高速公路坐标计算方法

合集下载

高等级公路中桩边桩坐标计算方法

高等级公路中桩边桩坐标计算方法

线路工程测量
14.7 线路逐桩坐标计算
2、坐标反算
根据直线起点和终点的坐标,计算直线的边长和坐 标方位角,称为坐标反算。
AB
arctan
YAB X AB
DAB (XAB )2 (YAB )2
线路工程测量
14.7 线路逐桩坐标计算
三、中桩坐标计算
1、直线上点的坐标计算
xp xJDi1 DK p DK JDi1 cosi1,i y p yJDi1 DK p DK JDi1 sin i1,i
(1)第一缓和曲线及圆曲线上点的坐标计算 当P点位于第一缓和曲线(ZH-HY)上,按切线支距法 公式:
xP
l
l5 40R 2l02
JDi
yP
l3 6 Rl0
JDi1
HY ZH
YH HZ
JDi1
线路工程测量
14.7 线路逐桩坐标计算
由坐标转换公式,P点在线路坐标下坐标:
X P X ZH xP cosi1,i KyP sin i1,i YP YZH xP sin i1,i KyP cosi1,i
曲线右偏时K=1;曲线左偏时K=-1;
JDi
JDi1
HY ZH
YH HZ
JDi1
线路工程测量
14.7 线路逐桩坐标计算
(2)圆曲线上点的坐标计算 当P点位于HY-YH圆曲线上,则:
xP m R sin
yP R P R cos
0
DK P
DK HY
R
1800
JDi
HY ZH
JD
YH HZ
线路工程测量
14.7 线路逐桩坐标计算
§14.7 线路中桩、边桩坐标计算
一、引言

高速MC公路测量CASIO4800&4850万能坐标计算程序(完整版)

高速MC公路测量CASIO4800&4850万能坐标计算程序(完整版)

高速公路测量CASIO4800&4850万能坐标计算程序(完整版)程序特点:真正的全线贯通坐标正反计算、任意斜角计算!!!程序中加入测站点,真正的实现了“坐标法”与“极坐标法”两种放样方法的同时显示的功能,使得放样操作方法选择时更加灵活!!!在曲线元要素输入时仅需要输入第一段全部曲线元要素,后面曲线元要素除起点半径、终点半径、曲线长、转向需输入外其他要素均从前一曲线按辛普森8等分计算得出,解决了主线坐标计算无法获得第二段及其以后曲线元起点参数的问题;辛普森公式任意等分,满足所有精度要求;全线曲线元数据一次性程序化输入,参数存储采用扩充变量数据库,无需修改程序内容;多功能采用单程序编程,避免频繁调用子程序,提高运算速度。

一、程序:ZBJSW“1.ZS 2.FS 3.SZ”:W=1=>Z[2]=0:V=0:Goto 1 ΔW=2=> Goto 4ΔW=3=> O “KOU LING”:O≠123456=>O=0: “OUT”◢Goto CΔO=0: V=0:Z[1]=0:Goto 0←┘Lbi 0←┘”N0.”:Z[1]+1 ◢Z[1]=0=>{ABCREFGUKO}:A“X0”:B“Y0”:C“F0”:R“R0”:E“RN”:F“D0”:G “LS”:U“G”:K“X(00)”: O“Y(00)”: Z[Z[1]×8+3]=A:Z[Z[1]×8+4]=B:Z[Z[1]×8+5]=C:Z[Z[1]×8+6]= R-1:Z[Z[1]×8+7]= E-1:Z[Z[1]×8+8]=F: Z[Z[1]×8+9]=F+G: Z[Z[1]×8+10]=U:“NEXT”◢Isz Z[1]: Goto 0ΔZ[1]=1=>D=Z[9]:Z=0:Z[2]=0:GOTO 2ΔD=Z[(Z[1]-1)×8+9]:Z=0:Z[2]=Z[1]-1:GOTO 2←┘Lbi A←┘Z[Z[1]×8+3]=X:Z[Z[1]×8+4]=Y:Z[Z[1]×8+5]=J: Z[Z[1]×8+8]=D: {REGU}:R“R0”:E “RN”: G“LS”:U“G”: Z[Z[1]×8+6]=R-1:Z[Z[1]×8+7]=E-1: Z[Z[1]×8+9]=D+G: Z[Z[1]×8+10]=U:“NEXT”◢Isz Z[1]: Goto 0←┘Lbi 1←┘{DZT }:D:Z:T“RJ”:Z[2]=0:Goto 2←┘Lbi 2←┘V≠1=>Z[2]>Z[1] =>GoToCΔΔD≤Z[Z[2]×8+9]=> A=Z[Z[2]×8+3]:B=Z[Z[2]×8+4]: C =Z[Z[2]×8+5]:R=Z[Z[2]×8+6]: E=Z[Z[2]×8+7]: F=Z[Z[2]×8+8]: G=Z[Z[2]×8+9]: U=Z[Z[2]×8+10]: Goto3ΔIsz Z[2]:Goto 2←┘Lbi 3←┘W=3 =>N=8:≠P=U(E-R)÷Abs(G-F):Q=Abs(D-F)÷N:S=90Q÷π:J=C+(NPQ+2UR)NS:L=1←┘X=A+Q÷6×(Cos C+Cos J +4∑(Cos (C+((L+0.5)PQ+2UR)×(L+0.5)S),L,0,(N-1))+2∑(Cos (C+((LPQ+2UR)LS,L,1,(N-1)))+ZCos(J+ T)←┘Y=B+Q÷6×(Sin C+Sin J +4∑(Sin (C+((L+0.5)PQ+2UR)×(L+0.5)S),L,0,(N-1))+2∑(Sin (C+((LPQ+2UR)LS,L,1,(N-1)))+Z Sin(J+T):V=1=>Goto6ΔV=2=>Goto9ΔV=3=> GOTO CΔW=3=>GOTO AΔZ=0=>“X(Z)=”:X:Pause 0: “Y(Z)=”:Y◢Pol((X-K),(Y-O))←┘“S(Z)=”:I ◢J<0=> J=J+360Δ“F(Z)=”: J→DMS◢Goto 1ΔZ<0=>“X(L)=”:X:Pause 0: “Y(L)=”:Y◢Pol((X-K),(Y-O))←┘fx4850①“S(L)=”:I ◢J<0=> J=J+360Δ“F(L)=”: J→DMS◢Goto 1ΔZ>0=>“X(R)=”:X:Pause 0: “Y(R)=”:Y ◢Pol((X-K),(Y-O))←┘“S(R)=”:J ◢J<0=> J=J+360Δ“F(R)=”: J→DMS◢Goto 1 ←┘Z=0=> X “X(Z)=”◢Y “Y(Z)=”◢Pol((X-K),(Y-O))←┘I“S(Z)=”◢J<0=> J=J+360ΔJ“F(Z)=”◢Goto 1ΔZ<0=> X “X(L)=”◢Y “Y(L)”◢Pol((X-K),(Y-O))←┘fx4800②I“S(L)=”◢J<0=> J=J+360ΔJ“F(L)=”◢Goto 1ΔZ>0=> X “X(R)=”◢Y “Y(R)=”◢Pol((X-K),(Y-O))←┘I“S(R)=”◢J<0=> J=J+360ΔJ“F(R)=”◢Goto 1 ←┘Lbi 4←┘{MH} :M“X”:H“Y”:Z[2]=0:GOTO 5←┘Lbi 5←┘V=1:D= Z[Z[2]×8+9]:Z=0:T=90:GOTO 2←┘Lbi 6←┘K=((H -B)Cos(C-90)-(M-A)Sin(C-90))×((H -Y)Cos(J-90)-(M-X)Sin(J-90)):K≤0=> Goto 7ΔIsz Z[2]:Goto5←┘Lbi 7←┘D=F+Abs((H -B)Cos(C-90)-(M-A)Sin(C-90)):D>G=> Isz Z[2]: Goto5ΔGoto 8←┘Lbi 8←┘V=2 :GOTO 3←┘Lbi 9 ←┘K=(H -Y)Cos(J-90)-(M-X)Sin(J-90):Abs K<(1÷E)^3=>Goto BΔD=D+K :GOTO 8←┘Lbi B←┘V=3 :Z=0:Goto 3←┘Lbi C←┘Z=(H-Y) ÷Sin(J+90):“D”:D:Pause 0: “Z”: Z◢4850输出(Z=(H-Y) ÷Sin(J+90):D“D”◢Z “Z”◢4800输出)GOTO 4←┘Lbi C←┘二、说明a、编制说明本程序是运用复化辛普生公式根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线元要素(起点坐标、起点里程、起点切线方位角、线元长度、起点曲率半径、止点曲率半径)及里程边距,对该曲线段范围内任意里程中边桩坐标进行计算,以及对卡西欧扩充变量的灵活应用,实现了真正意义上的的全线贯通及曲线要素输入程序化(在不修改程序内容的情况下可通过运行程序输入任意多段曲线元要素)。

缓和曲线)计算公式

缓和曲线)计算公式

高速公路的线路(缓和曲线)计算公式一、缓和曲线上的点坐标计算:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,那么:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,那么:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度〔或缓曲上任意点到缓曲起点的长度〕l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算:①第一坡度:i1(上坡为“+〞,下坡为“-〞)②第二坡度:i2(上坡为“+〞,下坡为“-〞)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程五、超高缓和过渡段的横坡计算:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点〔过渡段终点〕的间隔:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-〞,右转为“+〞)⑦曲线终点处曲率:P1(左转为“-〞,右转为“+〞)求:①线路匝道上点的坐标:x,y ②待求点的切线方位角:αT计算过程:。

怎样计算高速公路路线坐标及高程

怎样计算高速公路路线坐标及高程

一个excle模板的制作在当今社会,excle的使用已经是越来越来频繁了,几乎涉及所有的行业,路桥施工也不例外。

我在某路桥公司曾经负责过某项目部的测量工作。

大家都知道,测量最主要的就是计算了,如坐标、高程、横坡度等。

我现在给大家推荐一款我自己编制的关于测量计算的excel模板.首先我会跟大家介绍一下模板的作用,然后再一一讲解此模板的制作过程.首先给大家看一下此模板的界面如下:也许大家咋一看,切~ 这算啥,我也会做这张表格,实在是太简单了.不错,如果仅仅是靠手动输入这样子的数字,也许只要懂一点点excle的人都会制作出这张表格吧。

不过,这张表格并不是你表面所看到的仅仅是几个数字而已,其内在的公式才是它的亮点。

也许这样讲大家还不是很清楚,我继续给大家截个图,看看它里面的公式是什么。

大家注意到上面的公式了吗,并不是仅仅是输入数字就完事的,它是一个自定义函数zb x(),那么后面的都是一样吗?完全正确,后面的都是自定义函数,它们分别是zby()、sqx()、hpz()、hpy()。

也许大家会问,恩,是不错,但是有什么用呢?那让我先给大家简述一下这个自定义函数的用法。

竟然是一个函数,那么它就必须要有一个自变量,这几个函数的自变量又是什么呢?其实这个模板里面所有函数的自变量只有一个,就是桩号。

什么意思?就是只要你给出任意一个桩号,都能得到其对应的坐标、中桩高程和横坡度.假设我们要K38+000~K38+200段落内每隔20M一个断面所有点的坐标、中桩高程、以及左右横坡。

我就用这个模板给大家演示一下(此模板暂时数据只针对黄祁高速公路六标项目部)。

先在桩号那一列把K38+000~K38+200输入进去,可不要真的把字母“K”和加号“+”给输进去,只用输入纯数字就行了,否则计算会出错,之所以在模板里显示的是那样子,只不过是自定义的单元格式而已。

第二步剩下的仅仅就是拖动公式了,后面的都是公式,所以可以一起拖下来,先选定后面的所有单元格,然后向下直接拖动至最后,那么你需要的数据就全部出来了。

道路曲线高程计算公式

道路曲线高程计算公式

高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:。

缓和曲线)计算公式

缓和曲线)计算公式

高速公路的线路(缓和曲线)计算公式一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y ②待求点的切线方位角:αT计算过程:。

高速公路的一些线路坐标、高程计算公式

高速公路的一些线路坐标、高程计算公式

高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

高速公路缓和曲线中桩坐标计算方法

高速公路缓和曲线中桩坐标计算方法

高速公路缓和曲线中桩坐标计算摘要:本文讲解了在利用全站仪进行缓和曲线中桩放样时,缓和曲线的基本形和卵形两种情况下中桩坐标计算的方法。

关键词:缓和曲线,基本形,卵形,中桩坐标计算随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。

目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPS RTK的坐标放样功能就可很方便、快捷地完成实地放样。

道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。

下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。

缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。

一、基本形曲线中桩坐标计算:1、对于第一缓和曲线及圆曲线段(ZH~YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。

先计算曲线各点在曲线坐标系下的坐标。

⑴对于第一缓和曲线段(ZH~HY)内任一点i(此时L=K i-K ZH)若圆曲线半径R≥100m时,则X i′=L-L5/(40R2L s12) 公式①Y i′=L3/(6RL s1) 公式②若圆曲线半径R<100m时,则X′=L-L5÷[40(RL S)2]+L9÷[3456(RL S)4]–L13÷[599040(RL S)6]+L17÷[175472640(RL S)8]- L21÷[7.80337152×1010(RL10](公式③)S)Y′=L3÷[6(RL S)] - L7÷[336(RL S)3]+L11÷[42240(RL S)5] - L15÷[9676800(RL S)7]+L19÷[3530096640(RL S)9] - L23÷[1.8802409472×1012(RL S)11](公式④)⑵对于圆曲线段(HY~YH)上任一点iX i′=q+Rsin¢iY i′=R(1-cos¢i)+pL=K i-K ZH¢i=(L- L s1)*180/(Rπ)+β0内移值P=L s12/(24R)切线增值q= L s1/2- L s13/(240R2)综合⑴、⑵,根据不同坐标系的相互转换,可得ZH~YH上任一点i的中桩测量坐标为:X i=X ZH+cosA×X i′-sinA×f×Y i′(公式⑤)Y i= Y ZH+sinA×X i′+cosA×f×Y i′(公式⑥)式中f为线路的转向系数,右转时f=1,左转时f=-1 。

道路曲线计算公式

道路曲线计算公式

高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

缓和曲线计算公式

缓和曲线计算公式

高速公路的线路(缓和曲线)计算公式一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:1②圆曲线的半径:R③缓和曲线的长度:1。

④转向角系数:K(1或一1)⑤过ZH点的切线方位角:⑥点ZH的坐标:xz, y:计算过程:= (工-亠)K6RL 3361JR 54 OR 吒 3456R1⑶ O^ = axctg —+ n.-180冶I4]S=屈十垃⑸ q=y 90I6]X1 = ScosC^(7] y x = Ssina t(8) x = X1 + Xr旧说明:当曲线为左转向时,K 二1,为右转向时,K 二-1, 公式中n 的取值如下:当计算第二缓和曲线上的点坐标时,则:1为到点HZ 的长度a 为过点HZ 的切线方位角再加上180°K 值与计算第一缓和曲线时相反x :, y 二为点HZ 的坐标7 ■二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH 点的长度:1②圆曲线的半径:R③ 缓和曲线的长度:lo 切线角计算公式: I 52R T④转向角系数:K(1或一1)⑤过ZH点的切线方位角:a⑥点ZH的坐标:x:, y:计算过程:[|]2』⑵已)R兀⑵尸——「24R 26SSR3(3)m=^-- +^—2 24OR2 34560丈14]禺二[R(l—cosCl')+p]K(5)y0 = RsinCl 如(6以二arctg如+ml80Xo⑺s二J M+朮(毗二q+a-90(9)x x= Scos(\(10]y x= SsinG,!(I O K=X X+X I忆说明:当曲线为左转向时,K二1,为右转向时,K二-1, 公式中n的取值如下: 当只知道HZ点的坐标时,则:1为到点HZ的长度a为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反X:,穴为点HZ的坐标Q三、曲线要素计算公式12⑴缓曲段任意点转角值:E =2Rlo⑵曲线段任意点转角值:6 = ^^1 = -(P1+P2)L2R1R2 2⑶第一缓曲段总转角值:矗=符⑷第二缓曲段总转角值:內=彩3 F冷 +—-—2 240於34560R"⑸第一曲线顺移量5严屯-⑹第二曲线顺移量:恥=乜- 一E R +—2 240# 34560R⑺第-曲线平移童”施2S88,(8)第二曲线平移童;P2 = ,24R 2688R3⑼第一切线长;T1 = m^ + l(P1 + p2 + 2R)tg- + ini 2辭2 22阿第二切线长;T2=PCPl + £(P1 + P2 + 2R)t g- + m2 2t g°2 22(ID曲线全长度;L = Ra + -(i1+]2)2(12)圆曲线长£:Lo = Rc(-i(L1 + i2) 2個曲线段长度;].=£「=竺些P朵寺闯比]鬼3ZX • CR坳偏禽缓曲D的边势曲线檢度::1=A1 + D^、_公式中各符号说明:1一一任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)11一一第一缓和曲线长度1=一一第二缓和曲线长度10一一对应的缓和曲线长度R—一圆曲线半径R:一一曲线起点处的半径R:一一曲线终点处的半径Pi——曲线起点处的曲率P:——曲线终点处的曲率a一一曲线转角值四、竖曲线上高程计算己知:①第一坡度:h(上坡为“ + ”,下坡为“一”)②第二坡度:込(上坡为“ + ”,下坡为“一”)③变坡点桩号:S:④变坡点高程:比⑤竖曲线的切线长度:T⑥待求点桩号:S(2]R = • • 12 一 la1+—R (ia+iz )B 〕H =压 + L—2R ―丄-扌 Ri 厶第一横坡:i : 第二横坡:i:过渡段长度:L 待求处离第二横坡点(过渡段终点)的距离:xT T⑴耳-期带有符号)2T求:待求处的横坡:i解:d二x/Li二(i厂ij (1-3孑+2占)+血六、匝道坐标计算己知:①待求点桩号:K②曲线起点桩号:Ko③曲线终点桩号:K:④曲线起点坐标:xo,y0⑤曲线起点切线方位角:⑥曲线起点处曲率:P。

高速公路平面坐标计算公式

高速公路平面坐标计算公式

高速公路平面坐标计算公式A-回旋曲线参数”HXCS”B-转角值”ZJZ”C-判断是否继续计算?D-直线段方位角”FWJ”E-外矢距F-缓圆点桩号”HY”G-缓和曲线角H-曲线段内点的切线角,如在缓和曲线段内β=(P-M)2/2A2I-逐桩步长(即每多少米计算一个断面,用于逐桩计算。

I=0表示单次计算)J-导线点N坐标”DXD-N”K-导线点E坐标”DXD-E”L-缓和曲线长M-直缓点桩号”ZH”N-缓直点桩号”HZ”O-导线点桩号”DXD”P-待求点桩号”DQD”Q-曲线长R-圆曲线半径”RAD”S-切线加长T-切线长U-待求点边桩N坐标”BZ-N”V-待求点边桩E坐标”BZ-E”W-中边距”ZBJL”X-待求点中桩N坐标”DQD-N”Y-待求点中桩E坐标”DQD-E”Z-圆曲线相对切线内移量************************************************************ 计算方法:先根据桩号位置判断所在计算区间,然后调入相应区间的计算参数,进行计算。

把各个区间的参数做成对应的子程序集,调入相应区间的计算参数其实就是调用相应的子程序,对计算参数进行初始化。

注意:变量初始化和新的变量覆盖原变量的问题。

(专用符号:)缓和曲线特征:ρl= RL=A 2************************************************************ 计算过程:一、第一直线段直接通过里程差和方位角计算待求点的中、边桩坐标。

二、第一缓和曲线段采用以ZH 点(直缓点)为原点,以通过该点的切线方向为Y轴,法线为X 轴,建立直角坐标系,计算中桩坐标。

边桩,以过待求点的切线方位角β=L 2/2A 2,(其中,L 为待求点到ZH 点的里程,A 为缓和曲线参数)可以计算出边桩的方位角和坐标,再转换成大地坐标系坐标。

三、圆曲线段采用以过HY 缓圆点的切线为Y 轴,以该点的法线为X 轴,建立直角坐标系,计算圆曲线段内各点的中、边桩坐标,再转换成大地坐标系坐标。

高速公路路线坐标计算

高速公路路线坐标计算

关于高速公路施工测量中的坐标计算摘要:在高速公路施工测量中经常遇会到关于坐标的计算问题,本文主要介绍路线中桩坐标、与已知点左右幅有一定距离的点的坐标计算,两套坐标系的旋转与平移计算。

关键词:方位角、直线、圆曲线、缓和曲线、坐标计算一、方位角:即路线某一直线方向与正北方向的夹角(由正北方向起按顺时针方向旋转到该直线方向的夹角),通常用θ表示。

N(X)如图所示:JD1~JD2的方位角用θ1表示;JD2~JD3的方位角用θ2表示;路线的转角α等于后一方位角与前一方位角之差。

α=θ2-θ 1 2当α为正时路线右转即α=αy;当α为负时,路线左转即α=αz,方位角α在大地直角坐标中也称为坐标方位角。

直线的方向(即方位角)按下式计算:β=tan-1(Δy /Δx)=tan-1((y2-y2)/ (x2-x1))路线的方位角θ按下式计算:第一象限:Δx>0,Δy>0,θ=β第二象限:Δx<0,Δy>0,θ=180°-β第三象限:Δx<0,Δy<0,θ=180°+β第四象限:Δx<0,Δy<0,θ=360°-β二、直线段上各桩号点坐标的计算:1、已知在直线段上A点桩号、B点桩号两点的坐标A(X A,Y A)、B(X B,Y B),求C点桩号的坐标。

根据(一)式可求出AB 的方位角θ,即X C=X B+S*cosθ A B C 路线前进方向Y C=Y B+S*sinθ其中S为C点桩号与B点桩号之间的距离。

2、已知A,C1,C2都在直线段上,A点桩号坐标(X A,Y A),A点的坐标方位角为θA,求C1、C2点桩号的坐标及方位角。

C2 A C1 路线前进方向其中AC1=S1,AC2=S2;则C1点的坐标:X C1=X A+S1*cosθAY C1=Y A+S1*sinθAC2点的坐标:X C2=X A+S1*cos (θA+180°)Y C2=Y A+S1*sin (θA +180°)3、已知在直线段上A点桩号的坐标A(X A,Y A)及其坐标方位角θ,B点在A点的左侧,距A点的距离为S1, C点在A点的右侧,距A点的距离为S2,如图示:求已知:AB=S1,AC=S2, 则: CC点的坐标:X C=X A+S2*cos (θ+θ 2 )Y C=Y A+S2*sin (θ+θ 2 )B点的坐标:X b=X A+S1*cos(θ-θ 1 )Y b=Y A+S1*sin(θ-θ 1 )三、圆曲线上各桩号点坐标的计算:1、已知圆曲线上任一点坐标A(X A,Y A),坐标方位角θA,B点桩号,圆曲线半径R。

高速公路坐标计算方法

高速公路坐标计算方法

高速公路坐标高程计算程序本软件简要说明:一、平曲线计算(主程序)1、J为起算点里程,C、D为起算点的X、Y坐标,F为起算点的切线方位角,R为圆曲线半径(左偏取负,右偏取正),A、B为第一、第二缓和曲线回旋参数,O为圆曲线长度,Ki为该分段的终点里程;2、对于直线段或圆曲线段,起算点可取直线或圆曲线上的任意一点;3、对于带第一、第二缓和曲线的平曲线段,起算点应取HY点;4、K为所求点的里程,T、P为第一偏距、偏角,S、Z为第二偏距、偏角,偏角取从该点的切线顺时针旋转的夹角;5、分段法则:直线单独分段;单一的圆曲线单独分段;缓和曲线1+圆曲线+缓和曲线2为一个整体单独分段,若不存在第一或第二缓和曲线(即不完全缓和曲线)仍然可以计算,A或B可取任意不为零的值;若不存在圆曲线,则O取零;6、无论任何时候A、B不能取零,否则可能导致被零除的错误;7、F、Q切线方位角输入输出均为度.分秒的格式,例如153°24′05.24″=153.240524。

Q改变时,可按照新方位角为基准,结合第一第二偏距、偏角重新计算所求点;8、输入平曲线参数后,默认为计算全线坐标,可修改来计算某段曲线,默认间距也可修改;9、可参考CAD图《平曲线计算图例》;10、生成的中桩CAD脚本设置成在世界坐标系下生成,注意的是世界坐标系与大地测量坐标系的区别是XY坐标是互换的,否则画出的图形与实际相反。

先打开CAD,设置好图层名称、颜色,并设置为当前层,然后单击CAD的工具==>运行脚本==>选中生成的脚本文件即可。

11、输出的坐标结果可以导入到EXCEL中,操作办法为:打开EXCEL,然后把坐标数据复制到单元格里,然后单击数据==>分列==>选中分隔符号==>下一步==>选中TAB键和逗号==>下一步==>完成即可。

下一次可直接在此表中粘贴,数据自动分列。

二、缓和曲线计算(辅助程序)1、本程序为辅助程序,用来从ZH点或HZ点计算整条完全的缓和曲线,若不知道HY点X、Y、Q参数,可用此程序计算出来,然后输入平曲线参数;2、参数设置参考平曲线计算;3、导出到EXCEL的办法同平曲线计算;三、直线计算(辅助程序)1、本程序为辅助程序,若已知P1(X1,Y1),P1-->P2的距离I及方位角J(度.分秒格式),可计算坐标P2(X2,Y2)。

高速公路测量数据计算公式

高速公路测量数据计算公式

高速公路测量数据计算公式随着交通建设的不断发展,高速公路的建设和维护变得越来越重要。

在高速公路建设和维护过程中,测量数据的准确性和可靠性对于工程设计和施工至关重要。

因此,高速公路测量数据的计算公式成为了工程师们必须要掌握的重要知识之一。

高速公路测量数据的计算公式涉及到多个方面的知识,包括距离测量、高程测量、坡度计算等。

下面将分别介绍这些方面的计算公式。

1. 距离测量。

在高速公路建设和维护过程中,距离测量是非常重要的一项工作。

常用的距离测量方法有全站仪测量、GPS测量等。

在实际测量中,我们需要根据测量仪器的读数和测量点的坐标来计算两点之间的距离。

距离测量的计算公式如下:距离 = √((X2-X1)² + (Y2-Y1)² + (Z2-Z1)²)。

其中,(X1, Y1, Z1)和(X2, Y2, Z2)分别表示两个测量点的坐标,距离的单位通常为米。

2. 高程测量。

高程测量是指在测量过程中确定某一点的高程值。

常用的高程测量方法有水准测量、GPS测量等。

在实际测量中,我们需要根据测量仪器的读数和已知点的高程值来计算待测点的高程值。

高程测量的计算公式如下:高程差 = 高程测量仪读数已知点高程值。

3. 坡度计算。

在高速公路建设中,坡度是一个非常重要的参数。

坡度的大小直接影响着车辆行驶的舒适度和安全性。

坡度的计算通常需要根据已知的高程差和水平距离来进行。

坡度计算的公式如下:坡度 = 高程差 / 水平距离。

通过以上介绍,我们可以看到,高速公路测量数据的计算公式涉及到多个方面的知识,包括距离测量、高程测量、坡度计算等。

在实际工程中,工程师们需要根据具体的测量任务来选择合适的测量方法和计算公式,并且需要结合实际情况进行合理的调整和修正。

只有掌握了这些测量数据的计算公式,工程师们才能够保证高速公路建设和维护工作的顺利进行,从而为社会的发展做出贡献。

总之,高速公路测量数据的计算公式是高速公路建设和维护工作中不可或缺的重要知识之一。

高速公路坐标计算公式

高速公路坐标计算公式

高速公路线路(缓和曲线、竖曲线、圆曲线、匝道) 坐标计算公式高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

高速公路曲线、匝道的坐标、高程计算公式

高速公路曲线、匝道的坐标、高程计算公式

高速公路曲线、匝道的坐标、高程计算公式一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。

方位角及坐标计算

方位角及坐标计算

方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(k0~zh):f=arctgδy/δx备注:直线方位角必须考量象限角就可以厘定恰当线路迈向2、第一缓解曲线段(kzh~khy):δ1=(k0-kzh)2/(2rlh)×180/π3、圆曲线段(khy~kyh):δ2=[2(k0-kzh)-lh]/2r×180/πδ2=(khy-kzh)/2r×180/π+(k0-khy)/r×180/π无缓和曲线时:δ2=(k0-khy)/r×180/π(即圆曲线圆心角)4、第二缓和曲线段(kyh~khz):δ3=(khz-k0)2/(2rlh)×180/π5、第二直线段(khz~kzh):f±α(左偏时f-α,右偏时f+α)备注:k0――排序点的程α――曲线交点偏角lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算xzh=xjd-t?cosfxhz=xjd+t?cos(f±α)yzh=yjd-t?sinfyhz=yjd+t?sin(f±α)1、第一直线段:x=xzh+(k0-kzh)?cosf中桩y=yzh+(k0-kzh)?sinfx边=x中±b?cos(f-δ)边桩y边=y中±b?sin(f-δ)备注:b――中桩至所求点的距离(左幅时为+b,右幅时为-b,当设计轴线与线路不横向时b取斜短,即b/sinδ)设计轴线线路方向。

bδ图s-12、第一缓和曲线段:xx=xzh-y′?sinθ+x′?cosθxx′x′中桩′y=yzh+y′?cosθ+x′?sinθyzhyθhzx边=x中±b?cos(f+μδ1-δ)hyyh边桩y边=y中±b?sin(f+μδ1-δ)jdy′注:(本公式只适用与图s-2线形)图s-2μ――曲线左转为-1,右转为+1θ――线路方位角与y轴所缠的锐角,见到图s-2y′=l-l5/(40r2lh2);x′=l3/(6rlh)-l7/(336r3lh3);(r―圆曲线半径,l―缓解曲线就任一点至曲线起点长度)3、圆曲线段:x=xhy+2r?sinφ?cos(f+μ(ξ+φ))中桩y=yhy+2r?sinφ?s in(f+μ(ξ+φ))x边=x中±b?cos(f+μδ2-δ)边桩y边=y中±b?sin(f+μδ2-δ)备注:φ=(k0-khy)/2r×180/π;ξ=(khy-kzh)/2r×180/π4、第二缓解曲线段:x=xhz-y′?sinθ+x′?cosθ中桩y=yhz-y′?cosθ-x′?sinθx边=x中±b?cos(f+μδ1-δ)边桩y边=y中±b?sin(f+μδ1-δ)注:1、本公式只适用于与图s-2线形,其他线形可以根据本线形公式转换2、式中符号与第一缓解曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:x=xhz+(k0-khz)?cos(f±α)中桩y=yhz+(k0-khz)?sin(f±α)x边=x中±b?cos(f±α-δ)边桩y边=y中±b?sin(f±α-δ)备注:f――第一直线段的方位角(三)用casiofx-4500p计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标x、y)pol(x-xhz,y-yhz):k=v?cos(f-w)+khzb=v?sin(f-w)备注:1、在fx-4500p中计算结果取走变量储存区v和w,必须表明储存区内容时按rclv、w键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速公路坐标高程计算程序
本软件简要说明:
一、平曲线计算(主程序)
1、J为起算点里程,C、D为起算点的X、Y坐标,F为起算点的切线方位角,R为圆曲线半径
(左偏取负,右偏取正),A、B为第一、第二缓和曲线回旋参数,O为圆曲线长度,Ki为该
分段的终点里程;
2、对于直线段或圆曲线段,起算点可取直线或圆曲线上的任意一点;
3、对于带第一、第二缓和曲线的平曲线段,起算点应取HY点;
4、K为所求点的里程,T、P为第一偏距、偏角,S、Z为第二偏距、偏角,偏角取从该点的
切线顺时针旋转的夹角;
5、分段法则:直线单独分段;单一的圆曲线单独分段;缓和曲线1+圆曲线+缓和曲线2为一
个整体单独分段,若不存在第一或第二缓和曲线(即不完全缓和曲线)仍然可以计算,A或B可取任意不为零的值;若不存在圆曲线,则O取零;
6、无论任何时候A、B不能取零,否则可能导致被零除的错误;
7、F、Q切线方位角输入输出均为度.分秒的格式,例如153°24′05.24″=153.240524。

Q改变时,可按照新方位角为基准,结合第一第二偏距、偏角重新计算所求点;
8、输入平曲线参数后,默认为计算全线坐标,可修改来计算某段曲线,默认间距也可修改;
9、可参考CAD图《平曲线计算图例》;
10、生成的中桩CAD脚本设置成在世界坐标系下生成,注意的是世界坐标系与大地测量坐标系
的区别是XY坐标是互换的,否则画出的图形与实际相反。

先打开CAD,设置好图层名称、颜色,
并设置为当前层,然后单击CAD的工具==>运行脚本==>选中生成的脚本文件即可。

11、输出的坐标结果可以导入到EXCEL中,操作办法为:打开EXCEL,然后把坐标数据复制到
单元格里,然后单击数据==>分列==>选中分隔符号==>下一步==>选中TAB键和逗号==>下一步
==>完成即可。

下一次可直接在此表中粘贴,数据自动分列。

二、缓和曲线计算(辅助程序)
1、本程序为辅助程序,用来从ZH点或HZ点计算整条完全的缓和曲线,
若不知道HY点X、Y、Q参数,可用此程序计算出来,然后输入平曲线参数;
2、参数设置参考平曲线计算;
3、导出到EXCEL的办法同平曲线计算;
三、直线计算(辅助程序)
1、本程序为辅助程序,若已知P1(X1,Y1),P1-->P2的距离I及方位角J(度.分秒格式),可计算坐标P2(X2,Y2)。

四、方位角计算
1、已知两点的坐标,可计算P1-->P2的距离及方位角;
2、角度可以进行加减运算。

(单位:度.分秒格式)
五、竖曲线计算(主程序)
1、J为起算点里程,Y为起算点的高程,R为圆曲线半径(取绝对值),E、F为第一、
第二坡度,不带%号,例如2.5%的坡度就输入2.5,上坡取正值,下坡取负值;
2、K为所求点的里程,T为边桩到设计高程点的斜距,I为横坡,向外流水取正,
向中心流水取负,G为边桩的高程;
3、分段法则:以两竖曲线之间直线段中间的任意一点为分界,如上图中的K1、K2、K3;注意分离式路基一般要单独分段,分段时如果从起点就开始变坡,第一个分段起点必须
与终点里程应相同或小1毫米,否则程序不能计算第一个分段的横坡;
4、无论任何时候R不能取零,否则可能导致被零除的错误;
5、可参考CAD图《竖曲线计算图例》;
6、导出到EXCEL的办法同平曲线计算;
六、特征点计算(辅助程序)
1、特征点辅助计算功能,是用来计算对称的完全缓和曲线的,如果特征点里程与图纸不符,必须查明原因,比如是由断链或者不完全缓和曲线引起的。

七、其他说明
1、本程序是在WINXP下编译的,如果在WIN98、WIN2000下运行提示少DLL文件的话可以从网
上下载,拷贝到%windir%\system及system32目录,并用示例的格式来注册。

2、本软件由雨丝男(QQ32964779)和陈晓猫(QQ43308724)共同编写完成,有错误欢迎指正。

EMAIL:liuzhao3@。

遥想当年光明顶上,碧水潭畔,紫衫如花,长剑胜雪,不知倾倒了多少豪杰。

——刘钊
2005-4-12
1.2版更新:
1、增加了直线上两点的方位角的计算;
2、增加了“生成PENTAX R-322N型全站仪文件”的按钮,生成的文件可直接导入全站仪;
3、通过Round()函数修正了各模块中切线方位角Q可能出现类似314.5960(60秒)的Bug;
4、在Win ME以下的操作系统中,由于该软件使用了CommonDialog的控件来进行文件输入输出,
可能要利用程序提供的“注册控件comdlg32.ocx”批处理文件来注册CommonDialog控件,并安装VB6.0的运行库支持文件,否则程序可能运行不正常;
1.3版更新:
1、软件界面更改成标签样式,更直观;
2、默认可计算全线坐标、高程;
3、生成CAD中桩坐标设置在世界坐标系下生成;
1.4版更新:
1、坐标高程可以直接导出到Excel文件,当断面较少时可以导出到Excel文件,注意断面较多时
导出到Excel用的时间较长;
1.43版更新:
1、增加了直线及角度加减辅助计算功能。

1.44版更新:
1、修正了角度转换及角度加减为负数时的错误。

2、增加了直线计算中P1、P2点坐标拷贝功能。

1.5版更新:
1、增加了特征点辅助计算功能,用来计算对称的完全缓和曲线。

2、由于窗体上控件总数超过了255,把大部分的label改成了控件数组。

1.51版更新:
1、增加了取ZY点(直圆点)坐标方位角功能,用来计算直线直接接圆曲线时的特征点计算。

2、取ZH点(直缓点)、ZY点(直圆点)、HY点(缓圆点)的同时把分段终点里程计算出来,
如果与实际不相符要查明原因并修改。

3、再次声明的是缓1+圆+缓2是作为一个整体进行计算的,只要知道起算点(HY点)的坐标方位角及
圆半径R,回旋参数AB,圆曲线长O就可以计算缓1+圆+缓2上面的任意一点,分段的终点就是HZ点或公切GQ点。

4、增加了根据交点参数生成平曲线参数的功能(仅供参考),把生成的平曲线参数载入到平曲线
计算页面就可以计算整条线路的中边桩坐标。

注意该功能预设的全线计算起点是第一个交点里程K1,把第一个交点K1到K1+T1之间的线型当成直线
来计算的,如果与设计不符要修改起点里程。

对于匝道类的不完全缓和曲线分段起点或终点等参数要改成与实际相符。

对于有断链情况,需要在断链处断开并处理。

实际里程短于设计里程叫短链;
实际里程长于设计里程叫长链。

长链会出现两个一模一样的桩号,注意这两个桩号的坐标是不一样的。

短链就不一样了,你会发现中间会少一段。

用自动生成的平曲线参数计算坐标时,一定要进行复核,复核的方法很简单:
把生成的平曲线参数载入到平曲线计算页面→生成中桩的CAD脚本文件→打开CAD→工具→运行脚本→
选中生成的脚本文件→zoom→all,中桩一定很平顺,如果有某个地方断开,一定要查明原因并修改参数。

例如交点参数中圆半径R=4000,左偏要取-4000,右偏取+4000,看看是否忽略了正负号。

1.52版更新:
1、导出中桩坐标CAD脚本增加了Z=K和Z=0两个选项,Z=K可以在CAD中看到里程,Z=0的时候计算平面面积(比如地界)很方便。

2、高程计算中起算点名字直接改成交点,避免误解。

3、注意坐标计算有两种方法:交点法和线元法。

交点法适用于对称的完全缓和曲线,就是先在特征点计算标签中输入各交点坐标及曲线要素==>
生成平曲线参数==>在平曲线标签中导入==>计算坐标。

线元法适用于线形复杂的任意曲线,比如含有不完全缓和曲线的匝道,按照分段原则,
先逐段输入各段起算点的坐标方位角及曲线要素==>保存==>计算坐标。

相关文档
最新文档