材料分析化学课件 第九章 吸光光度法1(采用)
分析化学吸光光度法
3. 稀溶液
浓度增大,分子之间作用增强
18
亚甲蓝阳离子 单体 max= 660 nm 二聚体 max= 610 nm
(nm)
亚甲蓝阳离子水溶液的吸收光谱 a. 6.36×10-6 mol/L b. 1.27×10-4 mol/L c. 5.97×10-4 mol/L
二聚体的生成破坏 了A与c的线性关系
It
s
b dx
A=lg(I0/It)=k1b
比尔定律(1852)
A=lg(I0/It)=k2c
A=lg(I0/It)=kbc
吸光度
介质厚 度(m)
12
T-透光率(透射比)
(Transmittance)
T=
It I0
A = lg (I0/It) = lg(1/T) = -lgT = kbc
-kbc -A T = 10 = 10
7
光学光谱区
远紫外
(真空紫外)
近紫外 可见
近红外
中红外
远红外
10nm~200nm 200nm ~380nm
380nm 780 nm ~ 780nm ~ 2.5 m
2.5 m ~ 50 m
50 m ~300 m
8
3. 溶液中溶质分子对光的吸收与吸收光谱
不同颜色的可见光波长及其互补光
/nm
19
朗伯-比尔定律的分析应用
溶液浓度的测定
A= bc
0.8
A
工作曲线法
0.6 0.4 0.2 0
*
(校准曲线)
0
1
2
3
4
mg/ml
20
6. 吸光度的加和性与吸光度的测量 A = A1 + A2 + … +An
第章:吸光光度法PPT课件
(4) 为克服非单色光引起的偏离,首先应选择比较好的单色 器。此外还应将入射波长选定在待测物质的最大吸收波长且吸 收曲线较平坦处。
.
29
(2) 化学性因素
• 朗—比耳定律的假定:所有的吸光质点之间不发生相互 作用;假定只有在稀溶液(c<10-2mol/L)时才基本符合。
当溶液浓度c >10 -2 mol/L 时,吸光质点间可能发生缔合
等相互作用,直接影响了对光的吸收。 • 故:朗伯—比耳定律只适用于稀溶液。
溶液中存在着离解、聚合、互变异构、配合物的形成等 化学平衡时。使吸光质点的浓度发生变化,影响吸光度。 • 例: 铬酸盐或重铬酸盐溶液中存在下列平衡:
CrO42- +2H+ = Cr2O72- +H2O 溶液中CrO42-、 Cr2O72-的颜色不同,吸光性质也不相 同。故此时溶液pH 对测定有重要影响。
λmax处吸光度A 的差异最大。此特性可作为物质定量分析的依据。
(5)在λmax处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸
收曲线是定量分析中选择入射光波长的重要依据。
.
15
定性分析与定量分析的基础
定性分析基础
物质对光的选择 吸收
定量分析基础 在一定的实验条 件下,物质对光 的吸收与物质的 浓度成正比。
白光(太阳光):由各种单色光组成的复合光
单色光:单波长的光(由具有相同能量的光子组成)
可见光区:400-750 nm
紫外光区:近紫外区200 - 400 nm
远紫外区10 - 200. nm (真空紫外区)
4
与物质作用
电场向量 Y
Z 磁场向量
.
X 传播方向
分析化学(第四版_高职高专化学教材编写组) 第九章 吸光光度法
第二节 吸光光度法的基本原理
一、物质对光的选择性吸收
(一)光的基本特性 1.电磁波谱:光是一种电磁波
10-2 nm 10 nm
射 线 x 射 线
102 nm 104 nm
紫 外 光 红 外 光
0.1 cm 10cm
微 波
103 cm
105 cm
无 线 电 波
可
见
光
2.可见光、单色光和互补色光
物质呈现不同的颜色其本质是对光的选择性吸收;
颜色深浅随浓度而变化是对光的吸收程度不同。
通过比较溶液颜色的深浅来测定物质的含量的方法,称为 目视比色法。
目前普遍采用分光光度计测量吸光度以代替比较颜色深浅, 应用分光光度计的分析方法称为分光光度法。 分光光度法根据物质对不同波长的单色光的吸收程度不同
进行定性和定量分析。按照研究的波谱区域不同,可分为:
分光光度法
紫外分光光度法——200-400nm
可见分光光度法—— 400-780nm 红外分光光度法——780-3.0×104nm
吸光光度法是基于物质对光的选择性吸收而建立起来的 分析方法。
吸光光度法
比色分析法 分光光度法
二、吸光光度法特点
理解分光光度计的基本结构和工作原理。
掌握定量分析方法和测量条件的选择。
能力目标 能绘制吸收曲线。 能正确选择显色条件和光度测量条件。 能应用吸光光度法对样品中的微量成分进行定量分析。
知识回顾
前面所学滴定分析和质量分析都属于化学分析法,适用于 含量高于1%常量组分的测定,测定结果的相对误差可控制在 0.2%以内。但不宜测定含量低于1%的微量成分。 实例:含Fe约0.05%的样品 称0.2 g试样, 则mFe≈0.1 mg
分析化学—— 吸光光度法
λ1 λ2 λ3 λ4 λ5
A1 A2 A3 A4 A5
17
KMnO4吸收曲线(吸收525nm的绿光而呈紫色)
吸收曲线的讨论:
(1)同一种物质对不同 波长光的吸光度不同。吸 光度最大处对应的波长称 为最大吸收波长λmax (2)对于不同物质,它们的吸收曲线形状和λmax则 不同。吸收曲线可以提供物质的结构信息,并作为 物质定性分析的依据之一。 (3)同一种物质、不同浓度时,其吸收曲线形状相 似、λmax不变;吸光度与浓度成正比。定量分析
例12–3 有一浓度为1.0μg • mL–1的Fe2+溶液,以邻 二氮菲显色后,用分光光度计测定,比色皿厚度为 2.0cm,在波长510nm处测得吸光度A=0.380,计算 该显色反应的吸光系数a和摩尔吸光系数ε。
(2) Fe2+的浓度用mol • L–1表示时, 1.0 10 3 g L-1 c 1.8mol L1 -1 55.85 g mol
(4)不同浓度的同一种 物质,在λmax处吸光度 随浓度变化的幅度最大, 所以测定最灵敏。此特 性可作为物质定量分析 的依据。
吸收曲线是定量分析 中选择入射光波长的重 要依据。
§12-2
光吸收的基本定律
1.朗伯—比耳定律***
当一束平行单色光通过任何均匀、非散射的固体、 液体或气体介质时,一部分被吸收,一部分透过介质,一 部分被器皿的表面反射则它们之间的关系为:
溶液的颜色由透射光的波长所决定。 透射光与吸收光为互补色光。 如CuSO4溶液因吸收了白光中的黄色 光的互补:蓝 黄 光而呈现蓝色
3. 吸收曲线
用不同波长的单色光照射某一物质测定吸光度 A(物质对光的吸收程度),以波长为横坐标,以吸光度 为纵坐标,绘制吸收曲线,可描述物质对不同波长光 的吸收能力。
分析化学吸光光度法M
0
1
溶 液
A1=lg(I0/I1)
I 0 I1
I0 I1 A2 lg lg I2 I2
一、目视比色法
用眼睛比较溶液颜色的深浅以测定物质含量的 方法。
标准系列法
优点 缺点
二、光度计的基本部件
光电比色法:使用光电比色计测定溶液吸光度进行 定量分析的方法。 分光光度法:——分光光度计——————。
不同仅在于获得单色光的方法:
光电:滤光片 分光:棱镜或光栅 优点:准确度高、选择性高、分析速度快
l l
工作曲线将偏 离比耳定律
2. 由于溶液中的化学反应引起的偏离 例: Cr2O72- + H2O 2H+ + 2CrO42(橙) (黄) 消除方法:使作工作曲线和测量时的条 件一致 3. 被测溶液浓度太大 消除方法:稀释溶液 4. 介质不均匀 消除方法:使溶液澄清、透明
§9-2 目视比色法及光度计的基本部件
p258 式(9-7)
结论: 不同透光度或吸光度下的分析误差是不同的。为了使分析误差 在2.0%以下,应控制读数T =10~70%(A=1.0~0.15)之间。
当T=36.8% (A=0.434)时,分析误差最小,约为1.4%。→
1.光源
2.单色器
3.吸收池
4.检测系统:
光电管、读数装置
光源
→
单色器
→
吸收池
→
检测系统
§9-3Βιβλιοθήκη 显色反应及显色条件的选择进行光度分析时,首先要把待测组分转变为有色化合物 显色反应:将待测组分转变为有色化合物的反应
(优选)分析化学课件吸光光度法
真正进入溶液部分的入射光
入射光 I0
透射光 It
[定义]: 透射比
T It I0
T 取值为0.0 % ~ 100.0 % 全部吸收 T = 0.0 % 全部透射 T = 100.0 %
T ↗,溶液对光的吸收 ↘; T ↘,溶液对光的吸收 ↗。
物质对光的吸收程度用吸光度A表示。实验 证明:A= f (C、b、[ Io] ) = lg Io/It = lg1/T=-lgT
(优选)分析化学课件吸光光 度法
1
[特点](与化学分析比较): a.灵敏(可测1%-10-3%微量组分,甚至10-4%-10-5%
微量组分) b.准确(Er=2%-5%) c.操作简便,快速(测微量) d.应用广(无机、有机均可测)
各类分析方法比较
分析方法 滴定分析法
重量分析法 吸光光度法
类别 化学分析法 仪器分析法
1.入射光为平行单色光且垂直照射; 2.均匀非散射体系; 3.吸光质点之间无相互作用 (稀溶液,C 0.01mol / L);
蓝绿 绿蓝
绿 黄绿 黄
橙
蓝 紫 紫红 红
物质的颜色
黄绿 黄 橙 红 紫红 紫 蓝 绿蓝 蓝绿
互补色
吸收光
颜色
波长范围( ,nm)
紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 橙 红
400-450 450-480 480-490 490-500 500-560 560-580 580-600 600-650 650-750
朗伯于1760年,发现:Ab,A K'b 比耳于1852年,发现:AC,A K''C
两者结合起来,得到朗伯—比尔定律:
A lg 1 KbC 朗伯-比耳定律 T
分析化学第九章吸光光度法ppt课件
所以:Beer’s Law 应在一 定的浓度范围内使用
ε1 不等于ε2不等于ε3 A不等于εbc A不与 c成线性关系
2.溶液本身的化学和物理因素引起的偏离 (1)溶液介质不均匀引起的 (2)溶液中的副反应发生而引起的
1.饱和法〔又称摩尔比法)
固定一种组分〔通常是金属离子M〕 的浓度,改变络合剂〔R〕的浓度, 得到一系列[R]/[M]比值不同的溶液, 并配制相应的试剂空白作参比液, 分别测定其吸光度。以吸光度A为纵 坐标,[R]/[M]为横坐标作图。
2.连续变化法(又称等摩尔系列法)
cM+cR=c,改变cM和cR的相对量, 配制一系列溶液,在有色络合物的最 大吸收波长处测量这一系列 溶液的吸 光度。当溶液中络合物 MRn浓度最 大时,cR/cM比值为n。 当cM/c为0.5 时,络合比为1:1;当cM/c为0.33, 络合比为1:2;
2.显色剂用量:显色剂过多有时会引起副反应,加 入量要严格控制,可通过实验确定。
3.温度:通过实验确定温度范围,通常在室温下进 行。
4.溶剂:一般螯合物在有机溶剂中溶解度大,提高 显色反应的灵敏度。如Cu(SCN)42-在水中大 部分离 解,几乎无色;在丙酮中呈蓝色。
5.显色时间:通过实验找出适宜的显色时间。 6.干扰组分:共存组分与显色剂生成有色络合物,
选择 ➢ 9.3.4 参比溶液的选择 ➢ 9.3.5 标准曲线的制作
9.3.1显色反应
1.定义:将待测组分转化成有色化合物的的反应。 M +L=ML
2.要求: (1〕选择性好; (2〕灵敏度高,>104; (3〕有色化合物ML要稳定,不分解; (4〕ML的组成要一定〔只ML无 MLn); (5〕ML与L颜色差别大,吸收峰波长差:
分析化学-吸光光度法
Analytical Chemistry 分析化学
2、物质对光选择性吸收的实质
一束光通过某物质时该物质的分子、原子或离子与 光子发生碰撞,光子的能量转移至分子、原子或离 子上,使这些粒子发生能级变化,由基态跃迁至较 高能态,这个过程即为吸收。
光是否被物质吸收,取决于
光子的能量 物质的结构 只有当能级差△E 与光子能量h相当时物质吸收光。
(3)吸收曲线可以提供物质的结构信息,并作为物质 定性分析的依据之一。
2011.3
分析化学(2011)
CYJ 16
Analytical Chemistry 分析化学
(4)不同浓度的同一种物质,在某一定波长下吸光 度 A 有差异,在λmax处吸光度A 的差异最大。此 特性可作为物质定量分析的依据。 (5)在λmax处吸光度随浓度变化的幅度最大,所以
A1 = 1/2A=0.150
由于A1 = –lgT1 则 T1 =10-0.15 = 0.708=70.8%
10.6 吸光光度法的误差
10.7 常用的吸光光度法
10.8 吸光光度法的应用
2011.3
分析化学(2011)
CYJ 2
Analytical Chemistry 分析化学
化学分析与仪器分析方法比较
化学分析:常量组分(>1%),Er 0.1%-0.2% 依据化学反应, 使用玻璃仪器
准确度高
灵敏度高 仪器分析:微量组分(<1%), Er 2%-5% 依据物理或物理化学性质, 需要特殊的仪器
2011.3
分析化学(2011)
CYJ 12
Analytical Chemistry 分析化学
吸收光谱
光作用于物质时,物质吸收了可见光,而 显示出特征的颜色,这一过程与物质的性 质及光的性质有关。
第九章 吸光光度法
第九章 吸光光度法
——第1、2、3节
【复习】
溶液浓度的变化。 目视比色法 光电比色法
分光光度法
新课
【学习目标】
熟悉光的波粒二象性和光的组成;
了解互补光 掌握溶液颜色的产生原理(重点)
掌握朗伯比尔定律(难点)
一、光学基础知识
1、光的波粒二象性
光是一种电磁波既具 有波动性(波的性质 如干涉、衍射)又具 有粒子性(光电效应)
2、光的组成
【提问】太阳光是有那几种光组成的?
3、互补光
白光不仅可有七种不同颜色的光混合而成,而 且还可以有两种特定的色光按一定的强度比例 混合而得,这两种颜色的光就成为互补色光。
4、溶液颜色的产生(重点)
请利用互补光的原理,结合书上的内容,解释 高锰酸钾溶液颜色的产生原理。 看到溶液 呈紫色
(一)朗伯-比尔定律(难点) 2、公式——摩尔吸光系数
C mol/L
b cm
那么当溶液浓度为c mol/L,液层厚度为b cm时,我们怎样表示计算呢?
A bc
称为摩尔吸光系数
二、光的吸收定律
(二)吸光光度系数对测定的影响
阅读总结 摩尔吸光系数 越大 该物质对某波 长的光 吸收能力越强 测定灵敏度 越高
紫光被 透过
照射
KMnO4溶液
绿光被吸收
4、光的吸收曲线
【讨论】让不同波长的光一次通过某一固定浓 ①同一物质的 吸收曲线是特 度的溶液,这时光对各种波长的光的吸收程度 ②同一物质不 征的,这一特 是否相同?在主要能吸收的管的波长处吸收是 同浓度的溶液 性可做定性分 在一定波长处 析依据。 强是弱?相反呢? 吸光度随浓度 的增加而增大, 这一特性可作 为定量分析依 据
吸光光度法ppt课件
方法分类和比较
测定下限 相对误差
比色分析法
10-5 ~ 10-6 mol·L-1 5% ~ 10%
分光光度法
10-5 ~ 10-8 mol·L-1 2% ~ 5%
适用于分析半微量和微量的物质 5
一. 概述 方法的评价
快速、简便 显色
比色
灵敏度高:浓度下限达10-5~10-8 mol·L-1
准确度高:相对误差通常为2~5%,
稀溶液 入射光为单色光
20
二 . 吸光光度法的基本原理
4. 吸光度测定方法
步骤
(1) 配制一组浓度系
仪器测量
列的标准溶液(ci)
一组相应的吸 光度值(Ai)
制图(ci 为横坐标,
A
Ai 为纵坐标)
工作曲线
·
Ax
·· ·
仪器测量
(2) 配制样品
Ax
相同条件
·
查图得出cx
cx
c
21
二 . 吸光光度法的基本原理
(2) 选择性好
(3) 有色物组成恒定,化学性质稳定
(4) 显色剂在测定波长处无明显吸收
对比度=λmax有色物 -λmax显色剂>60nm
42
四、显色反应和显色条件的选择
3.影响显色反应的因素
M +R
MR
(1) 显色剂用量 根据吸光度A与显色剂浓度cR的关系来确定
cR选择——引起A变化最小处的cR(即曲线平坦处43 )
吸光光度法
刘海燕
一. 概述
1. 方法原理
2. 方法分类和比较 3. 方法评价
二.吸光光度法原理
1. 物质对光的选择性吸收
2. 光的吸收定律
(1) Lambert-Beer定律
吸光光度法
四川农业大学Biblioteka 无机及分析化学吸光光度法中,采用同质同型比色皿, 反射相同而抵消: Io = Ia + It 透过光强度It与入射光强度Io之比称为 透光度或透光率。用T 表示:
T
It Io
10 上一页 上一页 下一页 下一页 本章目录 主目录 总目录
33 上一页 上一页 下一页 下一页 本章目录 主目录 总目录
四川农业大学
无机及分析化学
2. 试剂空白:试样无色,试剂、显色剂有 色,采用不加试样的空白溶液作参比。 3. 试液空白 :试剂、显色剂无色,试样中 其他共存组分有色,采用待测液作参比.
5. 吸光度的加和性 溶液有多种吸光物质存在时,若相互间 不反应,则:
A总 = A1 + A2 + A3 + + An = ( ε1c1 + ε 2 c2 + ε 3 c3 + + ε n cn )b
20 上一页 上一页 下一页 下一页 本章目录 主目录 总目录
四川农业大学
无机及分析化学
二、对朗伯-比尔定律的偏离
四川农业大学
无机及分析化学
32 上一页 上一页 下一页 下一页 本章目录 主目录 总目录
四川农业大学
无机及分析化学
二、参比溶液(空白溶液)的选择
测定溶液的吸光度时,需先用参比溶 液将仪器的T调节为100%(即A= 0.00)。其 目的是消去除待测物以外的物质的吸光度.
1. 纯溶剂空白: 试样、试剂、显色剂都无色时,用纯 溶剂(如蒸馏水)作参比。
1. 物理因素 ① 单色光不纯,导致负偏差.
A
正误差
《吸光光度法教案》课件
《吸光光度法教案》PPT课件第一章:引言1.1 吸光光度法的定义1.2 吸光光度法在分析化学中的应用1.3 吸光光度法的原理1.4 吸光光度法的仪器与操作步骤第二章:吸光光度法的原理2.1 光的吸收与发射2.2 朗伯-比尔定律2.3 摩尔吸光系数2.4 吸光度的计算与单位第三章:分光光度计的结构与操作3.1 分光光度计的组成部分3.2 分光光度计的操作步骤3.3 光谱仪的使用与维护3.4 波长的选择与调整第四章:标准曲线的制备与分析4.1 标准曲线的制备方法4.2 标准曲线的绘制与分析4.3 样品浓度的计算与误差分析4.4 实际案例分析:药物含量测定第五章:吸光光度法的应用5.1 环境监测中的应用5.2 生物化学中的应用5.3 食品分析中的应用5.4 临床诊断中的应用第六章:吸光光度法的准确度与精确度6.1 准确度的评估6.2 精确度的评估6.3 干扰因素及其影响6.4 提高吸光光度法准确度的方法第七章:溶液的制备与处理7.1 溶液的配制方法7.2 溶液的浓度与体积的计算7.3 样品的前处理与分离7.4 样品分析中的常见问题与解决方法第八章:光散射与吸光光度法8.1 光散射现象的介绍8.2 光散射对吸光光度法的影响8.3 光散射的测定与分析8.4 光散射在吸光光度法中的应用案例第九章:吸光光度法在药物分析中的应用9.1 药物分析中的重要性9.2 药物的紫外吸收特性9.3 药物含量测定的方法与步骤9.4 实际案例分析:药物制剂中主成分的测定第十章:现代吸光光度法技术进展10.1 光纤吸光光度法10.2 微透析吸光光度法10.3 激光吸光光度法10.4 在线监测与自动化分析技术第十一章:吸光光度法在有机合成中的应用11.1 有机化合物的紫外吸收特性11.2 有机合成中光催化反应的监控11.3 有机物含量的测定与分析11.4 实际案例分析:有机合成产物的纯度测定第十二章:吸光光度法在材料科学中的应用12.1 材料科学中的光吸收现象12.2 吸光光度法在材料合成与表征中的应用12.3 材料性能与吸光性质的关系研究12.4 实际案例分析:纳米材料粒径的测定第十三章:吸光光度法在生命科学中的应用13.1 生物大分子的紫外吸收特性13.2 蛋白质浓度与纯度的测定13.3 核酸的定量分析与监测13.4 实际案例分析:细胞培养中的营养物质监测第十四章:吸光光度法在环境监测中的应用14.1 环境污染物的紫外吸收特性14.2 水质分析与监测14.3 大气污染物分析与监测14.4 实际案例分析:水体中有机物的总量测定第十五章:实验与练习15.1 吸光光度法的基本实验操作15.2 标准曲线与样品分析的实验操作15.3 常见干扰因素的实验探究15.4 综合实验练习:饮料中维生素C含量的测定重点和难点解析重点:1. 吸光光度法的定义、原理及其在分析化学中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吸A
收或
光 谱
C
三A 维 谱 图
max
C
吸光的加合性
多组分体系中,如果各组分之间无相互作用,其吸光度具 有加合性,即
A Ai ibci b ici
i
i
i
对吸收定律偏离
A
主要原因
非单色光
吸光质点的相互作用
C
非单色光引起的对吸光定律的偏离
设入射光由 1 和 2 两种波长组成,溶液的吸光质点对 两种波长的光的吸收均遵从吸收定律
1 2
A1 A2
lg I01 lg II012
I2
1bc λ 2bc
I1 I01 10λ 1bc
I2 I02 10λ 2bc
1 + 2
A lg I01 I02 I1 I2
lg
I01
I01 10λ1bc
I02 I02
10λ2bc
λ 1 λ 2 A 1bc 或 A 2bc
吸光度 与透光率 ABSORBANCE AND TRANSMITTANCE
lgT Kcb A T 10 A 10Kbc
A T%
T : 透光率
1.0
T
0.5
A: 吸光度
100
A
50
0
0
C
T = 0.0 % A=∞ T = 100.0 % A = 0.0 T = 36.8 % A = 0.434
标准系列 未知样品
分光光度法(紫外-可见分光光度法) UV-VIS
Ultraviolet Visual Spectroscopy
光源 参比
样品
0.575
单色器 吸收池 检测器 显示
I0 A lg It lg T bC
I0
未考虑吸收池和溶剂对光子的作用
It
注意
入射光 I0
比较
透射光 It
9.2.2 吸光分析法的仪器简介 紫外-可见分光光度计组件
定性分析基础
A
物质对光的选择 吸收
定量分析基础
A
在一定的实验条 件下,物质对光 的吸收与物质的 浓度成正比。
B A
max (A) max (B)
增 大 C
9.1.3 溶液的吸光定律
透光率 (透射比)Transmittance
入射光 I0
透射光 It
透光率定义: T It I0
T 取值为0.0 % ~ 100.0 % 全部吸收 T = 0.0 % 全部透射 T = 100.0 %
c:g / L
Ka
吸光系数, L ·g –1 ·cm -1
Absorptivity
A acb
c:g / 100 mL
K
E11c%m
Specific extinction coef系
E11c%m
10a
10
M
A E11c%mcb
吸收定律与吸收光谱的关系
吸A 光 定 律
λ 1 λ 2 A 1bc 或 A 2bc
非单色光引起的对吸光定律的偏离
对吸收光谱而言,b 和 c 固定,
A Ki
A或
反映了 随波长变化的情况,
单一波长, 固定;不同波 长, 不同。因此,非单色光
将导致对吸光定律的偏离。
2 1 1 对应的 1较小
2 对应的 2较大
在实际工作中,入射光通常具有一定的带通。为了避免非单色
耳. 秒)
单色光、复合光、光的互补
单色光 单一波长的光
复合光 由不同波长的光组合而成的光
光的互补
若两种不同颜色的单色光按一定的强度比 例混合得到白光,那么就称这两种单色光 为互补色光,这种现象称为光的互补。
蓝绿
绿 黄绿 黄
绿蓝
橙
蓝 紫 紫红
红
9.1.2 物质对光的吸收 物质的颜色与光的关系
光谱示意 完全吸收
光源
氢灯,氘灯,185 ~ 350 nm; 卤钨灯,250 ~ 2000 nm. 基本要求:光源强,能量分布均匀,稳定
单色器
作用:将复合光色散成单色光 棱镜 玻璃, 350 ~ 2500 nm, 石英,185 ~ 4500 nm 光栅 平面透射光栅, 反射光栅
样品池 玻璃,光学玻璃,石英
检测器
作用:将光信号转换为电信号,并放大
光电管,光电倍增管,光电二极管,光导摄 像管(多道分析器)
信号输出 表头、记录仪、屏幕、数字显示
单波长单光束分光光度计
光源
0.575
单色器
检测器 显示
吸收池
单波长双光束分光光度计
光源 单色器
光束分裂器
比值
吸收池 检测器
显示
9.3 吸光光度法的灵敏度与准确度
灵敏度 吸光光度法是一种适合于微量组分测定的仪器分析法, 检测限大多可达10-3 ~10-4 g / L 或 ~g / mL 数量级。
复合光 表观现象示意
完全透过 吸收黄色光
吸收光谱
光作用于物质时,物质吸收了可见光,而 显示出特征的颜色,这一过程与物质的 性
质及光的性质有关。 分子基态的电子组态
物质对光的吸收
S3
h S2
S1
S0
E3
E2 E1
h E2 E0
E0
物质对光的吸收满足Plank 条件
E
E2
E0
h
hc
定性分析与定量分析的基础
光带来的影响,一般选用峰值波长进行测定。 选用峰值波长,也可以得到较高的灵敏度。
吸光质点间相互作用引起的对吸光定律的偏离
质点间的静电作用 质点间的缔合作用 质点间的化学反应
9.2.1 吸光分析的几种方法 目视比色法 特点
利用自然光 比较吸收光的互补色光 准确度低(半定量) 不可分辨多组分 方法简便,灵敏度高
第九章
9.1 吸光光度法的基本原理 9.2 吸光分析法的方法与仪器简介 9.3 吸光光度法的灵敏度与准确度 9.4 吸光光度法分析条件的选择 9.5 吸光光度法应用简介
吸光光度法 是基于被测物质的分子 对光 具有选择吸 收的特性而建立的分析方法。
9.1.1 光的基本性质 光的电磁波性质
10-2 nm 10 nm 102 nm 104 nm 0.1 cm 10cm 103 cm 105 cm
x 射射 线线
紫红 外外 光光
微
无
波
线
电
波
可见光
光的波粒二象性
波动性
粒子性
E
光的折射 光的衍射 光的偏振 光的干涉 光电效应
E
h
hc
E:光子的能量(J, 焦耳) :光子的频率(Hz, 赫兹) :光子的波长(cm) c:光速(2.99791010 cm.s-1) h:Plank常数(6.625610-34 J.s 焦
吸光系数 ABSORPTIVITY
b 吸光液层的厚度,光程,cm
A Kcb
c 吸光物质的浓度, g/L, mol/L
K 比例常数
物质的性质 入射光波长 温度
取值与浓度的单位相关
c:mol / L
K 摩尔吸光系数, L ·mol –1 ·cm -1
Molar Absorptivity A cb