基于大数据的电力系统数据应用

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于大数据的电力系统数据应用

发表时间:2018-12-25T16:19:20.450Z 来源:《电力设备》2018年第23期作者:张新伯[导读] 摘要:电能与生产生活密切相关,电能的生产与传输需要经过电力系统发电、输电、变电等一系列复杂的过程完成,电力系统的生产、监控、测量、通信过程中产生了大量的数据,有效利用这些数据提高电力系统的安全可靠运行水平,是电力企业提高管理水平的重要途径。

(深圳供电局有限公司广东深圳 518000)摘要:电能与生产生活密切相关,电能的生产与传输需要经过电力系统发电、输电、变电等一系列复杂的过程完成,电力系统的生产、监控、测量、通信过程中产生了大量的数据,有效利用这些数据提高电力系统的安全可靠运行水平,是电力企业提高管理水平的重要途径。本文分析了电力自动化系统数据类型、电力系统数据应用现状及当前大数据的具体应用,提出了未来如何利用电力系统大数据来优化企业管理的策略,仅供参考。

关键词:电力大数据;电力系统数据处理;应用在当前我国电力行业的发展背景下,电力企业之间的市场竞争也变得越来越激烈。而单个电力企业要想在这种复杂的市场环境中取得优势,就必须要在发展过程中不断提高自身技术水平。如果能够将大数据技术充分应用到电力企业的各项业务中,就可以更好的处理企业业务发展中的各类数据,并对电力大数据信息进行必要的预测,真正的变革整个电力系统的管理模式。但就当前的实际现状来看,大数据技术在我国大部分电力企业中的应用水平都非常有限,并没有充分发挥其价值。之所以出现这种情况,就是因为一些电力企业没有明确大数据技术的应用前景,无法将大数据技术跟电力系统各项活动融合在一起。在这种情况下,就有必要分析大数据在电力系统中的具体应用现状和应用前景。

1大数据概述

大数据作为一种新型的数据信息处理技术,能够通过对大量数据信息的选择和分析,进行整理、计算等,筛选出其中蕴含的规律,进而选取有价值的数据信息。大数据具有数量大、范围广、数据类型复杂多样、内容丰富、数据的来源可靠、数据处理时效高等优势,近年来在各个行业得到了普及和推广。 2大数据在电力系统中应用的重要意义大数据技术在我国电力系统中具有多个方面的应用意义,能够促进我国电力系统的稳定高效发展。一方面,大数据技术的应用能够解决我国电力系统对于数据收集和处理的困难。特别是目前我国电力系统运作过程中涉及到的电力设备不断变多,而每一种电力设备的数据结构类型也比较复杂。使用大数据技术能够更有效的处理这些数据信息。另一方面,大数据技术的使用也可以显著提高我国电力系统的技术层次,引入数据挖掘等各项先进技术,提高电力企业的技术层次。 3大数据目前对于电网存在的问题 3.1现有营销系统数据以及对客户的深度分析不够

现有营销技术支撑系统仅仅作为业务支撑体系,用于基础数据收集、运行数据计算工具,仅局限于正常的营销业务的处理,仅仅能够生成一些功能单一的固定报表数据。一个月使用一次,很难将相互孤立的数据与用户用电特征、电力使用环境等因素进行分析与关联,数据使用率低,造成了对客户的价值分析能力不足。随着社会进步与营销相关业务的发展,无论是数据采集,还是电费计算,电网营销数据每年的增长速度较快,数据完整性有很大提高,在数据真实性与及时性方面也有一定提高,但是目前营销系统、信息采集与PMS、供电可靠性等其他系统的信息匹配方面依然存在问题,还有这部分的数据不一致,不准确,造成了营销系统的数据更新压力很大,难以成为多方数据的共享平台,内部无法为公司决策层提供数据支撑,更不要说对客户的用电分析,难以为客户的深度分析提供有力支撑。

3.2没有形成专业的协同运作

造成大量数据形成了信息孤岛,没有真正达到信息的纵向集成与横向联合,没有专门的运转部门进行绩效考核与实际可靠有效的合并机制,多年来一直单轨运行,数据更新不及时,工作平台不共享,造成重复工作很多,难免形成数据疏漏,经常出现系统运行一段时间后,需要大量时间进行数据重新梳理,没有形成日常化更新运作,人员变动频繁,交接疏漏时有发生。

3.3数据量大,可靠性低

电力自动化系统在运行过程中会产生大量的数据,而不同的数据代表不同的信息,电力自动化系统是由许多的子系统构成,各个子系统的数据库中储存着相关的数据信息,整个系统中的数据量非常庞大,数据交叉现象时有发生,繁多的数据信息会在一定程度上影响和制约这个系统的数据信息的分析处理和数据的更新,随着存储数据的增多,出现问题的几率也越来越大,降低了数据处理的安全性和准确性,对系统的数据库进行统一管理,保证系统数据的唯一性势在必行。 4大数据在电力自动化系统中的具体应用 4.1电网基础建设的自动化与智能化

在当前我国国民经济不断发展的背景下,我国各个城市地区的现代化建设程度也快速加深,社会各个行业和人们日常生活中对于电力的需求也出现了显著增加。在这种发展趋势下,我国各个地区的电网基础建设项目也逐渐增多。而如果能够将大数据技术融入到电网基础建设项目中,就能够显著提高项目建设过程中的数据储存困难和信息处理效率不高等问题。这主要是因为大数据技术的应用能够最大程度的收集电网基础建设项目中的各类现场信息,并使用自动对比等可行性较强的数据挖掘技术来对现场产生的各类信息进行全面的分析,最终实现建设项目的智能化管理和自动化处理。

4.2基于大数据的电网运行可视化监控

在整个输变电网络中有大量的设备、及检测点,通过传感器实时从各设备上采集设备运行指标及输变电的电压、电流、负载状态监测指标等,通过大数量的实时处理平台进行数据提取、加工及整合,再通过可视化大屏实时展示各设备及监测点的运行,对于设备及检测点数据的异常及时预警,及时处理。同时将设备的运行数据及检修数据进行整理分析形成知识库,以此知识库通过大数据处理技术及数据挖掘进行设备生命周期预测、设备异常问题检修处理方法推荐、设备检修周期以可能问题预测,以及对电力设备资产管理、设备运检管理、设备技术管理、技改大修管理等的大数据支撑。

4.3大数据在故障预测中的应用

以往传统模式的电力自动化故障监测系统,虽然可以实现简单的数据采集、处理、故障预测等功能,但由于随着时代的发展,数据信息量也随之增大,原有的故障预测模式已经无法满足大数据处理的需求,而大数据理念纳入故障预测设计中,恰恰弥补了这方面的不足。在系统中设置一个主站和若干个子站,子站的主要作用是采集现场数据,并对这些数据进行初步分析处理,并把分析结果传递到主站。主站的作用是接收各个子站的不同的数据信息,并进一步的分析和处理这些数据信息。数据预处理是一个关键环节,可以减少和避免子站中的垃圾数据或者无用数据进入主站,有效清理垃圾数据。抽取、转换、清洗和监控是数据预处理的基本程序,其中数据的抽取、清洗根据工序的不同要求也各不相同,完成了这些工序的数据的抽取、清洗,接下来进行故障的监视和预测,主要作用是监视和预测电力系统的数据否发生异常变化,一旦发现异常数据,运用技术手段及时进行妥善处理,充分发挥大数据的故障预测功能。

结束语

在未来的发展中,大数据技术的发展深度将会不断的增加,并且在电力系统的各个模块中也将有更好的应用,对于电力企业的发展也会产生显著的推动作用。鉴于目前大数据技术在多数电力企业中应用效果不好的现状,我国各个电力企业的技术人员应该明确大数据技术跟电力系统的具体融合途径,并加强电力系统中大数据信息流的管理,并能够对各个数据流和信息流进行全面的加工处理,这样以后,大数据技术就能够在电力系统中得到更好的应用,并提高我国电力系统的技术层次,促进我国电力行业的快速稳定发展。

参考文献

[1]黄彦浩,于之虹,谢昶.电力大数据技术与电力系统仿真计算结合问题研究[J].中国电机工程学报,2015,35(01):13~22.

[2]苗新,张东霞,孙德栋.在配电网中应用大数据的机遇与挑战[J].电网技术,2015,39(11):3122~3127.

[3]李振元,李宝聚,王泽一.大数据技术对我国电网未来发展的影响研究[J].吉林电力,2014,42(01):10~13.

[4]曹皖诚,汤少卿,尤鋆.大数据平台在电力系统中的应用研究[J].江苏科技信息,2016(29):53~56+71.

相关文档
最新文档