。

(2)长期中是长期停滞。

C :经济要能够实现长期的稳定增长,必须满足%8===n w G G G
即%8==r
d C S C S 而4==r C C ,所以32.0==d S S
故实际的和合意的储蓄率应为0.32时,经济能够实现长期的稳定增长。

第十章参考答案
二、选择题:
1-5:CCAAC
6-8:BAB
三、判断题。

1-5:×√×××
6-9:√√×√。

物理学简明教程第九章课后习题答案高等教育出版社

物理学简明教程第九章课后习题答案高等教育出版社

物理学简明教程第九章课后习题答案高等教育出版社第九章近代物理简介9-1有下列几种说法:(1) 两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的(B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m·s-1 .迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,故选(C).9-2 按照相对论的时空观,判断下列叙述中正确的是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地(E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt和Δx,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δx =0)还是不同地(Δx ≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δx ≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δx ′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.9-3 有一细棒固定在S′系中,它与Ox ′轴的夹角θ′=60°,如果S′系以速度u 沿Ox 方向相对于S系运动,S系中观察者测得细棒与Ox 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿Ox 正方向运动时大于60°,而当S′系沿Ox 负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox 轴夹角将会大于60°,此结论与S′系相对S系沿Ox 轴正向还是负向运动无关.由此可见应选(C).9-4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A) 21v v +L (B) 12v -v L (C) 2v L (D) ()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C).讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.9-5 设S′系以速率v =0.60c 相对于S系沿xx ′轴运动,且在t =t ′=0时,x =x ′=0.(1)若有一事件,在S系中发生于t =2.0×10-7s,x =50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,x =10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(x ,y ,z ,t )表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为s 1025.1/1721211-⨯=--='c x c t t 2v v (2) 同理,第二个事件发生的时刻为s 105.3/1722222-⨯=--='c x c t t 2v v 所以,在S′系中两事件的时间间隔为s 1025.2Δ712-⨯='-'='t t t 9-6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8 s ,x ′=60m ,y ′=0,z ′=0处,若S′系相对于S系以速率v =0.6c 沿xx ′轴运动,问该事件在S系中的时空坐标各为多少?分析 本题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为m 93/12=-'+'=c t x x 2v vy =y ′=0z =z ′=0s 105.2/1722-⨯=-'+'=c x c t t 2v v 9-7 以速度v 沿x 方向运动的粒子,在y 方向上发射一光子,求地面观察者所测得光子的速度.分析 设地面为S系,运动粒子为S′系.与上题不同之处在于,光子的运动方向与粒子运动方向不一致,因此应先求出光子相对S系速度u 的分量u x 、u y 和u z ,然后才能求u 的大小和方向.根据所设参考系,光子相对S′系的速度分量分别为u ′x =0,u ′y =c ,u ′z =0.解 由洛伦兹速度的逆变换式可得光子相对S系的速度分量分别为v v v ='++'=x x x u cu u 21 222/11/1c c u cc u u x y y 22v v v -='+-'= 0=z u所以,光子相对S系速度u 的大小为c u u u u z y x =++=222速度u 与x 轴的夹角为vv 22arctan arctan -==c u u θx y 讨论 地面观察者所测得光子的速度仍为c ,这也是光速不变原理的必然结果.但在不同惯性参考系中其速度的方向却发生了变化.9-8 在惯性系S 中观察到有两个事件发生在同一地点,其时间间隔为4.0 s ,从另一惯性系S′中观察到这两个事件的时间间隔为6.0 s ,试问从S′系测量到这两个事件的空间间隔是多少? 设S′系以恒定速率相对S系沿xx ′轴运动.分析 这是相对论中同地不同时的两事件的时空转换问题.可以根据时间延缓效应的关系式先求出S′系相对S 系的运动速度v ,进而得到两事件在S′系中的空间间隔Δx ′=v Δt ′(由洛伦兹时空变换同样可得到此结果).解 由题意知在S系中的时间间隔为固有的,即Δt =4.0s,而Δt ′=6.0 s.根据时间延缓效应的关系式2/1ΔΔc tt 2v -=',可得S′系相对S系的速度为c t t c 35ΔΔ12=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛'-=v两事件在S′系中的空间间隔为m 1034.1ΔΔ9⨯='='t x v9-9 若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少? (以光速c 表示)解 设宇宙飞船的固有长度为l 0 ,它相对于惯性系的速率为v ,而从此惯性系测得宇宙飞船的长度为2/0l ,根据洛伦兹长度收缩公式,有200/12/c l l 2v -=可解得v =0.866 c9-10 一固有长度为4.0 m 的物体,若以速率0.60c 沿x 轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?解 由洛伦兹长度收缩公式m 2.3/120=-=c l l 2v9-11 下列物体哪个是绝对黑体( )(A) 不辐射可见光的物体 (B) 不辐射任何光线的物体(C) 不能反射可见光的物体 (D) 不能反射任何光线的物体分析与解 一般来说,任何物体对外来辐射同时会有三种反应:反射、透射和吸收,各部分的比例与材料、温度、波长有关.同时任何物体在任何温度下会同时对外辐射,实验和理解证明:一个物体辐射能力正比于其吸收能力.做为一种极端情况,绝对黑体(一种理想模型)能将外来辐射(可见光或不可见光)全部吸收,自然也就不会反射任何光线,同时其对外辐射能力最强.综上所述应选(D).9-12 光电效应和康普顿效应都是光子和物质原子中的电子相互作用过程,其区别何在? 在下面几种理解中,正确的是( )(A) 两种效应中电子与光子组成的系统都服从能量守恒定律和动量守恒定律(B) 光电效应是由于电子吸收光子能量而产生的,而康普顿效应则是由于电子与光子的弹性碰撞过程(C) 两种效应都相当于电子与光子的弹性碰撞过程(D) 两种效应都属于电子吸收光子的过程分析与解 两种效应都属于电子与光子的作用过程,不同之处在于:光电效应是由于电子吸收光子而产生的,光子的能量和动量会在电子以及束缚电子的原子、分子或固体之间按照适当的比例分配,但仅就电子和光子而言,两者之间并不是一个弹性碰撞过程,也不满足能量和动量守恒.而康普顿效应中的电子属于“自由”电子,其作用相当于一个弹性碰撞过程,作用后的光子并未消失,两者之间满足能量和动量守恒.综上所述,应选(B).9-13 钨的逸出功是4.52 eV ,钡的逸出功是2.50 eV ,分别计算钨和钡的截止频率.哪一种金属可以用作可见光范围内的光电管阴极材料?分析 由光电效应方程W m h +=2v 21v 可知,当入射光频率ν =ν0 (式中ν0=W/h )时,电子刚能逸出金属表面,其初动能02=v 21m .因此ν0 是能产生光电效应的入射光的最低频率(即截止频率),它与材料的种类有关.由于可见光频率处在0.395 ×1015 ~0.75 ×1015Hz 的狭小范围内,因此不是所有的材料都能作为可见光范围内的光电管材料的(指光电管中发射电子用的阴极材料).解 钨的截止频率 Hz 1009.115101⨯==hW v 钡的截止频率 Hz 10603.015202⨯==h W v 对照可见光的频率范围可知,钡的截止频率02v 正好处于该范围内,而钨的截止频率01v 大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料.9-14 钾的截止频率为4.62 ×1014Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度.解 根据光电效应的爱因斯坦方程W m h +=2v 21v 其中 W =h ν0 , ν=c/λ可得电子的初速度1-50s m 1074.52⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=v v λc m h 由于逸出金属的电子的速度v <<c ,故式中m 取电子的静止质量.9-15 试求波长为下列数值的光子的能量、动量及质量:(1)波长为1 500 nm 的红外线;(2) 波长为500 nm 的可见光;(3) 波长为20 nm 的紫外线;(4) 波长为0.15 nm 的X 射线;(5) 波长为1.0 ×10-3nm 的γ 射线.解 由能量v h E =,动量λh p =以及质能关系式2c E m =,可得 (1) 当λ1 =1 500 nm 时,J 1033.1191-⨯===1hc v λh E 1-281s m kg 1042.4⋅⋅⨯==-1h λp kg 1047.1361211-⨯===λc h c m E (2) 当λ 2 =500 nm 时,因λ2 =31λ1 ,故有 J 1099.331912-⨯==E E-12712s m kg 1033.13⋅⋅⨯==-p pkg 1041.433612-⨯==m m(3) 当λ3 =20 nm 时,因λ3=751λ1 ,故有 J 1097.9751813-⨯==E E-12613s m kg 1031.375⋅⋅⨯==-p pkg 1010.1753413-⨯==m m(4) 当λ4=0.15 nm 时,因λ4 =10-4λ1 ,故有 J 1013.11041514-⨯==E E-12414s m kg 1042.4104⋅⋅⨯==-p pkg 1047.11043214-⨯==m m(5) 当λ5 =1×10-3 nm 时,J 1099.11355-⨯==λhc E 1-2255s m kg 1063.6⋅⋅⨯==-λh p kg 1021.23055-⨯==λc h m 9-16 计算氢原子光谱中莱曼系的最短和最长波长,并指出是否为可见光. 分析 氢原子光谱规律为⎥⎥⎦⎤⎢⎢⎣⎡-=22111i f n n R λ 式中n f =1,2,3,…,n i =n f +1,n f +2,….若把氢原子的众多谱线按n f =1,2,3,…归纳为若干谱线系,其中n f =1 为莱曼系,n f =2 就是最早被发现的巴耳末系,所谓莱曼系的最长波长是指n i =2,所对应的光谱线的波长,最短波长是指n i →∞所对应的光谱线的波长,莱曼系的其他谱线均分布在上述波长范围内.式中R 的实验值常取1.097×107m -1.此外本题也可由频率条件h ν =E f -E i 计算.解 莱曼系的谱线满足 ⎪⎪⎭⎫ ⎝⎛-=221111i n R λ,n i =2,3,4,… 令n i =2,得该谱系中最长的波长 λmax =121.5 nm 令n i →∞,得该谱系中最短的波长 λmin=91.2 nm 对照可见光波长范围(400 ~760 nm),可知莱曼系中所有的谱线均不是可见光,它们处在紫外线部分.9-17 在玻尔氢原子理论中,当电子由量子数n i =5 的轨道跃迁到n f =2的轨道上时,对外辐射光的波长为多少? 若再将该电子从n f =2 的轨道跃迁到游离状态,外界需要提供多少能量?分析 当原子中的电子在高能量E i 的轨道与低能量E f 的轨道之间跃迁时,原子对外辐射或吸收外界的能量,可用公式ΔE =E i -E f 或ΔE =E f -E i 计算.对氢原子来说,21nE E n =,其中E 1 为氢原子中基态(n =1)的能量,即E 1 =-Rhc =-13.6 eV ,电子从n f =2 的轨道到达游离状态时所需的能量,就是指电子由轨道n f =2 跃迁到游离态n i →∞时所需能量,它与电子由基态(n f =1)跃迁到游离态n i =∞时所需的能量(称电离能)是有区别的,后者恰为13.6 eV.解 根据氢原子辐射的波长公式,电子从n i =5 跃迁到n f =2 轨道状态时对外辐射光的波长满足⎪⎭⎫ ⎝⎛-=2251211R λ 则 λ=4.34 ×10-7m =434 nm而电子从n f =2 跃迁到游离态n i →∞所需的能量为eV 4.32Δ1212-=∞-=-=∞E E E E E 负号表示电子吸收能量.9-18 已知α粒子的静质量为6.68×10-27 kg ,求速率为5 000 km ·s -1的α粒子的德布罗意波长.分析 在本题及以后几题求解的过程中,如实物粒子运动速率远小于光速(即v <<c )或动能远小于静能(即E k <<E 0 ),均可利用非相对论方法处理,即认为0m m ≈和k E m p 022=.解 由于α粒子运动速率v <<c ,故有0m m = ,则其德布罗意波长为nm 1099.150-⨯===v m h p h λ 9-19 求动能为 1.0 eV 的电子的德布罗意波的波长.解 由于电子的静能MeV 512.0200==c m E ,而电子动能0E E k <<,故有()2/102k E m p =,则其德布罗意波长为 ()nm 23.120===k E m h p h λ 9-20 若电子和光子的波长均为0.20 nm ,则它们的动量和动能各为多少? 分析 光子的静止质量m 0 =0,静能E 0 =0,其动能、动量均可由德布罗意关系式E =h ν,λh p =求得.而对电子来说,动能pc c m c m c p E E E k <-+=-=20420220.本题中因电子的()()M e V 512.0keV 22.60E pc <<,所以0E E k << ,因而可以不考虑相对论效应,电子的动能可用公式022m p E k =计算. 解 由于光子与电子的波长相同,它们的动量均为1-24s m kg 1022.3⋅⋅⨯==-λh p 光子的动能 eV 22.6===pc E E k电子的动能 eV 8.37202==m p E k 讨论 用电子束代替可见光做成的显微镜叫电子显微镜.由上述计算可知,对于波长相同的光子与电子来说,电子的动能小于光子的动能.很显然,在分辨率相同的情况下(分辨率∝ 1/λ ),电子束对样品损害较小,这也是电子显微镜优于光学显微镜的一个方面.9-21 电子位置的不确定量为5.0×10-2 nm 时,其速率的不确定量为多少? 分析 量子论改变了我们对于自然现象的传统认识,即我们不可能对粒子的行为做出绝对性的断言.不确定关系式h p x x ≥ΔΔ(严格的表述应为π4ΔΔh p x x ≥)就是关于不确定性的一种量子规律.由上述基本关系式还可引出其他的不确定关系式,如h L ≥ϕϕΔΔ (Δφ为粒子角位置的不确定量,ΔL φ为粒子角动量的不确定量),h t E ≥ΔΔ(Δt 为粒子在能量状态E 附近停留的时间,又称平均寿命,11 / 11ΔE 为粒子能量的不确定量,又称能级的宽度)等等,不论是对粒子行为做定性分析,还是定量估计(一般指数量级),不确定关系式都很有用.解 因电子位置的不确定量Δx =5 ×10-2nm ,由不确定关系式以及x v ΔΔm p x =可得电子速率的不确定量1-7s m 1046.1ΔΔ⋅⨯==xm h x v9-22 一质量为40 g 的子弹以1.0 ×103 m ·s -1的速率飞行,求:(1)其德布罗意波的波长;(2) 若子弹位置的不确定量为0.10 mm ,求其速率的不确定量.解 (1) 子弹的德布罗意波长为v m h λ==1.66 ×10-35m (2) 由不确定关系式以及x v ΔΔm p x =可得子弹速率的不确定量为xm h m p x ΔΔΔ==v =1.66 ×10-28 m ·s -1 讨论 由于h 值极小,其数量级为10-34 ,故不确定关系式只对微观粒子才有实际意义,对于宏观物体,其行为可以精确地预言.。

大学物理_第九章_课后答案

大学物理_第九章_课后答案

µ0 I , r 为管外一点到螺线管轴 2πr
题 9-4 图 9-5 如果一个电子在通过空间某一区域时不偏转, 能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场? 解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存 在互相垂直的电场和磁场, 电子受的电场力与磁场力抵消所致. 如果它发生偏转也不能肯定 那个区域存在着磁场,因为仅有电场也可以使电子偏转. 9-6 已知磁感应强度 B = 2.0 Wb· m 的均匀磁场, 方向沿 x 轴正方向, 如题 9-6 图所示. 试求:(1)通过图中 abcd 面的磁通量;(2)通过图中 befc 面的磁通量;(3)通过图中 aefd 面 的磁通量. 解: 如题 9-6 图所示
题 9-7 图 9-7 如题9-7图所示, AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半 径为 R .若通以电流 I ,求 O 点的磁感应强度. 解:如题 9-7 图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中


AB 产生
� B1 = 0
CD 产生 B2 =
9-13 一根很长的铜导线载有电流10A,设电流均匀分布.在导线内部作一平面 S ,如题9-13 图所示.试计算通过S平面的磁通量(沿导线长度方向取长为1m的一段作计算).铜的磁导率
µ = µ0 .
解:由安培环路定律求距圆导线轴为 r 处的磁感应强度
� B ∫ ⋅ dl = µ 0 ∑ I
l
B 2πr = µ 0
B0 =

µ 0 ev = 13 T 4πa 2
电子磁矩 Pm 在图中也是垂直向里,大小为
Pm =
e 2 eva πa = = 9.2 × 10 − 24 A ⋅ m 2 T 2

高等代数第9章习题参考答案

高等代数第9章习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ijy x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。

大学物理教程第9章习题答案

大学物理教程第9章习题答案

⼤学物理教程第9章习题答案思考题9.1 为什么要引进视见函数?答:辐射通量虽然是⼀个反映光辐射强弱程度的客观物理量,但是,它并不能完整地反映出由光能量所引起的⼈们的主观感觉——视觉的强度(即明亮程度).因为⼈的眼睛对于不同波长的光波具有不同的敏感度,不同波长的数量不相等的辐射通量可能引起相等的视觉强度,⽽相等的辐射通量的不同波长的光,却不能引起相同的视觉强度.所以⽤视见函数概念反映⼈的眼睛对于不同波长的光波具有不同的敏感度.它表⽰⼈眼对光的敏感程度随波长变化的关系.9.2 在杨⽒双缝实验中,若将⼊射光由正⼊射改为斜⼊射,则屏幕上⼲涉图样如何改变?答:⼲涉条纹沿着垂直条纹的⽅向整体移动。

9.3 将劈尖由空⽓中放⼊折射率为n 的介质中,条纹间距如何变化?答:条纹间距变⼩。

9.4 在单缝的夫琅⽲费衍射中,单缝宽度对衍射图样有何影响?答:单缝宽度越⼩衍射图样的中央亮纹越宽。

9.5什么是缺级?产⽣缺级的条件是什么?答:当衍射⾓θ满⾜光栅⽅程λθk b a ±=+sin )(时应产⽣主极⼤明条纹,但如果衍射⾓⼜恰好满⾜单缝衍射的暗纹条件λk a '±=sin ,那么这时这些主极⼤明条纹将消失,这种现象就是缺级。

两个条件联⽴得...)2,1,0(=''±=k k k λ,即所缺的级数由光栅常数d 和缝宽a 的⽐值决定。

9.6 偏振现象反映光波的什么性质?答:偏振现象表明光波是横波。

9.7 试解释我们看到的天空是蓝⾊的⽽宇航员看到的天空却是⿊⾊的?答:我们看到的天空是蓝⾊的是由于空⽓对太阳光散射造成的。

⽽在宇宙空间中,物质的分布密度极低,对太阳光的散射也就基本不存在,所以宇航员看到的天空是⿊⾊的。

习题9.1 某汽车前灯发光强度为75,000cd ,光束发散⽴体⾓为5Sr ,求其发出的光通量。

解:发光强度I 为光通量F 对⽴体⾓Ω的微分Ωd dFI =所以375000575000=?===??ΩΩI Id F lm9.2 ⼀光源辐射出555nm 和610nm 的光,两者的辐射通量分别为2W 和1W ,视见函数分别为1.000和0.503,求光源发出的总光通量各为多少?解:(1)1366000.12683)()(683=??==λΦλV F lm52.343503.01683)()(683=??==λΦλV F lm9.3 ⼀氦氖激光器发出1?10-2W 的激光束,其波长为6.328?10-7m ,激光束的⽴体⾓为3.14?10-6Sr ,已知该激光的视见函数为0.24。

高等数学课后习题答案第九章1

高等数学课后习题答案第九章1

第九章习题解答(2) 习题9.31、 求上半球面222y x a z含在柱面ax y x 22内部的曲面面积解:被积函数为222y x a z 22222)(y x a x z x 22222)(yx a y z y --= 所以 dxdy yx a a dS 222--=积分区域为::D ax y x =+22,化成极坐标:设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 0,22a r ≤≤≤≤-⎰⎰-=-θππθcos 02222a ra ardr d S cos 0222222)(2a r a r a d d a ⎰---=22cos 022ππθθd r a a a)2(222)sin (222220-=⋅+-=--=⎰ππθθπa a a d a a a2、 求圆锥面22y x z +=被柱面x z 22=所截下的曲面面积解:被积函数为22y x z += 2222)(y x x z x += , 2222)(yx y z y += 所以 dxdy dS 2=积分区域为::D x y x 222=+,设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 20,22≤≤≤≤-r⎰⎰-=θππθcos 20222rdr d S ππθθππ222124cos 22222=⋅⋅==⎰-d3、 求抛物柱面221x z =含在由平面x y y x ===,0,1所围的柱体内的面积 解:被积函数为221x z = 22)(x z x = , 0)(2=y z所以 dxdy x dS 21+=积分区域为::D x y y x ===,0,1,0=z 围成的闭区域=+=⎰⎰x xdy x dx S 021⎰+xdx x x 0213122)1(3121)1(1211232022-=+⋅=++=⎰x x d x x 。

4、 求下列图形的形心 (1)、:D 1,0,2===x y x y ,围成的闭区域解:将密度看成1;⎰⎰⎰⎰=xDdy dx dxdy 201032221==⎰dx x 522210232010===⎰⎰⎰⎰⎰dx x dy xdx xdxdy xD2112010===⎰⎰⎰⎰⎰dx x ydy dx ydxdy xD于是得形心坐标为:53322522~==x 82332221~==y 形心为)82353( (2)、:D θρco s 1+=,围成的闭区域 解:将密度看成1;πθ23=⎰⎰Ddr rd (前面求出的结果) dr r d rdrd r xdxdy D D⎰⎰⎰⎰⎰⎰+'==θπθθθθcos 10220cos cos⎰+=πθθθ203)cos 1(cos 31d +⎰πθθ20cos 31d +⎰πθθ202cos d +⎰πθθ203cos d ⎰πθθ204cos 31d +=0++⎰πθθ20)2cos 1(21d +0⎰++πθθθ20242cos 2cos 2131d=π1215242122πππ=++65231215~==ππx 由图形关于x 轴的对称性得0~=y 形心为)065((3)、:D 0,12222≥=+x by a x ,围成的闭区域解:面积ab 2π=⎰⎰⎰⎰---=2222110a xb a x b a Dxdy dx xdxdy ⎰-=adx ax x b 0221232)1(32)2(22123222ba a x ab =--= ππ34232~2a ab ba x == 由图形关于x 轴的对称性得0~=y 形心为)034(πa5、 圆盘)0(222>≤+a ax y x 内各点处的密度=),(y x μ22y x +,求此圆盘的质心解:=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x 22⎰⎰-θππθcos 20222a dr r d3203332316cos 316a d a ⋅==⎰πθθ3932a ==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x 22⎰⎰-θππθθcos 20322cos a dr r d15641588cos 1641442254a a d a =⋅==⎰-ππθθ 56~a M M x y ==,由对称性得0~=y 所求质心为)056(a6、 设有一个等腰直角三角形薄片,各点处的密度等于该点到直角顶点距离的平方,求此圆薄片质心 解:设等腰直角三角形的顶点为),0(),0,(),0,0(a a 则22),(y x y x +=μ=M =⎰⎰D dxdy y x ),(μ=+⎰⎰Ddxdy y x )(22⎰⎰-+xa a dy y x dx 0220)( ⎰-+-=a dx x a x a x 032])(31)([⎰-+-=a dx x a x a ax 03322]31312[ 62132444a a a =-= =y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy xy x)(23⎰⎰-+xa a dy xy x dx 0230)(⎰-+-=adx x a x x a x 033])(31)([⎰-+-=a dx x x a x a ax 043223]34312[ 5555515115463121a a a a a =-+-= 由对称性得=x M =⎰⎰Ddxdy y x y ),(μ=+⎰⎰Ddxdy y y x)(32⎰⎰-+ya a dx y y x dy 032)(155a = 52~a M M x y ==,52~a M M x x == 所求质心为)5252(aa 7、 设有顶角为α2,半径为R 的扇形薄片,各点处的密度等于该点到扇形顶点距离的平方,求此薄片质心 解:设扇形顶点为)0,0(关于x 轴对称 则22),(y x y x +=μ=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x)(22⎰⎰-Rdr r d 03ααθ24R α==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x )(22⎰⎰-Rdr r d 04cos θθαα5sin 2αR =5sin 4~αR M M x y == 由对称性得0~=y ,所求质心为)05sin 4(αR8、 设均匀薄片(面密度为常数)ρ,战局的区域如下,求指定的转动惯量(1)、⎭⎬⎫⎩⎨⎧≤+=1),(2222b y a x y x D 求y I ,l I ,其中是过原点切倾斜角为α的直线解:ab M ρπ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰123203cos dr r d b a θθπ ===⎰4cos 43202ba d abρθθρπ42Ma由题设可知薄片上任意点到直线l 的距离为αα2tan 1tan +-=y x dl I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰++Ddxdy xy y x )tan 2tan (tan12222αααρ⎰⎰+=Ddxdyx 222tan 1tan ααρ⎰⎰++Ddxdy y 22tan 1αρ⎰⎰+-Dxydxdy ααρ2tan 1tan 24tan 1tan 222Ma ⋅+=ααρdr r d ab ⎰⎰++1322023sin tan 1ϑθαρπdr r d b a θθθαρπ⎰⎰+-1320222sin cos tan 14tan 1tan 222Ma ⋅+=αα2tan 123παρ⋅++ab 4tan 1tan 222Ma ⋅+=αα4tan 1122Mb ⋅++ααα2222tan 1tan 4++⋅=a b M (2)、{}b y a x y x D ≤≤≤≤=0,0),(求y I ,l I ,其中是过原点与点),(b a 的对角线ab M ρ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰bady dx x 023323Ma ba ==ρx I ρμ==⎰⎰Ddxdy y x y ),(2ρ=⎰⎰Ddxdy y2⎰⎰bady y dx 0232Mb =由题设可知薄片上任意点到直线l 的距离为22ba ay bx d +-=l I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰-++Ddxdy abxy y a x b b a )2(222222ρ=⎰⎰+Ddxdy x ba b 2222ρ⎰⎰++Ddxdy y ba a 2222ρ⎰⎰+-Dxydxdy ba ab222ρ22223b a b Ma +=22223b a a Mb ++22222b a b a M +-)(62222b a b Ma += 习题9.41、 化三重积分⎰⎰⎰Ωdv z y x F ),,(为三次积分(只须先,z 次对,y 后对x 一种次序)(1)、由三个坐标面与平面06236=-++z y x 围成解:23230yx z --≤≤,,220x y -≤≤10≤≤x ⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰---=yx x dz z y x f dy dx 32302201),,((2)、由旋转抛物面22y x z +=与平面1=z 围成解:122≤≤+z y x ,,1122x y x -≤≤--11≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰+-+---=111112222),,(y x x x dz z y x f dy dx(3)、由圆锥面22y x z +=与上半球面222y x z --=围成解:22222y x z y x --≤≤+,,2222x y x -≤≤--22≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰--+-+---=22222222222),,(y x y x x x dz z y x f dy dx(4)、由双曲抛物面xy z =与平面0,1==+z y x 围成 解:xy z ≤≤0,,10x y -≤≤10≤≤x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰-=xyxdz z y x f dy dx 01010),,(2、 设有一物体,点据空间闭区域{}10,10,10),,(≤≤≤≤≤≤=Ωz y x z y x 密度函数为z y x z y x ++=),,(μ,求该物体的质量解:=++=⎰⎰⎰Ωdv z y x M )(=⎰⎰⎰Ωxdv ++⎰⎰⎰Ωydv =⎰⎰⎰Ωzdv =⎰⎰⎰Ωzdv 32331011==⎰⎰⎰zdz dy dx 3、 计算三重积分 (1)、⎰Ωx y d v⎭⎬⎫⎩⎨⎧=++====Ω132,0,0,0),,(z y x z y x z y x ⎰⎰⎰Ωxydv ⎰⎰⎰---=)21(30)1(2010yx x xydz dy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx⎰-----=103222])22(21)22(33)22(23[dx x x x x x x ⎰-----=103222])22(21)22(33)22(23[dx x x x x x x 101512215105]12303010[10432=-+-=-+-=⎰dx x x x x (2)、⎰⎰⎰Ωzdv y x 22 {}x z z x y x y x z y x ==-====Ω.0,,,1),,( ⎰⎰⎰Ωxyzdv ⎰⎰⎰-=xxx zdz y x dy dx 02210⎰⎰-=x x dy y x dx 24102124131107==⎰dx x (3)、⎰Ωx y z d v{}0,1,,),,(=====Ωz x x y xy z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰=xyxxyzdz dy dx 01264181107==⎰dx x (4)、⎰Ωdv z 2 {}0,1),,(22=--==Ωz y x z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰------=22221021111y x x x dz z dy dx ⎰⎰--=x dy y x dx 0232210)1(311525132)1(311023220ππθπ=⋅=-=⎰⎰rdr r d (5)、⎰Ωdv z 2 {}z x y z z y x 2),,(222≤++=Ω解;积分区域是1)1(222=-++z y x ,22221111y x z y x --+≤≤---2211x y x -≤≤--111≤≤-x这样计算很繁琐,改为下面的方法(是很高的技巧) 任意取一点,z 则截口面积为)2(2z z dxdy -=π⎰⎰⎰⎰⎰⎰=ΩDdxdy dz z dv z2022dz z z )2(243⎰-=π58)542(2054ππ=-=z z4、 利用柱坐标计算 (1)⎰⎰⎰Ωzdv 其中Ω是由上半球面222y x z --=与旋转抛物面22y x z +=围成的闭区域解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,222r z r -≤≤ 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰-=222120r rzdz rdr d πθ⎰⎰--=104220]2[21dr r r r d πθ 127)61411(]2[21105320ππθπ=--=--=⎰⎰dr r r r d (2)⎰⎰⎰Ω+dv y x z22 其中Ω是由旋转抛物面22y x z +=与平面1=z 围成的闭区域解:先确定该区域在xoy 面的投影区域⎩⎨⎧+==221yx z z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,12≤≤z r 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰=112202rzdz dr r d πθ⎰⎰-=104220]1[21dr r r d πθ 214)7131(][21106220ππθπ=-=-=⎰⎰dr r r d5、设密度为常量μ的均匀物体占据由223y x z --=与0,1,1=±=±=z y x 围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域 就是{}11,11),(≤≤-≤≤-=y x y x D (1)、=M ⎰Ωdv μ ⎰⎰⎰----=22301111y x dz dy dx μ⎰⎰--=-12211)3(2dy y x dx μμμμ328)3138(4)38(4102=-=-=⎰dx x(2)、由对称性得0~,0~==y x=z M =⎰⎰⎰Ωzdv μ⎰⎰⎰----22301111y x zdz dy dx μ⎰⎰--=-122211)3(dy y x dx μμμ45506)316536(2142=+-=⎰dx x x ==MM z z ~210253,所以物体的重心是)210253,0,0( (3)=z I ⎰⎰⎰Ω+dv y x )(22μ⎰⎰⎰----+=2230112211)(y x dz dy y x dx μ⎰⎰--+=122221)3)((4dy y x y x dx μ⎰⎰---+=14422221)233(4dy y x y x y x dx μM dx x x 1056245248)519754(4)3754(41042==-+=-+=⎰μμμ6、设密度为常量1的均匀物体占据由上半球面222y x z --=与圆锥面22y x z +=围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22r z r -≤≤ 10,20≤≤≤≤r πθ,于是(1)、=M ⎰⎰⎰Ωdv ⎰⎰⎰-=22120r rdz rdr d πθ⎰⎰--=1220]2[dr r r r d πθ=--=⎰⎰102220]2[dr r r r d πθ)12(34)12(3220-=-=⎰πθπd (2)、由对称性得0~,0~==y x =z M ⎰⎰⎰Ωzdv ⎰⎰⎰-=22120r rzdz rdr d πθ⎰⎰--=102220]2[21dr r r r d πθ=-=⎰⎰10320][dr r r d πθ24120πθπ==⎰d==MM z z ~)12(83+,所以物体的重心是))12(83,0,0(+(3)、=z I ⎰⎰⎰Ω+dv y x )(22 ⎰⎰⎰-=221320r rdz dr r d πθ⎰⎰--=12320]2[dr r r r d πθ=--=⎰⎰1042320]2[dr r r r d πθ)51(2-A π =A dt t t dr r r)(cos sin 242223123⎰⎰=-πdt t t )sin (sin 245203-=⎰π1528)15832(24=-= 所以=z I )328(152)511528(2-=-=ππ (B )的习题 1、⎰⎰⎰Ω+dv z x y )cos( ⎭⎬⎫⎩⎨⎧==+====Ω0.2,,0,2),,(z z x x y y x z y x ππ ⎰⎰⎰Ωxyzdv ⎰⎰⎰-+=xxdz z x y dy dx 202)cos(ππ=⎰⎰-xdy x y dx 020)sin 1(π⎰-=20)sin 1(21πdx x x 202]cos [sin 2116ππx x x --=21162-=π2、⎰⎰⎰Ωzdv {}z z y x z y xz y x 2,1),,(222222=++=++=Ω皆7:先确定该区域在xoy 面的投影区域⎩⎨⎧=++=++z z y x z y x 21222222为⎪⎩⎪⎨⎧==+04322z y x 就是⎭⎬⎫⎩⎨⎧≤+=43),(22y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22111r z r -≤≤-- 230,20≤≤≤≤r πθ,于是 ⎰⎰⎰Ωzdv ⎰⎰⎰---=221112320r r zdz rdr d πθ=⎰⎰--230220)112(21dr r r d πθ245]21)1(32[2302232ππ=---=r r习题9.51、 计算下列对弧长曲线积分(1)、ds y x nl⎰+)(22,其中l 为圆周222a y x =+解:设t a y t a x sin ,cos ==,adt ds =ds y xn l⎰+)(22⎰++==ππ2012122n n a dt a(2)、⎰l yds x sin 其中l 是连接点)0,0(,),3(ππ的直线段解:l 的方程为x y 31=π30≤≤x dx dx ds 310911=+=⎰lyds x sin dx xx ⎰=π303sin 310dt t t ⎰=π0sin 103π103= (3)、⎰l y ds 其中l 是连接点x y 42=上点)0,0(,)2,1(的一段弧解:l 的方程为x y 42= 10≤≤x dx xds 11+= ⎰lyds )122(34)1(34121231-=+=+=⎰x dx x (4)、⎰+l ds y x )( 其中l 是连接点)0,1(,)1,0(的直线段解:l 的方程为x y -=1 , 10≤≤x , dx ds 2=⎰+lds y x )(dx ⎰=122=(5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (6)、ds y l⎰,其中l 为圆周122=+y x解:设t y t x sin ,cos ==,dtds =ds y l⎰⎰=πsin tdt ⎰-ππ2sin tdt πππ20cos cos x x +-=422=+= (7)、ds el y x ⎰+22,其中l 为圆周0,,422===+y x y y x 在第一象限的区域的边界解:在直线0=y 上 20≤≤x dx ds =ds ely x ⎰+122122-==⎰e dx e x在弧422=+y x 上设t y t x sin 2,cos 2==,dt ds 2=40π≤≤tds el y x ⎰+222222402ππ⋅==⎰e dt e在直线x y =上 20≤≤x dx ds 2=ds el y x ⎰+32212220222-===⎰e edx exxds ely x ⎰+22+-=)1(2e +⋅22πe )1(2-e )22(2+=πe 2-(8)、⎰l x y ds 其中l 是2,4,0,0====y x y x 围成的矩形的边界解:4321l l l l l +++=1l 的方程为0=y =⎰1l x y d s 001=⎰dx l ,4l 的方程为0=x=⎰4l xyds 004=⎰dy l2l 的方程为4=x=⎰2l x y d s 842==⎰y d y, 3l 的方程为2=y=⎰3l x y d s1624=⎰xdx24=⎰lxyds(9)、⎰l ds y 2其中l 是摆线)cos 1(),sin (t a y t t a x -=-=的一拱解:dt t a t a ds 2222sin )cos 1(+-=dt ta 2sin 22= ⎰l ds y 232022282sin 2)cos 1(a dt t a t a =-=⎰π=⎰π2052sin dt t ⎰π053sin 16udu a1525615832sin 32332053aa udu a =⋅==⎰π(10)、⎰+lds y x 22 其中l 是上半圆周x y x 222=+与x 轴围域的边界解:21l l l +=,1l :x y x 222=+化为1)1(22=+-y x 设t y t x sin ,cos 1==-,dt ds =⎰+122l ds y x =++=⎰π22sin )cos 1(dt t t =⎰π2cos dt t4cos 420=⎰πudu2l :0=y ,dx ds =⎰+222l ds y x 22==⎰xdx62422=+=+⎰lds y x2、 求半径为,R 中心角为α2的扇形圆弧的质心(密度均匀)1=μ解:选择与书上168页图9-34一样的坐标系,于是根据对x 轴的对称性得0~=y 设1=μ,t R y t R x sin ,.cos ==Rdt ds =R M α2=⎰=lyds M x 1~==⎰-ααtdt R M cos 12==⎰α2cos 2tdt R Mαααsin sin 22R M R ==所求质心为)0sin (ααR3、 计算下列关于坐标的曲线积分 (1)、⎰+ldx y x )(22,L 是抛物线2x y =上)0,0(O 到)4,2(A 一段弧解:⎰+l dx y x )(221556]53[)(20532042-=+=+=⎰x x dx x x(2)、⎰l y dx ,L 是 2,4,0,0====y x y x 矩形的边界按照逆时针方向 解:A O :0=y ,4:=x B A0=dx ,2:=y C A ,0:=x O C0=dx ,⎰lydx ⎰⎰⋅+=ABOAy dx 00⎰⎰⋅++COBCy dx 028204-==⎰dx(3)、⎰+l x d y y dx ,L 是 20,sin ,cos π≤≤==t t R y t R x 一段针方向的弧解:⎰+l xdy ydx dt x x dt t tR R t R t R )(]cos cos )sin (sin [242⎰++-=π02sin 22cos 202202===⎰ππtR dt t R(4)、⎰+-++lyx dyx y dx y x 22)()(,L 是圆周 222a y x =+沿逆时针方向解:t a y t a x sin ,cos ==,⎰+-++l y x dy x y dx y x 22)()(⎰-+-+=π2022]cos )sin (cos )sin )(sin [(cos a dt t t t t t t a ππ2120-=-=⎰dt(5)、⎰++l x dy dx y x )(,L 是折线 x y --=11从)0,0(到)0,2(一段解:⎩⎨⎧>-≤=121x x x xy ,弧dx dy x y A O ==,: ,dx dy x y B A -=-=,2:⎰++lxydy dx y x )(⎰⎰+=OAAB383732311)22()2(212102=+-++=+-++=⎰⎰dx x x dx x x (6)、⎰---l dy y a dx y a )()2(,L 是 )cos 1(),sin (t a y t t a x -=-=摆线的一拱,从)0,0(到)0,2(a π解:⎰---ldy y a dx y a )()2(dt t a t a a ⎰---=π20)cos 1()]cos 1(2[dt t a t a a ⎰---π20sin )]cos 1([dt t t t a ⎰+=π2022)cos sin (sin220222sin 2cos 1(a dt tt a ππ=+-=⎰4、计算⎰-++l dy x y dx y x )()(,其中L 分别是(1)、x y =2上点)1,1(到)2,4( (2)、点)1,1(到)2,4(的直线段解:(1)、在x y =2上点)1,1(到)2,4(,dx xdy 21=⎰-++ldy x y dx y x )()(dx x x xx x )](21[41-++=⎰3342153723)2121(41=++=++=⎰dx x x (2)、点)1,1(到)2,4(的直线段,3231+=x y ,dx dy 31=⎰-++ldy x y dx y x )()(dx x x x x )]3231(313231[41-++++=⎰ 11398215910)98910(41=⋅+⋅=+=⎰dx x 5、计算⎰+++l dy y x dx y x )2()2(,其中L 分别是(1)、2x y =上点)0,0(到)1,1(的一段弧 (2)、3x y =点)0,0(到)1,1(的一段弧 (3)、点)0,0(到点)0,1(再到点)1,1(的折线 解:(1)、2x y =上点)0,0(到)1,1(,xdx dy 2=⎰+++ldy y x dx y x )2()2(dx x x x xx ])2(22[122⎰+++=3111)432(132=++=++=⎰dx x x x(2)、3x y =点)0,0(到)1,1(的一段弧,dx x dy 23=⎰+++ldy y x dx y x )2()2(dx x xx ])642[153⎰++=3111=++=(3)、点)0,0(到点)0,1(再到点)1,1(的折线⎰+++ldy y x dx y x )2()2(+=⎰dx x 102⎰+1)21(dy y 3=6、一力场由沿x 轴正向的常力→F 构成,求将一个质量为m 的质点沿222R y x =+按逆时针方向移动过第一象限那段弧所做的功 解:→F →=i F dx F W l⎰=F R tdt R F -=-=⎰2sin π节9.6习题处理1、计算下列关于坐标的曲线积分,并验证格林公式的正确性(1)dy y x dx y x l )()(22--+⎰,L 是椭圆12222=+by a x 沿逆时针方向解:设t b dy t b y t a dx t a x cos ,sin ,sin ,cos ==-==dy y x dx y xl)()(22--+⎰⎰⎰⎰-+-=πππ2023202320sin cos cos sin tdt t atdt t bdt abab π2-=用格林公式y x y x P +=2),( 2),(y x y x Q +-=1),(-=y x Q x 1),(=y x P ydy y x dx y x l)()(22--+⎰ab dxdy Dπ22-=-=⎰⎰ (2)、dy y x dx y x l )()(222+-+⎰)0,0()1,0()0,1()0,0(:→→→L 直线段围成的闭路解:0),0,1()0,0(:1=→y L ; x y L -=→1),1,0()0,1:2;0),0,0()1,0(:3=→x Ldy y x dx y x l)()(222+-+⎰1])1([012012210-=--+-=⎰⎰⎰dy y dx x x xdx 用格林公式2)(),(y x y x P += 22),(y x y x Q --=x y x Q x 2),(-= )(2),(y x y x P y +=dy y x dx y x l)()(222+-+⎰=+-=⎰⎰Ddxdy y x )2(2⎰⎰-+-xdy y x dx 1010)2(21)2321(210-=-+-=⎰dx x x2、求星形线t a y t a x 33sin ,cos ==所围的面积解:dt t t a ydx xdy A l ⎰⎰=-=π20222sin cos 232183)4cos 1(1632202a dt t t a ππ=-=⎰3、用格林公式计算(1)、dy y x dx y x l)653()42(-+++-⎰)0,0()2,3()0,3()0,0(:→→→L 直线段围成的三角形边界解:653),(-+=y x y x Q 42),(+-=y x y x P3),(=y x Q x y y x P y -=),(dy y x dx y x l)653()42(-+++-⎰12212344=⨯⨯⨯==⎰⎰Ddxdy ⎰⎰-+-x dy y x dx 1010)2(2(2)、dy y y x dx xe xy l x)cos ()32(2-++⎰1:2222=+by a x L 逆时针方向解:x xe xy y x P 32),(+= y y x y x Q c o s ),(2-=x y x Q x 2),(= x y x P y 2),(=dy y x dx y x l)653()42(-+++-⎰00==⎰⎰Ddxdy(3)、⎰+++l y ydy e x dx xey )1()(22224:x x y l -=由)0,4()0,0(→的弧解:先补足成闭路1-+=l OA Ly xe y y x P 2),(+= 1),(22+=y e x y x Qy x xe y x Q 22),(= y y xe y x P 221),(+=⎰+++L y y dy e x dx xe y )1()(222ππ2)2(212-=-=-=⎰⎰Ddxdy 于是⎰+++ly ydy e x dx xey )1()(222-+++=⎰dy e x dx xe y y OA y )1()(22(2⎰+++Ly ydy e x dx xey )1()(222ππ2824+=+=⎰xdx(4)、⎰---l dy y y x dx y )sin ()cos 1(x y l s i n:=上由)0,()0,0(π→的弧解:先补足成闭路1-+=l OA Ly y x P cos 1),(-= )s i n (),(y y x y x Q --=y y y x Q x sin ),(+-= y y x P y s i n ),(=⎰-+---1)sin ()cos 1(l OA dy y y x dx y ⎰⎰⎰⎰-=-=xDydy dxydxdy sin 0π4)12((cos 41sin 21002πππ-=-=-=⎰⎰x xdx于是⎰---ldy y y x dx y )sin ()cos 1(----=⎰dy y y x dx y OA )sin ()cos 1((⎰-+---1)sin ()cos 1(l OA dy y y x dx y4400πππ=+=⎰dx(5)、⎰+--l dy y x dx y x )sin ()(2222:x x y l -=上由)1,1()0,0(→的弧解:先补足成闭路1-++=l AB OA Ly x y x P -=2),( )s i n ),(2y x y x Q --=-=),(y x Q x 1),(-=y x P y⎰-+++--1)sin ()(22lAB OA dy y x x dx y x 0=于是⎰+--l dy y x dx y x )sin ()(22+--=⎰dy y x dx y x OA)sin ()(22dy y x dx y x AB)sin ()(22--=⎰+=⎰102dx x ⎰--12)sin 1(dy y⎰---=10)2cos 1(21131dy y 672sin 41-= (6)、⎰+++l xxdy e x dx ye )()1( 1:2222=+by a x L 上由)0,()0,(a a →-的上半椭圆解:先补足成闭路1),(-++-=l a a Lx ye y x P +=1),( x e x y x Q +=),(x x e y x Q +=1),( x y e y x P =),(ab dxdy dy e x dx ye Dl a a x x π21)()1(1),(==+++⎰⎰⎰-++- 于是⎰+++lxx dy e x dx ye )()1(ab dy e x dx ye a a x x π21)()1(),(-+++=⎰+- ab dx a a π21-=⎰-ab a π212-= 4、 证明下列曲线积分在xoy 面内与路径无关,并计算积分值 (1)、⎰-++)3,2()1,1()()(dy y x dx y xy x y x P +=),( y x y x Q -=),( 都是初等函数,因此在xoy 面内有连续的偏导数1),(=y x Q x 1),(=y x P y 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++)3,2()1,1()()(dy y x dx y x ⎰+=21)1(dx x ⎰-+31)2(dy y=--+-+=)19(214)14(21125 (2)、⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy32),(4+-=y xy y x P 324),(xy x y x Q -= 都是初等函数,因此在xoy 面内有连续的偏导数342),(y x y x Q x -= 342),(y x y x P y -= 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy ⎰+=21)22(dx x ⎰-+13)164(dy y544)14(2=-+-+=25(3)、⎰-++),()0,0()c o s ()s i n (ππdy y xe dx x e y yx e y x P y sin ),(+= y xe y x Q y cos ),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( yy e y x P =),( 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++),()0,0()cos ()sin (ππdy y xe dx x e yy⎰+=π0)sin 1(dx x ⎰-+ππ0)cos (dy y e y=--++=0)1(2πππe 252+=ππe 5、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某一个函数),(y x u 的全微分,并且求这样的函数),(y x u(1)、dy y x dx y x )2()2(+++解答:y x y x P 2),(+= y x y x Q +=2),( 都是初等函数,因此在xoy 面内有连续的偏导数2),(=y x Q x 2),(=y x P y 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使dy y x dx y x y x du )2()2(),(+++=⎰+++=),()0,0()2()2(),(y x dy y x dx y x y x u ⎰=x xdx 0⎰++ydy y x 0)2(2221221y xy x ++=(2)、dy y xe dx e x y y )2()2(-++解答:y e x y x P +=2),( y xe y x Q y 2),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( y y e y x P =),( 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y xe dx e x y y )2()2(-++⎰-++=),()0,0()2()2(),(y x yydy y xe dx e x y x u ⎰+=x dx x 0)12(⎰-+yy dy y xe 0)2(=-+-+=x xe y x x y 22y xe y x +-22(3)、y d y x y d x x 3c o s 2c o s 33s i n 2s i n2-解答:y x y x P 3sin 2sin 2),(= y x y x Q 3c o s 2c o s 3),(-= 都是初等函数,因此在xoy面内有连续的偏导数y x y x Q x 3c o s 2s i n 6),(= y x y x P y 3c o s 2s i n 6),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰-=),()0,0(3cos 2cos 33sin 2sin 2),(y x ydy x ydx x y x uy x ydy x y 3sin 2cos 3cos 2cos 30-=-=⎰(4)、dy ye y x y x dx xy y x y)122()3(223322++++解答:32283),(xy y x y x P += yye y x y x y x Q ++=223122),( 都是初等函数,因此在xoy 面内有连续的偏导数22246),(xy y x y x Q x += =),(y x P y 22246xy y x + 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰++++=),()0,0(223322)122()83(),(y x y dy ye y x y x dx xy y x y x u31 ⎰++=yy dy ye y x y x y x u 0223)122(),(y y e ye y x y x -++=322346、设→→→-++=j xy i y x F )12()(2试证:在在xoy 面内,→F 作的功与路径无关 证明:⎰-++=l dy xy dx y x W )12()(22),(y x y x P += 12),(-=xy y x Q 都是初等函数,因此在xoy 面内有连续的偏导数 y y x Q x 2),(= y y x P y 2),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内积分与路径无关,所以在在xoy 面内, →F 作的功与路径无关。

大学物理第九章课后习题答案

大学物理第九章课后习题答案
-1-
自治区精品课程—大学物理学
题库
3. 两个点电荷的电荷量分别为 2q 和 q,相距 L. 将第三个点电荷放在何处时,它 所受的合力为零?此处由 2q 和 q 产生的合场强是多少? 4. 三个电荷量均为 q 的点电荷放在等边三角形的各顶点上.在三角形中心放置怎 样的点电荷,才能使作用在每一点电荷上的合力为零? 5. 两等量同号点电荷相距为 a,在其连线的中垂面上放一点电荷.根据对称性可 知,该点电荷在中垂面上受力的极大值的轨迹是一个圆.求该圆的半径. 6. 两个点电荷, q1 = 8.0µC , q 2 = −1.60 µC ,相距 20cm. 求离它们都是 20cm 处 的电场强度. 7. 如图所示,半径为 R 的均匀带电圆环,带电荷为 q. (1) 求轴线上离环心 O 为 x 处的场强 E . (2) 画出 E-x 曲线. (3) 轴线上何处的场强最大?其值是多少? 8. 求均匀带电半圆环的圆心 O 处的场强 E.已知圆环的半径为 R ,带电荷为 q. 9. 计算线电荷密度为η的无限长均匀带电 线弯成如图所示形状时,半圆圆心 O 处的 场强 E.半径为 R ,直线 Aa 和 Bb 平行.
dE y = − dE sinθ = −
∴ E y = ∫ dE y = ∫ −
0
ηR sin θdθ 4πε 0 R 2
π
ηR sin θdθ 4πε 0 R 2
=−
η ηπR q =− 2 =− 2 2 2πε0 R 2π ε 0 R 2π ε 0 R 2
-8-
自治区精品课程—大学物理学
题库
� � 矢量式: E = E y j = − 9.
10. 半径为 R 的圆平面均匀带电.电荷面密度为σ,求轴线上离圆心 x 处的场强. 11. (1) 一点电荷 q 位于一立方体中心,立方体边长为 a.试问通过立方体一面的

第9章参考答案

第9章参考答案

第九章第一节参考答案跟踪练习:1、D2、C3、A4、C5、B当堂达标:1、磁铁的两端磁性强,所以吸引的大头针多;大头针被磁化,所以吸住一串大头针。

2、用一块磁铁靠近这三根棒:(1)不被吸引的是铜棒(2)只被吸引的是铁棒(3)被吸引,调换方向后又排斥的是磁铁棒3、ABC4、摩擦起电吸引灰尘,棋子和棋盘都是磁体。

5、喇叭里有磁铁,靠近后会减弱磁带的磁性。

6、同名磁极互相排斥,力可以改物体的运动状态。

第九章第二节参考答案跟踪练习一:1、D2、C3、略跟踪练习二:1、A2、(1)第四种说法(2)当信鸽飞行途中遇到雷雨和飞经电视发射塔附近时,由于这些区域的地磁场会受到干扰,扰乱了信鸽对地磁场的正确感知,使信鸽迷失方向。

(3)对比的方法当堂达标:1、BD2、地磁场,N3、B4、B5、排斥6、大磁体,不是7、磁感线,N极,S极8、办法:将铁屑撒在种子里并搅拌均匀,使铁屑吸附在杂草种子上,然后用磁铁将铁屑和杂草种子一起从混合种子中吸出来。

道理:磁铁具有吸引铁的性质。

9、(1)应多做几次实验,观察小磁针静止时,是否总是指向某一方向(2)小磁针静止时,N极所指的方向应是“月磁”的南极。

第九章第三节参考答案跟踪练习一:1、C跟踪练习二:1、B2、3、4 略当堂达标:1、A2、A3、C4、B5、D6、N,负,N7、通电导体周围有磁场,正第九章第四节参考答案跟踪练习一:1、D2、D3、C跟踪练习二:1、B2、D3、A4、铁芯;有电流通过时有磁性,没有电流时就失去磁性;磁化;磁性;铁芯;螺线管5、漆包线绕过软铁棒形成一个螺线管,连到电池组的两极上形成一个电磁铁,将地上的铁钉吸引出来。

当堂达标:1、b,变亮,上2、将插有细铁芯的电磁铁靠近铁钉,记下吸引铁钉的个数,再将插有粗铁芯的电磁铁靠近铁钉,记下吸引铁钉的个数。

比较两次吸引铁钉的多少,吸引的铁钉越多,磁性越强。

3、N,重力,二力平衡,磨擦4、(2)N,(3)左,大,大(4)强,多,强,第九章第五节参考答案第九章第六节参考答案学点一: 1、力 2、电流的方向磁感线的方向跟踪练习1: 1、ABD 2、下下上学点二:两部分转子定子向上向下向上向下电流的方向向上向下通电线圈在磁场中受力转动的原理跟踪练习2: 1、金属半环闭合电路自动2、D3、C学点三:直流电动机交流电动机电能机械能1、C2、热能机械能达标检测: 1、电流方向磁感线的方向 b和c2、C3、C4、ABC第九章第七节参考答案学点一:奥斯特法拉第火力发电、水力发电、风力发电产生感应电流的条件:闭合电路的一部分导体在磁场中做切割磁感线时,导体中就产生电流.导体运动的方向磁感线的方向电磁感应现象感应电流跟踪练习一1、机械能电能机械能电能2、C3、A4、A5、B学点二1、线圈磁体电刷等或转子定子电刷换向器等2、线圈转动越快,指针摆动频率越快,偏转幅度越大3、转速越大,灯泡越亮4、电流方向周期变化的电流5、在交变电流中,电流在每秒内周期性变化的次数叫做频率单位赫兹符号Hz 50 Hz6、A 、 B 、没有、 B 、A 、没有跟踪练习二1、D2、C E达标检测1、C2、B3、a、导体沿磁感线方向运动时,不能产生感应电流b、磁感线方向相同时,导体切割磁力线的运动方向影响感应电流的方向c、导体静止时不会产生感应电流d、导体运动方向相同时,磁感线的方向影响电流的方向。

大学物理课后习题答案第九章

大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。

高等数学(本科)第九章课后习题解答

高等数学(本科)第九章课后习题解答

习题9.11.二元函数()y x f ,在有界闭区域D 可积的充分与必要条件是什么?它的几何意义和物理意义是什么?【答】几何意义表曲顶柱体的体积的代数和;物理意义表平面薄片的质量. 2.设()(){}11|,22≤+-=y x y x D ,则二重积分⎰⎰=Ddxdy π.【解】根据二重积分的性质,⎰⎰Ddxdy 等于积分区域D 的面积.而此处积分区域D 是半径为1的圆域,因此其面积为π. 3.求⎰⎰Ddxdy 4,其中(){}1|,≤+=y x y x D .【解】⎰⎰Ddxdy 4()()824442=⨯===⎰⎰D S dxdy D.4.如果闭区域D 被分成区域1D 、2D 且()5,1⎰⎰=D dxdy y x f ,()1,2⎰⎰=D dxdy y x f ,求()⎰⎰Ddxdy y x f ,.【解】根据二重积分的性质()⎰⎰Ddxdy y x f ,()⎰⎰+=1,D dxdy y x f ()615,2=+=⎰⎰D dxdy y x f .5.设()⎰⎰+=13221D d y x I σ, (){}22,11|,1≤≤-≤≤-=y x y x D ;()⎰⎰+=23222D d y x I σ,其中(){}20,10|,2≤≤≤≤=y x y x D .试利用二重积分的几何意义说明1I 与2I 之 间的关系.【解】因为积分区域2D 关于x 轴及y 轴均对称,且被积函数()()322,y x y x f +=为偶函数,故根据二重积分的对称性知214I I =. 6.估计下列积分的值. (1)⎰⎰+=Dy xd e I σ22,其中(){}41|,22≤+≤=y x y x D ;【解】积分区域D 的面积πσ3=.显然被积函数()32,y x e y x f +=在积分区域D 内有最小值e e m ==1及最大值4e M =,因此由估值定理知 433e I e ππ≤≤.(2)⎰⎰=Dyd x I σ22sin sin ,其中(){}ππ≤≤≤≤=y x y x D 0,0|,.【解】积分区域D 的面积2πσ=.显然被积函数()x x y x f 22sin sin ,=在积分区域D 内有最小值()00,0==f m 及最大值12,2=⎪⎭⎫⎝⎛=ππf M ,因此由估值定理知20π≤≤I .7.设函数()y x f ,在点()b a ,的某个邻域内连续,D 表示以点()b a ,为圆心且完全含在上述邻域内的圆域(半径为R ).求极限 ()⎰⎰→DR d y x f R σπ,1lim20.【解】积分区域D 的面积2R πσ=.由积分中值定理知 ()⎰⎰Dd y x f σ,()()ηξπσηξ,.,2f R f ==.显然当0→R 时,()()b a ,,→ηξ,所以 ()⎰⎰→DR d y x f R σπ,1lim20()()b a f f R ,,lim 0==→ηξ.8.设区域(){}1|,22≤+=y x y x D ,()y x f ,为区域D 上的连续函数,且 ()()dxdy y x f y x y x f D⎰⎰---=,11,22π. ① 求()y x f ,.【解】记 ()dxdy y x f a D⎰⎰=,. ②则①成为()πay x y x f ---=221,. ③由③得()⎰⎰⎰⎰⎰⎰---=DDDdxdy adxdy y x dxdy y x f π221,. ④其中,根据几何意义及性质可知32134211322ππ=⎪⎭⎫ ⎝⎛⨯=--⎰⎰dxdy y x D.π=⎰⎰Ddxdy .所以由④式得到 3.32ππππ=⇒-=a a a . 将3π=a 代入③即得到()311,22---=y x y x f .习题9.21.在化二重积分时,选择坐标系的原则是什么?【解】选择坐标系的原则主要是根据积分区域的形状,具体地讲,积分区域的边界曲线是用直角坐标方程表示方便还是用极坐标方程表示简洁.当然,被积函数的特征也要考虑,如形如()22y xf+的积分就首选极坐标系来计算.2.先画出积分区域,再计算二重积分.(1)()⎰⎰+Dd y x σ22,其中D 是矩形区域:1,1≤≤y x ;【解】记(){}10,10|,1≤≤≤≤=y x y x D .由对称性知()⎰⎰+Dd y xσ22()⎰⎰+=1224D d y x σ()dy y x dx ⎰⎰+=101224⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=101032|314dx y y x 3831314314101032|=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎰x x dx x .(2)()⎰⎰++Dd y y x x σ3233,其中D 是矩形区域:10,10≤≤≤≤y x ;【解】()⎰⎰+Dd y xσ22()dy y y x x dx ⎰⎰++=10103233⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=10104223|4123dx y y x y x1412141412310103423|=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=⎰x x x dx x x .(3)()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的区域;【解】()⎰⎰+Dd y x σ23()dy y x dx x⎰⎰-+=202023()⎰⎥⎦⎤⎢⎣⎡+=-20202|3dx y xy x()()[]()3204324222232020232022|=⎪⎭⎫ ⎝⎛++-=++-=-+-=⎰⎰x x x dx x x dx x x x .(4)()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π,()ππ,的三角形区域;【解】()⎰⎰+Dd y x x σcos ()dy y x x dx x ⎰⎰+=π00cos ()⎰⎥⎦⎤⎢⎣⎡+=π00|sin dx y x x x()⎰⎰⎰-=-=πππ0sin 2sin sin 2sin xdx x xdx x dx x x x()()⎰⎰+-=ππ00cos 2cos 21x xd x xd 【分部】()⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=⎰⎰ππππ0000cos cos 22cos 212cos 21||xdx x x x xd x xπππππππ2321sin 2sin 2121||00-=--=⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡--=x x .(5)⎰⎰Dxy dxdy ye ,其中D 是由曲线2,2,1===y x xy 所围成的区域; 【解】⎰⎰Dxydxdy ye dy ye dx x xy⎰⎰=22121()x d e yd x x xy ⎰⎰⎥⎦⎤⎢⎣⎡=221211x d dy e ye x x xy x xy ⎰⎰⎪⎪⎭⎫ ⎝⎛-=2212121|1x d e x x e e x x xy x⎰⎪⎪⎭⎫ ⎝⎛--=221212|1121 x d e x e x x x ⎰⎪⎭⎫ ⎝⎛-=22122212x d e x x⎰=221212x d e xx ⎰-221221其中=⎰x d e x x 221221⎪⎭⎫ ⎝⎛-⎰x d e x 12212【分部】()⎥⎦⎤⎢⎣⎡--=⎰2212221211|x x e d x e x ++-=e e 2214x d e xx ⎰221212.所以⎰⎰Dxydxdy ye -=⎰x d e x x 221212e e dx e x e e x22112221422214-=⎥⎦⎤⎢⎣⎡++-⎰. (6)()⎰⎰+Ddxdy y x sin ,其中D 是矩形区域:ππ20,0≤≤≤≤y x .【解】以直线π=+y x 及π2=+y x 将区域D 分成三个子区域:321D D D D ⋃⋃=.其中,⎩⎨⎧≤≤-≤≤,0,0:1ππx x y D , ⎩⎨⎧≤≤-≤≤-,0,2:2πππx x y x D ,⎩⎨⎧≤≤≤≤-,0,22:3πππx y x D ()dy y x dx I x⎰⎰-+=ππ0sin ()dy y x dx x x ⎰⎰--+-+πππ02sin ()dy y x dx x⎰⎰-++πππ022sin其中()dy y x dx x⎰⎰-+ππ0sin ()dx y x x ⎰⎥⎦⎤⎢⎣⎡+-=-ππ00|cos ()()πππ=+=+=⎰|0sin cos 1x x dx x ;()dy y x dx xx⎰⎰--+-πππ02sin ()dx y x xx ⎰⎥⎦⎤⎢⎣⎡+=--πππ02|cosππ220==⎰dx ;()dy y x dx x ⎰⎰-+πππ022sin ()dx y x x ⎰⎥⎦⎤⎢⎣⎡+-=-πππ022|cos ()()πππ=-=-=⎰|0sin cos 1x x dx x .所以 .42ππππ=++=I3.化二重积分()⎰⎰Dd y x f σ,为二次积分,且二次积分的两个变量的积分次序不同,其中积分区域D 为:(1)由直线x y =及抛物线x y 42=所围成的区域;【解】联立⎩⎨⎧==,4,2x y x y 解得⎩⎨⎧==,0,0y x 或⎩⎨⎧==.4,4y x 所以直线x y =及抛物线x y 42=的交点为()0,0及()4,4.(i )若视区域D 为-X 型区域,则⎩⎨⎧≤≤≤≤.40,2:x x y x D()⎰⎰Dd y x f σ,()⎰⎰=402,xxdy y x f dx .(ii )若视区域D 为-Y 型区域,则⎪⎩⎪⎨⎧≤≤≤≤.40,41:2y y x y D()⎰⎰Dd y x f σ,()⎰⎰=40412,y y dx y x f dy .(2)半圆形区域222r y x ≤+,0≥y .(i )若视区域D 为-X 型区域,则⎪⎩⎪⎨⎧≤≤--≤≤.,0:22r x r x r y D()⎰⎰Dd y x f σ,()⎰⎰--=rrx r dy y x f dx 320,.(ii )若视区域D 为-Y 型区域,则⎪⎩⎪⎨⎧≤≤-≤≤--.0,:3222r y y r x y r D()⎰⎰Dd y x f σ,()⎰⎰---=ry r y r dx y x f dy 03222,.4.交换下列积分次序 (1)()⎰⎰--21222,x x xdy y x f dx ;【解】D 是由圆周曲线()1122=+-y x ,2=+y x 【两曲线交于点()1,1】所围成的区域.故()⎰⎰--21222,x x xdy y x f dx ().,11122⎰⎰-+-=y ydy y x f dy(2)()⎰⎰e xdy y x f dx 1ln 0,;【解】积分区域D 由曲线x y ln =,及x 轴和直线e x =所围成. 若改变积分次序,即将区域D 视为-Y 型区域,则⎩⎨⎧≤≤≤≤,10:1y ex e D y ,所以()⎰⎰e xdy y x f dx 1ln 0,().,10⎰⎰=eey dx y x f dy(3)()⎰⎰102,x xdy y x f dx ;【解】积分区域D 由抛物线x y 42=及两直线x y =和直线1=x 所围成.若改变积分次序,即将区域D 视为-Y 型区域,则需要将D 分块: 21D D D ⋃=.其中⎪⎩⎪⎨⎧≤≤≤≤,1041:21y yx y D ,⎪⎩⎪⎨⎧≤≤≤≤,21141:22y x y D .所以 ()⎰⎰102,xxdy y x f dx()⎰⎰=10412,y y dx y x f dy ()⎰⎰+211412,y dx y x f dy .(4)()⎰⎰--0121,ydx y x f dy ()⎰⎰++1021,ydx y x f dy .【解】积分区域21D D D ⋃=.其中⎩⎨⎧≤≤-≤≤-,0121:1y x y D ,⎩⎨⎧≤≤≤≤+,1021:2y x y D 因此积分区域D 是由三直线1,1=-=+y x y x 及2=x 所围成的三角形区域.若改变积分次序,即将区域D 视为-X 型区域,则⎩⎨⎧≤≤-≤≤-21,11:x x y x D所以 ()⎰⎰--0121,y dx y x f dy ()⎰⎰++1021,ydx y x f dy ()⎰⎰--=2111,x x dy y x f dx .5.计算⎰⎰-10122xy dy e dx x .【解】积分区域D 是由直线x y =、1=y 及y 轴所围成的三角形区域. 改变积分次序得⎰⎰-10122x y dy e dx x ⎰⎰-=10022y y dx x dy e ⎰⎪⎭⎫ ⎝⎛=-1003|312dy x e y y⎰-=103231dy e y y ()⎰--=102261y ed y 【分部】 ()⎥⎦⎤⎢⎣⎡-+-=⎰--10210222|61y d e e y y y ⎥⎦⎤⎢⎣⎡+-=--|101261y e e 6131+-=e .6.求由平面0,0==y x 及1=+y x 所围成的柱体被平面0=z 及抛物面z y x -=+622截得的立体的体积.【解】根据二重积分的几何意义知()⎰⎰--=Ddxdy y x V 226.其中积分区域D 是xoy 面内由直线1=+y x 及x 轴、y 轴所围成的平面区域.V ()dy y x dx x⎰⎰---=1010226⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=-101032|316dx y y x y x()()()⎰⎰⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡-----=101023323175234131116dx x x x dx x x x x .617317253231|10234=⎪⎭⎫ ⎝⎛+--=x x x x . 7.利用极坐标计算下列各题. (1)⎰⎰+Dy xd e σ22,其中D 是圆形区域:422≤+y x ; 【解】⎰⎰+Dy xd e σ22⎰⎰+=1224D y xd e σ【极坐标】()121244202020|22-=⎪⎭⎫⎝⎛==⎰⎰e e rdr e d r r ππθπ.(2)()⎰⎰++Dd y x σ221ln ,其中D 是圆周122=+y x 及坐标轴在第一象限内所围成的区域;【解】()⎰⎰++Dd y x σ221ln 【极坐标】()=+=⎰⎰rdr r d 20121ln πθ【令t r =2】()dt t ⎰+=11ln 4π【分部】()⎥⎦⎤⎢⎣⎡+-+=⎰dt t t t t 101011ln 4|π()⎥⎦⎤⎢⎣⎡+-+-=⎰dt t t 101112ln 4π []()12ln 241ln 42ln 4|10-=+--=πππt t .(3)σd x yD⎰⎰arctan ,其中D 是由圆周122=+y x ,422=+y x 及直线xy y ==,0在第一象限内所围成的区域;【解】rdr r r d dxdy x y I D.cos sin arctan arctan 4021⎰⎰⎰⎰==πθθθ==⎰⎰rdr d .421πθθ .64321.21.22124024021||πθθθππ=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰r dr r d(4)⎰⎰Dxdxdy ,(){}x y x y x D 22|,22≤+≤=;【解】⎰⎰Dxdxdy ⎰⎰=12D xdxdy 【极坐标】⎥⎦⎤⎢⎣⎡+=⎰⎰⎰⎰24cos 204020.cos .cos 2ππθπθθθθrdr r d rdr r d⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎰⎰⎰24cos 20340202|31cos .cos 2ππθπθθθθd r dr r d ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰24420340cos 3831sin 2||πππθθθd r θθππd ⎰+=244cos 3163424132331634ππ=⎥⎦⎤⎢⎣⎡-+=.【其中θθππd ⎰244cos θθππd 22422cos 1⎰⎪⎭⎫ ⎝⎛+=()θθθππd ⎰++=2422cos 2cos 2141⎰=2441ππθd ()⎰+2422cos 41ππθθd +⎰+2424cos 141ππθθd 413234sin 3214812sin 41441||2424-=⎥⎦⎤⎢⎣⎡+⨯++⨯=πθπθπππππ】. 【注意:此题书中答案有误】.(5)⎰⎰-Ddxdy y x ,(){}0,0,1|,22≥≥≤+=y x y x y x D ;【解】以直线x y =将积分区域D 分块:21D D D ⋃=其中1D 由圆周()0,0122≥≥=+y x y x 及x 轴和直线x y =所围成; 其中2D 由圆周()0,0122≥≥=+y x y x 及y 轴和直线x y =所围成.⎰⎰-Ddxdy y x ()+-=⎰⎰1D dxdy y x ()⎰⎰-2D dxdy x y 【极坐标】()rdr r r d ⎰⎰-=14sin cos θθθπ()rdr r r d ⎰⎰-+124cos sin θθθππ()dr r d ⎰⎰-=1240sin cos πθθθ()dr r d ⎰⎰-+1224cos sin ππθθθ()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+=||1034031.cos sin r πθθ()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+-+||1032431.sin cos r ππθθ ()()12311231-+-=()1232-=. (6)()⎰⎰+Ddxdy y x y 23,(){}0,4|,22≥≤+=y y x y x D .【解】()⎰⎰+Ddxdy y x y 23⎰⎰=Dydxdy ⎰⎰+Ddxdy y x 230+=⎰⎰Dydxdy【极坐标】rdr r d ⎰⎰=20.sin θθπdr r d ⎰⎰=220sin πθθ31631cos ||2030=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=r πθ. 8.把()⎰⎰+=Ddxdy y xfI 22化为单重积分,其中(){}1|,22≤+=y x y x D .【解】()⎰⎰+=Ddxdy y xfI 22【极坐标】()⎰⎰=1204rdr r f d πθ()⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰1020.4rdr r f d πθ()⎰=102rdr r f π.9.把下列积分化为极坐标形式,并计算其积分值. (1)()⎰⎰-+ay a dx y xdy 002222;【解】()⎰⎰-+ay a dx y xdy 02222【极坐标】404228412|a r rdr r d aaππθπ=⎪⎭⎫ ⎝⎛==⎰⎰. (2)()⎰⎰-+ax ax dy y xdx 2020222;【解】()⎰⎰-+ax ax dy y xdx 2020222【极坐标】==⎰⎰rdr r d a 20cos 202πθθ⎰⎪⎭⎫ ⎝⎛20cos 204|41πθθd r a . 44244432.!!4!!34cos 4a a d a ππθθπ=⎪⎭⎫ ⎝⎛==⎰.(3)⎰⎰+axdy y x dx 022;【解】⎰⎰+axdy y x dx 022【极坐标】==⎰⎰rdr r d a 40sec 0.πθθ⎰⎪⎭⎫ ⎝⎛40sec 03|31πθθd r a ⎰=4033sec 31πθθd a []|403tan sec ln tan .sec 61πθθθθ++=a()[]21ln 2613++=a【其中,()⎰⎰==θθθθtan sec sec 3d d I 【分部】()⎰-=θθθθsec tan tan .sec d⎰-=θθθθθd 2tan sec tan .sec ()⎰--=θθθθθd 1sec sec tan .sec 2 I d d -++=+-=⎰⎰θθθθθθθθθθtan sec ln tan .sec sec sec tan .sec 3所以,[]C I +++=θθθθtan sec ln tan .sec 21.】 (4)⎰⎰+1222xxdx y x dx .【解】⎰⎰+10222xxdx y x dx 【极坐标】==⎰⎰rdr r d a 40sec tan 0.πθθθ⎰⎪⎭⎫ ⎝⎛40tan sec 03|31πθθθd r a ⎰=40333tan sec 31πθθθd a ()()⎰-=40223sec 1sec sec 31πθθθd a()12452sec 31sec 5131|40353+=⎥⎦⎤⎢⎣⎡-=πθθa .10.设()x f 为连续函数,且()()⎰⎰+=Ddxdy y x f t F 22,其中(){}222|,t y x y x D ≤+=,求极限()tt F t '→0lim.【解】()()⎰⎰+=Ddxdy y x f t F 22【极坐标】()rdr r f d t⎰⎰=πθ202()r dr r f t⎰=022π.故 ()()22t tf t F π='. ① 所以()t t F t '→0lim【代入 ①】()()022lim 0f t t tf t ππ==→. 【注意:怀疑此题本身有问题,故对题目本身作了合理修正】11*.设()x f 在[]1,0上连续,并设()A dx x f =⎰10,求()()⎰⎰101xdy y f x f dx .【解】 记⎩⎨⎧≤≤≤≤,10,1:1x y x D ⎩⎨⎧≤≤≤≤,10,0:2x x y D ,21D D D ⋃=.则 ()()()()dxdy y f x f dy y f x f dx I D x⎰⎰⎰⎰==1111. ①()()()()dxdy y f x f dy y f x f dx I D x⎰⎰⎰⎰==2102. ②又交换积分次序后()()==⎰⎰111x dy y f x f dx I ()()⎰⎰10y dx y f x f dy ()()⎰⎰=10xdy y f x f dx ,即21I I =.所以有 ()()()dxdy y f x f I I I D⎰⎰=+=2121211 ()()210102121A dy y f dx x f ==⎰⎰. 12*.设()x ϕ为[]1,0上的正值连续函数,证明:()()()()()b a dxdy x y x b y a D+=++⎰⎰21ϕϕϕϕ,其中b a ,为常数,(){}10,10|,≤≤≤≤=y x y x D . 【证明】因为积分区域D 关于直线x y =对称,则 ()()()=+=⎰⎰Ddxdy y x x I ϕϕϕ()()()⎰⎰+Ddxdy y x y ϕϕϕ. ① 故有()()()()212121==⎥⎦⎤⎢⎣⎡++=⎰⎰⎰⎰DD dxdy dxdy y x y x I ϕϕϕϕ. ② 所以有()()()()=++⎰⎰D dxdy x y x b y a ϕϕϕϕ()()()b dxdy y x y a D++⎰⎰ϕϕϕ()()()⎰⎰+Ddxdy y x x ϕϕϕ ).(21b a bI aI +=+= 13*.设闭区间[]b a ,上()x f 连续且恒大于零,试利用二重积分证明不等式()()()21a b dx x f dx x f baba-≥⎰⎰. 【证法一】考虑到定积分与变量的记号无关.故有: ()()⎰⎰=b a bay f dy x f dx. ① 以及()().dy y f dx x f baba⎰⎰= ②所以有()()()()..⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D b a b a dxdy y f x f x f dx dx x f ③其中,⎩⎨⎧≤≤≤≤.,:b y a b x a D 同时()()()()..⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D b a b a dxdy x f y f x f dx dx x f ④ ③+④,得()()()()()()()()()().2.2⎰⎰⎰⎰⎰⎰≥⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D Db a b a dxdy y f x f x f y f dxdy y f x f x f y f x f dx dx x f ()222.Ddxdy b a ==-⎰⎰即: ()()()2..b b a a dx f x dx b a f x ⎡⎤⎡⎤≥-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ 【证法二】:因为()0≥x f ,所以有20b a dx ⎡⎤⎢≥⎢⎣⎰,即 ()()()220.bbaadxf x dx b a f x λλ⎡⎤+-+≥⎢⎥⎣⎦⎰⎰① ①式左边是λ的非负二次三项式,因此必有判别式()()()20b b a a dx b a f x dx f x ⎡⎤⎡⎤∆=--≤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰. ② 故由②得到()()()2..b b a a dx f x dx b a f x ⎡⎤⎡⎤≥-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰14*.设()x f 在闭区间[]b a ,上连续.试利用二重积分证明不等式()()()dx x fa b dx x f ba ba ⎰⎰-≤⎥⎦⎤⎢⎣⎡22.【证明】由于()2⎥⎦⎤⎢⎣⎡⎰dx x f b a ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰dx x f dx x f b a b a ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰dy y f dx x f ba b a . ① 令 ⎩⎨⎧≤≤≤≤.,:b y a b x a D 则 由①得到()()()dxdy y f x f dx x f Dba ⎰⎰⎰=⎥⎦⎤⎢⎣⎡2. ②又 ()()()()222y fx fy f x f +≤.③故()()()dxdy y fx f dx x f Db a ][21222+≤⎥⎦⎤⎢⎣⎡⎰⎰⎰()()⎥⎦⎤⎢⎣⎡+=⎰⎰⎰⎰b a b a b a b a dy y f dx dx x f dy 2221 ()()dx x f a b b a ⎰-=221()()dy y f a b b a ⎰-+221【定积分与变量记号无关()()dx x fa b ba⎰-=2.15*.设区域(){}0,1|,22≥≤+=x y x y x D ,求二重积分⎰⎰+++Ddxdy y x xy2211.【解】⎰⎰+++Ddxdy y x xy 2211⎰⎰++=D dxdy y x 2211⎰⎰+++D dxdy yx xy221 0112122+++=⎰⎰D dxdy y x 【极坐标】rdr r d ⎰⎰+=2102112πθ ()().2ln 21ln 21112|1022102πππ=+=++=⎰rr d r习题9.31.利用定积分、二重积分和三重积分计算空间立体体积时,被积函数和积分区域各有什么不同? 【解】略.2.将三重积分()dxdydz z y x f I ⎰⎰⎰Ω=,,化为三次积分,其中空间区域分别为:(1)由曲面22y x z +=,0=x ,0=y ,1=z 所围成且在第一卦限内的区域;【解】⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤≤≤+Ω.10,10,1:222x x y z y x Ω向xoy 面上投影区域为⎪⎩⎪⎨⎧≤≤-≤≤.10,10:2x x y D xy ,所以()dz z y x f dy dx I y x x ⎰⎰⎰+-=1101222,,.(2)由双曲抛物面xy z =及平面01=-+y x ,1=z 所围成的区域;【解】⎪⎩⎪⎨⎧≤≤-≤≤≤≤Ω.10,10,0:x x y xy z Ω向xoy 面上投影区域为⎩⎨⎧≤≤-≤≤.10,10:x x y D xy ,所以()dz z y x f dy dx I xyx⎰⎰⎰-=01010,,.(3)由曲面222y x z +=及22x z -=所围成的区域. 【解】联立⎪⎩⎪⎨⎧-=+=,2,2222x z y x z 消去z ,得 Ω向xoy 面上的投影区域为 1:22≤+y x D xy . 故⎪⎪⎩⎪⎪⎨⎧≤≤--≤≤---≤≤+Ω.11,11,22:22222x x y x x z y x所以()dz z y x f dy dx I x y x x x ⎰⎰⎰-+----=22222221111,,.3.利用直角坐标系计算下列三重积分.(1)dV z xy ⎰⎰⎰Ω32,其中Ω是由平面x y =,1=x ,0=z 及曲面xy z =所围区域.【解】Ω在xoy 坐标面上的投影区域为三角形区域.10,0:⎩⎨⎧≤≤≤≤x x y D 故dz z dy y xdx dV z xy xyx⎰⎰⎰⎰⎰⎰=Ω03021032⎰⎰⎥⎦⎤⎢⎣⎡=xxy dy z y xdx 004210|41⎰⎰=x dy y dx x 0610541⎰⎥⎦⎤⎢⎣⎡=10075|7141dx y x x 3641131281281|10131012=⨯==⎰x dx x . (2)()⎰⎰⎰Ω+++31z y x dV,其中Ω是由平面0=x ,0=y ,0=z 及1=++z y x 所围成的四面体;【解】Ω在xoy 坐标面上的投影区域为三角形区域.10,10:⎩⎨⎧≤≤-≤≤x x y D 故()dxdydz z y x ⎰⎰⎰Ω+++311=()dz z y x dy dx x y x ⎰⎰⎰---+++101010311()()z y x d z y x dy dx xyx ++++++=⎰⎰⎰---1111010103()⎰⎰---⎥⎦⎤⎢⎣⎡+++-=1010102|11.21xy x dy z y x dx ()⎰⎰-⎥⎦⎤⎢⎣⎡-++=10102411121xdy y x dx ⎰-⎪⎪⎭⎫ ⎝⎛-++-=1010|411121dx y y x x⎰⎪⎭⎫⎝⎛+++-=101144321dx x x ().1652ln 21811ln 4321|102-=⎪⎭⎫ ⎝⎛+++-=x x x (3)()dxdydz z x y ⎰⎰⎰Ω+cos ,其中Ω是由抛物柱面x y =以及平面0=y ,0=z ,2π=+z x 所围成区域.【解】Ω在xoy 坐标面上的投影区域为.20,0:⎪⎩⎪⎨⎧≤≤≤≤πx x y D 故()dxdydz z x y ⎰⎰⎰Ω+cos =()dz z x ydy dx xx⎰⎰⎰-+2020cos ππ()⎰⎰⎥⎦⎤⎢⎣⎡+=-200|2sin ππxxdy z x y dx ()⎰⎰-=200sin 1πx ydy x dx ()⎰⎥⎦⎤⎢⎣⎡-=2002|21sin 1πdx y x x ()⎰-=20sin 121πdx x x⎰=2021πxdx 21161sin 21220-=-⎰ππxdx x .【其中2202201614121|πππ==⎰x xdx ;()⎰⎰=-2020cos 21sin 21ππx xd xdx x 【分部】⎥⎦⎤⎢⎣⎡-=⎰2020cos cos 21|ππxdx x x 21sin 21|20-=-=πx .】4.利用柱面坐标计算三重积分.(1)()d V y x ⎰⎰⎰Ω+22,其中Ω是由曲面z y x 222=+及平面2=z 所围成的区域;【解】本题宜采用“切片法”计算()()dxdy y x dz dz dxdy y xzD ⎰⎰⎰⎰⎰⎰+=+Ω22222.3163242.||20320202422020πππθπ====⎰⎰⎰⎰z dz r rdr r d dz z z如采用柱面坐标系:()dz dxdy y x⎰⎰⎰Ω+22.3166.2142222.2|206420223222202πππθπ=⎥⎦⎤⎢⎣⎡-=⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰r r dr r r dz r rdr d r (2)()d V y x ⎰⎰⎰Ω+22,其中Ω是由曲面()222254y x z +=及平面5=z 所围成的区域;【解】(柱面坐标法)Ω在xoy 坐标面上的投影区域为.4:22≤+y x D()V d y x⎰⎰⎰Ω+22dr z r dz r rdr d r r ⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛==20205253525220|.2πθπ dr r r ⎪⎭⎫ ⎝⎛-=⎰255223πππ82452|2054=⎥⎦⎤⎢⎣⎡-=r r .(3)dV xyz ⎰⎰⎰Ω,其中Ω是由球面1222=++z y x 及三个坐标面所围且在第一卦限内的区域.【解】(球面坐标法)Ω在xoy 坐标面上的投影区域为V xyzd ⎰⎰⎰Ω⎰⎰⎰=2015320cos sin cos sin ππρρϕϕϕθθθd d d48161.sin 41.sin 21|||106204202=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=ρϕθππ.5.利用球面坐标计算三重积分.(1)()d V z y x ⎰⎰⎰Ω++222,其中()(){}222223,|,,y x z z z y x z y x +≥≤++=Ω;【解】(球面坐标法)()d V z y x⎰⎰⎰Ω++222⎰⎰⎰=60cos 02220.sin πϕπρρρϕϕθd d dϕρϕππϕd ⎰⎥⎦⎤⎢⎣⎡=6cos 05|51sin 2ϕϕϕππd ⎰=605sin cos 52()ϕϕππcos cos 52605d ⎰-=πϕππ96037cos 6152|606=⎥⎦⎤⎢⎣⎡-=.(2)dxdydz z ⎰⎰⎰Ω2,其中Ω是由抛物面22y x z +=之上,球面2222=++z y x 之内的部分围成;【解】(柱面坐标法)联立⎩⎨⎧+==++22222,2y x z z y x 消z ,得Ω在xoy 坐标面上投影区域.1:22≤+y x D 所以dz dxdy z⎰⎰⎰Ω2⎰⎰⎰-=1222022r rdz z rdr d πθ⎰⎥⎦⎤⎢⎣⎡=-123|22312r r z r π()⎰⎥⎦⎤⎢⎣⎡--=10632232dr r r r π()⎰-=1032232dr r r π()πππππ121228151121232107--=-=-⎰dr r ()1323260-=π.【其中()⎰-1032232dr r r π【令t r sin 2=】⎰=404cos .sin 328ππtdt t ()()πππππ228151cos 51328cos cos 328|405404-=⎥⎦⎤⎢⎣⎡-=-=⎰t t td ; .121813232|108107πππ-=⎥⎦⎤⎢⎣⎡-=-⎰r dr r 】(3)dxdydz x ⎰⎰⎰Ω,其中()(){}0,0,0|,,2222≥≥>≤++=Ωy x a a z y x z y x .【解】(球面坐标法)⎰⎰⎰Ωxdxdydz ⎰⎰⎰=ππρρθϕρϕϕθ00220.cos sin sin ad d d ⎰⎰⎰=ππρρρϕϕθθ0222.sin cos ad d d404020841.2sin 4121.sin |||a a πρϕϕθππ=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=.6.采用三种坐标计算三重积分dxdydz z ⎰⎰⎰Ω2,其中()2222|,,{R z y x z y x ≤++=Ω()}2,0222Rz z y x R ≤++>.【解法一】(柱面坐标法)联立⎩⎨⎧=++=++,2,222222Rz z y x R z y x 消z ,得Ω在xoy 坐标面上的投影区域为 .43:222R y x D ≤+dz dxdy z ⎰⎰⎰Ω2 dr z r dz z rdr d R R r R r R R r R r R R ⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛==------232303220|222222223.2πθπ()()⎰⎥⎦⎤⎢⎣⎡----=R dr rR R r R r 23032232232π(令t R r sin =)()[]⎰--=30333cos .cos cos sin 32ππtdt R t R R t R t R[]⎰-+-=30235cos sin cos 3cos 31cos 232ππtdt t t t t R⎰=3045sin cos 34ππtdt t R ⎰-305sin cos 32ππtdt t R⎰+3025sin cos 2ππtdt t R⎰-3035sin cos 2ππtdt t R|30555cos 34ππt R -=|30252cos 32ππt R +|30353cos 2ππt R -|30454cos 2ππt R + ⎪⎭⎫ ⎝⎛--=32311545R π⎪⎭⎫ ⎝⎛-+4335R π⎪⎭⎫ ⎝⎛--87325R π⎪⎭⎫ ⎝⎛-+161525R π .480595R π=【解法二】(球面坐标法)球面坐标计算:这时首先要把积分区域Ω分成两个子区域: .21Ω⋃Ω=Ω 其中⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,0,30,20:1R ρπϕπθ ⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,cos 20,232,20:2ϕρπϕππθR则dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+22ρρϕρϕϕθππd d d R⎰⎰⎰=2030222.cos sinρρϕρϕϕθπππϕd d d R ⎰⎰⎰+2023cos 20222.cos sin⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰R d d 04302cos .sin 2ρρϕϕϕππ ⎪⎪⎭⎫ ⎝⎛+⎰⎰ϕππρρϕϕϕπcos 204232cos .sin 2R d d ⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=||0530351cos 312R ρϕππ⎪⎪⎭⎫ ⎝⎛+⎰2375cos .sin 32512ππϕϕϕπd R 551.247.2R π=⎪⎪⎭⎫ ⎝⎛-+|2385cos 81564ππϕπR 5607R π=⎪⎭⎫ ⎝⎛+81.25615645R π5607R π=5160R π+.480595R π= 【解法三】(直角坐标系之“切片法”)将Ω分块为21Ω⋃Ω=Ω.其中()()⎪⎩⎪⎨⎧∈≤≤Ω11,,20z D y x R z :,()22212:z Rz y x D z -≤+; ()()⎪⎩⎪⎨⎧∈≤≤Ω22,,2z D y x R z R:,()22222:z R y x D z -≤+. ()()()()[]dz z Rz z dz D S z dxdy dz z dz dxdy zR z D R R z220212022022211-===⎰⎰⎰⎰⎰⎰⎰⎰Ωπ5205440151412|R z z R Rππ=⎥⎦⎤⎢⎣⎡-=;()()()()[]dz z R z dz D S z dxdy dz z dz dxdy z RR z D RR R R z222222222222-===⎰⎰⎰⎰⎰⎰⎰⎰Ωπ 52532480475131|R z z R R R ππ=⎥⎦⎤⎢⎣⎡-=. 所以dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+225554805948047401R R R πππ=+=. 7.若柱面122=+y x 与平面0=z ,1=z 所围成的柱体内任一点()z y x ,,处的密度22y x z --=μ,试计算该柱体的质量.【解】()()⎪⎩⎪⎨⎧Ω∈-+Ω∈--=--=.,,,,,22212222y x z y x y x y x z y x z μ 其中()⎩⎨⎧∈≤≤+ΩD y x z y x ,,1221:;()⎩⎨⎧∈+≤≤ΩD y x y x z ,,0222:;1:22≤+y x D . 所以 =M ()dz dxdy y xz ⎰⎰⎰Ω--122()πππ316161222=+=-++⎰⎰⎰Ωdz dxdy z y x .【其中()dz dxdy y xz ⎰⎰⎰Ω--122【柱面坐标】()dr z r z r dz r z rdr d r r ⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛-=-=10101221220|222.2πθπ()πππ6161222|10642153=⎪⎪⎭⎫ ⎝⎛+-=+-=⎰r r r dr r r r ;()dz dxdy z y x⎰⎰⎰Ω-+222【柱面坐标】()dr z z r r dz z r rdr d r r ⎰⎰⎰⎰⎪⎭⎫ ⎝⎛-=-=110022220|2221.2πθππππ6161|10615=⎪⎭⎫ ⎝⎛==⎰r dr r .】8.分别用定积分、二重积分和三重积分求由22y x z +=和22y x z +=所围成的立体Ω的体积.【解】联立⎪⎩⎪⎨⎧+=+=,,2222y x z y x z 消z ,得Ω在xoy 坐标面上的投影区域为 .1:22≤+y x D(一)定积分过z 轴上任意一点z 作Ω的截面,则该截面的面积为 ()()()[]1,0,222∈-=-=z z z z z z A πππ所以Ω的体积为()()πππ613121|103210210=⎪⎭⎫ ⎝⎛-=-==⎰⎰z z dz z z dz z A V .(二)二重积分 ()[]d xdy y x y xV D⎰⎰+-+=2222【极坐标】()ππθπ61432|10432012=⎪⎪⎭⎫ ⎝⎛-=-=⎰⎰r r rdr r r d . (三)三重积分⎰⎰⎰Ω=dV V 【球面坐标】ρρϕϕθπϕϕππd d d ⎰⎰⎰=20sin cos 02242sin()ϕϕπϕϕϕπϕρϕπππππππϕϕcot cot 32sin cos 3231sin 2243245324sin cos 03|2d d d ⎰⎰⎰-==⎥⎦⎤⎢⎣⎡=πϕπππ61cot 4132|244=⎥⎦⎤⎢⎣⎡-=. 9.设()x f 在0=x 处可导,且()00=f ,求极限()d xdydz z y x f t t ⎰⎰⎰Ω→++22241lim,其中(){}2222|,,t z y x z y x ≤++=Ω.【解】()d xdydz z y x f tt ⎰⎰⎰Ω→++222401lim ()⎰⎰⎰=ππρρρϕϕθ00220.sin ad f d d()ρρρϕππd f a 200.cos 2|⎰⎥⎦⎤⎢⎣⎡-=()ρρρπd f a 20.4⎰=. ①所以()d xdydz z y x ft t ⎰⎰⎰Ω→++22241lim【由①】()4204lim t f tt ⎰→=ρρπ【洛必达法则】()32044lim t t t f t π→=()t t f t 0lim →=π()()00lim 0--=→t f t f t π()0f '=π. 习题9.41.求由曲线()xy y x C =+222:所围平面图形D 的面积.【解】化曲线C 为极坐标表示:θθsin cos 2=r ,⎥⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡∈πππθ23,2,0.由对称性知()⎰⎰=12D d D S σ【极坐标】θθπθθπθθd r dr r d ⎰⎰⎰⎥⎦⎤⎢⎣⎡==20cos sin 0220cos sin 0|2122()21sin 21sin sin cos sin |2022020====⎰⎰πππθθθθθθθd d d .2.求由曲面222y x z +=及2226y x z --=所围成的立体Ω的体积. 【解】联立⎪⎩⎪⎨⎧--=+=,26,22222y x z y x z 消去z ,得 Ω向xoy 面上的投影区域为 2:22≤+y x D xy .所以Ω的体积为 ()()[]d xdy y x y xV xyD ⎰⎰+---=2222226()d xdy y xxyD ⎰⎰--=22336()ππθπ6433236|2422022=⎥⎦⎤⎢⎣⎡-=-=⎰⎰r rrdr r d . 3.求由曲面()xyz a z y x S 332223:=++所围立体的体积.【解】做球坐标变换:⎪⎩⎪⎨⎧===,cos ,sin sin ,cos sin ϕρθϕρθϕρz y x 则S 在球坐标下的方程为θθϕϕρsin cos cos sin 3233a =ρρϕϕθθθϕϕππd d d dV V a ⎰⎰⎰⎰⎰⎰Ω==3231cos sin cos sin 3022020sin 44⎰⎰⎥⎦⎤⎢⎣⎡=2020cos sin cos sin 303|32331sin 4ππθθϕϕϕρϕθd d a ⎰⎰=22033cos sin cos sin 4ππϕϕϕθθθd d a.21sin 41sin 21432042023||a a =⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=ππϕθ4.证明:曲面2214:y x z S ++= ① 任一点处的切平面与曲面22:2y x z S +=所围立体图形Ω的体积为定值.【证明】任取曲面1S 上一点()0000,,z y x M .令 ()z y x z y x F -++=224,,.则1S 在点()0000,,z y x M 处的切平面的法向量为 ()()(){}{}1,2,2,,00000-='''=y x M F M F M F z y x .1S 在点()0000,,z y x M 处的切平面π的法平面为()()()02200000=---+-z z y y y x x x .即 ()0222:02020000=-+---+z y x z z y y x x π. ②又由于()10000,,S z y x M ∈,故402020-=-+z y x . ③ 将③式代入②式得0822:000=+--+z z y y x x π. ④ 联立⎩⎨⎧+==+--+,,082222000y x z z z y y x x 消去z ,得 ()()8020202020+-+=-+-z y x y y x x 【由③】4=,故Ω向xoy 面上的投影区域为()()4:2020≤-+-y y x x D xy . ⑤所以,Ω的体积为 ()()[]d xdy y x z y yx x V xyD ⎰⎰+-+-+=2200822()()()[]d xdy y y x x z y xxyD ⎰⎰----+-+=202002028【由③】()()[]d xdy y y x x xyD ⎰⎰----=2024令⎩⎨⎧+=+=.sin ,cos 00θθr y y r x x 则()()r r r y r y xrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,所以()dr d r r V r D θθ⎰⎰-=24()ππθπ841224|20422022=⎥⎦⎤⎢⎣⎡-=-=⎰⎰r r rdr r d .从而:2S 与π所围立体图形Ω的体积为定值π8.5.形状如22y x z +=,100≤≤z (单位:米)的“碗”,计划在其上刻上刻度使其成为一个容器.求对应于容积为1立方米的液体在该容器内的高度是多少? 【解】设对应于容积为1立方米的液体在该容器内的高度是h (米). 由题意知()()σπd y xh h D⎰⎰+-⨯=222.1. ①其中222:h y x D ≤+.()⎰⎰⎰⎰=+πθσ200222.h Drdr r d d y x20421412|h r h ππ=⎥⎦⎤⎢⎣⎡=. ②将②式代入①式得2221.1h h ππ-=,即 2211h π=,解之得π2=h (米).6.求均匀密度的半椭圆平面薄片()01:2222≥≤+y by a x D 的质心.【解】设D 的质心坐标为()y x ,.由质心坐标公式得⎰⎰⎰⎰=DDxd d x σσ1; ①⎰⎰⎰⎰=DDyd d y σσ1②【其中令⎩⎨⎧==,sin ,cos θθbr y ar x 则()()abrbr b ar a y ry xrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,由对称性知0=⎰⎰σd x D;()⎰⎰⎰⎰⎰⎰==πθθθθσθ0102.sin sin rdr r d ab drd J br d y r D D⎰⎥⎦⎤⎢⎣⎡=πθθ01032|31sin d r ab2020232cos 31sin 31|ab ab d ab =-==⎰ππθθθ;又 ()ab D S d Dπσ2121==⎰⎰. 故⎰⎰⎰⎰==DDxd d x 01σσ;ππσσ34213212bab ab yd d y DD===⎰⎰⎰⎰. 所以,平面薄片()01:2222≥≤+y b y a x D 的质心为⎪⎭⎫⎝⎛π34,0b .7.社平面薄片所占的区域D 由抛物线2x y =及直线x y =所围成,它在点()y x ,处的面密度()y x y x 2,=ρ,求此薄片的质心.【解】设D 的质心坐标为()y x ,.由质心坐标公式得()()⎰⎰⎰⎰=DDd y x x d y x x σρσρ,,1σσ⎰⎰⎰⎰=DDyd x yd x 321; ① ()()⎰⎰⎰⎰=D D d y x y d y x y σρσρ,,1⎰⎰⎰⎰=DDd y x yd xσσ2221②ydy x dx yd x xx D⎰⎰⎰⎰=10222σ⎰⎪⎭⎫ ⎝⎛=1022|221dx y x x x ()⎰-=106421dx x x 351715121|1075=⎪⎭⎫ ⎝⎛-=x x ; ③ydy x dx yd x x x D⎰⎰⎰⎰=10332σ⎰⎪⎭⎫ ⎝⎛=1023|221dx y x x x ()⎰-=107521dx x x 481816121|1086=⎪⎭⎫ ⎝⎛-=x x ; ④ dy y x dx d y x xx D2102222⎰⎰⎰⎰=σ⎰⎪⎭⎫⎝⎛=1032|231dx y x x x ()⎰-=108531dx x x 541916131|1096=⎪⎭⎫ ⎝⎛-=x x . ⑤故 4835351481==x ;5435351541==y .所以此薄片的质心为⎪⎭⎫⎝⎛5435,4835.8.平面薄片D 由ax y x ≥+22,222a y x ≤+确定,其上任一点处的面密度与离原点的距离成正比,求此薄片的质心.【解】由题意知,面密度()22,y x k y x +=ρ)0(>k .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章习题及答案第九章习题一、选择题1.以下选项中不能正确把cl定义成结构体变量的是( )A)typedef struct B)struct color cl{ int red; { int red;int green; int green;int blue; int blue;} COLOR; COLOR cl; };C)struct color D)struct{ int red; { int red;int green; int green;int blue; int blue;} cl; } cl;2.有以下说明和定义语句struct student{ int age; char num[8];};struct student stu[3]={{20,"200401"},{21,"200402"},{10\9,"200403"}};struct student *p=stu;以下选项中引用结构体变量成员的表达式错误的是( )A) (p++)->num B)p->num C)(*p).num D)stu[3].age3.有以下结构体说明、变量定义和赋值语句struct STD{char name[10];int age;char sex;}s[5],*ps;ps=&s[0];则以下scanf函数调用语句中错误引用结构体变量成员的是( )。

A)scanf(“%s”,s[0].name);B)scanf(“%d”,&s[0].age);C)scanf(“%c”,&(ps->sex)); D)scanf(“%d”,ps->age);4.以下叙述中错误的是()A)可以通过typedef增加新的类型B)可以用typedef将已存在的类型用一个新的名字来代表C)用typedef定义新的类型名后,原有类型名仍有效D)用typedef可以为各种类型起别名,但不能为变量起别名5.有以下程序段()typedef struct node { int data; struct node *next; } *NODE;NODE p;以下叙述正确的是(C)A)p是指向struct node结构变量的指针的指针B)NODE p;语句出错C)p是指向struct node结构变量的指针D)p是struct node结构变量6.若有以下定义和语句union data{ int i; char c; float f;}x;int y;则以下语句正确的是( )。

A)x=10.5;B)x.c=101; C)y=x;D)printf(“%d\n”,x); 7.有以下程序main(){ union { unsigned int n;unsigned char c;}u1;ul.c=`A`;printf("%c\n",u1.n);}执行后输出结果是()A) 产生语法错 B) 随机值 C) A D) 658.有以程序#include <stdio.h>#include <string.h>typedef struct { char name[9]; char sex; float score[2]; } STU;void f( STU a){ STU b={“Zhao” ,’m’,85.0,90.0} ; int i;strcpy(,);a.sex=b.sex;for(i=0;i<2;i++) a.score[i]=b.score[i];}main(){ STU c={“Qian”,’p’,95.0,92.0};f(c); printf(“%s,%c,%2.0f,%2.0f\n”,,c.sex,c.score[0],c.score[1]);}程序的运行结果是A)Qian,p,95,92 B) Qian,m,85,90C)Zhao,p,95,92 D) Zhao,m,85,909.现有以下结构体说明和变量定义,如图所示,指针p,q,r分别指向一个链表中连续的三个结点。

struct node{char data;struct node *next;}*p,*q,*r;现要将q和r所指结点交换前后位置,同时要保持链表的连续,以下不能完成此操作的语句是A)q->next=r->next; p->next=r; r->next=q;B) p->next=r; q->next=r->next; r->next=q;C) q->next=r->next; r->next=q; p->next=r;D) r->next=q; p->next=r; q-next=r->next;10.有以下程序段struct st{ int x; int *y;}*pt:int a[]={1,2},b[]={3,4};struct st c[2]={10,a,20,b};pt=c;以下选项中表达式的值为11的是( )A) *pt->y B) pt->x C) ++pt->x D) (pt++)->x二、填空题1.设有说明struct DATE{int year;int month; int day;};请写出一条定义语句,该语句定义d为上述结构体变量,并同时为其成员year、month、day 依次赋初值2006、10、1。

2.已有定义如下:struct node{ int data;struct node *next;} *p;以下语句调用malloc函数,使指针p指向一个具有struct node类型的动态存储空间。

请填空。

p = (struct node *)malloc( );3.以下程序中函数fun的功能是:统计person所指结构体数组中所有性别(sex)为M的记录的个数,存入变量n中,并做为函数值返回。

请填空:#include<stdio.h>#define N 3typedef struct{int num;char nam[10]; char sex;}SS;int fun(SS person[]){int i,n=0;for(i=0;i<N;i++)if( ==’M’ ) n++;return n;}main(){SS W[N]={{1,”AA”,’F’},{2,”BB”,’M’},{3,”CC”,’M’}}; int n;n=fun(W); printf(“n=%d\n”,n);}4.以下程序运行后的输出结果是( ) 。

struct NODE{ int k;struct NODE *link;};main(){ struct NODE m[5],*p=m,*q=m+4;int i=0;while(p!=q){p->k=++i; p++;q->k=i++; q--;}q->k=i;for(i=0;i<5;i++) printf("%d",m[i].k);printf("\n");}5.以下程序的功能是:建立一个带有头结点的单向链表,并将存储在数组中的字符依次转储到链表的各个结点中,请从与下划线处号码对应的一组选若中选择出正确的选项。

#includestuct node{ char data; struct node *next;};(1) CreatList(char *s){ struct node *h,*p,*q);h=(struct node *) malloc(sizeof(struct node));p=q=h;while(*s!='\0'){ p=(struct node *) malloc(sizeof(struct node));p->data= (2) ;q->next=p;q= (3) ;s++;}p->next='\0';return h;}main(){ char str[]="link list";struct node *head;head=CreatList(str);...}三、编程题1. 定义一个能正常反映教师情况的结构体teacher,包含教师姓名、性别、年龄、所在部门和薪水;定义一个能存放两人数据的结构体数组tea,并用如下数据初始化:{{“Mary “, ‘W’,40, ‘Computer’ , 1234 },{“Andy“, ‘M’,55, ‘English’ , 1834}};要求:分别用结构体数组tea和指针p输出各位教师的信息,写出完整定义、初始化、输出过程。

2.定义一个结构体变量(包括年、月、日)。

计算该日在本年中是第几天,注意闰年问题。

3.构建简单的手机通讯录,手机通讯录包括信息(姓名、年龄、联系电话),要求实现新建、查询功能。

假设通信录最多容纳50名联系人信息。

4.建立一个教师链表,每个结点包括学号(no),姓名(name[8]),工资(wage),写出动态创建函数creat和输出函数print。

5.在上一题基础上,假如已经按学号升序排列,写出插入一个新教师的结点的函数Insert。

第9章习题答案一、选择题1-5 B D D A C 6-10 B C A D C二、填空题1.struct DATA d={2006,10,1};2.sizeof(struct node)3.person[i].sex4.134315.(1)struct node* (2)*s (3)p三、编程题1. 定义一个能正常反映教师情况的结构体teacher,包含教师姓名、性别、年龄、所在部门和薪水;定义一个能存放两人数据的结构体数组tea,并用如下数据初始化:{{“Mary “, ‘W’,40, ‘Computer’ , 1234 },{“Andy“, ‘M’,55, ‘English’ , 1834}};要求:分别用结构体数组tea和指针p输出各位教师的信息,写出完整定义、初始化、输出过程。

#include<stdio.h>struct teacher{ char name[8];char sex;int age;char department[20];float salary;} ;struct teacher tea[2]= {{"Mary ", 'W',40, "Computer" , 1234 },{"Andy ", 'M',55, "English" , 1834}} ;main(){ int i;struct teacher *p;for( i=0;i<2;i++)printf("%s,\t%c,\t%d,\t%s,\t%f",tea[i].name,tea[i].sex,tea[i].age,tea[i].department,tea[i].salary);for(p=tea;p<tea+2;p++)printf("%s,\t%c,\t%d,\t%s,\t%f", p->name, p->sex, p->age, p->department, p->salary);}2. 定义一个结构体变量(包括年、月、日)。

相关文档
最新文档