八年级上册数学知识点
八年级数学上册知识点归纳
八年级数学上册知识点归纳八年级数学上册必备知识梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:一般梯形、梯形直角梯形、特殊梯形等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的'两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。
八年级数学知识总结一、整式的乘法1.同底数幂的乘法:am²an=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。
2.幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。
3.积的乘方法则:(ab)n = an²bn(n为正整数) 积的乘方=乘方的积4.单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2。
2.完全平方公式:(a±b)2=a2±2ab+b2口诀:前平方,后平方,积的两倍中间放,中间符号看情况。
八年级上册数学知识点(通用15篇)
6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7定理1在角的平分线上的点到这个角的两边的距离相等
8定理2到一个角的两边的距离相同的点,在这个角的平分线上
9角的平分线是到角的两边距离相等的所有点的集合
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
②、等腰三角形的其他性质:
(1)等腰直角三角形的两个底角相等且等于45°
(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
(3)等腰三角形的三边关系:设腰长为a,底边长为b,则
(4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
③、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
15推论1三个角都相等的三角形是等边三角形
16推论2有一个角等于60°的等腰三角形是等边三角形
17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
18直角三角形斜边上的中线等于斜边上的一半
19定理线段垂直平分线上的点和这条线段两个端点的距离相等
20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
21推论1等腰三角形顶角的平分线平分底边并且垂直于底边
22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
八年级上册全部知识点总结
八年级上册全部知识点总结1. 整数与有理数:
正整数、负整数、零及其运算规则;
分数、小数和百分数的概念和相互转化;
有理数的大小比较和绝对值。
2. 平方根与立方根:
平方数和完全平方根的概念;
立方数和立方根的概念;
计算平方根和立方根的方法。
3. 代数基础:
代数式的定义和基本性质;
同类项、合并同类项的方法;
公式的运用和推导。
4. 一元一次方程:
方程的概念和解的含义;
解一元一次方程的方法;
应用一元一次方程解决实际问题。
5. 几何基础:
点、线、面的基本概念;
角的概念及角的分类;
相关角的性质和计算。
6. 图形的认识与运动:
二维图形的命名和性质;
图形的旋转、平移和翻折等基本变换;
利用坐标进行图形的描述和判断。
7. 数据的收集与整理:
数据的收集和分类;
统计图表的绘制和解读;
数据的分析和判断。
以上是八年级上册的主要知识点总结,希望能对你有所帮助!如有其他问题,请随时提问。
八年级数学上册 知识点总结
八年级数学上册知识点总结数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。
2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。
3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如222π+8等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60等。
二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=−b,反之亦成立。
2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值(|a|≥)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥;若|a|=−a,则a≤。
3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和−1.零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算。
三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。
八年级上册数学每课知识点
八年级上册数学每课知识点第一课:有理数的加减法有理数概念、绝对值、相反数、加减法法则、混合运算等。
第二课:有理数的乘法有理数的乘法法则、除法等。
第三课:整式的加减法整式的概念、同类项的概念、加减法法则、混合运算等。
第四课:一元一次方程方程的定义、等式的性质、解方程的基本思路、解一元一次方程的方法,方程与问题的联系等。
第五课:一元一次方程的应用根据实际情况建立方程、解决问题等。
第六课:图形的基本概念点、线、面的基本概念、相互关系、名称等。
第七课:图形的相似相似的概念、相似三角形的性质、相似多边形的性质等。
第八课:勾股定理勾股定理的概念、勾股定理的证明、勾股定理的应用等。
第九课:三角形的周长和面积三角形周长的计算、三角形面积的计算等。
第十课:概率的基本概念随机事件、样本空间、事件的概率、事件间的关系等。
第十一课:实数的概念与运算实数的定义、实数的分类、实数的加减乘除等。
第十二课:一次函数函数及其概念、函数的表示方法、一次函数概念和性质、解一元一次方程的图像、一次函数在实际问题中的应用等。
第十三课:比例与比例关系比例的概念、比例的性质及应用、比例的化归、反比例的概念及应用等。
第十四课:分式分式的概念、分式的基本性质、分式的化简,分式方程等。
第十五课:数据的收集和整理样本、数据的收集与整理、频数分布表、频率分布图、累计频率等。
第十六课:数据的分析与解释数据的中心值、离散程度、分布形状、基本要素等。
以上就是八年级上册数学每课知识点的详细内容。
掌握这些知识点,对于学好数学课程,掌握数学基础具有至关重要的作用。
学生可以根据自己的实际情况,通过理论知识的学习和实践操作的练习,来提高自己的数学能力。
只要认真学习,坚持不懈,就一定能收获学习的喜悦,也一定能在日后的生活和工作中得到更好的发展、体现自己的价值。
八年级上册数学全部知识点
八年级上册数学全部知识点第十一章三角形。
1. 三角形的概念。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 三角形有三条边、三个内角和三个顶点。
2. 三角形的分类。
- 按角分类:- 锐角三角形:三个角都是锐角的三角形。
- 直角三角形:有一个角是直角的三角形。
直角三角形可以用符号“Rt△”表示。
- 钝角三角形:有一个角是钝角的三角形。
- 按边分类:- 不等边三角形:三边都不相等的三角形。
- 等腰三角形:有两边相等的三角形。
其中相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
- 等边三角形:三边都相等的三角形,等边三角形是特殊的等腰三角形。
3. 三角形的三边关系。
- 三角形两边的和大于第三边,三角形两边的差小于第三边。
- 判断三条线段能否组成三角形的简便方法:只要判断较短的两条线段之和是否大于最长的线段即可。
4. 三角形的高、中线与角平分线。
- 三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高即两条直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。
- 三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
三角形的三条中线都在三角形内部,并且相交于一点,这个点叫做三角形的重心。
- 三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线都在三角形内部,并且相交于一点。
5. 三角形的内角和与外角和。
- 三角形内角和定理:三角形三个内角的和等于180°。
- 三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
- 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角的和。
- 三角形的一个外角大于与它不相邻的任何一个内角。
八年级上下册数学知识点总结
数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。
2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。
3.乘方:乘方的概念,乘方的性质,乘方的运算法则。
4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。
5.分数:分数的概念,分数的性质,分数的加减法运算法则。
6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。
7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。
9.角:角的概念,角的分类,角的性质,角的度量。
10.平行线:平行线的概念,平行线的性质,平行线的判定。
二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。
2.勾股定理:勾股定理的概念,勾股定理的应用。
3.多边形:多边形的概念,多边形的分类,多边形的性质。
4.圆:圆的概念,圆的性质,圆的度量。
5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。
6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。
7.百分数:百分数的概念,百分数的性质,百分数的计算。
8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。
9.概率:概率的概念,概率的计算。
10.函数与图像:函数的概念,函数的性质,函数的图像。
八年级上册数学笔记知识点
八年级上册数学笔记知识点一、有理数1. 有理数:在现实生活中存在着大量的具有相反意义的量,如向东走与向西走,盈利与亏损等。
用一种符号表示具有相反意义的量就得到有理数。
2. 有理数的分类:整数和分数统称为有理数。
注意:0既不是正数也不是负数。
二、数轴1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
2. 建立数轴:先确定原点、再确定正方向、最后确定单位长度。
3. 理解数轴上的点与实数是一一对应的关系。
三、绝对值1. 定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 规律总结:一个正数的绝对值是大于它本身;一个负数的绝对值是小于它的实际绝对值;0的绝对值是它本身。
四、相反数1. 定义:只有符号不同的两个数叫做互为相反数。
2. 注意:互为相反数的两个数不一定是异号,但一定是非零的数;符号不同的两个数也互为相反数。
如-a和a互为相反数,并且有绝对值较大的一个符号决定相反数的符号。
五、公式定理部分1. 代数式求值:把已知条件整体代入代数式中求出未知量的值。
2. 代数式的变形:根据代数式中数字与字母的特点,灵活运用乘法对加法的分配律,提取公因式以及公式法等使代数式得到简化。
3. 特殊三角形:等边三角形、等腰三角形、直角三角形等,分别根据其性质得出有关边、角的关系式,并注意综合运用。
六、三角形部分1. 等腰三角形:根据等腰三角形的特点综合运用勾股定理、三角形内角和定理、三角形稳定性等知识求出角度的大小。
2. 直角三角形:根据直角三角形的特点综合运用勾股定理、三角函数等知识求出线段的长或角的度数。
七、四边形部分平行四边形和梯形是两种最基本的四边形,其它四边形都是由这两种基本四边形通过转化而得到的或是它们的特例。
因此,在研究四边形的有关性质时,应从基本四边形的性质入手,结合具体四边形的特点进行转化(通过添加辅助线)来解决。
八、函数部分函数思想是初中数学中的一个重要思想,应通过具体问题来培养这种思想,应弄清一个函数包括定义域和对应法则两部分,注意函数的定义域优先的原则。
八年级上册数学知识点归纳
八年级上册数学知识点归纳一、实数1. 有理数和无理数的概念- 有理数:可以表示为两个整数的比的数- 无理数:不能表示为两个整数的比的数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的概念和运算- 实数的性质和比较大小二、代数表达式1. 单项式和多项式- 单项式的定义和度量- 多项式的定义、次数和系数2. 代数式的加减运算- 合并同类项- 去括号法则3. 代数式的乘法运算- 单项式乘单项式- 单项式乘多项式- 多项式乘多项式4. 代数式的因式分解- 提公因式法- 公式法(如平方差公式、完全平方公式)三、方程与不等式1. 一元一次方程- 方程的建立和解法- 方程的解的检验2. 一元一次不等式- 不等式的概念和性质- 不等式的解法- 不等式的解集表示3. 二元一次方程组- 代入法解方程组- 消元法解方程组- 方程组的解的情况分析四、几何1. 平行线与角- 平行线的判定和性质- 同位角、内错角、同旁内角- 角的分类(锐角、直角、钝角、平角、周角)2. 三角形- 三角形的基本性质- 三角形的内角和外角性质- 等腰三角形和等边三角形的性质- 三角形的中线、高线、角平分线3. 四边形- 四边形的定义和分类- 矩形、菱形、正方形的性质- 平行四边形的性质4. 圆的基本性质- 圆的定义和圆心、半径- 弦、直径、弧、半圆- 圆周角和圆心角的关系- 切线的概念和性质五、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制(如条形图、饼图)2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率六、应用题- 利用所学知识解决实际问题- 培养数学建模和逻辑推理能力请注意,以上内容是根据一般八年级上册数学教材的常见知识点进行归纳,具体的教学大纲和知识点可能会根据不同地区和版本的教材有所差异。
教师和学生应参考具体的教材和教学大纲来确定学习重点。
八年级上册数学知识点总结归纳
八年级上册数学知识点总结归纳一、代数1. 一元一次方程与一元一次不等式1) 一元一次方程的定义及解法2) 一元一次不等式的定义及解法3) 实际生活中的应用案例2. 二元一次方程组1) 二元一次方程组的定义及解法2) 二元一次方程组的几何意义3) 实际生活中的应用案例3. 整式的加减和乘除1) 整式的概念2) 整式的加减法规则3) 整式的乘除法规则4) 实际生活中的应用案例4. 因式分解1) 因式分解的基本概念2) 因式分解的公式及方法3) 实际生活中的应用案例二、平面几何1. 直角三角形1) 直角三角形的性质及判定方法2) 特殊直角三角形(30-60-90三角形、45-45-90三角形)3) 直角三角形的应用题2. 平行线与相交线1) 平行线与转化线的基本概念2) 平行线与转化线的判定方法3) 平行线与转化线的性质3. 圆1) 圆的基本概念2) 圆的性质及判定3) 圆的应用题4. 规则图形1) 正方形、矩形、菱形、平行四边形的性质2) 规则图形的面积和周长计算方法3) 规则图形的应用题三、空间与立体几何1. 空间图形的投影1) 正投影与侧投影的概念2) 空间图形的投影绘制方法3) 实际生活中的应用案例2. 三棱柱与三棱锥1) 三棱柱与三棱锥的定义及性质2) 三棱柱与三棱锥的表面积和体积计算方法3) 实际生活中的应用案例3. 直角坐标系1) 直角坐标系的建立及性质2) 直角坐标系中点、距离的计算方法3) 实际生活中的应用案例四、统计与概率1. 统计图1) 条形图、折线图、饼状图的绘制方法2) 统计图的解读及应用2. 概率1) 随机事件与概率的基本概念2) 概率的计算方法及性质3) 实际生活中的应用案例以上就是八年级上册数学知识点的总结归纳,希望同学们能够通过系统的学习和复习,牢固掌握这些知识点,为将来更深入的学习打下坚实的基础。
八年级上册数学知识点
八年级上册数学知识点
1. 数的性质
- 自然数、整数、有理数、无理数的概念和特征
- 常见数集及其元素的性质:自然数集、整数集、有理数集和实数集
- 数的比较和大小关系:大小判断、绝对值的概念和性质
2. 代数式与方程
- 代数式的概念和基本运算法则
- 一元一次方程的概念和解法:列方程、解方程的基本步骤,解的判断和检验,含有括号的方程等
- 解一元一次方程的应用题:简单的实际问题转化成一元一次方程
3. 几何图形
- 直线、射线、线段的概念及其表示方法
- 平行线、相交线和垂直线的判定方法
- 角的概念及其分类:锐角、直角、钝角、平角
- 三角形的概念和分类:直角三角形、等腰三角形、等边三角形
- 多边形的概念和分类:四边形、正多边形
- 圆的概念:圆心、半径、直径等
4. 数据与统计
- 数据的搜集与整理:频率表、频率分布直方图
- 数据的分析与应用:平均数、中位数、众数的概念和计算
- 折线图的绘制方法
5. 概率与统计
- 事件、样本空间和概率的概念
- 简单事件和复合事件的计算
- 使用频率和概率判断事件的发生可能性
6. 平面坐标系
- 平面直角坐标系:横轴、纵轴、原点、象限等概念
- 点的坐标表示和确定:横坐标、纵坐标
- 点在坐标系中的位置关系:同一直线上、同一平行线上等概念
7. 直线与平行线
- 直线的概念和性质:直线上的点、直线上的点的坐标表示
- 平行线与相交线的特点和性质
- 直线之间的位置关系:相互平行、相交、垂直等
以上是八年级上册数学的主要知识点。
希望对你的研究有所帮助!。
八年级上册数学知识点归纳
八年级上册数学知识点归纳一、三角形1. 三角形的内角和:三角形的内角和等于180°。
2. 三角形的分类:按边分,有不等边三角形、等腰三角形、等边三角形;按角分,有锐角三角形、直角三角形、钝角三角形。
3. 三角形的主要性质:三角形的两边之和大于第三边,两边之差小于第三边。
4. 三角形的重心:三角形的重心是三条中线的交点,它将每条中线分为2:1的两部分。
5. 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
二、全等三角形1. 全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2. 全等三角形的判定方法:SSS(三边相等)、SAS(两边和夹角相等)、ASA(两角和边相等)、AAS(两角和一边的对应边相等)。
三、图形的变换1. 轴对称:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴。
2. 中心对称:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心。
四、四边形1. 四边形的内角和:四边形的内角和等于360°。
2. 矩形:矩形的四个角都是直角,对边平行且相等。
3. 菱形:菱形的四条边都相等,对边平行,对角相等。
4. 正方形:正方形的四个角都是直角,四条边都相等,对边平行。
五、一次函数1. 一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数。
2. 一次函数的图象:一次函数的图象是一条直线。
3. 一次函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
4. 一次函数的解析式:y=kx+b,其中k是斜率,b是截距。
六、数据的初步认识1. 频数与频率:频数是指某个对象出现的次数,频率是指某个对象出现的次数与总次数的比值。
2. 数据的分布:数据的分布可以通过频数分布表、频数分布直方图来表示。
八年级上册数学知识点大纲
八年级上册数学知识点大纲
一、有理数
1. 有理数的定义及表示
2. 有理数的大小比较
3. 有理数的加减法
4. 有理数的乘法及除法
二、代数式
1. 代数式的概念及基本性质
2. 代数式的运算
3. 代数式的化简
三、一元一次方程
1. 一元一次方程的定义及基本性质
2. 解一元一次方程的方法
3. 一元一次方程的应用
四、平面图形
1. 二维图形的基本概念及性质
2. 三角形的性质及分类
3. 四边形的性质及分类
4. 圆的基本性质及应用
五、立体图形
1. 立体图形的基本概念及性质
2. 立方体、长方体、正方体的性质及计算
3. 锥、柱、球的性质及计算
六、统计与概率
1. 数据的收集、整理及分析
2. 概率的基本概念及计算方法
3. 概率的应用
七、三角函数
1. 三角函数的定义及关系
2. 三角函数的性质及图像
3. 三角函数的应用
以上就是八年级上册数学知识点大纲,希望同学们在学习时能够认真掌握,扎实基础。
同时,也提醒大家要注重实践应用,将所学知识运用于实际生活中,感受数学的魅力。
八年级上册数学各单元知识点总结
八年级上册数学各单元知识点总结第一章:小数1.小数的概念小数是用数字和小数点来表示分数的一种方法,分母为10的分数叫做小数,数字中的小数点的左边表示整数部分,右边表示小数部分,小数点的位置可以被移动。
2.小数的加减乘除小数的加减乘除运算和整数一样,只需要注意小数点的位置。
3.小数与分数的转化通过小数点的位置,可以把小数转化为分数;通过分数的化简,可以把分数转化为小数。
4.小数的比较把小数转化为分数后,比较大小即可。
第二章:代数式1.代数式的概念代数式由变量、系数和常数构成的表达式,其中变量表示数值未知的量,系数是变量的系数,常数也是代数式的一部分,代数式可以进行运算。
2.代数式的加减乘除代数式进行加减乘除运算的方法和数字一样,只需把同类项加减即可。
3.同类项的合并同类项是指字母相同,次数相同的项,合并同类项可以简化表达式。
4.代数式的因式分解代数式的因式分解是指把一个代数式分解成为简单的乘积形式。
第三章:图形的认识1.图形的基本概念平面图形是二维几何图形,从简单到复杂可以分为直线、射线、线段、角、三角形、四边形、多边形、圆形等。
2.物体的视图物体的视图是指物体呈不同角度时在不同平面上所看到的形状,分为正视图和侧视图。
3.图形的相似性如果两个图形除了大小不同,其他地方完全相同,那么这两个图形就是相似的,可以通过比例来描述它们之间的关系。
4.角的度量角的度量有两种方式,一种是用角度来表示,一种是用弧度来表示。
第四章:方程1.方程的概念方程是指等号两边的式子,表示两个量或两个式子相等的关系,其中未知数是方程的一部分。
2.方程的解法方程的解法分为两种,一种是通过变形、化简来解决,另一种是通过列方程组来解决。
3.一元一次方程组一元一次方程组是指只有一个未知数,各方程的最高次数均为一次的方程组。
4.二元一次方程组二元一次方程组是指有两个未知数,各方程的最高次数均为一次的方程组。
第五章:百分数1.百分数的概念百分数是把一个数表示为百分之几的形式,以百分号“%”来表示。
八年级上册数学知识点总结(实用10篇)
八年级上册数学知识点总结(实用10篇)八年级上册数学知识点总结(1)第十一章三角形一、知识框架:知识概念:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的内角:多边形相邻两边组成的角叫做它的内角.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.第十二章全等三角形一、知识框架:二、知识概念:基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质八年级上册数学知识点总结(2)把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
八年级上册数学知识点汇总
八年级上册数学知识点汇总一、代数与函数1. 代数运算:加减乘除、加法交换律、结合律、分配律、简单的整式求值。
2. 解一元一次方程:原理是等式两边同时做相同的运算,消去未知数的系数和常数项,求得未知数的值。
3. 一次函数:y = kx + b 的标准式,斜率是 k,截距是 b。
4. 平面直角坐标系:确定点的位置,解决几何问题。
5. 平移、相似、对称、旋转等基本变换。
二、图形的初步认识1. 图形的基本概念:点、线、面等基本元素。
2. 基本图形的性质:三角形、四边形、圆等基本图形的内角和、面积、周长等性质。
3. 图形的相似:形状相同,大小不同;相似三角形的性质。
三、三角形的性质和计算1. 三角形的分类:按角度分为锐角三角形、直角三角形、钝角三角形;按边长分为等边三角形、等腰三角形、普通三角形。
2. 三角形重心、垂心、外心和内心:位置和计算公式。
3. 三角形的面积公式:海伦公式、正弦公式、余弦公式和面积公式。
四、列方程解几何问题1. 利用方程解几何问题:列方程、解方程,求出未知数。
2. 分析几何问题:确定已知量和未知量,列方程求解。
五、形状的运动1. 平移、相似、对称、旋转等基本变换。
2. 图形的运动:平移、相似、对称、旋转变换的概念和性质。
3. 图形的复合变换:多个变换连续作用的情况。
六、数学中的单位换算1. 长度单位的换算:米、厘米、毫米等常用单位的换算。
2. 面积单位的换算:平方米、平方厘米、平方毫米等常用单位的换算。
3. 容积单位的换算:立方米、立方厘米等常用单位的换算。
4. 质量、时间和速度单位的换算。
七、简单的概率统计1. 事件、样本空间和概率:事件发生的可能性,概率的定义和计算方法。
2. 相关概念:随机事件、独立事件、互不影响事件等相关概念。
3. 统计图表的制作和读取:折线图、条形图、饼图等常见图表的制作和读取方法。
以上是八年级上册数学知识点的汇总,这些知识点是数学学习中的基础,各位同学需要熟练掌握,才能更好地应对数学考试,完成数学作业。
八年级上册数学知识点归纳(5篇)
八年级上册数学知识点归纳(5
篇)
新学期已经开始,同学们即将进入紧张的学习生活。
以下是白话文编写的八年级上册数学知识点总结(5篇精选),希望能给你一些参考和帮助。
八年级上册数学知识点篇一
1、二元一次方程
①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
2、二元一次方程组
①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法代入(消元)法、加减(消元)法
④一次函数与二元一次方程(组)的关系:
一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解
线性函数与二元线性方程组的关系:二元线性方程组的解可以看作是两个线性函数之和的像的交集。
当函数图象有交点时,说明相应的二元一次方程组有解;
当函数图像(直线)平行,即没有交点时,说明对应的二元线性方程组无解。
数学初二上册知识点篇二
乘法和除法,因式分解和三角形的分数,全等三角形,轴对称和代数表达式。
(1)三角形:是初中数学的基础,中考命题中的重点。
中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
数学八年级上册知识点(15篇)
数学八年级上册知识点(15篇)数学八年级上册知识点1I线段的垂直平分线①定义:垂直并且平分线段的直线叫做线段的垂直平分线或中垂线②性质:a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;b、到线段两端点距离相等的点在线段的垂直平分线上;c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线。
II角平分线的性质①角平分线上的点到角两边的距离相等②到角两边距离相等的点在角的角平分线上③角是轴对称图形,角平分线所在的直线是该角的对称轴。
数学八年级上册知识点21、刻画数据的集中趋势〔平均水平〕的量:平均数、众数、中位数2、平均数平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。
加权平均数。
3、众数一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据〔或最中间两个数据的平均数〕叫做这组数据的中位数。
第七章平行线的证明1、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。
也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。
其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行数学八年级上册知识点3全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边〞简称“SAS〞(2)“角边角〞简称“ASA〞(3)“边边边〞简称“SSS〞(4)“角角边〞简称“AAS〞(5)斜边和直角边相等的两直角三角形(HL)。
八年级上册数学知识点归纳
八年级上册数学知识点归纳一、有理数1. 有理数的定义2. 有理数的四则运算3. 有理数的乘方运算4. 有理数的相反数和绝对值5. 有理数的比较大小二、线段和角1. 线段的长度2. 角的度量3. 角的分类4. 角的平分线5. 相邻角、同位角、对顶角三、平行线与平面图形1. 平行线的判定条件2. 平行线的性质3. 平行线的平行截线定理4. 平行线的射影定理5. 平行线与平行四边形四、相交线与角1. 相交线的性质2. 垂线的性质3. 垂线的判定条件4. 垂直于同一条直线的两条平行线的性质5. 垂直于平面的直线的性质五、图形的相似1. 图形的相似比例2. 相似三角形的性质3. 相似三角形的判定条件4. 相似多边形的判定条件5. 相似多边形的性质六、圆与圆的切线1. 圆的定义和性质2. 切线的定义和性质3. 切线定理4. 切线的判定条件5. 弧长和扇形面积七、数据与统计1. 平均数、众数和中位数的计算2. 数据的图表表示3. 折线图和饼状图的制作4. 数据的处理和分析5. 概率与统计八、代数式的运算1. 代数式的加减乘除2. 代数式的化简3. 代数式的展开与因式分解4. 因式分解公式5. 二次根式的加减乘除九、方程与不等式1. 一元一次方程的基本概念2. 一步一元一次方程的解法3. 两步一元一次方程的解法4. 一元一次方程组的解法5. 不等式的基本概念及解法十、直角三角形1. 直角三角形的性质2. 正弦定理和余弦定理3. 解直角三角形的应用4. 解直角三角形的方法5. 平面向量运算及相关性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学整理总结第一章勾股定理1、勾股定理直角三角形两直角边a,b的平方与等于斜边c的平方,即2、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形就是直角三角形。
3、勾股数:满足的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数与无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0、1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数与绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数就是零),从数轴上瞧,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值就是它本身,也可瞧成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数就是1与-1。
零没有倒数。
4、数轴规定了原点、正方向与单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点就是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根与立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根就是0。
表示方法:记作“”,读作根号a。
性质:正数与零的算术平方根都只有一个,零的算术平方根就是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
表示方法:正数a的平方根记做“”,读作“正、负根号a”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根就是零;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。
注意的双重非负性:3、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。
表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根就是零。
注意:,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b就是实数,(3)求商比较法:设a、b就是两正实数,(4)绝对值比较法:设a、b就是两负实数,则。
(5)平方法:设a、b就是两负实数,则。
五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须就是非负数。
2、性质:(1)(2)(3)()(4)()3、运算结果若含有“”形式,必须满足:(1)被开方数的因数就是整数,因式就是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算(1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算顺序先算乘方与开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律加法交换律加法结合律乘法交换律乘法结合律乘法、加法的分配律第三章位置的确定一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴与y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴与y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴与y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序就是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标就是有序实数对,当时,(a,b)与(b,a)就是两个不同点的坐标。
平面内点的与有序实数对就是一一对应的。
4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限(2)、坐标轴上的点的特征点P(x,y)在x轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(4)、与坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
(5)、关于x轴、y轴或原点对称的点的坐标的特征点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)(6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于三、坐标变化与图形变化的规律:坐标( x , y )的变化图形的变化x × a或y × a 被横向或纵向拉长(压缩)为原来的a倍x × a, y × a 放大(缩小)为原来的a倍x ×( -1)或y ×( -1) 关于y 轴或x 轴对称x ×( -1), y ×( -1) 关于原点成中心对称x +a或y+ a 沿x 轴或y 轴平移a个单位x +a, y+ a 沿x 轴平移a个单位,再沿y 轴平移a个单位第四章一次函数一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y就是x的函数,其中x就是自变量,y就是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x的一系列值与函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数与一次函数1、正比例函数与一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y就是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y就是x的正比例函数。
2、一次函数的图像: 所有一次函数的图像都就是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像就是经过点(0,b)的直线;正比例函数的图像就是经过原点(0,0)的直线。
一般地,正比例函数有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质一般地,一次函数有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数与一次函数解析式的确定确定一个正比例函数,就就是要确定正比例函数定义式(k0)中的常数k。
确定一个一次函数,需要确定一次函数定义式(k0)中的常数k与b。
解这类问题的一般方法就是待定系数法。
7、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式. 而一次函数解析式形式正就是y=kx+b(k、b为常数,k≠0).当函数值为0时,•即kx+b=0就与一元一次方程完全相同.结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.从图象上瞧,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.第五章二元一次方程组1、二元一次方程含有两个未知数,并且所含未知数的项的次数都就是1的整式方程叫做二元一次方程。
2、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
5、二元一次方程组的解法(1)代入(消元)法(2)加减(消元)法6、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都就是它所对应的二元一次方程kx- y+b=0的解(2)一次函数与二元一次方程组的关系:二元一次方程组的解可瞧作两个一次函数与的图象的交点。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。