七年级数学下册 第二章回顾与反思教案 北师大版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回顾与反思教学设计

教学设计思想:

本节为一堂复习课;教师可以从现实生活中导入课题,以问题的形式帮助学生总结本章的内容,在学生充分思考、交流的基础上,引导学生梳理本章的结构框架,再通过练习的形式对内容加以巩固.

一、教学目标

(一)知识与技能

1.熟记补角、余角、对顶角的概念及其性质.

2.掌握平行线的特征.

3.掌握平行线的条件.

4.利用尺规作简单的图形.

(二)过程与方法

1.通过复习进一步巩固对补角、余角、对顶角的掌握.

2.通过复习掌握直线平行的条件以及平行线的特征,并会应用它们去说理.

(三)情感、态度与价值观

1.经历观察、操作、想象、交流等过程,进一步发展学生的空间概念.

2.进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实.

二、教学重难点

(一)教学重点

运用补角、余角的性质解决问题;运用直线平行的条件及平行线的特征解决实际问题.

(二)教学难点

几何语言的理解以及用自己的语言表述理由,书写自己的理由.

三、教具准备

投影片.

四、教学方法

小组讨论法.

五、教学安排

1课时.

六、教学过程

Ⅰ.创设情景,引入新课

[师]平行线、相交线在现实生活中随处可见,同时它们又构成同一平面内两条直线的基本位置关系.在这一章里,我们探索了平行线、相交线的有关事实,并以直观认识为基础进行简单的说明,将直观与简单的推理相结合,且借助平行的有关结论解决一些简单的实际问题.

下面我们以问题形式来顺理本章的有关内容.

Ⅱ.讲授新课

[师]现在同学们独自思考下列问题,并回答.

1.生活中有哪些平行线和相交线的例子?

2.两条直线相交,至少有几对相等的角?

3.判断两条直线是否平行,通常有哪些路径?

4.平行线有哪些特征?

[生甲]生活中平行线和相交线的例子很多;如:立交桥、房屋等等.

[生乙]两条直线相交,形成两对对顶角.这两对对顶角相等,所以,两条直线相交,至少有两对角相等.

[生丙]判断两条直线平行的途径有:

(1)定义;(2)两条直线都和第三条直线平行,则这两条直线相互平行;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行.

[生丁]:平行线的特征:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.

下面我们用一个知识框图来表述这一章的内容(幻灯片展示图片——知识结构)

Ⅲ.课堂练习

例1.已知:如图5,AB∥CD,求证:∠B+∠D=∠BED。

分析:可以考虑把∠BED变成两个角的和。如图5,过E点引一条直线EF∥AB,则有∠B=∠1,再设法证明∠D=∠2,需证

EF∥CD,这可通过已知AB∥CD和EF∥AB得到。

证明:过点E作EF∥AB,则∠B=∠1(两直线平行,内错角相等)。

∵AB∥CD(已知),

又∵EF∥AB(已作),

∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠D=∠2(两直线平行,内错角相等)。

又∵∠BED=∠1+∠2,

∴∠BED=∠B+∠D(等量代换)。

变式1:已知:如图6,AB∥CD,求证:∠BED=360°-(∠B+∠D)。

分析:此题与例1的区别在于E点的位置及结论。我们通常所说的∠BED都是指小于平角的角,如果把∠BED看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。因此,我们模仿例1作辅助线,不难解决此题。

证明:过点E作EF∥AB,则∠B+∠1=180°(两直线平行,同旁内角互补)。

∵AB∥CD(已知),

又∵EF∥AB(已作),

∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠D+∠2=180°(两直线平行,同旁内角互补)。

∴∠B+∠1+∠D+∠2=180°+180°(等式的性质)。

又∵∠BED=∠1+∠2,

∴∠B+∠D+∠BED=360°(等量代换)。

∴∠BED==360°-(∠B+∠D)(等式的性质)。

变式2:已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。

分析:此题与例1的区别在于E点的位置不同,从而结论也不同。模仿例1与变式1作辅助线的方法,可以解决此题。

证明:过点E作EF∥AB,则∠FEB=∠B(两直线平行,内错角相等)。

∵AB∥CD(已知),

又∵EF∥AB(已作),

∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠FED=∠D(两直线平行,内错角相等)。

∵∠BED=∠FED-∠FEB,

∴∠BED=∠D-∠B(等量代换)。

变式3:已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。

分析:此题与变式2类似,只是∠B、∠D的大小发生了变化。

证明:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁内角互补)。∵AB∥CD(已知),

又∵EF∥AB(已作),

∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠FED+∠D=180°(两直线平行,同旁内角互补)。

∴∠1+∠2+∠D=180°。

∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质)。

∴∠2=∠B-∠D(等式的性质)。

即∠BED=∠B-∠D。

例2.已知:如图9,AB∥CD,∠ABF=∠DCE。求证:∠BFE=∠FEC。

证法一:过F点作FG∥AB,则∠ABF=∠1(两直线平行,内错角相等)。

过E点作EH∥CD,则∠DCE=∠4(两直线平行,内错角相等)。

∵FG∥AB(已作),AB∥CD(已知),

∴FG∥CD(平行于同一直线的两条直线互相平行)。

又∵EH∥CD(已知),

∴FG∥EH(平行于同一直线的两条直线互相平行)。

∴∠2=∠3(两直线平行,内错角相等)。

∴∠1+∠2=∠3+∠4(等式的性质)

即∠BFE=∠FEC。

证法二:如图10,延长BF、DC相交于G点。

∵AB∥CD(已知),

∴∠1=∠ABF(两直线平行,内错角相等)。

又∵∠ABF=∠DCE(已知),

∴∠1=∠DCE(等量代换)。

∴BG∥EC(同位角相等,两直线平行)。

∴∠BFE=∠FEC(两直线平行,内错角相等)。

如果延长CE、AB相交于H点(如图11),也可用同样的方法证明(过程略)。

相关文档
最新文档