椭圆和双曲线练习题及答案解析
高二数学椭圆双曲线专项练习含答案
![高二数学椭圆双曲线专项练习含答案](https://img.taocdn.com/s3/m/041378c09fc3d5bbfd0a79563c1ec5da50e2d64c.png)
高二数学椭圆双曲线专项练习选择题:1、双曲线 x2-ay2= 1 的焦点坐标是()A .( 1 a , 0) , ( -1 a , 0)B. ( 1 a , 0), (-1 a , 0)C.(-a1a1D. (-a1,0),(a 1a, 0),(a, 0)a, 0)a2、设双曲线的焦点在x 轴上 ,两条渐近线为y 1)x ,则该双曲线的离心率为(2A .5B .5/2C.5D.5/43.椭圆x2y21的两个焦点为F1、F2,过 F1作垂直于 x 轴的直线与椭圆订交,一个交点为P,则| PF2|= 4()A. 3 /2B.3C. 4了D. 7/24.过椭圆左焦点 F 且倾斜角为60°的直线交椭圆于A, B 两点,若FA 2 FB ,则椭圆的离心率等于()A 2B2C1D2 3223 x2y2x 2y 25.已知椭圆3m25n2 和双曲线2m23n2= 1 有公共的焦点,那么双曲线的渐近线方程是()A . x=±15 y B. y=±15 x C. x=± 3 y D. y=± 3 x22446.设 F1和 F2为双曲线x2y2= 1 的两个焦点,点P 在双曲线上,且知足∠F1PF2=90°,则△ F1PF2的面积4是() A.1 B .5C. 2D.5 27.已知 F1、 F2是两个定点,点 P 是以 F1和 F2为公共焦点的椭圆和双曲线的一个交点,而且PF1⊥PF2,e1和e 分别是椭圆和双曲线的离心率,则有()2A .e1e22B .e12e224C.e1e2 2 2D.112 e12e228.已知方程x 2+y 2=1 表示焦点在 y 轴上的椭圆,则m 的取值范围是()| m | 2 m1A . m<2B .1<m<2C. m< - 1 或 1<m<2 D . m< - 1 或 1<m<32x 2y 2 x 2 y 29.已知双曲线 a 2-b 2=1和椭圆m 2 + b 2 =1( a>0,m> b>0) 的离心率互为倒数,那么以a 、b 、m 为边长的三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形x 2 y 2 1 上有 n 个不一样的点 :P 1 2 n n1 的10.椭圆3 , P , , P , 椭圆的右焦点为 F. 数列{ |P F|}是公差大于1004等差数列 , 则 n 的最大值是() A . 198 B .199C . 200D .201一、填空题:11.对于曲线 C ∶x 2 y 2 C 不行能表示椭圆;②4 k=1 ,给出下边四个命题:①由线k 1当 1<k < 4 时,曲线 C 表示椭圆;③若曲线 C 表示双曲线,则 k < 1 或 k > 4;④若曲线 C 表示焦点在 x 轴上的椭圆,则 1< k <5此中全部正确命题的序号为_______ ______212.设圆过双曲线x 2 y 2 =1 的一个极点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心距离__916x 2 y 2 1 21 213.双曲线= 1 的两焦点为、,点 P 在双曲线上,若 PF ⊥ PF,则点 P 到 x 轴的距离 ____9 1614.若 A ( 1, 1),又 F 1 是 5x 2+ 9y 2=45 椭圆的左焦点,点P 是椭圆的动点,则 |PA|+|P F 1|的最小值 _______15、已知 B(-5 , 0) , C(5 , 0) 是△ ABC 的两个极点,且 sinB-sinC= 3sinA, 则极点 A 的轨迹方程是5二、解答题:16、设椭圆方程为x 2 y 2 =1,求点 M (0,1)的直线l 交椭圆于点 A 、 B , O 为坐标原点,点P 知足41 OB) ,当 l 绕点 M 旋转时,求动点 P 的轨迹方程 .OP(OA217、已知 F1、 F2为双曲线x 2y21(a>0,b>0)的焦点,过F2作垂直a 2b2于 x 轴的直线交双曲线于点P,且∠ PF1F2= 30°.求双曲线的渐近线方程.图18、已知椭圆x2y21( a b 0) 的长、短轴端点分别为A、B,此后椭圆上一点 M 向 x 轴作垂线,恰巧a2b2经过椭圆的左焦点F1,向量 AB 与 OM 是共线向量.(1)求椭圆的离心率e;( 2)设 Q 是椭圆上随意一点,F1、 F2分别是左、右焦点,求∠F1QF2的取值范围;19、已知中心在原点的双曲线 C 的右焦点为 (2,0),右极点为( 3,0)。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)
![高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)](https://img.taocdn.com/s3/m/9d678a2c0c22590103029d53.png)
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
高中数学双曲线习题及答案解析
![高中数学双曲线习题及答案解析](https://img.taocdn.com/s3/m/dc87ca2af02d2af90242a8956bec0975f465a4cf.png)
双曲线习题练习及答案解析1、已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 因为双曲线的一条渐近线方程为2y x =,则b a =.① 又因为椭圆221123x y +=与双曲线有公共焦点,双曲线的焦距26c =,即c =3,则a 2+b 2=c 2=9.②.由①②解得a =2,b =,则双曲线C 的方程为22145x y -=.故选:B.2已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-围成的三)A.B. C. D. 2【答案】D解:双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2b AB a =,所以12AOBA S AB x =⋅=AB ∴=,即2b a =b a =2c e a ===;故选:D3已知双曲线C 的中心为坐标原点,一条渐近线方程为2y x =,点()22,2P -在C 上,则C 的方程为A. 22124x y -=B. 221714x y -=C. 22142x y -=D. 221147y x -=【答案】B由于C 选项的中双曲线的渐近线方程为22y x =±,不符合题意,排除C 选项.将点()22,2P -代入A,B,D 三个选项,只有B 选项符合,故本题选B.4已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( )A .B .C .D .【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F ,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y =所以12PF F △面积121201||||2PF F SF F y =⋅=故选:C 5已知双曲线C :()22102y x m m m -=>+,则C 的离心率的取值范围为( )A .(B .()1,2C .)+∞D .()2,+∞【答案】C双曲线()22102y x m m m -=>+的离心率为e ===,因为0m >,所以e =>C的离心率的取值范围为)+∞.故选:C.6若双曲线2288ky x -=的焦距为6,则该双曲线的离心率为( )A.4B.32C. 3D.103因为2288ky x -=为双曲线,所以0k ≠,化为标准方程为:22181y x k -=. 由焦距为6可得:3c ==,解得:k =1.所以双曲线为22181y x -=.所以双曲线的离心率为4c e a ===.故选:A7已知1F ,2F 分别是双曲线22124y x -=的左,右焦点,若P 是双曲线左支上的点,且1248PF PF ⋅=.则12F PF △的面积为( ) A. 8B. 16C. 24D. 【答案】C 因为P 是双曲线左支上的点,所以2122PF PF a -==,22124100F F c ==. 在12F PF △中,()22221212121212121212cos 22cos F F PF PF PF PF F PF PF PF PF PF PF PF F PF=+-∠=-+-∠,即110049696cos F PF=+-∠,所以1cos 0F PF ∠=,12in 1s P F F =∠,故12F PF △的面积为121242PF PF ⋅=.故选:C .8已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F ,2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF = A.1B.9C.1或9D.3或93.B 由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点Р在双曲线C 的左支上,所以214PF PF -=,所以29PF =.故选B9如图,F 1,F 2分别是双曲线22221x y a b-=(a >0,b >0)的两个焦点,以坐标原点O为圆心,|OF 1|为半径的圆与该双曲线左支交于A ,B 两点,若△F 2AB 是等边三角形,则双曲线的离心率为( )B. 211【答案】D 连接1AF ,依题意知:21AF =,12122c F F AF ==,所以21121)a AF AF AF =-=1c e a ===. 10已知双曲线22214x y b-=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( ) A.83+ B.)41C.83+ D.)22【答案】A双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF =所以8)m =+,解得:m =1ABF ∆的周长为: 11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A11已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( ) A.B.C. D.【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y = 所以12PF F △面积121201||||2PF F S F F y =⋅=故选:C12双曲线22221x y a b-=与22221x y a b -=-的离心率分别为12,e e ,则必有( )A. 12e e =B. 121e e ⋅=C.12111e e += D. 2212111e e += 【答案】D13多选以已知双曲线的虚轴为实轴、实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,则以下说法,正确的有( ) A. 双曲线与它的共轭双曲线有相同的准线 B. 双曲线与它的共轭双曲线的焦距相等 C. 双曲线与它的共轭双曲线的离心率相等 D. 双曲线与它的共轭双曲线有相同的渐近线 【答案】BD由双曲线对称性不妨令双曲线C 的方程为:22221(0,0)x y a b a b-=>>,则其共轭双曲线C '的方程为22221y x b a-=,对于A ,双曲线C 的准线垂直于x 轴,双曲线C '的准线垂直于y 轴,A 不正确;对于B ,双曲线C 和双曲线C '的半焦距均为:c =,所以焦距相同,B 正确;对于C ,由B 选项知,双曲线C 的离心率为1ce a=,而双曲线C '的离心率为2c e b =,而a ,b 不一定等,C 不正确;对于D ,双曲线C 和双曲线C '的渐近线均为by x a=±,D 正确. 故选:BD13多选已知双曲线C :()222104x y b b-=>的离心率为72,1F ,2F 分别为C 的左右焦点,点P 在C 上,且26PF =,则( )A .7b =B .110PF =C .OP =D .122π3F PF ∠=【答案】BCD72=,可得b =A 不正确,而7c ==,因为27||6c PF =>=,所以点P 在C 的右支上,由双曲线的定义有:121||||||624PF PF PF a -=-==,解得1||10PF =,故选项B 正确,在12PF F △中,有2222221271076cos cos 02727OP OP POF POF OP OP +-+-∠+∠=+=⨯⨯⨯⨯,解得||OP =,22212106141cos 21062F PF +-∠==-⨯⨯,所以1223F PF π∠=,故选项C ,D 正确. 故选:BCD.多选若方程22151x y t t +=--所表示的曲线为C ,则下面四个命题中正确的是A .若1<t <5,则C 为椭图B .若t <1.则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <5 【答案】BD 14多选已知双曲线C 1:)0,0(12222>>=-b a b y a x 的实轴长是2,右焦点与抛物线C 2:y 2=8x 的焦点F 重合,双曲线C 1与抛物线C 2交于A 、B 两点,则下列结论正确的是 ( ▲ )A .双曲线C 1的离心率为2 3B .抛物线C 2的准线方程是x =-2 C .双曲线C 1的渐近线方程为y =±3x D. |AF |+|BF |=320 【答案】BC【解析】由题意可知对于C 1:()0012222>>=-b a by a x ,,实轴长为2a =2,即a =1,而C 2:y 2=8x 的焦点F 为(2,0),所以c =2,则双曲线C 1的方程为1322=-yx ,则对于选项A ,双曲线C 1的离心率为212==a c ,所以选项A 错误;对于选项B ,抛物线C 2的准线方程是x =-2,所以选项B 正确;对于选项C ,双曲线C 1的渐近线方程为y =±abx =±3x ,所以选项C 正确;对于选项D ,由y 2=8x 与1322=-y x 联立可得A (3,62),B (3,62-),所以由抛物线的定义可得 |AF |+|BF |=10433=++=++p x x B A ,所以选项D 错误,综上答案选BC.14多选12,F F 分别是双曲线2221(0)y x b b-=>的左右焦点,过2F 作x 轴的垂线与双曲线交于,A B 两点,若1ABF 为正三角形,则( )A.b = B.C. 双曲线的焦距为D.1ABF 的面积为【答案】ABD在正三角形1ABF 中,由双曲线的对称性知,12F F AB ⊥,12||2||AF AF =, 由双曲线定义有:12||||2AF AF -=,因此,1||4AF =,2||2AF =,12||F F ==即半焦距c =b =,A 正确;双曲线的离心率1ce ==B 正确;双曲线的焦距12F F =C 不正确;1ABF 的面积为21||4AF =D 正确.故选:ABD15多选已知双曲线C 的左、右焦点分别为1F 、2F ,过2F 的直线与双曲线的右支交于A 、B 两点,若122||||2||AF BF AF ==,则( )A. 11AF B F AB ∠=∠B. 双曲线的离心率e =C. 直线的AB 斜率为±D. 原点O 在以2F 为圆心,2AF 为半径的圆上 【答案】ABC 如图:设122||||2||2(0)AF BF AF m m ===>,则22||||||3AB AF BF m =+=,由双曲线的定义知,12||||22AF AF m m a -=-=,即2m a =;12||||2BF BF a -=, 即1||22BF m a -=,∴1||3||BF m AB ==,即有11AF B F AB ∠=∠,故选项A 正确;由余弦定理知,在1ABF 中,22222211111||||||4991cos 2||||2233AF BF AB m m m AF B AF BF m m +-+-∠===⋅⋅,在△12AF F 中,22222212121112||||||441cos cos 2||||223AF AF F F m m c F AB AF B AF AF m m +-+-∠===∠=⋅⋅, 化简整理得,222121144c m a ==,∴离心率ce a ==,故选项B 正确; 在△21AF F中,2222222211134443cos 224m m c m m c m AF F c m cm -+--∠===⋅⋅,21sin AF F ∠==,∴212121sin tan cos AF F AF F AF F ∠∠==∠ ∴根据双曲线的对称性可知,直线AB的斜率为±,故选项C 正确; 若原点O 在以2F 为圆心,2AF 为半径的圆上,则2c m a ==,与3c a =不符,故选项D 错误.故选:ABC .16多选已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F,一条渐近线过点(,则下列结论正确的是( )A. 双曲线CB. 双曲线C 与双曲线22124y x -=有相同的渐近线C. 若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D. 若直线2:a l x c=与渐近线围成的三角形面积为则焦距为【答案】BCD 渐近线的方程为by x a=±,因为一条渐近线过点(,故b a ⨯=a ===,故A 错误.又渐近线的方程为2y x =±,而双曲线22124y x -=的渐近线的方程为2y x =±, 故B 正确.若F 到渐近线的距离为2,则2b =,故a =C 的方程为22184x y -=,故C 正确. 直线2:a l x c =与渐近线的两个交点的坐标分别为:2,a ab c c ⎛⎫ ⎪⎝⎭及2,a ab cc ⎛⎫- ⎪⎝⎭,故2122a ab c c =⨯⨯⨯即23a b =,而a =,故b =,a =,所以23=,所以c =,故焦距为D 正确.故选:B CD.16多选已知点P 在双曲线221169x y -=上,1F ,2F 分别是左、右焦点,若12PF F △的面积为20,则下列判断正确的有( ) A. 点P 到x 轴的距离为203B. 12503PF PF += C. 12PF F △为钝角三角形 D. 123F PF π∠=【答案】BC由双曲线方程得4a =,3b =,则5c =,由△12PF F 的面积为20,得112||10||2022P P c y y ⨯⨯=⨯=,得||4P y =,即点P 到x 轴的距离为4,故A 错误, 将||4P y =代入双曲线方程得20||3P x =,根据对称性不妨设20(3P ,4),则213||3PF =, 由双曲线的定义知12||||28PF PF a -==,则11337||833PF =+=, 则12133750||||333PF PF +=+=,故B 正确,在△12PF F 中,113713||210||33PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则△12PF F 为钝角三角形,故C 正确, 2222121212121212121337641002||||||(||||)2||||10033cos 13372||||2||||233PF PF F F PF PF PF PF F PF PF PF PF PF -+⨯⨯+--+-∠===⨯⨯3618911121337133729⨯=-=-≠⨯⨯⨯,则123F PF π∠=错误,故正确的是BC ,故选16双曲线:C 2214x y -=的渐近线方程为__________,设双曲线1:C 22221(0,0)x y a b a b -=>>经过点(4,1),且与双曲线C 具有相同渐近线,则双曲线1C 的标准方程为__________.【答案】12y x =± 221123y x -=【解析】(1)双曲线:C 2214x y -=的焦点在y 轴上,且1,2a b ==,渐近线方程为ay x b=±, 故渐近线方程为12y x =±;(2)由双曲线1C 与双曲线C 具有相同渐近线,可设221:4y C x λ-=,代入(4,1)有224134λλ-=⇒=-,故212:34x C y -=-,化简得221123y x -=.17已知O 为坐标原点,抛物线C :()220y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则PF =______. 【答案】3抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0)2pQ +,(6,)PQ p =-,因为PQ OP ⊥,所以2602pPQ OP p ⋅=⨯-=, 0,3p p >∴=,所以PF =3故答案为△3.若双曲线1C :()2230y x λλ-=≠的右焦点与抛物线2C :28y x =的焦点重合,则实数λ=( ) A. 3±B.C. 3D. -3【答案】D双曲线1C 的右焦点与抛物线的焦点(2,0)重合,所以双曲线1C 方程化:()22103y x λλλ-=≠,再转化为:()22103x y λλλ-=<--,所以23a λ=-, 2b λ=-,所以222433c a b λλλ=+=--=-,所以c =2=平方得 3.λ=-故选:D.17设双曲线:的右焦点为,点,已知点在双曲线的左支上,若的周长的最小值是,则双曲线的标准方程是__________,此时,点的坐标为__________.【答案】【解析】如下图,设为双曲线的左焦点,连接,,则,,故的周长, 因为,所以的周长, 因为的周长的最小值是,,,所以,的方程为, 当的周长取最小值时,点在直线上,因为,,所以直线的方程为,联立,解得,或(舍去), 故的坐标为.故答案为:,.C 2221(0)y x b b-=>F ()0,Q b P CPQF △8C P 2214y x -=⎛⎫ ⎪ ⎪⎝⎭D C PD QD QD QF =2PFPD =+PQF△2l PQ PF QF PQ PD QD =++=+++PQ PD QD +≥=PQF△2l ≥PQF △82228,9c b +=+=22221cbab2b =c =C 2214y x -=PQF △P QD ()0,2Q ()D QD 25y x =+222514y x y x ⎧=+⎪⎪⎨⎪-=⎪⎩1x y ⎧=⎪⎨⎪=⎩4x y ⎧=⎪⎨=⎪⎩P 2⎛⎫- ⎪ ⎪⎝⎭2214y x -=,12⎛⎫- ⎪ ⎪⎝⎭18已知双曲线()221112211:10,0x y C a b a b -=>>与()222222222:10,0y x C a b a b -=>>有相同的渐近线,若1C 的离心率为2,则2C 的离心率为__________.双曲线()221112211:10,0x y C a b a b -=>>的渐近线方程为11b y x a =± ,()222222222:10,0y x C a b a b -=>>的渐近线方程为22a y x b =±,由题意可得1212b a a b =,由1C 的离心率为2得:22211121()b e a ==+ ,则222()3a b = , 所以设2C 的离心率为2e ,则22222141()133b e a =+=+=,故2=e ,故答案为:19知双曲线()222210,0x y a b a b-=>>,焦点()()()12,0,00F c F c c ->,,左顶点(),0A a -,若过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切,与双曲线在第一象限交于点P ,且2PF x ⊥轴,则直线的斜率是 _____, 双曲线的离心率是 _________. 【答案】如图,设圆22224a a x y ⎛⎫-+= ⎪⎝⎭的圆心为B ,则圆心坐标(,0)2a B ,半径为2a ,则32a AB =,设过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切于点C ,连接BC ,则2a BC =,所以AC ==,得tan aBC BAC AC ∠===;2PF x ⊥轴,由双曲线的通径可得,22b PF a=,又2AF a c =+,所以222tan PF AF b a BAC a c ∠===+,化简得24(40e -=,求解得e =.已知双曲线C :﹣y 2=1.(Ⅰ)求以C 的焦点为顶点、以C 的顶点为焦点的椭圆的标准方程; (Ⅱ)求与C 有公共的焦点,且过点(2,﹣)的双曲线的标准方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:(Ⅰ)双曲线C :﹣y 2=1的焦点为(±,0),顶点为(±2,0),设椭圆的标准方程为+=1(a >b >0),可得c =2,a =,b ==1,则椭圆的方程为+y 2=1;(Ⅱ)设所求双曲线的方程为﹣=1(m .n>0),由题意可得m 2+n 2=5,﹣=1,解得m =,n =,即所求双曲线的方程为﹣=1,则这条双曲线的实轴长为2、焦距为2、离心率为以及渐近线方程为y=±x .20已知双曲线C :﹣=1(a >0,b >0)与双曲线﹣=1有相同的渐近线,且经过点M (,﹣).(Ⅰ)求双曲线C 的方程;(Ⅱ)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.:(Ⅰ)∵双曲线C 与双曲线﹣=1有相同的渐近线,∴设双曲线的方程为(λ≠0),代入M (,﹣).得λ=,故双曲线的方程为:.(Ⅱ)由方程得a =1,b =,c =,故离心率e =. 其渐近线方程为y =±x ;实轴长为2, 焦点坐标F (,0),解得到渐近线的距离为:=.21已知双曲线C :22221(0,0)x y a b a b-=>>,点)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求AB .(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b =,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪=-⎪⎩得256270x x +-=,设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以5AB ==. 22已知双曲线()2222:10,0x y C a b a b -=>>与双曲线22162y x -=的渐近线相同,且经过点()2,3.(1)求双曲线C 的方程;(2)已知双曲线C 的左右焦点分别为12,F F ,直线l 经过2F ,倾斜角为3,4l π与双曲线C 交于,A B 两点,求1F AB 的面积.(1)设所求双曲线C 方程为2262y x λ-=,代入点()2,3得:223262λ-=,即12λ=-, 所以双曲线C 方程为221622y x -=-,即2213y x -=.(2)由(1)知:()()122,0,2,0F F -,即直线AB 的方程为()2y x =--.设()()1122,,,A x y B x y ,联立()22213y x y x ⎧=--⎪⎨-=⎪⎩得22470x x +-=,满足>0∆且122x x +=-,1272x x =-,由弦长公式得12||AB x x =-=6==,点()12,0F -到直线:20AB x y +-=的距离d ===所以111622F ABS AB d =⋅=⋅⋅=。
椭圆,双曲线,抛物线练习题及答案
![椭圆,双曲线,抛物线练习题及答案](https://img.taocdn.com/s3/m/01435d396d85ec3a87c24028915f804d2b1687f6.png)
椭圆,双曲线,抛物线练习题及答案1、已知椭圆方程为 $x^2/23+y^2/32=1$,则这个椭圆的焦距为() A.6 B.3 C.35 D.652、椭圆 $4x^2+2y^2=1$ 的焦点坐标是() A.(-2,0),(2,0) B.(0,-2),(0,2) C.(0,-1/2),(0,1/2) D.(-2/2,0),(2/2,0)3、$F_1$,$F_2$ 是定点,且 $FF_{12}=6$,动点$M$ 满足 $MF_1+MF_2=6$,则 $M$ 点的轨迹方程是()A.椭圆 B.直线 C.圆 D.线段4、已知方程$x^2+my^2=1$ 表示焦点在$y$ 轴上的椭圆,则 $m$ 的取值范围是() A.$m1$ D.$1<m<5$5、过点 $(3,-2)$ 且与椭圆 $4x^2+9y^2=36$ 有相同焦点的椭圆方程是()A.$x^2y^2/15+10=1$ B.$x^2y^2/152+102=1$ C.$x^2/10+y^2/15=1$ D.$x^2y^2/102+152=1$6、若直线 $y=mx+1$ 与椭圆 $x^2+4y^2=1$ 只有一个公共点,那么 $m^2$ 的值是()A.$1/2$ B.$3/4$ C.$2/3$ D.$4/5$7、已知椭圆 $C:x^2/9+y^2/2=1$,直线 $l:x/10+y=1$,点$P(2,-1)$,则() A.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相交B.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相交 C.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相离 D.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相离8、过椭圆 $C:x^2/a^2+y^2/b^2=1$ 的焦点引垂直于 $x$ 轴的弦,则弦长为() A。
$2b^2/a$ B。
$b^2/a$ C。
$b/a$ D。
$2b/a$9、抛物线 $x+2y^2=0$ 的准线方程是() A。
椭圆双曲线抛物线大题及答案
![椭圆双曲线抛物线大题及答案](https://img.taocdn.com/s3/m/0c453b60a4e9856a561252d380eb6294dd882290.png)
椭圆双曲线抛物线大题及答案近年来,越来越多的数学考试和竞赛中出现了椭圆、双曲线和抛物线的大题。
这些大题考查的是对于这些曲线的了解和掌握,以及运用其性质解决数学问题的能力。
下面,我们来一起探讨一下椭圆、双曲线和抛物线的大题及其答案。
一、椭圆的大题及答案椭圆的一般方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a>b>0$。
1.已知椭圆的焦点为$(\pm c,0)$,准线为$x=\pm a$,则椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
证明:由于椭圆的准线为$x=\pm a$,则$a$为椭圆的半长轴,$b=\sqrt{a^2-c^2}$为椭圆的半短轴。
又由于椭圆的焦点为$(\pmc,0)$,则$c=\sqrt{a^2-b^2}$为椭圆的焦距。
代入椭圆的一般方程,得到$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
2.已知椭圆的离心率为$\frac{1}{3}$,其中一个焦点为$(4,0)$,则椭圆的方程为$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
证明:由于椭圆的离心率为$\frac{1}{3}$,则椭圆的半长轴为$a=9$,焦距为$c=\frac{a}{3}=3$,半短轴为$b=\sqrt{a^2-c^2}=6$。
又由于一个焦点为$(4,0)$,则另一个焦点为$(-4,0)$。
代入椭圆的一般方程,得到$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
二、双曲线的大题及答案双曲线的一般方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>0$,$b>0$。
1.已知双曲线的离心率为2,其中一个焦点为$(5,0)$,则双曲线的方程为$\frac{(x-5)^2}{16}-\frac{y^2}{12}=1$。
双曲线、椭圆、圆专题训练与答案
![双曲线、椭圆、圆专题训练与答案](https://img.taocdn.com/s3/m/ee774f7067ec102de2bd8975.png)
圆锥曲线习题——双曲线1. 如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A)364 (B)362 (C)62 (D)322. 已知双曲线C ∶22221(x y a a b-=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是 (A )a(B)b(C)ab(D)22b a +3. 以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++=D .221090x y x +++=4. 以双曲线222x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.22430x y x +--= B.22430x y x +-+= C.22450x y x ++-=D.22450x y x +++=5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)6. 若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心率是( )(A )3 (B )5 (C )3 (D )57. 过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A 2B 35108. 已知双曲线)0(12222>=-b by x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则12PF PF ⋅=( )A. -12B. -2C. 0D. 4 二、填空题9. 过双曲线221916x y -=的右顶点为A ,右焦点为F 。
高中数学圆锥曲线系统讲解第8讲《椭圆、双曲线的角版焦半径、焦点弦公式》练习及答案
![高中数学圆锥曲线系统讲解第8讲《椭圆、双曲线的角版焦半径、焦点弦公式》练习及答案](https://img.taocdn.com/s3/m/95f838a8dbef5ef7ba0d4a7302768e9951e76e17.png)
第8讲 椭圆、双曲线的角版焦半径、焦点弦公式知识与方法1.椭圆()222210x y a b a b +=>>的一个焦点为F ,P 为椭圆上任意一点,设PFO α∠=,则椭圆的焦半径2cos b PF a c α=−,若延长PF 交椭圆于另一点Q ,则椭圆的焦点弦22222cos ab PQ a c α=−. 2.双曲线()222210,0x y a b a b −=>>的一个焦点为F ,P 为双曲线上任意一点,设PFO α∠=,则双曲线的焦半径2cos b PF c aα=±,若直线PF 交双曲线于另一点Q ,则双曲线的焦点弦22222cos ab PQ a c α=−.(焦半径公式中取“+”还是取“-”由P 和F 是否位于y 轴同侧决定,同正异负)典型例题【例1】已知椭圆22:142x y C +=的左焦点为F ,过F 且倾斜角为45°的直线l 交椭圆C 于A 、B 两点,则AB =______;若AF BF >,则:AF BF =______. 【解析】如图,设AFO α∠=,则45α=︒由焦点弦公式,2222222228cos 42cos 453ab AB a c α︒⨯⨯===−−⨯,由焦半径公式,22cos b AF a c α===−,23BF ==,所以:3:1AF BF =.【答案】83,3:1变式1 已知椭圆22:142x y C +=的左焦点为F ,过F 且斜率为2的直线l 交椭圆C 于A 、B 两点,则AB =______【解析】设直线l 的倾斜角为α,则tan 2α=,所以cos α=,由焦点弦公式,22222222220cos 942ab AB a c α⨯⨯===−−⨯⎝⎭. 【答案】209变式2 已知椭圆22:142x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若3AF =,则AB =______.【解析】设AFO α∠=,则由焦半径公式,23cos b AF a c α===−,解得:cos 3α=,由焦点弦公式,2222218cos 5ab AB a c α==−. 【答案】185变式3 已知椭圆22:142x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若AF BF AF BF λ+=⋅,则λ=________.【解析】设AFO α∠=,则BFO πα∠=−,由焦半径公式,2cos b AF a c α==−,()2cos b BF a c πα==−−,所以112AF BF +==,从而2AF BF AF BF +=⋅,即2λ=.【反思】一般地,设椭圆()2222:10x y C a b a b+=>>的一个焦点为F ,过F 的直线l 交椭圆C于A 、B 两点,则2112aAF BF b +=.变式4 已知椭圆222:14x y C b+=()02b <<的右焦点为F ,过F 且倾斜角为60°的直线l 交椭圆C 于A 、B 两点,若167AB =,则椭圆C 的离心率为________. 【解析】由焦点弦公式,()222222222216cos 744cos 60ab b AB a c b α⨯⨯===−−−⨯︒,解得:22b =,所以e =.变式5 已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 且斜率为1的直线l 交椭圆C 于A 、B 两点,若2AF 、AB 、2BF 成等差数列,则椭圆C 的离心率为______. 【解析】直线l 的斜率为1l ⇒的倾斜角45α=︒,由焦点弦公式,22222cos 45ab AB a c =−︒,2AF 、AB 、2BF 成等差数列222223AB AF BF AB AF BF AB ⇒=+⇒=++, 如图,由椭圆定义可得224AF BF AB a ++=, 所以34AB a =,故222264cos 45ab a a c =−︒, 化简得:22232b a c =−,所以2222332a c a c −=−,从而224a c =,故椭圆C 的离心率12c e a ==.【答案】12【例2】过双曲线22:142x y C −=的右焦点且斜率为的直线截该双曲线所得的弦长为【解析】k =⇒直线的倾斜角60α=︒,由焦点弦公式,222222222165cos 46cos 60ab AB a c α⨯⨯===−−︒. 【答案】165变式1 过双曲线22:142x y C −=的右焦点F 的直线l 与双曲线C 交于A 、B 两点,若8AB =,则直线l 的方程为_______.【解析】由题意,2a =,b =,c =)F,设直线AFO α∠=,则由焦点弦公式,22222248cos 23cos ab AB a c αα===−−,解得:25cos 6α=或12,若25cos 6α=,则21sin 6α=,所以21tan 5α=,从而直线l 的斜率tan 5k α==,故直线l 的方程为y x =−; 若21cos 2α=,则21sin 2α=,所以2tan 1α=,从而直线l 的斜率tan 1k α==±,故直线l 的方程为(y x =±;综上所述,直线l 的方程为5y x =或(y x =±【答案】5y x =±−或(y x =± 变式2 过双曲线22:142x y C −=的右焦点F 的直线l 与双曲线C 交于A 、B 两点,若23AF =,则BF =______.【解析】设AFO α∠=,因为23AF =,所以点A 必在双曲线右支上,由焦半径公式,22cos 3b AF c a α===+,解得:cos α=,所以sin α=,从而tan αC 的渐近线的斜率为2±,2>,所以点B 也在双曲线的右支上,如图, 由图可知,BFO AFO ππα∠=−∠=− 所以()22cos b BF c a πα==−+.【答案】2强化训练1.(★★)已知椭圆22:143x y C +=的左焦点为F ,过F 且倾斜角为60°的直线l 交椭圆C 于A 、B 两点,则AB =_______.【解析】由焦点弦公式,22222222316cos 51412ab AB a c α⨯⨯===−⎛⎫−⨯ ⎪⎝⎭. 【答案】1652.(★★)已知椭圆22:193x y C +=的左焦点为F ,过F 的直线l 交椭圆C 于A 、B 两点,若3AB =,则直线l 的方程为________.【解析】设直线l 的倾斜角为α,由焦点弦公式,2222222333cos 96cos ab AB a c αα⨯⨯===−−⨯,从而cos 2α=,所以45α=︒或135°,从而直线l 的斜率为1±,显然()F ,故直线l的方程为y x =+或y x =−.【答案】y x =+或y x =−−3.(★★★)已知椭圆22:142x y C +=的左、右焦点分别为1F 、2F ,过1F 且倾斜角为45°的直线l 交椭圆C 于A 、B 两点,则2ABF 的面积为________. 【解析】如图,由焦点弦公式,222228cos 3ab AB a c α==−, 所以21218sin 4523ABF SF F AB =⋅⋅︒=.【答案】834.(★★★)已知椭圆()2222:10x y C a b a b+=>>一个焦点为F ,过F 且斜率为1的直线l 交椭圆C 于A 、B 两点,若34AB a =,则椭圆C 的离心率为________.【解析】由题意,直线l 的倾斜角为45°,由焦点弦公式,22222cos 45ab AB a c =−︒,因为34AB a =,所以222264cos 45ab a a c =−︒,结合222b a c =−化简得:222a c =,故离心率2c e a ==.【答案】25.(★★★)已知F 是椭圆22:142x y C +=的左焦点,过F 且不与x 轴垂直的直线交椭圆于A 、B 两点,弦AB 的中垂线交x 轴于点M ,则AB FM=________.【解析】解法1:如图,由对称性,不妨设直线的倾斜角为锐角,A 在x 轴下方, 则22222442cos 2cos AB αα⨯⨯==−−,AF ==,所以21222cos FN AN AF AB AF α=−=−==−,从而cos FN FM α==AB FM=解法2(特值法):考虑AB y ⊥的情形,此时4AB =,M与原点重合,所以FM =AB FM=【答案】6.(★★★)如图,椭圆22:12x C y +=的左焦点为F ,过F 作两条互相垂直的直线分别与椭圆交于A 、B 和D 、E 四点,则四边形ADBE 的面积的取值范围是________.【解析】设AFO α=,不妨假设02πα≤≤,则2EFO πα∠=+,由焦点弦公式,AB =22cos 2DE α=−+ ⎪⎝⎭, 所以四边形ADBE 的面积()()2222114222cos 2sin 2cos 2sin S AB DE αααα=⋅=⨯⨯=−−−− 2222241642sin 2cos sin cos 8sin 2ααααα==−−++,显然20sin 21α≤≤,所以1629S ≤≤,即四边形ADBE 的面积的取值范围是16,29⎡⎤⎢⎥⎣⎦. 【答案】16,29⎡⎤⎢⎥⎣⎦7.(★★★)双曲线22:1C x y −=的右焦点为F ,过F 的直线l 与双曲线C 交于A 、B 两点,若4AB =,则直线l 的方程为________. 【解析】由题意,1a b ==,c =)F,设直线AFO α∠=,则由焦点弦公式,22222224cos 12cos ab AB a c αα===−−,解得:23cos 4α=或14, 若23cos 4α=,则21sin 4α=,所以21tan 3α=,从而直线l的斜率tan k α==, 故直线l的方程为y x =;若21cos 4α=,则23sin 4α=,所以2tan 3α=,从而直线l的斜率tan k α==故直线l的方程为y x =,综上所述,直线l的方程为y x =或3y x =±【答案】y x =−或3y x = 8.(★★★)双曲线22:163x y C −=的左、右焦点分别为1F 、2F ,过1F 的直线l 与双曲线C 交于A 、B 两点,若213AF AF =,则2BF =________.【解析】由题意,21213AF AF AF AF ⎧=⎪⎨−=⎪⎩,所以1AF =1AFO α∠=,则21cos b AF c a α==+,所以=,解得:cos α=,从而sin α==sin tan cos ααα==C的渐近线斜率为,因为<,所以点B 也在左支上,且1BFO πα∠=−, 故()22cos b BF c aπα===−+【答案】39.(★★★)双曲线22:13y C x −=的左焦点为F ,点P 在双曲线C 的右支上,且5PF =,则PFO 的面积为________.【解析】解法1:由题意,1a =,b =2c =,设PFO α∠=,由焦半径公式,23cos 2cos 1b PF c a αα==−−,又5PF =,所以352cos 1α=−,解得:4cos 5α=,所以3sin 5α=,如图,显然113sin 523225PFOS PF OF α=⋅⋅=⨯⨯⨯=. 解法2:由题意,1a =,2c =,离心率2e =,设()00,P x y ,由焦半径公式,0125PF x =+=,又5PF =,所以0125x +=,解得:02x =或3−,因为P 在右支上,所以02x =, 代入双曲线方程可求得03y =±,所以01123322PFOSOF y =⋅=⨯⨯±=. 解法3:如图,设双曲线C 的右焦点为1F ,由双曲线定义,12PF PF −=,又5PF =,所以13PF =, 易求得14FF =,所以22211PF FF PF +=,故11PF FF ⊥, 所以1111143622PFF SFF PF =⋅=⨯⨯=, 显然O 是1FF 的中点,所以1132PFOPFF SS ==.【答案】3。
椭圆、双曲线单元测试题 附答案解析Word. doc版
![椭圆、双曲线单元测试题 附答案解析Word. doc版](https://img.taocdn.com/s3/m/1c8363e7fab069dc5122010f.png)
附答案解析
第 1 页 共 1 页 椭圆、双曲线单元测试题
(时间:60分钟 满分100分)
一、选择题。
(每小题只有一个正确答案,每题6分共36分)
1.椭圆22
1259
x y +=的焦距为 ( ) A .5 B.3 C.4 D.8
2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )
A .221412x y -= B.221124x y -= C.221106x y -= D.22
1610x y -= 3.双曲线22
134
x y -=的两条准线间的距离等于 ( ) A
C. 185
D. 165 4.椭圆22
143
x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A .1 B.2 C.3 D.4
5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为 ( )
A .22149y x -= B.22194x y -= C.2213131100
225y x -= D.22
131********y x -= 6.设12,F F 是双曲线22
221x y a b
-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )
A
D
二.填空题。
(每小题6分,共24分)
7.椭圆22
11625
x y +=的准线方程为 。
8.双曲线2
214
x y -=的渐近线方程为 。
椭圆和双曲线练习题及答案解析
![椭圆和双曲线练习题及答案解析](https://img.taocdn.com/s3/m/037efab027d3240c8447efe5.png)
第二章圆锥曲线与方程一、选择题1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10解析:选D 根据椭圆的定义知,|PF 1|+|PF 2|=2a =2×5=10,故选D.2.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .23B .6C .43D .12解析:选C 由于△ABC 的周长与焦点有关,设另一焦点为F ,利用椭圆的定义,|BA |+|BF |=23,|CA |+|CF |=23,便可求得△ABC 的周长为4 3.3.命题甲:动点P 到两定点A ,B 的距离之和|PA |+|PB |=2a (a >0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选B 利用椭圆定义.若P 点轨迹是椭圆,则|PA |+|PB |=2a (a >0,常数),故甲是乙的必要条件. 反过来,若|PA |+|PB |=2a (a >0,常数)是不能推出P 点轨迹是椭圆的.这是因为:仅当2a >|AB |时,P 点轨迹才是椭圆;而当2a =|AB |时,P 点轨迹是线段AB ;当2a <|AB |时,P 点无轨迹,故甲不是乙的充分条件.综上,甲是乙的必要不充分条件.4.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .(3,+∞)B .(-∞,-2)C .(-∞,-2)∪(3,+∞)D .(-6,-2)∪(3,+∞)解析:选D 由a 2>a +6>0,得⎩⎪⎨⎪⎧a 2-a -6>0,a +6>0,所以⎩⎨⎧a <-2或a >3,a >-6,,所以a >3或-6<a <-2.5.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A.x 212+y 29=1B.x 212+y 29=1或x 29+y 212=1 C.x 29+y 212=1D.x 248+y 245=1或x 245+y 248=1 解析:选B 由已知2c =|F 1F 2|=23,得c = 3. 由2a =|PF 1|+|PF 2|=2|F 1F 2|=43,得a =2 3. ∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.6.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( ) A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:选D 由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 解析:选A 由椭圆的性质知,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a , 又∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3. 又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1.8.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( )A .a 2=25,b 2=16B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9解析:选D 因为椭圆x 225+y 216=1的长轴长为10,焦点在x 轴上,椭圆y 221+x 29=1的短轴长为6,所以a 2=25,b 2=9.9.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( )A.32B.22 C.13D.12解析:选D ∵AP ―→=2PB ―→,∴|AP ―→|=2|PB ―→|.又∵PO ∥BF ,∴|PA ||AB |=|AO ||AF |=23,即a a +c =23,∴e =c a =12.10.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13解析:选B 法一:将x =-c 代入椭圆方程可解得点P -c ,±b 2a ,故|PF 1|=b 2a ,又在Rt △F 1PF 2中∠F 1PF 2=60°,所以|PF 2|=2b 2a ,根据椭圆定义得3b 2a =2a ,从而可得e =c a =33.法二:设|F 1F 2|=2c ,则在Rt △F 1PF 2中,|PF 1|=233c ,|PF 2|=433c .所以|PF 1|+|PF 2|=23c =2a ,离心率e =c a =33.11.已知双曲线的a =5,c =7,则该双曲线的标准方程为( ) A.x 225-y 224=1B.y 225-x 224=1 C.x 225-y 224=1或y 225-x 224=1D.x 225-y 224=0或y 225-x 224=0 解析:选C 由于焦点所在轴不确定,∴有两种情况.又∵a =5,c =7,∴b 2=72-52=24. 12.已知m ,n ∈R ,则“m ·n <0”是“方程x 2m +y 2n =1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若方程x 2m +y 2n =1表示双曲线,则必有m ·n <0;当m ·n <0时,方程x 2m +y 2n =1表示双曲线.所以“m ·n <0”是“方程x 2m +y 2n=1表示双曲线”的充要条件.13.已知定点A ,B 且|AB |=4,动点P 满足|PA |-|PB |=3,则|PA |的最小值为( ) A.12B.32C.72D .5 解析:选C 如图所示,点P 是以A ,B 为焦点的双曲线的右支上的点,当P 在M 处时,|PA |最小,最小值为a +c =32+2=72.14.双曲线x 225-y 29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到焦点F 1的距离是12,则点P 到焦点F 2的距离是( )A .17B .7C .7或17D .2或22解析:选D 依题意及双曲线定义知,||PF 1|-|PF 2||=10,即12-|PF 2|=±10,∴|PF 2|=2或22,故选D. 15.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B.x 23-y 2=1C .y 2-x 23=1 D.x 22-y 22=1 解析:选A 由双曲线定义知,2a =(2+2)2+32-(2-2)2+32=5-3=2, ∴a =1.又c =2,∴b 2=c 2-a 2=4-1=3,因此所求双曲线的标准方程为x 2-y 23=1. 16.下列双曲线中离心率为62的是( ) A.x 22-y 24=1B.x 24-y 22=1C.x 24-y 26=1 D.x 24-y 210=1 解析:选B 由e =62得e 2=32,∴c 2a 2=32,则a 2+b 2a 2=32,∴b 2a 2=12,即a 2=2b 2.因此可知B 正确.17.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( ) A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8 D .y 2-x 2=4解析:选A 令y =0得,x =-4,∴等轴双曲线的一个焦点坐标为(-4,0),∴c =4,a 2=12c 2=12×16=8,故选A.18.(广东高考)若实数k 满足0<k <5 ,则曲线x 216-y 25-k =1与曲线 x 216-k -y 25=1的( )A .实半轴长相等 B. 虚半轴长相等C .离心率相等 D. 焦距相等解析:选D 由0<k <5易知两曲线均为双曲线,且焦点都在x 轴上,由于16+5-k =16-k +5,所以两曲线的焦距相等.19.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( )A .(-10,0)B .(-12,0)C .(-3,0)D .(-60,-12) 解析:选B 由题意知k <0,∴a 2=4,b 2=-k .∴e 2=a 2+b 2a 2=4-k 4=1-k4. 又e ∈(1,2),∴1<1-k4<4,∴-12<k <0.20.(天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1C.3x 225-3y 2100=1D.3x 2100-3y 225=1 解析:选A 由题意可知,双曲线的其中一条渐近线y =bax 与直线y =2x +10平行,所以b a =2且左焦点为(-5,0),所以a 2+b 2=c 2=25,解得a 2=5,b 2=20,故双曲线的方程为x 25-y 220=1.二、填空题21.椭圆x 2m +y 24=1的焦距是2,则m 的值是________.解析:当椭圆的焦点在x 轴上时,a 2=m ,b 2=4,c 2=m -4,又2c =2,∴c =1.∴m -4=1,m =5. 当椭圆的焦点在y 轴上时,a 2=4,b 2=m ,∴c 2=4-m =1,∴m =3. 答案:3或522.已知椭圆C 经过点A (2,3),且点F (2,0)为其右焦点,则椭圆C 的标准方程为____________. 解析:法一:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且可知左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的标准方程为x 216+y 212=1.法二:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),则⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4,解得b 2=12或b 2=-3(舍去),从而a 2=16.所以椭圆C 的标准方程为x 216+y 212=1.答案:x 216+y 212=123.椭圆的两焦点为F 1(-4,0),F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆的标准方程为__________.解析:如图,当P 在y 轴上时△PF 1F 2的面积最大,∴12×8b =12,∴b =3.又∵c =4,∴a 2=b 2+c 2=25.∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=124.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________________. 解析:椭圆9x 2+4y 2=36可化为x 24+y 29=1,因此可设待求椭圆为x 2m +y 2m +5=1.又b =25,故m =20,得x 220+y 225=1.答案:x 220+y 225=125.椭圆x 24+y 2m =1的离心率为12,则m =________.解析:当焦点在x 轴上时,4-m 2=12⇒m =3;当焦点在y 轴上时,m -4m =12⇒m =163.综上,m =3或m =163.答案:3或16326.已知椭圆的中心在原点,焦点在x 轴上,离心率为55, 且过P (-5,4),则椭圆的方程为__________. 解析:∵e =c a =55,∴c 2a 2=a 2-b 2a 2=15,∴5a 2-5b 2=a 2即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a 2=1(a >0),∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1.解得a 2=45.∴椭圆的方程为x 245+y 236=1.答案:x 245+y 236=127.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.解析:由点F (0,5)可知该双曲线y 2m -x 29=1的焦点落在y 轴上,所以m >0,且m +9=52,解得m =16.答案:1628.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是______________.设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125,故双曲线的标准方程为y 225-x 275=1.答案:y 225-x 275=129.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1―→·PF 2―→=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为________.解析:解析:由题意可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由PF 1―→·PF 2―→=0,得PF 1⊥PF 2.根据勾股定理得|PF 1|2+|PF 2|2=(2c )2,即|PF 1|2+|PF 2|2=20.根据双曲线定义有|PF 1|-|PF 2|=±2a .两边平方并代入|PF 1|·|PF 2|=2得20-2×2=4a 2,解得a 2=4,从而b 2=5-4=1,所以双曲线方程为x 24-y 2=1.答案:x 24-y 2=130.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是________.解析:由渐近线方程为y =±m 2x =±32x ,得m =3,所以c =7,又焦点在x 轴上,则焦点坐标为(±7,0). 答案:(±7,0)31.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M ,N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________.解析:由题意知,a +c =b 2a ,即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0,解得e =2或e =-1(舍去).答案:232.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x-5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝⎛⎭⎫175,-3215. 所以S △AFB =12|AF ||y B |=12(c -a )|y B |=12×(5-3)×3215=3215.答案:3215.三、解答题33.设F 1,F 到两焦点F 1,F 2的距离和等于4,写出椭圆C 的方程和焦点坐标.解:由点⎝⎛⎭⎫3,32在椭圆上,得(3)2a 2+⎝⎛⎭⎫322b 2=1,又2a =4,所以椭圆C 的方程为x 24+y 23=1,焦点坐标分别为(-1,0),(1,0).34.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2||F 1F 2=||PF 1+||PF 2. (1)求此椭圆的方程;(2)若点P 满足∠F 1PF 2=120°,求△PF 1F 2的面积. 解:(1)由已知得||F 1F 2=2,∴||PF 1+||PF 2=4=2a ,∴a =2.∴b 2=a 2-c 2=4-1=3,∴椭圆的标准方程为x 24+y 23=1.(2)在△PF 1F 2中,由余弦定理得||F 1F 22=||PF 12+||PF 22-2||PF 1||PF 2cos 120°,即4=()||PF 1+||PF 22-||PF 1||PF 2,∴4=(2a )2-||PF 1||PF 2=16-||PF 1||PF 2,∴||PF 1||PF 2=12,∴S △PF 1F 2=12||PF 1||PF 2sin 120°=12×12×32=3 3.35.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22,过点F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,求椭圆C 的标准方程.解:设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0).由e =22知c a =22,故c 2a 2=12,从而a 2-b 2a 2=12,b 2a 2=12.由△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,得a =4,∴b 2=8.故椭圆C 的标准方程为x 216+y 28=1.36.椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点是A (a,0),其上存在一点P ,使∠APO =90°,求椭圆离心率的取值范围.解:设P (x ,y ),由∠APO =90°知,点P 在以OA 为直径的圆上,圆的方程是:⎝⎛⎭⎫x -a 22+y 2=⎝⎛⎭⎫a22,所以y 2=ax -x 2.①又P 点在椭圆上,故x 2a 2+y 2b2=1.②把①代入②化简,得(a 2-b 2)x 2-a 3x +a 2b 2=0,即(x -a )[(a 2-b 2)x -ab 2]=0,∵x ≠a ,x ≠0,∴x =ab 2a 2-b 2,又0<x <a ,∴0<ab 2a 2-b 2<a ,即2b2<a 2. 由b 2=a 2-c 2,得a 2<2c 2,所以e >22. 又∵0<e <1,∴22<e <1.即椭圆离心率的取值范围是⎝⎛⎭⎫22,1. 37.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程.解:已知双曲线x 216-y 29=1.据c 2=a 2+b 2,得c 2=16+9=25,∴c =5.设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).依题意,c =5,∴b 2=c 2-a 2=25-a 2,故双曲线方程可写为x 2a 2-y 225-a 2=1.∵点P ⎝⎛⎭⎫-52,-6在双曲线上,∴⎝⎛⎭⎫-522a 2-(-6)225-a2=1.化简,得4a 4-129a 2+125=0, 解得a 2=1或a 2=1254.又当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去,故a 2=1,b 2=24. ∴所求双曲线的标准方程为x 2-y 224=1. 38.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C .(1)求线段AB 的长度; (2)求顶点C 的轨迹方程.解:(1)将椭圆方程化为标准形式为x 25+y 2=1.∴a 2=5,b 2=1,c 2=a 2-b 2=4,则A (-2,0),B (2,0),|AB |=4.(2)∵sin B -sin A =12sin C ,∴由正弦定理得|CA |-|CB |=12|AB |=2<|AB |=4,即动点C 到两定点A ,B 的距离之差为定值.∴动点C 的轨迹是双曲线的右支,并且c =2,a =1,∴所求的点C 的轨迹方程为x 2-y 23=1(x >1). 39.已知椭圆方程是x 210+y 25=1,双曲线E 的渐近线方程是3x +4y =0,若双曲线E 以椭圆的焦点为其顶点,求双曲线的方程.解:由已知,得椭圆的焦点坐标为(±5,0),顶点坐标为(±10,0)和(0,±5).因双曲线以椭圆的焦点为顶点,即双曲线过点(±5,0)时,可设所求的双曲线方程为9x 2-16y 2=k (k ≠0),将点的坐标代入得k =45,故所求方程是x 25-16y 245=1.40.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且a 2c =33.(1)求双曲线C 的方程;(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.解:(1)由题意得⎩⎨⎧a 2c =33,ca =3,解得⎩⎪⎨⎪⎧a =1,c = 3.所以b 2=c 2-a 2=2.所以双曲线C 的方程为x 2-y 22=1. (2)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0).由⎩⎪⎨⎪⎧x -y +m =0,x 2-y 22=1,得x 2-2mx -m 2-2=0(判别式Δ>0).所以x 0=x 1+x 22=m ,y 0=x 0+m =2m .因为点M (x 0,y 0)在圆x 2+y 2=5上,所以m 2+(2m )2=5.故m =±1.。
高二数学同步椭圆双曲线抛物线基础习题解析几何练习题
![高二数学同步椭圆双曲线抛物线基础习题解析几何练习题](https://img.taocdn.com/s3/m/56ba922689eb172dec63b777.png)
解析几何练习题(基础)一、选择题(本大题共10小题,共50.0分)1.直线y=k(x−2)+4与曲线y=1+√4−x2有两个不同的交点,则实数k的取值范围是()A. B. C. D. (0,512)2.若双曲线过点(3,√2),且渐近线方程为y=±13x,则该双曲线的方程是()A. y2−x29=1 B. y29−x2=1 C. x2−y29=1 D. x29−y2=13.方程sin(x+π3)=lgx的实数根个数为()A. 3个B. 5个C. 7个D. 9个4.已知P是椭圆x24+y2=1上的动点,则P点到直线l:x+y−2√5=0的距离的最小值为()A. √102B. √52C. √105D. √255.椭圆的焦距为8,且椭圆上的点到两个焦点距离之和为10,则该椭圆的标准方程是()A. x225+y29=1 B. y225+x29=1或x225+y29=1C. y225+x29=1 D. y225+x216=1或x216+y29=16.已知△ABC中,A、B的坐标分别为(0,2)和(0,−2),若三角形的周长为10,则顶点C的轨迹方程是()A. x29+y25=1(y≠0) B. x25+y29=1(x≠0)C. x236+y220=1(y≠0) D. x232+y236=1(x≠0)7.若双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线被圆(x−2)2+y2=4所截得的弦长为2,则C的离心率为()A. 2B. √3C. √2D. 2√338.将函数的图象向右平移14个周期后,所得图象对应的函数为()A. B. C.D.9. 函数f(x)=−3|x|+1的图象大致是( )A.B.C.D.10. 在下列区间中,函数f(x)=e x +4x −3的零点所在的区间为( )A. (−14,0)B. (0,14)C. (14,12)D. (12,34)二、填空题(本大题共3小题,共15.0分)11. 过点(−1,2)且在坐标轴上的截距相等的直线的一般式方程是________. 12. 过点M(1,1)作斜率为−12的直线与椭圆C :x 2a2+y 2b 2=1(a >b >0)相交于A ,B ,则直线AB 的方程 (1) ;若M 是线段AB 的中点,则椭圆C 的离心率为 (2) . 13. 已知三棱锥的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面平面SCB ,SA =AC ,SB =BC ,三棱锥的体积为9,则球O 的表面积为 .三、解答题(本大题共2小题,共24.0分) 14. 已知抛物线的标准方程是y 2=6x .(1)求它的焦点坐标和准线方程;(2)直线l 过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为A ,B ,求AB 的长度.15.已知命题p:“曲线C1:x2m2+y22m+8=1表示焦点在x轴上的椭圆”,命题q:“曲线C2:x2m−t +y2m−t−1=1表示双曲线”.(1)若命题p是真命题,求m的取值范围;(2)若p是q的必要不充分条件,求t的取值范围.答案和解析1.【答案】A本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,属于较综合的中档题.要求的实数k的取值范围即为直线l斜率的取值范围,由于曲线y=1+√4−x2表示以(0,1)为圆心,2为半径的半圆,在坐标系中画出相应的图形,直线l与半圆有两个不同的交点;当直线l与半圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值;当直线l过B点时,由A和B的坐标求出此时直线l的斜率,根据两种情况求出的斜率结合图象得出k的取值范围.【解答】解:∵y=1+√4−x2,即x2+(y−1)2=4(y≥1),表示以(0,1)为圆心,2为半径的圆的上半部分,直线l:y=k(x−2)+4恒过定点A(2,4),斜率为k,根据题意画出图形,如图所示:当直线l与半圆相切,C为切点时,圆心到直线l的距离d=r,即√k2+1=2,解得:k=512;当直线l过B(−2,1)点时,直线l的斜率为4−12−(−2)=34,则直线l与半圆有两个不同的交点时,实数k的范围为(512,34 ].故选A.2.【答案】A【解析】解:根据题意,设双曲线标准方程为:x29−y2=λ(λ≠0),∵双曲线过(3,√2),代入方程得λ=−1,∴双曲线方程:y 2−x 29=1.故选:A .设出双曲线方程,代入点的坐标转化求解即可.本题考查双曲线的简单性质以及双曲线方程的求法,是基本知识的考查,基础题.3.【答案】A【解析】解:解:方程sin(x +π3)=lgx 的实数解个数,即函数y =sin(x +π3)的图象与直线y =lgx 的交点个数, 如图所示:数形结合可得函数y =sin(x +π3)的图象与直线y =lgx 的交点个数为3个,故选:A .分别作出函数y =lgx 与y =sin(x +13π)的图象,根据图象求解.本题主要考查方程根的个数,利用函数与方程的关系转化为两个函数的交点个数是解决本题的关键.4.【答案】A本题考查直线与椭圆的位置关系、两平行直线间的距离等知识点,属于中档题. 设与直线x +y −2√5=0平行且与椭圆相切的直线方程是x +y +c =0,与椭圆方程联立并消元,由Δ=0可得c 的值,求出两条平行线的距离,即可求得椭圆x 24+y 2=1上的动点P 到直线l 距离的最小值. 【解答】解:设与直线x +y −2√5=0平行且与椭圆相切的直线方程是x +y +c =0,与椭圆方程联立{x 24+y 2=1x +y +c =0,消元可得5x 2+8cx +4c 2−4=0,则Δ=64c 2−20(4c 2−4)=0,可得c =±√5,故与直线x +y −2√5=0平行且与椭圆相切的直线方程是x +y ±√5=0,x+y+√5=0与x+y−2√5=0之间的距离为√5+2√5|√2=3√102,x+y−√5=0与x+y−2√5=0之间的距离为√5+2√5|√2=√102,∴椭圆x24+y2=1上的动点P到直线l距离的最小值是√102.故选A.5.【答案】B由题意求得c=4,a=5,b2=a2−c2=9,分类讨论即可求得椭圆的标准方程.【解答】解:由题意可知:焦距为2c=8,则c=4,2a=10,a=5,b2=a2−c2=9,∴当椭圆的焦点在x轴上时,椭圆的标准方程:x225+y29=1,当椭圆的焦点在y轴上时,椭圆的标准方程:y225+x29=1,故椭圆的标准方程为:x225+y29=1或y225+x29=1,故选B.6.【答案】B解:由题意,A、B的坐标分别为(0,2)和(0,−2),所以|AB|=4,又三角形△ABC的周长为10,∴|AC|+|BC|=10−4=6>|AB|,根据椭圆的定义知,顶点C的轨迹是以A、B为焦点的椭圆,但不包括在y轴上的两点,可知:椭圆中的c=2,a=3,所以b=√9−4=√5,故椭圆的方程为x25+y29=1(x≠0),所以顶点C的轨迹方程是x25+y29=1(x≠0),故选B.7.【答案】A本题考查双曲线的简单性质的应用,圆的方程的应用,直线和圆的位置关系,属于中档题.通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.【解答】解:双曲线C:x2a −y2b=1(a>0,b>0)的一条渐近线不妨设为:bx−ay=0,圆(x−2)2+y2=4的圆心(2,0),半径为2,由双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线被圆(x−2)2+y2=4所截得的弦长为2,可得圆心到bx−ay=0的距离为d=√22−12=√3=√a2+b2,及即b2=3a2,又c2=a2+b2=4a2,可得e2=4,即e=2.故选A.8.【答案】D本题考查三角函数的图象平移变换.求得函数的最小正周期,根据平移规律得到平移后的函数式为y=2sin[2(x−π4)+π6],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+π6)的周期为T=2π2=π,由题意函数y=2sin(2x+π6)的图象向右平移π4个单位,可得图象对应的函数为y=2sin[2(x−π4)+π6],即y=2sin(2x−π3).故选D.9.【答案】A本题考查函数的图象,其中根据函数的解析式分析出函数的性质及与坐标轴交点位置是解答的关键,属于基础题.根据已知可分析出函数的奇偶性,进而分析出函数图象的对称性,将x=0代入函数解析式,可判断函数图象与y轴交点的位置,利用排除法可得函数的图象.【解答】解:∵函数f(x)=−3|x|+1,∴f(−x)=−3|−x|+1=−3|x|+1=f(x),即函数为偶函数,其图象关于y轴对称,故排除B、D,当x =0时,f(0)=−30+1=0,即函数图象过原点,故排除C . 故选A .10.【答案】C本题主要考查函数零点存在性定理及函数的单调性,属于简单题.判断函数f(x)=e x +4x −3单调递增,然后利用零点存在性定理求解即可. 【解答】解:∵函数y =e x 和函数y =4x −3在R 上都单调递增, ∴函数f(x)=e x +4x −3在(−∞,+∞)上为增函数, 则f(x)最多一个零点, ∵f(14)=e 14+1−3<0,f(12)=√e +2−3=√e −1>0, ∴f(14)⋅f(12)<0,∴函数f(x)=e x +4x −3的零点所在的区间为(14,12). 故选C .11.【答案】2x +y =0或x +y −1=0本题考查用待定系数法求直线方程,属于基础题.当直线过原点时,设直线方程为y =kx ,代入点求得直线方程;当直线不过原点时,设直线的方程为x +y −c =0,把点(−1,2)代入直线的方程可得c 值,从而求得所求的直线方程,综合可得结论. 【解答】解:当直线过原点时,设直线方程为y =kx ,代入点(−1,2)可得k =−2, 故方程为 y =−2x ,即2x +y =0;当直线不过原点时,设直线的方程为x +y −c =0, 把点(−1,2)代入直线的方程可得c =1, 故直线方程是x +y −1=0,综上,所求的直线方程为2x +y =0,或x +y −1=0, 故答案为2x +y =0或x +y −1=0.12.【答案】x +2y −3=0√22【解析】解:由题意可知:直线的点斜式方程:y −1=−12(x −1), 整理得:x +2y −3=0, 解:设A(x 1,y 1),B(x 2,y 2),则x 12a 2+y 12b 2=1①,x 22a 2+y 22b 2=1②, ∵M 是线段AB 的中点, ∴x 1+x 22=1,y 1+y 22=1,由y 1−y 2x1−x 2=−12∵①②两式相减可得(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0,即2a 2+(−12)2b 2=0,整理得:a =√2b ,c =√a 2−b 2=b∴e =c a=2b=√22. 椭圆C 的离心率√22.故答案为:x +2y −3=0,√22.由直线的点斜式方程:y −1=−12(x −1),整理得:x +2y −3=0,由x 12a 2+y 12b 2=1①,x 22a 2+y 22b 2=1②,利用中点坐标公式及作差法,即可求得a 与b 的关系,则c =√a 2−b 2=b ,e =ca =√2b=√22. 本题考查椭圆的标准方程及简单几何性质,考查点差法的应用,直线的点斜式方程,考查计算能力,属于中档题.13.【答案】36π本题考查球的内接体,三棱锥的体积以及球的表面积的求法,考查空间想象能力以及计算能力,属于中档题.判断三棱锥的形状,利用几何体的体积,求解球的半径,然后求解球的表面积. 【解答】解:三棱锥S −ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径, 若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,可知三角形SBC与三角形SAC都是等腰直角三角形,O是斜边SC上的中点,∴AO⊥SC,BO⊥SC,设球的半径为r,三棱锥S−ABC的体积为9,可得13×12×2r×r×r=9,解得r=3,球O的表面积为:4πr2=36π.故答案为36π.14.【答案】解:(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,∴p2=32,∴焦点为F(32,0),准线方程:x=−32;(2)∵直线l过已知抛物线的焦点且倾斜角为45°,∴直线l过点F(32,0)且斜率为1,∴直线l的方程为y=x−32,代入抛物线y2=6x化简得x2−9x+94=0,设A(x1,y1),B(x2,y2),则x1+x2=9,所以|AB|=(x1+p2)+(x2+p2)=x1+x2+p=9+3=12.故所求的弦长为12.15.【答案】解:(1)若p为真:则{m2>2m+82m+8>0,解得−4<m<−2,或m>4,即的取值范围;(2)若q为真,则(m−t)(m−t−1)<0,即t<m<t+1,∵p是q的必要不充分条件,则{m|t<m<t+1}⫋{m|−4<m<−2,或m>4},即−4≤t<t+1≤−2或t≥4,解得−4≤t≤−3或t≥4.即实数的取值范围.第11页,共11页。
双曲线经典练习题总结(带答案)
![双曲线经典练习题总结(带答案)](https://img.taocdn.com/s3/m/a229da2f5e0e7cd184254b35eefdc8d376ee1421.png)
双曲线经典练习题总结(带答案)1.选择题1.以椭圆x^2/169 + y^2/64 = 1的顶点为顶点,离心率为2的双曲线方程为C,当顶点为(±4,0)时,a=4,c=8,b=√(a^2+c^2)=4√5,双曲线方程为x^2/16 - y^2/20 = 1;当顶点为(0,±3)时,a=3,c=6,b=√(a^2+c^2)=3√5,双曲线方程为y^2/9 - x^2/5 = 1,所以答案为C。
2.双曲线2x^2 - y^2 = 8化为标准形式为x^2/4 - y^2/8 = 1,所以实轴长为2a = 4,答案为C。
3.若a>1,则双曲线2x^2/a^2 - y^2 = 1的离心率的取值范围是C。
由双曲线方程得离心率e = √(a^2+1)/a,所以c^2 =a^2+b^2 = a^2(a^2+1)/(a^2-1),代入离心率公式得√(a^2+1)/a = 2,解得a = 2,所以答案为C。
4.已知双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为D。
由双曲线方程得离心率e = √(a^2+b^2)/a = 2,所以b^2 = 3a^2,又因为点(4,0)到渐近线的距离为c/a,所以c^2 = a^2+b^2 = 4a^2,代入双曲线方程得4x^2/a^2 - 2y^2/3a^2 = 1,化简得y^2 = 6x^2/5,所以渐近线方程为y = ±√(6/5)x,代入点(4,0)得距离为2√5,所以答案为D。
5.双曲线C:x^2/4 - y^2/16 = 1的右焦点坐标为F(6,0),一条渐近线的方程为y = x,设点P在第一象限,由于|PO| = |PF|,则点P的横坐标为4,纵坐标为3,所以△PFO的底边长为6,高为3,面积为9,所以答案为A。
6.若双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的一条渐近线被圆(x-2)^2 + y^2 = 4所截得的弦长为2,则b^2 = a^2-4,圆心为(2,0),半径为2,设截弦的两个交点为P和Q,则PQ = 2,所以PQ的中点M在圆上,即M为(5/2,±√(3)/2),所以PM = √(a^2-25/4)±√(3)/2,由于PM = PQ/2 = 1,所以(a^2-25/4)+(3/4) = 1,解得a = √(29)/2,所以答案为B。
椭圆、双曲线测试含答案
![椭圆、双曲线测试含答案](https://img.taocdn.com/s3/m/0825ea93690203d8ce2f0066f5335a8102d2668d.png)
椭圆、双曲线测试(含答案)一、单选题1.已知双曲线C 与椭圆E :221925x y +=有共同的焦点,它们的离心率之和为145,则双曲线 C 的标准方程为 A .221124x y -=B .221412x y -=C .221412y x -=D .221124y x -=【答案】C 【解析】 【分析】由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案. 【详解】由椭圆221925x y +=,得225a =,29b =, 则22216c a b =-=,∴双曲线与椭圆的焦点坐标为()10,4F -,()20,4F , ∴椭圆的离心率为45,则双曲线的离心率为144255-=. 设双曲线的实半轴长为m ,则42m=,得2m =, 则虚半轴长224223n -= ∴双曲线的方程是221412y x -=. 故选C . 【点睛】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题. 2.已知椭圆22143x y +=,F 是椭圆的左焦点,P 是椭圆上一点,若椭圆内一点A (1,1),则PA PF +的最小值为( ) A .3B 10C 152D 51【答案】A 【解析】【分析】由椭圆定义把PF 转化为P 到右焦点的距离,然后由平面上到两定点的距离之差最小的性质可得. 【详解】设椭圆的右焦点为2F (1,0),21AF =,22||||||4||4||||PA PF PA PF PA PF +=+-=+-, 又2||||PA PF -≤2||AF ,222||||||||AF PA PF AF --≤≤,当2P A F ,,三点共线时取等号,||||PA PF +的最小值为3(取最小值时P 是射线2F A 与椭圆的交点), 故选:A.3.“01t <<”是“曲线2211x y t t+=-表示椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】根据曲线表示椭圆,可求得t 的范围,根据充分、必要条件的定义,即可得答案. 【详解】因为曲线2211x y t t+=-为椭圆, 所以0101t t t t>⎧⎪->⎨⎪≠-⎩,解得01t <<且12t ≠,所以“01t <<”是“01t <<且12t ≠”的必要而不充分条件. 故选:B4.已知1F 、2F 是椭圆C :22221x ya b+=(0a b >>)的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥.若12PF F △的面积为9,则b =( )A .2B .3C .4D .5【答案】B 【解析】 【分析】根据12PF F △的面积以及该三角形为直角三角形可得1218PF PF ⋅=,22212||||4PF PF c +=,然后结合12||||2PF PF a +=,简单计算即可.【详解】依题意有12||||2PF PF a +=,所以2121222|||||2||4|PF PF PF PF a +⋅+=又12PF PF ⊥,1212192PF F S PF PF =⋅=△,所以1218PF PF ⋅=, 又22212||||4PF PF c +=,可得224364c a +=,即229a c -=,则3b =, 故选:B.5.如图,椭圆的中心在坐标原点,O 顶点分别是1212,,,A A B B ,焦点分别为12,F F ,延长12B F 与22A B 交于Р点,若12B PA ∠为钝角,则此椭圆的离心率的取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫⎪⎪⎝⎭【答案】D 【解析】 【分析】由题意,12B PA ∠就是22B A 与21F B 的夹角,所以22B A 与21F B 的夹角为钝角,从而有22210B A F B ⋅<,结合222b a c =-即可求椭圆离心率的取值范围.【详解】解:由题意,设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,则22(,)B A a b =-,21(,)F B c b =--,因为12B PA ∠就是22B A 与21F B 的夹角,所以22B A 与21F B 的夹角为钝角, 所以22210B A F B ⋅<,即20ac b -+<,又222b a c =-,所以220a ac c --<,两边同时除以2a ,得210e e --<,即210e e +->,解得e e >,又01e <<,1e <<,所以椭圆离心率的取值范围为⎫⎪⎪⎝⎭,故选:D . 二、填空题6.与双曲线221x y -=有相同的渐近线,且过点(1,2)的双曲线的标准方程为_________.【答案】22133y x -=【解析】 【分析】根据给定条件,设出所求双曲线的方程,利用待定系数法求解作答. 【详解】依题意,设双曲线方程为:22(0)x y λλ-=≠,于是得22123λ=-=-,则有223x y -=-,所以双曲线的标准方程为22133y x -=.故答案为:22133y x -=7.椭圆22110036x y +=上一点P 满足到左焦点1F 的距离为8,则12F PF ∆的面积是________.【答案】【解析】根据椭圆的定义再利用余弦定理求出12cos F PF ∠,最后由面积公式计算可得; 【详解】解:由椭圆的定义得12||||220PF PF a +==,18PF =,∴212PF =,22222212121212||||812161cos 281242PF PF F F F PF PF PF +-+-∠===-⨯⨯⋅,∴21n si F PF ∠==1218122PF F S =⨯⨯=△.故答案为:8.已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为________. 【答案】9 【解析】 【分析】根据椭圆的定义可得126MF MF +=,结合基本不等式即可求得12MF MF ⋅的最大值. 【详解】 ∴M 在椭圆C 上 ∴12236MF MF +=⨯=∴根据基本不等式可得126MF MF +=≥129MF MF ⋅≤,当且仅当123MF MF ==时取等号.故答案为:9.9.已知椭圆2214x y +=,过11,2P ⎛⎫ ⎪⎝⎭点作直线l 交椭圆C 于A ,B 两点,且点P 是AB的中点,则直线l 的方程是__________. 【答案】220x y +-= 【解析】 【分析】设1(A x ,1)y ,2(B x ,2)y ,利用“点差法”、线段中点坐标公式、斜率计算公式即可得出. 【详解】解:设1(A x ,1)y ,2(B x ,2)y ,则221144x y +=,222244x y +=,12121212((4)0)))((x x x x y y y y ∴+-++-=.1(1,)2P 恰为线段AB 的中点,即有122x x +=,121y y +=,1212()2()0x x y y ∴-+-=,∴直线AB 的斜率为121212y y k x x -==--, ∴直线AB 的方程为11(1)22y x -=--, 即220x y +-=.由于P 在椭圆内,故成立. 故答案为:220x y +-=. 三、解答题10.已知定点(1,0)F ,动点(,)(0)P x y x ≥到点F 的距离比它到y 轴的距离大1. (1)求动点P 的轨迹方程;(2)过(1,2)Q 的直线1l ,2l 分别与点P 的轨迹相交于点M ,N (均异于点Q ),记直线1l ,2l 的斜率分别为1k ,2k ,若120k k +=,求证:直线MN 的斜率为定值.【答案】(1)24y x =; (2)证明见解析. 【解析】 【分析】(1||1x =+,整理即可得轨迹方程.(2)根据题设令11(,)M x y 、22(,)N x y ,1l 为2(1)y k x -=-,2l 为2(1)y k x -=--,联立抛物线方程求,M N 的坐标,再应用两点式求MN k 即可证结论. (1)||1x =+,则22(||)y x x =+,又0x ≥, ∴24y x =,故动点P 的轨迹方程为24y x =. (2)由题设,令1l 为2(1)y k x -=-,2l 为2(1)y k x -=--,1l 联立抛物线,可得:22222(22)(2)0k x k k x k --++-=,若11(,)M x y ,22(,)N x y ,∴212()k x k -=,则142y k =-,同理可得222()k x k +=,则242y k=--,∴2121818MNy yk k x x k--===--,为定值.11.已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F且离心率为(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长.【答案】(1)2213x y +=;(2【解析】 【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=,1234x x ⋅=,∴||MN ==12.双曲线221124x y -=,1F 、2F 为其左右焦点,C 是以2F 为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足12F M MP =,求M 的轨迹方程. 【答案】(1)22(4)16x y -+= (2)22464()39x y -+=【解析】 【分析】(1)由双曲线的右焦点作为圆心,以半焦距为半径的圆,可以直接写出圆的标准方程即可.(2)求解轨迹方程求谁设谁,设(,)M x y ,00)(P x y ,用点M 的坐标表示点P 的坐标,带入方程即可得到答案. (1)由已知得212a =,24b=,故4c =,所以1(4,0)F -、2(4,0)F , 因为C 是以2F 为圆心且过原点的圆,故圆心为(4,0),半径为4, 所以C 的轨迹方程为22(4)16x y -+=; (2)设动点(,)M x y ,00)(P x y ,, 则1(4,)F M x y =+,00(,)MP x x y y =--,由12F M MP =,得(4x +,0)2(y x x =-,0)y y -, 即0042()2()x x x y y y +=-⎧⎨=-⎩,解得0034232x x y y +⎧=⎪⎪⎨⎪=⎪⎩,因为点P 在C 上,所以2200(4)16x y -+=, 代入得22343(4)()1622x y+-+=, 化简得22464()39x y -+=.13.已知双曲线2214x y -=,P 是双曲线上一点.(1)求证:点P 到双曲线两条渐近线的距离的乘积是一个定值.(2)已知点(3,0)A ,求PA 的最小值. 【答案】(1)证明见解析【解析】 【分析】(1)根据题意求得11(,)P x y 到两条渐近线的距离分别为1d =2d =得到22112154d d x y -⋅=,结合双曲线的定义,即可求解.(2)设P 的坐标为(,)x y ,求得2225124(3)()455PA x y x =-+=-+,结合2x ≥,即可求解. (1)证明:设11(,)P x y 是双曲线2214x y -=上的任意一点,则221144x y -=, 该双曲线的两条渐近线方程分别为20x y -=和20x y +=,点11(,)P x y 到两条渐近线的距离分别为1d =和2d =则2211124554y x d d -⋅===, 所以点P 到双曲线的两条渐近线的距离的乘积是一个常数. (2)解:设P 的坐标为(,)x y ,则()()22222251243314455x PA x y x x ⎛⎫=-+=-+-=-+ ⎪⎝⎭,因为2x ≥,所以当125x =时,2PA 的最小值为45,即PA。
椭圆、双曲线测试题(含答案)
![椭圆、双曲线测试题(含答案)](https://img.taocdn.com/s3/m/a1722585970590c69ec3d5bbfd0a79563c1ed4c9.png)
椭圆、双曲线测试题(含答案)章末综合测评(二):圆锥曲线与方程本次测评共分为一、二两大题,时间为120分钟,满分150分。
一、选择题1.椭圆 $x^2+my^2=1$ 的焦点在 $y$ 轴上,长轴长是短轴长的两倍,则 $m$ 的值是()A。
1.B。
2.C。
4.D。
11/4解析:由题意可得 $2=2\times2$,解得 $m=11/4$。
故选D。
2.下列双曲线中,渐近线方程为 $y=\pm2x$ 的是()A。
$x^2-4y=1$。
B。
$4x^2-y=1$。
C。
$x^2-2y=1$。
D。
$2x^2-y=1$解析:由渐近线方程为 $y=\pm2x$,可得 $2=\pm x$,所以双曲线的标准方程可以为 $x^2/4-y^2/1=1$ 或 $-x^2/4+y^2/1=1$,舍去 C。
故选 A。
3.若双曲线 $a^2-b^2=1$ 的一条渐近线经过点 $(3,-4)$,则此双曲线的离心率为()A。
$\sqrt{3}/5$。
B。
$4/3$。
C。
$\sqrt{5}/3$。
D。
$3/2\sqrt{2}$解析:由双曲线的渐近线过点 $(3,-4)$,知 $a=3$,又$b^2=c^2-a^2=16-9=7$,故$e=\sqrt{1+b^2/a^2}=\sqrt{16/9+7/9}=\sqrt{23}/3$,故选 D。
4.平面内有定点 $A$、$B$ 及动点 $P$,设命题甲是“$|PA|+|PB|$ 是定值”,命题乙是“点 $P$ 的轨迹是以 $A$、$B$ 为焦点的椭圆”,那么甲是乙的()A。
充分不必要条件。
B。
必要不充分条件。
C。
充要条件。
D。
既不充分也不必要条件解析:点 $P$ 在线段 $AB$ 上时,$|PA|+|PB|$ 是定值,但点 $P$ 的轨迹不一定是椭圆,反之成立,故选 B。
5.已知动圆 $E$ 与圆 $A$:$(x+4)^2+y^2=2$ 外切,与圆$B$:$(x-4)^2+y^2=2$ 内切,则动圆圆心 $E$ 的轨迹方程是()A。
椭圆、双曲线、抛物线习题(有答案)
![椭圆、双曲线、抛物线习题(有答案)](https://img.taocdn.com/s3/m/908ef4348e9951e79a892745.png)
1.双曲线222x y -=的焦距为( )A. 1B. 4C. 2D. 2.抛物线22y x =的焦点坐标是( )A. 102⎛⎫ ⎪⎝⎭,B. 102⎛⎫ ⎪⎝⎭,C. 108⎛⎫ ⎪⎝⎭,D 108⎛⎫ ⎪⎝⎭,. 3.椭圆22143x y +=的焦距为( ) A. 1 B. 2 C. 3 D. 44.双曲线2214x y -=的渐近线方程为( )A. 2xy =±B. 2y x =±C. 2y x =±D. y = 5.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠ C. 1m > D. 0m >6且过点()2,0的椭圆的标准方程是( ) A. 2214x y += B. 2214x y +=或2214y x += C. 2241x y += D.2214x y +=或221416x y +=7.若点(P m 为椭圆22:12516x y C +=上一点,则m =( ) A. 1± B. 12±C. 32±D. 52± 8.若坐标原点到抛物线2y mx = 的准线的距离为2 ,则m = ( ) A. 1+8 B. 1+4C. 4±D. 8±9.【2018届福建省福州市高三3月质量检测】已知双曲线 的两顶点间的距离为4,则的渐近线方程为( ) A.B.C.D.10.已知m 是2,8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A.32或52 B. 32 C. 5 D. 32或5 11.若圆22:2210M x y x y +-++=与x 轴的交点是抛物线2:2(0)C y px p =>的焦点,则p =( ) A. 1 B. 2 C. 4 D. 812.已知是椭圆:的左焦点,为上一点,,则的最大值为( )A.B. 9C.D. 1013.【2018届山东省泰安市高三上学期期末】若抛物线24x y =上的点A 到焦点的距离为10,则A 到x 轴的距离是_________.14.已知椭圆的两焦点坐标分别是()20-, 、()20, ,并且过点(233, ,则该椭圆的标准方程是__________.15.【2018届河北省武邑中学高三上学期期末】已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.【2018届北京市朝阳区高三第一学期期末】已知双曲线C 的中心在原点,对称轴为坐标轴,它的一个焦点与抛物线28y x =的焦点重合,一条渐近线方程为0x y +=,则双曲线C 的方程是________. 1.【答案】B【解析】双曲线的标准方程即: 22122x y -=,则:222222,4,2a b c a b c ==∴=+==, 双曲线的焦距为: 24c =. 本题选择B 选项. 2. 【答案】D【解析】转化为标准方程, 212x y =,所以焦点为10,8⎛⎫ ⎪⎝⎭.故选D.3.【答案】B【解析】在椭圆22143x y +=中, 224,3a b ==,所以21,1c c == ,故焦距22c =,选B.4.【答案】A【解析】Q 双曲线2214x y -=∴渐近线方程为2204x y -=,即2x y =±故选A . 5.【答案】C【解析】方程22121x y m m +=-表示椭圆的充要条件是0{210 21m m m m >->≠-,即12m >且1m ≠,所以方程22121x y m m +=-为椭圆方程的一个充分不必要条件是1m >,故选C.6.【答案】D【解析】当椭圆的焦点在x 轴上,设椭圆的方程为22221(0)x y a b a b +=>>,由离心率为3,∴222214b a c a =-=∵椭圆过点(2,0),∴2222201a b +=,∴a2=4,∴b2=1,∴椭圆标准方程为2214x y += 当椭圆的焦点在y 轴上,同理易得: 221416x y += 故选D.7.【答案】D【解析】由题意可得: (22312516m+=,则: 22125,2544m m ==,据此可得: 52m =±. 本题选择D 选项. 8. 【答案】A9.【答案】B【解析】由双曲线的方程可知:,即,∴,解得: 令,得到 故选:B.10.【答案】D【解析】由m 是2,8的等比中项得2264m m =⨯∴=±因此当4m =时,342,413,,c a c e a ===-===当4m =-时, 1,415,5,ca c e a ==+===所以离心率是3或5,选D.11.【答案】B【解析】圆M 的方程中,令0y =有: 2210,1x x x -+=∴=,据此可得抛物线的焦点坐标为()1,0, 则: 1,22pp =∴=. 本题选择B 选项.12.【答案】A【解析】连接P 点和另一个焦点即为E ,=. 故答案为:A.13.【答案】9【解析】根据抛物线方程可求得焦点坐标为()0,1,准线方程为1y =-∵抛物线24x y =上的点A 到焦点的距离为10 ∴点A 到x 轴的距离是1019-= 故答案为9.14.【答案】2211612x y +=15.【答案】2【解析】抛物线的准线为2p x =-,与圆相切,则342p+=, 2p =.16.【答案】22122x y -=【解析】抛物线28y x =的焦点坐标为20(,),所以双曲线C 的右焦点坐标为20(,),因为双曲线的一条渐近线方程为0x y +=,所以a b = ,所以224a a += ,所以22a = ,所以双曲线方程为22122x y -=.。
高中数学圆锥曲线系统讲解第13讲《椭圆、双曲线的两个斜率积结论》练习及答案
![高中数学圆锥曲线系统讲解第13讲《椭圆、双曲线的两个斜率积结论》练习及答案](https://img.taocdn.com/s3/m/390f9e64302b3169a45177232f60ddccdb38e644.png)
第13讲椭圆、双曲线的两个斜率积结论知识与方法1.椭圆的第三定义:如图1所示,设椭圆2222:1x yCa b+=()0a b>>的左、右顶点分别为A和B,点P为椭圆C上不与A、B重合的动点,则直线PA、PB的斜率之积22 21PA PB bk k ea⋅=−=−.推广:如图2所示,A、B为椭圆2222:1x yCa b+=()0a b>>上关于原点对称的任意两点,P为椭圆C上的动点且直线PA、PB的斜率均存在,则直线PA、PB的斜率之积22 21PA PB bk k ea⋅=−=−2.椭圆中点弦结论:如图3所示,设AB是椭圆2222:1x yCa b+=()0a b>>的任意一条不垂直于坐标轴且不过原点的弦,M为AB的中点,则直线OM与直线AB的斜率之积22 21OM AB bk k ea⋅=−=−.3.双曲线的第三定义:如图4所示,设A、B分别为双曲线2222:1x yCa b−=()0,0a b>>的左、右顶点,P为双曲线上不同于A、B的任意一点,则直线PA、PB的斜率之积22 21PA PB bk k ea⋅==−推广:如图5所示,设A、B为双曲线2222:1x yCa b−=()0,0a b>>上关于原点O对称的任意两点,P为双曲线C上的动点,且PA、PB的斜率都存在,则直线PA、PB的斜率之积2221PA PBbk k ea⋅==−4.双曲线中点弦结论:如图6所示,设AB是双曲线2222:1x yCa b−=()0,0a b>>的不垂直于坐标轴且不过原点的弦,M为AB中点,则直线OM与直线AB的斜率之积22 21OM AB bk k ea⋅==−.提醒:若是焦点在y 轴上的椭圆或双曲线,则上述四个斜率积的结果都要取倒数.典型例题【例1】设椭圆22:12x C y +=的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的任意一点,则直线PA 、PB 的斜率之积为______.【解析】由题意,()A,)B,设()00,P x y,0x ≠,则220012x y +=,所以22012x y =−,所以202022*******2PA PB x y k k x x −⋅====−−−.【答案】12−变式1 设椭圆2222:1x y C a b+=()0a b >>的左、右顶点分别为A 和B ,点P 为椭圆C 上一点且直线PA 、PB 的斜率之积为12−,则椭圆C 的离心率为______. 【解析】由题意,2112PA PB k k e ⋅=−=−,所以椭圆C的离心率2e =.变式2 设A 为椭圆2222:1x y C a b+=()0a b >>上第一象限的一点,B 与A 关于原点对称,点P 在椭圆C 上且直线PA 、PB 的斜率之积为12−,则椭圆C 的离心率为______. 【解析】由题意,可设()11,A x y ,则()11,B x y −−,且2211221x y a b +=,所以()222222111221x b y b x a a a ⎛⎫=−=−− ⎪⎝⎭,设()22,P x y ,则2222221x y a b +=,所以()222222222221x b y b x a a a ⎛⎫=−=−− ⎪⎝⎭,从而()()22222221222222121212222221212121PA PBb b x a x a a a y y y y y y b k k x x x x x x x x a ⎡⎤−−−−−⎢⎥−+−⎣⎦⋅=⋅===−−+−−, 由题意,2212b a −=−,所以222a b =,从而22222a ac =−,故椭圆C的离心率2c e a ==.【答案】2【反思】上面的求解过程其实就是椭圆第三定义推广结论的推导过程,熟悉了这一结论,小题中可直接根据21PA PB k k e ⋅=−求得离心率.变式3 椭圆22:12x C y +=的左、右顶点分别为A 和B ,点P 在C 上,设直线PA 、PB 的斜率分别为1k 、2k ,若112k ≤≤,则2k 的取值范围是______.【解析】由椭圆第三定义,1212k k =−,所以2112k k =−,111111*********k k k ≤≤⇒≤≤⇒−≤−≤−,故2k 的取值范围是11,24⎡⎤−−⎢⎥⎣⎦. 【答案】11,24⎡⎤−−⎢⎥⎣⎦【反思】看到椭圆左、右顶点与椭圆上另外一点的连线,想到椭圆第三定义的斜率积结论.变式4 已知椭圆2222:1x y C a b+=()0a b >>的左、右顶点分别为A 、B ,若椭圆C 上存在不与A 、B 重合的点P ,使得120APB =∠︒,则椭圆C 的离心率的取值范围是______.【解析】如图,不妨设P 在x 轴上方,120APB =∠︒,记PAB α∠=,PBA β∠=,则18060APB αβ+=︒−∠=︒,所以()tan tan tan 1tan tan αβαβαβ++==−从而)tan tan 1tan tan αβαβ+=−①,由椭圆第三定义,()2tan tan tan tan 1PA PB k k e απβαβ⋅=⋅−=−=−,所以2tan tan 1e αβ=−,代入①可得2tan tan αβ+=,显然α,β均为锐角, 所以tan 0α>,tan 0β>,2tan tan αβ=+≥= 当且仅当tan tan αβ=时取等号, 故42344e e ≥−,结合01e <<1e ≤<.【答案】⎫⎪⎪⎣⎭【例2】不与坐标轴垂直且不过原点O 的直线l 与椭圆22:12x C y +=相交于A 、B 两点,M为AB 的中点,则直线OM 与直线l 的斜率之积为______.【解析】设()11,A x y ,()22,B x y ,则221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得:2222121202x x y y −+−=,整理得:1212121212y y y y x x x x +−⋅=−+−,所以直线OM 与直线l 的斜率之积为12−.【答案】12−【反思】上面的求解过程是用点差法推导中点弦结论,熟悉结论之后,小题中可直接根据21OM AB k k e ⋅=−求得结果.变式1 直线l 与椭圆2222:1x y C a b+=()0a b >>相交于A 、B 两点,O 为原点,M 为AB 的中点,若直线OM 与直线l 的斜率之积为12−,则椭圆C 的离心率为______.【解析】由中点弦结论,2112OM AB k k e e ⋅=−=−⇒=.变式2 已知直线l 与椭圆22:12x C y +=相交于A 、B 两点,若AB 的中点为11,2M ⎛⎫⎪⎝⎭,则直线l 的方程为______.【解析】由中点弦结论,12OM AB k k ⋅=−,又AB 的中点为11,2M ⎛⎫ ⎪⎝⎭,所以12OM k =,故1AB k =−,显然M 在直线l 上,所以直线l 的方程为()112y x −=−−,化简得:2230x y +−= 【答案】2230x y +−=变式3 (2013·新课标Ⅰ卷)已知椭圆2222:1x y E a b+=()0a b >>的右焦点为()3,0F ,过点F 的直线交椭圆E 于A 、B 两点,若AB 的中点坐标为()1,1−,则E 的方程为( )A.2214536x y += B .2213627x y += C.2212718x y += D.221189x y += 【解析】如图,设AB 中点为M ,由中点弦结论,22AB OM b k k a⋅=−,由题意,1OM k =−,由图可知,()011312AB MF k k −−===−,所以()22112b a ⨯−=−,整理得:222a b =又椭圆E 的右焦点为()3,0F ,所以229a b −=, 故218a =,29b =,从而椭圆E 的方程为221189x y +=【答案】D【反思】看到椭圆的弦中点,联想到中点弦斜率积结论22AB OMb k k a⋅=−【例3】设P 是左、右顶点分别为A 、B 的双曲线221x y −=上的一点,若直线PA 的倾斜角为23π,则直线PB 的倾斜角为( ) A.6πB.34π C.56π D.1112π【解析】由题意,()1,0A −,()1,0B ,设()00,P x y ,则22001x y −=,所以22001y x =−,从而220000220000111111PA PBy y y x k k x x x x −⋅=⋅===+−−−, 直线PA的倾斜角为22tan 33PA k ππ⇒==所以13PB PA k k ==−,故直线PB 的倾斜角为56π. 【答案】C变式1 已知A 、B 、P 是双曲线22221x y a b−=()0,0a b >>上不同的三点,且A 、B 连线经过坐标原点,若直线PA 、PB 的斜率乘积为1,则该双曲线的离心率为______.【解析】由题意,可设()11,A x y ,()11,B x y −−,()22,P x y ,则2211221x y a b−=,所以()222222111221x b y b x a a a⎛⎫=−=− ⎪⎝⎭,同理,()2222222b y x a a =−,从而()()()22222222222212121222b b b y y x a x a x x a a a−=−−−=−,故222212121222212121PA PBy y y y y y b k k x x x x x x a −+−⋅=⋅==−+−,由题意,1PA PB k k ⋅=,所以221b a =,故b a =,不妨设1a b ==,则c =变式2 (2015·新课标Ⅱ卷)已知A 、B 是双曲线E 的左、右顶点,点M 在E 上,ABM为等腰三角形,且顶角为120°,则E 的离心率为( )B.2【解析】解法1:设双曲线2222:1x y E a b−=()0,0a b >>,如图,不妨设P 在第一象限,过M作MN x ⊥轴于N ,由题意,120ABM =∠︒,2AB BM a ==, 所以18060MBN ABM ∠=︒−∠=︒,从而cos60BN BM a =⋅︒=,sin 60AB BM =⋅︒=,故M 点的坐标为()2a ,代入双曲线方程得:())222221a ab−=,化简得:22a b =,所以222a c a =−,故离心率ce a==. 解法2:设双曲线2222:1x y E a b−=()0,0a b >>,由题意,120ABM =∠︒,30BAM BMA ∠=∠=︒,18060MBN ABM ∠=︒−∠=︒所以直线AM 和直线BM 的斜率分别为3和,由双曲线第三定义,211MA MB k k e ⋅===−,所以离心率e =【答案】D【例4】过点()1,2M 作斜率为12的直线与双曲线2222:1x y C a b−=()0,0a b >>相交于A 、B 两点,若M 点恰为弦AB 的中点,则双曲线C 的离心率为______.【解析】设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧−=⎪⎪⎨⎪−=⎪⎩,两式作差得:22221212220x x y y a b −−−=, 整理得:2121221212y y y y b x x x x a +−⋅=+−,即22122OM AB b k k a ⋅=⨯=,所以22a b =,从而222a c a =−,故ce a==.变式1 已知双曲线22:122x y C −=,过点()1,2M 的直线l 与双曲线C 交于A 、B 两点,若M恰好为AB 的中点,则直线l 的方程为______.【解析】设直线l 的斜率为k ,由中点弦结论,221OM b k k a⋅==,又点M 的坐标为()2,1,所以12OM k =,故2k =,显然直线l 过点M ,所以直线l 的方程为()122y x −=−,化简得:23y x =−【答案】23y x =−变式2 已知双曲线2222:1x y C a b−=()0,0a b >>的右焦点为()2,0F ,过点F 的直线交双曲线C 于A 、B 两点,若AB 中点为()1,3M −−,则双曲线C 的方程为______. 【解析】由中点弦结论,22303312OM ABb k k a−−⋅=⨯==−−,所以223b a =,又双曲线C 的右焦点为()2,0F ,所以224a b +=,从而21a =,23b =,故双曲线C 的方程为2213y x −= 【答案】2213y x −=强化训练1.(★★★)过点()1,1M −作斜率为13的直线与椭圆2222:1x y C a b+=()0a b >>相交于A 、B 两点,若M 是线段AB 的中点,则椭圆C 的离心率为______.【解析】用中点弦结论,21113AB OM k k e ⋅=−⨯=−,所以椭圆C的离心率e =.2.(★★★)已知椭圆22:162x y C +=的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B重合的一点,若直线PA 的斜率的取值范围是[]1,2,则直线PB 的斜率的取值范围是______.【解析】设PA 、PB 的斜率分别为1k 、2k ,由椭圆第三定义,1213k k =−,所以2113k k =−,由题意,112k ≤≤,所以11112k ≤≤,故1111336k −≤−≤−,即直线PB 的斜率的取值范围是11,36⎡⎤−−⎢⎥⎣⎦【答案】11,36⎡⎤−−⎢⎥⎣⎦3.(★★★)已知双曲线2222:1x y C a b−=()0,0a b >>的离心率为2,A 、B 为双曲线C 的左、右顶点,P 为C 上不与A 、B 重合的一点,若直线PA 的斜率的取值范围是[]2,3,则直线PB 的斜率的取值范围是______.【解析】设PA 、PB 的斜率分别为1k 、2k ,由双曲线第三定义,21213k k e =−=,所以213k k =, 由题意,123k ≤≤,所以13312k ≤≤,故直线PB 的斜率的取值范围是31,2⎡⎤⎢⎥⎣⎦【答案】31,2⎡⎤⎢⎥⎣⎦4.(★★★)设P 是左、右顶点分别为A 、B 的双曲线2213y x −=上的一点,若直线PA 的斜率为1−,则直线PB 的斜率为______.【解析】由题意,1PA k =−,由双曲线第三定义,223PA PB b k k a ⋅==,所以33PB PAk k ==−.【答案】3−5.(★★★)设椭圆2222:1x y C a b+=()0a b >>上的A 和B 两点关于原点对称,点P 为椭圆C上一点且直线PA 、PB 的斜率之积为14−,则椭圆C 的离心率为______. 【解析】由椭圆第三定义的推广结论,2114PA PB k k e ⋅=−=−,所以椭圆C的离心率e =.6.(★★★)直线l 与椭圆2222:1x y C a b +=()0a b >>相交于A 、B 两点,O 为原点,M 为AB的中点,若直线OM 与直线l 的斜率之积为13−,则椭圆C 的离心率为______.【解析】由中点弦结论,21133OM AB k k e e ⋅=−=−⇒=.7.(★★★)已知双曲线22:13x C y −=,过点()3,1M 的直线l 与双曲线C 交于A 、B 两点,若M 恰好为AB 的中点,则直线l 的方程为______.【解析】设直线l 的斜率为k ,由中点弦结论,2213OM b k k a ⋅==,又点M 的坐标为()3,1,所以13OM k =,故1k =,显然直线l 过点M ,所以直线l 的方程为13y x −=−,化简得:2y x =− 【答案】2y x =−8.(★★★★)已知椭圆2222:1x y C a b+=()0a b >>的左、右顶点分别为A 、B ,P 是椭圆C 上的动点,直线PA 、PB 的斜率分别为1k 、2k ,若12k k +的最小值为43,则椭圆C 的离心率为______.【解析】由椭圆第三定义,21210k k e =−<,所以12k k +≥==当且仅当12k k =时取等号,结合120k k <知此时12k k =−,P 为椭圆短轴端点,所以12k k +的最小值为43=,解得:3e =.【答案】39.(★★★★)已知椭圆2222:1x y C a b+=()0a b >>的左右顶点分别为A 和B ,直线l 过点B且与x 轴垂直,P 为椭圆C 上不与A 、B 重合的动点,直线PA 与直线l 交于点M ,且OM PB ⊥,则椭圆C 的离心率为______.【解析】如图,不妨设P 在x 轴上方,设直线PA 、PB 的斜率分别为1k 、2k , 由椭圆第三定义,2121k k e =−, 由图可知12tan 2tan 212OM MB MB MBk MOB MAB k OBAB AB =∠====∠=, 因为OM PB ⊥,所以21OM k k ⋅=−,从而1221k k =−,即()2211e −=−,解得:2e =.10.(★★★)已知椭圆2222:1x y E a b+=()0a b >>的右焦点为()3,0F ,过点F 的直线交椭圆E 于A 、B 两点,若AB 中点M 的坐标为12,2⎛⎫⎪⎝⎭,则椭圆E 的方程为______.【解析】易求得12OMk =,12AB MF k k ==−,由中点弦结论,22OM AB b k k a ⋅=−,所以2214b a −=−,故224a b =,又椭圆E 的右焦点为()3,0F ,所以229a b −=,从而212a =,23b =,故椭圆E 的方程为221123x y +=.【答案】221123x y += 11.(★★★★)如下图所示,1A 、2A 为椭圆22195x y +=的左右顶点,O 为坐标原点,S 、Q 、T 为椭圆上不同于1A 、2A 的三点,且1QA 、2QA 、OS 、OT 围成一个平行四边形OPQR ,则22OS OT +=( )A.5B.3C.9D.14【解析】解法1:125599QA QA OT OS k k k k ⋅=−⇒⋅=−,设直线OT 的斜率为k ,则OS 的斜率为59k −,联立225945y kx x y =⎧⎨+=⎩可求得224559x k =+,2224559k y k =+,所以()22245159k OT k +=+, 将k 替换成59k −整理可得:222812559k OS k +=+,从而()2222224518125145959k k OS OT k k +++=+=++.解法2(极限位置分析法):让点Q 无限接近1A ,此时S 无限接近1A ,T 无限接近椭圆的上顶点,所以22OS OT +无限接近9514+=,故选D. 【答案】D12.(★★★★)如下图所示,直线l 交双曲线2222:1x y C a b−=()0,0a b >>的右支于M 、N 两点,交x 轴于点P ,M 在第一象限,N 在第四象限,O 为原点,直线MO 交双曲线C 的左支于点Q ,连接QN ,若60MPO ∠=︒,30MNQ ∠=︒,则双曲线C 的离心率为______.【解析】如图,过点Q 作x 轴的平行线交MN 于点T ,由题意,又60MPO ∠=︒,所以60MTQ ∠=︒,又30MNQ ∠=︒,所以30TQN ∠=︒, 从而直线MN 和直线NQ的斜率分别为3−, 显然M 、Q 关于原点对称,由双曲线第三定义的推广,21MN NQ k k e ⋅=−,所以2113e ⎛−=−= ⎝⎭,故双曲线C的离心率e =13.(★★★★)如下图所示,1A 、2A 分别是椭圆22162x y +=的上、下顶点,点P 是椭圆上不与1A 、2A 重合的动点,点Q 满足11QA PA ⊥,22QA PA ⊥,则12PA A 与12QA A 的面积之比1212PA A QA A S S=_______.【解析】解法1:设直线1PA 的斜率为()0k k ≠,由椭圆第三定义的推广结论,1213PA PA k k ⋅=−,所以213PA k k =−,因为11QA PA ⊥,22QA PA ⊥,所以11QA k k=−,23QA k k =,显然(1A,(20,A ,所以直线1AQ的方程为1y x k=−+,直线2A Q的方程为3y kx =, 联立直线1AQ 和2A Q的方程可解得:231x k =+,所以点Q的横坐标231Qx k =+, 直线1PA的方程为y kx =22162x y +=消去y 整理得:()22310k x ++=,解得:0x =或,所以点P的横坐标px =,由图可知12123PA A P QA A QSx Sx ===.解法2(特值法):不妨取P 为椭圆右顶点,此时P、Q 的位置如图所示,易求得1OA =OP =11tan OP OA P OA∠=,从而160OA P ∠=︒,结合11QA PA ⊥可得130OAQ ∠=︒,故11tan 3OQ OA OAQ =⋅∠=,所以12123PA A QA A S OP SOQ==【答案】314.(★★★★)已知双曲线2222:1x y C a b −=()0,0a b >>的左、右顶点分别为A 、B ,圆()222:2D x y a a +−=与双曲线C 在第一象限的交点为P ,记直线PA 、PB 的斜率分别为1k 、2k ,若212k k −=,则双曲线C 的离心率为______.【解析】如图,记PAB α∠=,PBA β∠=,则1tan k α=,()2tan tan k πββ=−=−, 由题意,(),0A a −,(),0B a ,()0,D a ,所以ABD 是以D 为直角顶点的等腰直角三角形, 容易验证A 、B 两点都在圆D 上,所以124APB ADB π∠=∠=,从而tan 1APB ∠=,另一方面,()()tan tan tan tan tan 1tan tan APB αβπαβαβαβ+∠=−−=−+=−−,所以tan tan 11tan tan αβαβ+−=−①由双曲线第三定义,2121k k e =−,所以()2tan tan 1e αβ⋅−=−,从而2tan tan 1e αβ=−,又212k k −=,所以tan tan 2βα−−=,故tan tan 2βα+=−,代入式①可得()22111e −−=−−,解得:e =15.(★★★★)已知斜率为13−的直线l 与椭圆22197x y +=相交于不同的两点A 、B ,M 为y 轴上一点,且MA MB =,则点M 的纵坐标的取值范围是______.【解析】如图,设AB 中点为()00,N x y ,由中点弦结论,001739y x −⋅=−,所以0073y x =①,因为N 为AB 中点,所以点N 在椭圆内部,从而2200197x y +<将式①代入可解得:0x < 因为M 在y 轴上,且MA MB =,所以点M 是AB 的中垂线与y 轴的交点, 易求得AB 的中垂线的方程为()003y y x x −=− 即0033y x y x =+−,从而点M 的纵坐标003M y y x =−,将式①代入可得023M y x =−,因为044x −<<,所以22M y −<<.【答案】22⎛⎫⎪ ⎪⎝⎭。
椭圆及双曲线练习题(含详解)
![椭圆及双曲线练习题(含详解)](https://img.taocdn.com/s3/m/acc7200076c66137ee061946.png)
椭圆练习题一、选择题1.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( D ) A .x -2y =0 B .x +2y -4=0 C .2x +3y +4=0 D .x +2y -8=02.(2014²福州高二检测)椭圆+=1上一点A 到焦点F 的距离为2,B 为AF 的中点,O 为坐标原点,则|OB |的值为( B )A.8B.4C.2D. 3.已知椭圆+y 2=1的焦点为F 1,F 2,点M 在该椭圆上,且²=0,则点M 到x 轴的距离为( C ) A. B. C. D. 4.(2014²衡水高二检测)如果AB 是椭圆+=1的任意一条与x 轴不垂直的弦,O 为椭圆的中心,e 为椭圆的离心率,M 为AB 的中点,则k AB ²k OM 的值为( C )A.e-1B.1-eC.e 2-1D.1-e 25.若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为( )A.2B.3C.6D.8二、填空题 6.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=__________,∠F 1PF 2的大小为________.答案:2 120°7.(2011²浙江高考)设F 1,F 2分别为椭圆x 23+y 2=1的左,右焦点,点A ,B 在椭圆上,若F 1A →=5F 2B →,则点A 的坐标是________.答案:(0,±1)8.(2010·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.求椭圆的方程________.答案:x 24+y 2=1. 三、解答题9.设F 1,F 2分别是椭圆E:x 2+=1(0<b<1)的左、右焦点,过F 1的直线l 与E 相交于A,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列.(1)求|AB|.(2)若直线l 的斜率为1,求b 的值.双曲线练习题一、选择题1.已知双曲线x 26-y 23=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( C )A.365B.566C.65D.562.(2013·岳阳质检)等轴双曲线的一个焦点是F 1(-6,0),则其标准方程为( D ) A.x 29-y 29=1 B.y 29-x 29=1 C.y 218-x 218=1 D.x 218-y 218=1 3.(2012·高考湖南卷)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( A )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 4.以双曲线x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( D ) A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 5.(2010²新课标全国卷)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( B )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 6.(2011²课标全国高考)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( B ) A. 2 B. 3 C .2 D .37.过椭圆x 24+y 22=1的右焦点作x 轴的垂线交椭圆于A 、B 两点,已知双曲线的焦点在x 轴上,对称中心在坐标原点且两条渐近线分别过A 、B 两点,则双曲线的离心率e 为( C )A.12B.22C.62D.328.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,则双曲线x 2a 2-y 2b2=1的渐近线方程为( A ) A .y =±22x B .y =±2x C .y =±2x D .y =±12x 9.焦点为(0,6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( B ) A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=1 10.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( C )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形二、填空题 11.已知F 是双曲线的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF|+|PA|的最小值为__________. 12.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.答案:x 29-y 2=1 13.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于__________.答案:4814.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 以直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.答案:2三、解答题15.经过点M (2,2)作直线l 交双曲线x 2-y 24=1于A ,B 两点,且M 为AB 中点. (1)求直线l 的方程;(2)求线段AB 的长.16. 已知曲线C x 2-y 2=1及直线l :y=kx-1.(1)若l 与C 左支交于两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A 、B 两点,O 是坐标原点,且△AOB 的面积为 ,求实数k 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 圆锥曲线与方程一、选择题1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10 解析:选D 根据椭圆的定义知,|PF 1|+|PF 2|=2a =2×5=10,故选D.2.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:选C 由于△ABC 的周长与焦点有关,设另一焦点为F ,利用椭圆的定义,|BA |+|BF |=23,|CA |+|CF |=23,便可求得△ABC 的周长为4 3.3.命题甲:动点P 到两定点A ,B 的距离之和|PA |+|PB |=2a (a >0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 解析:选B 利用椭圆定义.若P 点轨迹是椭圆,则|PA |+|PB |=2a (a >0,常数),故甲是乙的必要条件. 反过来,若|PA |+|PB |=2a (a >0,常数)是不能推出P 点轨迹是椭圆的.这是因为:仅当2a >|AB |时,P 点轨迹才是椭圆;而当2a =|AB |时,P 点轨迹是线段AB ;当2a <|AB |时,P 点无轨迹,故甲不是乙的充分条件.综上,甲是乙的必要不充分条件.4.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .(3,+∞)B .(-∞,-2)C .(-∞,-2)∪(3,+∞)D .(-6,-2)∪(3,+∞)解析:选D 由a 2>a +6>0,得⎩⎪⎨⎪⎧a 2-a -6>0,a +6>0,所以⎩⎨⎧a <-2或a >3,a >-6,,所以a >3或-6<a <-2. 5.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A.x 212+y 29=1B.x 212+y 29=1或x 29+y 212=1 C.x 29+y 212=1 D.x 248+y 245=1或x 245+y 248=1 解析:选B 由已知2c =|F 1F 2|=23,得c = 3. 由2a =|PF 1|+|PF 2|=2|F 1F 2|=43,得 a =2 3. ∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.6.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( ) A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69) 解析:选D 由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 解析:选A 由椭圆的性质知,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a , 又∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3. 又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1.8.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( )A .a 2=25,b 2=16B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9解析:选D 因为椭圆x 225+y 216=1的长轴长为10,焦点在x 轴上,椭圆y 221+x 29=1的短轴长为6,所以a 2=25,b 2=9.9.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( )A.32B.22 C.13 D.12解析:选D ∵AP ―→=2PB ―→,∴|AP ―→|=2|PB ―→|.又∵PO ∥BF ,∴|PA ||AB |=|AO ||AF |=23,即a a +c =23,∴e =c a =12.10.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22 B.33 C.12 D.13解析:选B 法一:将x =-c 代入椭圆方程可解得点P -c ,±b 2a ,故|PF 1|=b 2a,又在Rt △F 1PF 2中∠F 1PF 2=60°,所以|PF 2|=2b 2a ,根据椭圆定义得3b 2a =2a ,从而可得e =c a =33.法二:设|F 1F 2|=2c ,则在Rt △F 1PF 2中,|PF 1|=233c ,|PF 2|=433c .所以|PF 1|+|PF 2|=23c =2a ,离心率e =c a =33.11.已知双曲线的a =5,c =7,则该双曲线的标准方程为( )A.x 225-y 224=1B.y 225-x 224=1 C.x 225-y 224=1或y 225-x 224=1 D.x 225-y 224=0或y 225-x 224=0 解析:选C 由于焦点所在轴不确定,∴有两种情况.又∵a =5,c =7,∴b 2=72-52=24. 12.已知m ,n ∈R ,则“m ·n <0”是“方程x 2m +y 2n =1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若方程x 2m +y 2n =1表示双曲线,则必有m ·n <0;当m ·n <0时,方程x 2m +y 2n =1表示双曲线.所以“m ·n <0”是“方程x 2m +y 2n=1表示双曲线”的充要条件.13.已知定点A ,B 且|AB |=4,动点P 满足|PA |-|PB |=3,则|PA |的最小值为( ) A.12 B.32 C.72D .5解析:选C 如图所示,点P 是以A ,B 为焦点的双曲线的右支上的点,当P 在M 处时,|PA |最小,最小值为a +c =32+2=72.14.双曲线x 225-y 29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到焦点F 1的距离是12,则点P 到焦点F 2的距离是( )A .17B .7C .7或17D .2或22解析:选D 依题意及双曲线定义知,||PF 1|-|PF 2||=10,即12-|PF 2|=±10,∴|PF 2|=2或22,故选D. 15.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B.x 23-y 2=1 C .y 2-x 23=1 D.x 22-y 22=1解析:选A 由双曲线定义知,2a =(2+2)2+32-(2-2)2+32=5-3=2, ∴a =1.又c =2,∴b 2=c 2-a 2=4-1=3,因此所求双曲线的标准方程为x 2-y 23=1. 16.下列双曲线中离心率为62的是( ) A.x 22-y 24=1 B.x 24-y 22=1 C.x 24-y 26=1 D.x 24-y 210=1解析:选B 由e =62得e 2=32,∴c 2a 2=32,则a 2+b 2a 2=32,∴b 2a 2=12,即a 2=2b 2.因此可知B 正确.17.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +12=0上的等轴双曲线方程是( ) A .x 2-y 2=8 B .x 2-y 2=4 C .y 2-x 2=8D .y 2-x 2=4解析:选A 令y =0得,x =-4,∴等轴双曲线的一个焦点坐标为(-4,0), ∴c =4,a 2=12c 2=12×16=8,故选A.18.(广东高考)若实数k 满足0<k <5 ,则曲线x 216-y 25-k =1与曲线 x 216-k -y 25=1的( )A .实半轴长相等 B. 虚半轴长相等 C .离心率相等 D. 焦距相等解析:选D 由0<k <5易知两曲线均为双曲线,且焦点都在x 轴上,由于16+5-k =16-k +5,所以两曲线的焦距相等.19.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( )A .(-10,0)B .(-12,0)C .(-3,0)D .(-60,-12) 解析:选B 由题意知k <0,∴a 2=4,b 2=-k .∴e 2=a 2+b 2a 2=4-k 4=1-k4.又e ∈(1,2),∴1<1-k4<4,∴-12<k <0.20.(天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1C.3x 225-3y 2100=1D.3x 2100-3y 225=1 解析:选A 由题意可知,双曲线的其中一条渐近线y =bax 与直线y =2x +10平行,所以b a =2且左焦点为(-5,0),所以a 2+b 2=c 2=25,解得a 2=5,b 2=20,故双曲线的方程为x 25-y 220=1.二、填空题21.椭圆x 2m +y 24=1的焦距是2,则m 的值是________.解析:当椭圆的焦点在x 轴上时,a 2=m ,b 2=4,c 2=m -4,又2c =2,∴c =1.∴m -4=1,m =5. 当椭圆的焦点在y 轴上时,a 2=4,b 2=m ,∴c 2=4-m =1,∴m =3. 答案:3或522.已知椭圆C 经过点A (2,3),且点F (2,0)为其右焦点,则椭圆C 的标准方程为____________. 解析:法一:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且可知左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的标准方程为x 216+y 212=1.法二:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),则⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4,解得b 2=12或b 2=-3(舍去),从而a 2=16.所以椭圆C 的标准方程为x 216+y 212=1.答案:x 216+y 212=123.椭圆的两焦点为F 1(-4,0),F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆的标准方程为__________.解析:如图,当P 在y 轴上时△PF 1F 2的面积最大,∴12×8b =12,∴b =3.又∵c =4,∴a 2=b 2+c 2=25.∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=124.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________________. 解析:椭圆9x 2+4y 2=36可化为x 24+y 29=1,因此可设待求椭圆为x 2m +y 2m +5=1.又b =25,故m =20,得x 220+y 225=1.答案:x 220+y 225=125.椭圆x 24+y 2m =1的离心率为12,则m =________.解析:当焦点在x 轴上时,4-m 2=12⇒m =3;当焦点在y 轴上时,m -4m =12⇒m =163.综上,m =3或m =163.答案:3或16326.已知椭圆的中心在原点,焦点在x 轴上,离心率为55, 且过P (-5,4),则椭圆的方程为__________. 解析:∵e =c a =55,∴c 2a 2=a 2-b 2a 2=15,∴5a 2-5b 2=a 2即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a 2=1(a >0),∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1.解得a 2=45.∴椭圆的方程为x 245+y 236=1.答案:x 245+y 236=127.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.解析:由点F (0,5)可知该双曲线y 2m -x 29=1的焦点落在y 轴上,所以m >0,且m +9=52,解得m =16.答案:1628.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是______________.设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125,故双曲线的标准方程为y 225-x 275=1.答案:y 225-x 275=129.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1―→·PF 2―→=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为________.解析:解析:由题意可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由PF 1―→·PF 2―→=0,得PF 1⊥PF 2.根据勾股定理得|PF 1|2+|PF 2|2=(2c )2,即|PF 1|2+|PF 2|2=20.根据双曲线定义有|PF 1|-|PF 2|=±2a .两边平方并代入|PF 1|·|PF 2|=2得20-2×2=4a 2,解得a 2=4,从而b 2=5-4=1,所以双曲线方程为x 24-y 2=1.答案:x 24-y 2=130.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是________.解析:由渐近线方程为y =±m 2x =±32x ,得m =3,所以c =7,又焦点在x 轴上,则焦点坐标为(±7,0). 答案:(±7,0)31.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M ,N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________.解析:由题意知,a +c =b 2a ,即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0,解得e =2或e =-1(舍去). 答案:232.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x-5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝⎛⎭⎫175,-3215. 所以S △AFB =12|AF ||y B |=12(c -a )|y B |=12×(5-3)×3215=3215.答案:3215.三、解答题33.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点.设椭圆C 上一点⎝⎛⎭⎫3,32到两焦点F 1,F 2的距离和等于4,写出椭圆C 的方程和焦点坐标.解:由点⎝⎛⎭⎫3,32在椭圆上,得(3)2a 2+⎝⎛⎭⎫322b 2=1,又2a =4,所以椭圆C 的方程为x 24+y 23=1,焦点坐标分别为(-1,0),(1,0).34.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2||F 1F 2=||PF 1+||PF 2. (1)求此椭圆的方程;(2)若点P 满足∠F 1PF 2=120°,求△PF 1F 2的面积.解:(1)由已知得||F 1F 2=2,∴||PF 1+||PF 2=4=2a ,∴a =2.∴b 2=a 2-c 2=4-1=3,∴椭圆的标准方程为x 24+y 23=1.(2)在△PF 1F 2中,由余弦定理得||F 1F 22=||PF 12+||PF 22-2||PF 1||PF 2cos 120°,即4=()||PF 1+||PF 22-||PF 1||PF 2,∴4=(2a )2-||PF 1||PF 2=16-||PF 1||PF 2,∴||PF 1||PF 2=12,∴S △PF 1F 2=12||PF 1||PF 2sin 120°=12×12×32=3 3.35.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22,过点F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,求椭圆C 的标准方程.解:设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0).由e =22知c a =22,故c 2a 2=12,从而a 2-b 2a 2=12,b 2a 2=12.由△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,得a =4,∴b 2=8.故椭圆C 的标准方程为x 216+y 28=1.36.椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点是A (a,0),其上存在一点P ,使∠APO =90°,求椭圆离心率的取值范围.解:设P (x ,y ),由∠APO =90°知,点P 在以OA 为直径的圆上,圆的方程是:⎝⎛⎭⎫x -a 22+y 2=⎝⎛⎭⎫a22,所以y 2=ax -x 2.①又P 点在椭圆上,故x 2a 2+y 2b2=1.②把①代入②化简,得(a 2-b 2)x 2-a 3x +a 2b 2=0,即(x -a )[(a 2-b 2)x -ab 2]=0,∵x ≠a ,x ≠0,∴x =ab 2a 2-b 2,又0<x <a ,∴0<ab 2a 2-b 2<a ,即2b 2<a 2. 由b 2=a 2-c 2,得a 2<2c 2,所以e >22. 又∵0<e <1,∴22<e <1.即椭圆离心率的取值范围是⎝⎛⎭⎫22,1. 37.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程. 解:已知双曲线x 216-y 29=1.据c 2=a 2+b 2,得c 2=16+9=25,∴c =5.设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).依题意,c =5,∴b 2=c 2-a 2=25-a 2,故双曲线方程可写为x 2a 2-y 225-a 2=1.∵点P ⎝⎛⎭⎫-52,-6在双曲线上,∴⎝⎛⎭⎫-522a 2-(-6)225-a 2=1.化简,得4a 4-129a 2+125=0,解得a 2=1或a 2=1254.又当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去,故a 2=1,b 2=24.∴所求双曲线的标准方程为x 2-y 224=1. 38.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C .(1)求线段AB 的长度; (2)求顶点C 的轨迹方程.解:(1)将椭圆方程化为标准形式为x 25+y 2=1.∴a 2=5,b 2=1,c 2=a 2-b 2=4,则A (-2,0),B (2,0),|AB |=4.(2)∵sin B -sin A =12sin C ,∴由正弦定理得|CA |-|CB |=12|AB |=2<|AB |=4,即动点C 到两定点A ,B 的距离之差为定值.∴动点C 的轨迹是双曲线的右支,并且c =2,a =1,∴所求的点C 的轨迹方程为x 2-y 23=1(x >1).39.已知椭圆方程是x 210+y 25=1,双曲线E 的渐近线方程是3x +4y =0,若双曲线E 以椭圆的焦点为其顶点,求双曲线的方程.解:由已知,得椭圆的焦点坐标为(±5,0),顶点坐标为(±10,0)和(0,±5).因双曲线以椭圆的焦点为顶点,即双曲线过点(±5,0)时,可设所求的双曲线方程为9x 2-16y 2=k (k ≠0),将点的坐标代入得k =45,故所求方程是x 25-16y 245=1.40.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且a 2c =33.(1)求双曲线C 的方程;(2)已知直线x -y +m =0与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,求m 的值.解:(1)由题意得⎩⎨⎧a 2c =33,ca =3,解得⎩⎪⎨⎪⎧a =1,c = 3.所以b 2=c 2-a 2=2.所以双曲线C 的方程为x 2-y 22=1. (2)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0).由⎩⎪⎨⎪⎧x -y +m =0,x 2-y 22=1,得x 2-2mx -m 2-2=0(判别式Δ>0).所以x 0=x 1+x 22=m ,y 0=x 0+m =2m .因为点M (x 0,y 0)在圆x 2+y 2=5上,所以m 2+(2m )2=5.故m =±1.。