数字调制解调实验

合集下载

FSK调制解调原理实验

FSK调制解调原理实验

FSK调制解调原理实验一、实验目的1.了解FSK调制解调的基本原理;2.了解FSK调制解调器的实现过程;3.学习使用软件工具进行FSK调制解调实验。

二、实验原理FSK(Frequency Shift Keying)调制解调是一种常用的数字调制解调技术,它通过改变信号的调制频率来表示不同的数字信号。

FSK调制解调一般分为两个部分:调制器(Modulator)和解调器(Demodulator)。

(一)FSK调制器原理FSK调制器的任务是根据输入信息信号的不同,产生两个不同频率的载波信号。

当输入是数字"0"时,调制器选择低频率载波信号进行调制;当输入是数字"1"时,调制器选择高频率载波信号进行调制。

调制可采用线性调制或非线性调制两种方式。

线性调制实质是将低频调制信号与载波信号作直接叠加得到调制信号。

设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t) = \cos(2\pi f_c t) + A_0 \cos(2\pi f_0 t)$$非线性调制利用逻辑电路切换不同频率的载波信号,常采用矩形脉冲函数进行调制。

设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t)= \begin{cases}\cos(2\pi f_1 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"0"时}\\\cos(2\pi f_2 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"1"时}\end{cases}$$其中$T_b$为每个码元(bit)的时间长度,$f_1$和$f_2$为两个不同频率的载波频率。

(二)FSK解调器原理FSK解调器的任务是对调制信号进行解调,即还原出原始的数字信号。

普通调制解调实验报告(3篇)

普通调制解调实验报告(3篇)

第1篇一、实验目的1. 了解普通调制解调的基本原理和过程。

2. 掌握模拟调制和解调的基本方法。

3. 学习调制解调设备的使用和调试方法。

4. 培养实际操作能力和分析问题的能力。

二、实验原理调制解调是一种将数字信号转换为模拟信号,或将模拟信号转换为数字信号的通信技术。

调制是将数字信号转换为模拟信号的过程,解调是将模拟信号转换为数字信号的过程。

调制解调的基本原理如下:1. 模拟调制:将数字信号转换为模拟信号的过程称为模拟调制。

模拟调制分为调幅(AM)、调频(FM)和调相(PM)三种。

2. 数字调制:将模拟信号转换为数字信号的过程称为数字调制。

数字调制分为调幅键控(ASK)、调频键控(FSK)和调相键控(PSK)三种。

3. 解调:将模拟信号转换为数字信号的过程称为解调。

解调分为模拟解调和数字解调。

三、实验器材1. 模拟调制解调设备:调幅(AM)、调频(FM)、调相(PM)调制器和解调器。

2. 数字调制解调设备:调幅键控(ASK)、调频键控(FSK)、调相键控(PSK)调制器和解调器。

3. 信号发生器:产生模拟信号和数字信号。

4. 示波器:观察调制解调信号波形。

5. 连接线:连接实验器材。

四、实验步骤1. 调制实验(1)调幅(AM)调制实验1)将信号发生器产生的模拟信号接入AM调制器。

2)调整调制器的调制频率和调制指数。

3)观察示波器上的调制信号波形,记录波形数据。

(2)调频(FM)调制实验1)将信号发生器产生的模拟信号接入FM调制器。

2)调整调制器的调制频率和调制指数。

3)观察示波器上的调制信号波形,记录波形数据。

(3)调相(PM)调制实验1)将信号发生器产生的模拟信号接入PM调制器。

2)调整调制器的调制频率和调制指数。

3)观察示波器上的调制信号波形,记录波形数据。

2. 解调实验(1)调幅(AM)解调实验1)将调制信号接入AM解调器。

2)调整解调器的解调频率和解调指数。

3)观察示波器上的解调信号波形,记录波形数据。

FSK调制解调实验报告

FSK调制解调实验报告

FSK调制解调实验报告实验报告:FSK调制解调实验一、实验目的FSK调制解调是数字通信中常用的调制解调方式之一,通过本次实验,我们学习FSK调制解调的原理、实现方法和实验技巧,理解其在数字通信中的应用。

同时,通过实验验证FSK调制解调的正确性和稳定性,并掌握实验数据的分析和处理方法。

二、实验原理FSK调制在信号传输中广泛应用,其原理是将数字信号调制成两个不同的频率信号,通常用0和1两个数字分别对应两个不同的频率。

在调制端,通过将0和1信号分别转换成相应的频率信号,并通过切换不同的载波波形来实现不同频率信号的调制。

在解调端,通过将接收到的调制信号分别和两个对应的参考频率信号进行相关运算,从而还原出原始的0和1信号。

实验所需材料:1.FSK调制解调器2.函数发生器3.示波器4.电缆和连接线实验步骤:1.将函数发生器的输出信号接入FSK调制器的MOD输入端,调整函数发生器的频率和幅度,使其适配FSK调制器的输入端。

2.调整FSK调制器的MOD输入切换开关,选择合适的调制波形(常用的有正弦波和方波两种)。

3.通过示波器观察和记录已调制的FSK信号波形。

4.将已调制的信号通过电缆传输到解调器端。

5.调整解调器的参考频率和解调器的解调方式。

6.通过示波器观察和记录解调器输出的数字信号波形。

7.将解调输出与调制前的原始信号进行比较,验证FSK调制解调的正确性。

三、实验结果和数据分析根据实验步骤的指导,我们依次完成了FSK调制解调的实验,在观察示波器上的波形时,我们发现调制波形的频率随着输入数据的0和1的变化而变化,已达到我们的预期效果。

在解调端,我们观察到解调输出的数字信号与调制前的原始信号一致,由此可验证FSK调制解调的正确性。

对于实验数据的分析和处理,我们应注意以下几点:1.频率的选择:合适的调制频率和解调频率能够保证调制解调的稳定和正确性,应根据具体情况进行选择。

2.调制波形的选择:正弦波和方波是常见的调制波形,两者各有优缺点,可根据实际需要进行选择。

数字调制与解调实验报告

数字调制与解调实验报告

数字调制与解调实验报告
实验目的:
1.掌握数字信号调制与解调的基本理论和方法。

2.熟悉激励、显示、调制、解调等仪器和设备操作方法。

3.理解不同调制方式的优缺点及适用场合。

实验器材:
数字信号发生器、混频器、低通滤波器、示波器、数字信号处理器、计算机、电缆等。

实验原理:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。

调制的目的是将讯息信号改为适合传输的信号;而解调则是将传输信号还原为原讯息信号。

实验步骤:
1.基带信号的调制实验
将固定频率的基带信号通过数字信号发生器产生一个频率为f1的固定载波信号,并通过混频器进行调制,产生频率为f1+f2和f1-f2的调制信号。

通过低通滤波器滤除掉高频成分,以得到目标信号。

在示波器上观察波形和频谱,并用数字信号处理器检测和还原基带信号。

2.幅度调制实验
实验数据:
输入基带信号:
载波信号:
调制信号:
实验结论:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。

通过本次实验,我们实现并了解了不同调制方式的基本原理及其优缺点。

在幅度调制和频率调制实验中,我们掌握了两种数字调制方式的原理和实现方法,通过数字信号发生器制作载波和基带信号,完成幅度调制和频率调制实验。

通过示波器观察得到了不同调制方式的调制信号波形和频谱,并用数字信号处理器检测和还原出原基带信号。

总之,数字调制解调技术在数据传输、通信等方面应用广泛,其优点是抗干扰、可靠性高、传输速度快,具有重要的意义。

数字基带信号实验及数字调制与解调实验

数字基带信号实验及数字调制与解调实验

硬件实验一一、实验名称数字基带信号实验及数字调制与解调实验二、实验目的(1)了解单极性码,双极性码,归零码,不归零码等基带信号波形特点。

(2)掌握AMI,HDB3的编码规则。

(3)掌握从HDB3码信号中提取位同步信号的方法。

(4)掌握集中插入帧同步码时分复用信号的帧结构特点。

(5)了解HDB3(AMI)编译码集成电路CD22103。

(6)掌握绝对码,相对码概念及他们之间的变换关系。

(7)掌握用键控法产生2ASK,2FSK,2PSK,2DPSK信号的方法。

(8)掌握相对码波形与2PSK信号波形之间的关系,绝对码波形与2DPSK信号波形之间的关系。

(9)了解2ASK,2FSK,2PSK,2DPSK信号的频谱与数字基带信号频谱之间的关系。

(10)掌握2DPSK相干解调原理。

(11)掌握2FSK过零检测解调原理。

三、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M6信号源模块、M4数字调制模块四、实验容与实验步骤(一)数字基带信号实验1.熟悉信源模块,AMI&HDB3编译模块(有可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。

2.接通数字信号源模块的电源。

用示波器观察熟悉信源模块上的各种信号波形。

(1)示波器的两个通信探头分别接NRZ-OUT和BS-OUT,对照发光二级管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码*1110010(*为任意代码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3.关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。

用示波器观察AMI(HDB3)编译单元的各种波形。

(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3,将信源模块K1,K2,K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1,K2,K3置为全0,观察全0码对应的AMI和HDB3码。

实验指导书(实验2-数字调制解调Ⅱ)

实验指导书(实验2-数字调制解调Ⅱ)

实验二数字调制解调实验Ⅱ1、实验目标本实验的目的是使用USRP来实现发射和接收射频信号,并且通过LabVIEW 来实现对不同调制信号的同步性能的对比,由于你在实验一中已经完成了数字调制的实验,所以在做这部分实验时,需要用到之前的调制解调模块。

该实验将通过配置USRP的参数来使你了解把基带信号上变频到射频信号以及把射频信号下变频到基带信号的过程,并熟悉LabVIEW中的各种USRP模块的配置方法。

2、实验环境与准备软件环境:LabVIEW 2012(或以上版本);硬件环境:一套USRP和一台计算机;实验基础:了解LabVIEW编程环境和USRP的基本操作;知识基础:了解常见的数字调制解调技术以及相关概念。

3、实验介绍本实验发送端主程序的前面板如图所示,首先是USRP的基本参数设置,包括IP地址、载波频率、IQ采样率等;接下来是PN序列的参数设置,包括保护间隔、信息序列长度、同步比特长度和PN序列的类型;然后是采样数和滤波器参数;之后是输出的PN序列以及调制前的信号时域图,频域图;最后是不同调制方式的不同调制结果。

接收端主程序的前面板如图所示,一开始的设置与发送端一样。

在解调部分,是解调信号以及它的时域图、频域图、星座图和误码数,你可以通过这些来判断你的程序是否正确。

图1 数字调制解调实验发送端前面板图2数字调制解调实验接收端前面板1、发送端介绍本实验发送端的调制主程序包含4个功能模块,其功能分别如下所述。

(1)TX_init本模块主要实现USRP的初始化,是配置一些基本USRP参数的模块。

(2)transmitter本模块是调制程序的核心,实现的是基带信号的产生,包括信源编码,调制,脉冲成形等重要功能。

(3)TXRF_prepare_for_transmit本模块的作用是对调制完的信号幅度进行归一化。

(4)TXRF_send本模块实现的功能是把调制完的数据写入USRP,实现发送。

2、接收端介绍本实验接收端端的解调主程序包含5个功能模块,其功能分别如下所述。

数字解调实验实验报告

数字解调实验实验报告

一、实验目的1. 理解数字解调的基本原理和方法。

2. 掌握数字解调实验的基本步骤和操作技巧。

3. 分析数字解调过程中的信号波形和性能指标。

4. 熟悉数字通信系统中的调制解调技术。

二、实验原理数字解调是数字通信系统中的关键环节,其主要任务是从接收到的数字信号中恢复出原始信息。

本实验主要涉及以下几种数字解调技术:1. 相干解调:利用接收到的信号与本地产生的参考信号进行相位同步,从而恢复出原始信息。

2. 非相干解调:不依赖接收信号与参考信号的相位同步,直接从信号中提取信息。

3. 锁相环解调:利用锁相环技术实现相位同步,从而提高解调性能。

三、实验仪器与设备1. 数字信号发生器:用于产生实验所需的数字信号。

2. 双踪示波器:用于观察信号波形。

3. 数字解调器:用于实现数字解调功能。

4. 计算机及实验软件:用于数据处理和分析。

四、实验内容与步骤1. 相干解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。

(2)将基带信号调制为BPSK信号,载波频率为1MHz。

(3)将已调信号输入数字解调器,设置相干解调参数。

(4)观察解调后的信号波形,分析解调性能。

2. 非相干解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。

(2)将基带信号调制为FSK信号,两个载波频率分别为1MHz和1.1MHz。

(3)将已调信号输入数字解调器,设置非相干解调参数。

(4)观察解调后的信号波形,分析解调性能。

3. 锁相环解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。

(2)将基带信号调制为BPSK信号,载波频率为1MHz。

(3)将已调信号输入数字解调器,设置锁相环解调参数。

(4)观察解调后的信号波形,分析解调性能。

五、实验结果与分析1. 相干解调实验结果通过观察解调后的信号波形,可以发现相干解调能够有效地恢复出原始信息。

同时,相干解调对信号的相位同步要求较高,若相位差较大,解调性能会受到影响。

信号的调制与解调实验报告-数字信号处理

信号的调制与解调实验报告-数字信号处理
uVthANDiORiANDuVth=≥=≤ Vth
u
i0
结合上面电路图,有sRi
Sus
=?
?=+?,所以,可以推出,
0,
sSVthwhenSVth
swhenSVth
=?≥?
?=≤?
⑵ 实验波形图:
E=1
E=1.2
E=2
Eα=2ACmEα==
2
20
1/10ACm
Eα===故有,110ACAC
DCDCEE
m
EEα
α==
++
(0.1α=)
若5ACE
=,2DCE=,则5
0.5
102
m=≈
+
假设二极管是理想的,有如下特性 (0)(0)
ACE=2
ACE=7
⑵ 由图示可以观察出,改变ACE的值,调制后的波形仅在幅值上有差异,其他均相同。
⑶ 不可能产生过调状态的原因:
整理得:
假设要产生一个过调制状态,必须有:
结合实际情况,以上情况不可能发生,因为信号发生器中电压最大值一般要与数字系统
αααα
απαπ=+=+
=++22
0()(1)cos2[1cos2]DCFsStEEftmftααππ=++1AC
DCE
m
E
α=
+22
0
2
0
2
0
2
0()(1)cos2[1cos2]
(1)
(1cos2(2))[1cos2]

fsk调制及解调实验报告

fsk调制及解调实验报告

FSK调制及解调实验报告简介在通信领域,频移键控(Frequency Shift Keying,FSK)调制和解调是常见的数字调制技术,广泛应用于无线通信和数据传输系统中。

本实验报告将详细介绍FSK调制和解调的原理、实验步骤和结果分析。

原理FSK调制是利用不同频率的载波信号来表示数字信息。

在FSK调制中,两个不同频率的载波信号代表了两个不同的数字信号。

例如,在二进制数字通信中,0可以用低频率表示,而1可以用高频率表示。

FSK调制的原理是通过将数字信号转化为频率信息并将其叠加到载波信号上。

通过调整载波频率来传输数字信号的不同值。

FSK解调是将接收到的FSK信号恢复为原始数字信号。

解调过程包括接收信号的滤波和判决两个主要步骤。

滤波用于消除噪声和非目标频率分量,而判决用于确定接收信号所代表的数字信号的值。

实验步骤1.搭建实验电路–使用信号发生器生成两个不同频率的正弦波,分别作为两个载波信号。

–将数字信号源与信号发生器连接,使得数字信号源能够控制载波信号的频率。

–将两个载波信号叠加,并将叠加后的信号送入模拟调制电路。

–将模拟调制电路的输出连接到示波器,以便观察FSK调制后的信号波形。

2.观察和分析调制波形–调整信号发生器的频率和数字信号源的输入,观察调制后的波形特征。

–分析不同数字信号输入时,调制波形的频率变化情况。

–根据调制波形的特点,判断FSK调制是否正确实现。

3.进行FSK解调实验–将调制后的信号输入到解调电路中。

–使用合适的滤波器,滤除噪声和非目标频率分量。

–通过判决电路,将解调后的信号恢复为原始数字信号。

4.观察和分析解调结果–使用示波器观察解调后信号的波形特征。

–将解调后的信号与原始数字信号进行比较,分析解调的准确性和误差情况。

实验结果和分析经过搭建实验电路、观察、分析和解调实验,我们得到了以下实验结果和分析:1.根据观察得知,调制后的波形在不同数字信号输入时,频率发生了明显的变化。

这表明FSK调制成功。

fsk调制解调实验报告

fsk调制解调实验报告

fsk调制解调实验报告FSK调制解调实验报告引言:FSK调制解调是一种常见的数字通信调制解调技术,广泛应用于无线通信、物联网等领域。

本实验旨在通过搭建FSK调制解调电路,探究FSK调制解调的原理和性能。

一、实验原理FSK调制是利用不同频率的载波信号来表示数字信号的一种调制方式。

在FSK 调制中,数字信号的“0”和“1”分别对应两个不同的频率。

FSK解调则是将接收到的FSK信号转换为数字信号。

二、实验材料和方法1. 实验材料:- 函数信号发生器- 电压控制振荡器- 低通滤波器- 示波器- 数字信号发生器- 电阻、电容等基础电子元件2. 实验步骤:1) 搭建FSK调制电路:将函数信号发生器和电压控制振荡器分别连接到两个电阻和电容组成的RC 电路上,并通过开关控制两个信号源的输出。

2) 搭建FSK解调电路:将接收到的FSK信号经过低通滤波器滤波,并通过示波器观察输出波形。

3) 进行调制解调实验:使用数字信号发生器生成一组数字信号,通过调制电路将数字信号转换为FSK信号,再通过解调电路将FSK信号还原为数字信号。

观察解调后的数字信号是否与原始信号一致。

三、实验结果与分析1. FSK调制:在实验中,我们使用函数信号发生器产生两个不同频率的正弦波信号作为调制信号源,并通过开关控制信号源的输出。

当输入数字信号为“0”时,选择低频信号源输出;当输入数字信号为“1”时,选择高频信号源输出。

通过示波器观察,我们可以看到调制后的FSK信号在频域上呈现两个不同的频率分量。

2. FSK解调:经过低通滤波器滤波后,我们可以观察到解调后的信号波形。

在理想情况下,解调后的信号应与原始数字信号完全一致。

然而,在实际应用中,由于噪声和传输损耗等因素的影响,解调后的信号可能存在一定的误差。

3. 实验结果分析:通过实验,我们验证了FSK调制解调的基本原理。

FSK调制解调技术具有抗干扰能力强、传输速率高等优点,广泛应用于无线通信系统和物联网等领域。

数字载波调制实验报告(3篇)

数字载波调制实验报告(3篇)

第1篇一、实验目的1. 理解数字载波调制的基本原理和过程。

2. 掌握常见的数字调制方式,如振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。

3. 学习数字调制信号的生成和解调方法。

4. 通过实验,加深对数字调制技术在实际通信系统中的应用理解。

二、实验原理数字载波调制是数字通信中一种常见的信号处理技术,它通过改变载波的某些参数(如幅度、频率或相位)来携带数字信息。

常见的数字调制方式包括:1. 振幅键控(ASK):通过改变载波的幅度来表示数字信息,通常用高电平表示“1”,低电平表示“0”。

2. 频移键控(FSK):通过改变载波的频率来表示数字信息,通常用不同的频率分别表示“1”和“0”。

3. 相移键控(PSK):通过改变载波的相位来表示数字信息,通常用不同的相位来表示不同的数字符号。

数字调制信号可以通过以下步骤生成:1. 基带信号生成:将数字信息转换成基带信号,通常为二进制序列。

2. 调制:将基带信号与载波信号相乘,得到已调信号。

3. 滤波:对已调信号进行滤波,去除不必要的频率分量。

数字调制信号的解调过程如下:1. 载波恢复:从已调信号中恢复出载波信号。

2. 解调:将恢复的载波信号与已调信号相乘,得到基带信号。

3. 判决:根据基带信号的幅度或频率,判断原始数字信息。

三、实验器材1. 数字信号发生器2. 数字示波器3. 数字信号分析仪4. 信号源5. 连接线四、实验步骤1. 实验一:ASK调制和解调- 使用数字信号发生器生成二进制序列。

- 将基带信号与载波信号相乘,得到ASK调制信号。

- 使用数字示波器观察ASK调制信号的波形。

- 将ASK调制信号与恢复的载波信号相乘,得到解调信号。

- 使用数字示波器观察解调信号的波形。

2. 实验二:FSK调制和解调- 使用数字信号发生器生成二进制序列。

- 将基带信号与两个不同频率的载波信号相乘,得到FSK调制信号。

- 使用数字示波器观察FSK调制信号的波形。

FSK调制解调原理实验

FSK调制解调原理实验

FSK调制解调原理实验FSK(频移键控)调制解调是一种常见的数字调制解调技术,其原理是通过改变载波的频率来表示数字信号。

在FSK调制中,低频信号的频率表示逻辑“0”,高频信号的频率表示逻辑“1”。

在本文中,我们将介绍FSK调制解调的原理以及如何进行实验。

实验设备和步骤:实验设备:1.函数信号发生器2.幅度调制解调器3.示波器4.模拟信号发生器5.低通滤波器6.计算机实验步骤:1.准备工作:(1)将函数信号发生器连接到幅度调制解调器的输入端口。

(2)将幅度调制解调器的输出端口连接到示波器的输入端口。

(3)将模拟信号发生器连接到低通滤波器的输入端口。

(4)将低通滤波器的输出端口连接到计算机的输入端口。

2.设置实验参数:(1)在函数信号发生器上设置两个频率,分别表示逻辑“0”和逻辑“1”。

(2)根据实验需求,调整幅度调制解调器的调制指数,以及模拟信号发生器的频率。

3.FSK调制实验:(1)使用函数信号发生器产生一个频率表示逻辑“0”的信号,并将其输入到幅度调制解调器中。

(2)使用函数信号发生器产生一个频率表示逻辑“1”的信号,并将其输入到幅度调制解调器中。

(3)观察示波器上的输出信号,验证FSK调制的效果。

4.FSK解调实验:(1)使用模拟信号发生器产生一个频率表示逻辑“0”的信号,并将其输入到幅度调制解调器的解调端口。

(2)使用模拟信号发生器产生一个频率表示逻辑“1”的信号,并将其输入到幅度调制解调器的解调端口。

(3)通过示波器观察解调器输出的信号,并通过低通滤波器对信号进行滤波。

(4)将滤波后的信号输入到计算机,并进行数字信号解调。

实验原理:FSK调制的原理是通过改变载波信号的频率来表示数字信号。

在调制过程中,将逻辑“0”映射为一个低频率信号,逻辑“1”映射为一个高频率信号。

在解调过程中,接收到的信号通过解调器解调后,通过低通滤波器滤除高频噪声,得到原始的数字信号。

实验结果:在进行FSK调制实验时,通过示波器观察可见,当输入逻辑“0”时,示波器输出的信号频率较低;当输入逻辑“1”时,示波器输出的信号频率较高。

fsk调制与解调实验报告

fsk调制与解调实验报告

fsk调制与解调实验报告实验报告:FSK调制与解调引言:FSK(Frequency Shift Keying)调制与解调是一种常用的数字调制解调技术,它通过改变载波频率的方式来传输数字信号。

在本实验中,我们将学习并掌握FSK调制与解调的原理和实现方法,并通过实验验证其性能。

一、实验目的:1. 了解FSK调制与解调的原理和工作方式;2. 掌握FSK调制与解调电路的设计和搭建方法;3. 验证FSK调制与解调的性能,如传输速率、误码率等。

二、实验原理:FSK调制是将数字信号转换为频率变化的模拟信号,然后通过载波进行传输。

在FSK调制中,两个不同的频率代表两个不同的二进制数字,通常用0和1表示。

调制过程中,数字信号的0和1分别对应两个不同的频率,例如0对应低频率f1,1对应高频率f2。

FSK解调是将接收到的FSK信号转换回数字信号的过程。

解调器通过检测信号的频率变化来判断接收到的是0还是1。

通常使用频率鉴别器或相干解调器来实现。

三、实验步骤:1. 设计和搭建FSK调制电路:a. 使用555定时器作为多谐振荡器,设置两个不同的频率f1和f2作为调制信号;b. 将调制信号与载波信号进行混合,得到FSK调制信号。

2. 设计和搭建FSK解调电路:a. 使用频率鉴别器或相干解调器来实现FSK解调;b. 解调器将接收到的FSK信号转换为数字信号。

3. 进行实验测试:a. 输入一组二进制数字信号,通过FSK调制电路将其转换为FSK信号;b. 将FSK信号输入到FSK解调电路,观察解调结果是否与输入信号一致;c. 测试不同的传输速率,记录误码率。

四、实验结果与分析:1. 实验测试结果表明,FSK调制与解调能够实现数字信号的传输和还原,解调结果与输入信号一致。

2. 传输速率对FSK调制与解调的性能影响较大。

传输速率过高可能导致误码率增加,传输速率过低可能导致传输延迟。

3. 在实验中,我们可以根据实际需求选择合适的调制频率和解调方法,以达到较低的误码率和较高的传输速率。

数字解调实验报告结论(3篇)

数字解调实验报告结论(3篇)

第1篇一、实验目的及意义本次数字解调实验旨在通过实际操作,加深对数字信号解调原理和方法的理解,掌握不同调制方式下的解调技术,并验证其性能。

实验过程中,我们学习了数字信号解调的基本原理,通过对比不同调制方式下的解调效果,了解了各种解调方法在实际通信系统中的应用。

二、实验原理数字解调是数字通信过程中的重要环节,其目的是将接收到的模拟信号还原为原始的数字信号。

本实验主要研究了以下几种调制方式的解调原理:1. 按照调制载波的不同,数字调制可分为模拟调制和数字调制。

模拟调制包括调幅(AM)、调频(FM)和调相(PM)等,而数字调制则包括幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)等。

2. 数字解调方法主要有以下几种:(1)包络检波法:通过提取信号包络来实现解调。

(2)同步检波法:利用与接收信号同频同相的本地载波与接收信号相乘,再进行低通滤波,以实现解调。

(3)相关解调法:利用接收信号与本地信号的互相关函数,通过查找最大值来确定解调信号。

(4)差分解调法:通过比较相邻两个信号的状态,实现解调。

三、实验内容及结果分析1. ASK调制解调实验实验中,我们采用包络检波法对ASK调制信号进行解调。

实验结果显示,当信噪比(S/N)较高时,解调效果较好;当S/N较低时,解调效果较差,误码率增加。

2. FSK调制解调实验实验中,我们采用同步检波法对FSK调制信号进行解调。

实验结果显示,当S/N较高时,解调效果较好;当S/N较低时,解调效果较差,误码率增加。

3. PSK调制解调实验实验中,我们采用同步检波法对PSK调制信号进行解调。

实验结果显示,当S/N较高时,解调效果较好;当S/N较低时,解调效果较差,误码率增加。

4. BPSK调制解调实验实验中,我们采用同步检波法对BPSK调制信号进行解调。

实验结果显示,当S/N 较高时,解调效果较好;当S/N较低时,解调效果较差,误码率增加。

四、实验结论1. 数字解调技术在实际通信系统中具有重要的应用价值。

fsk调制及解调实验报告

fsk调制及解调实验报告

fsk调制及解调实验报告一、实验目的本实验旨在了解FSK调制及解调的原理,掌握FSK调制及解调的方法,并通过实际操作验证其正确性。

二、实验原理1. FSK调制原理FSK是频移键控的缩写,是一种数字调制技术。

在FSK通信中,将数字信号转换成二进制码后,用两个不同的频率代表“0”和“1”,然后将这两个频率按照数字信号的顺序交替发送。

接收端根据接收到的信号频率来判断发送端发出了哪个二进制码。

2. FSK解调原理FSK解调器是将接收到的FSK信号转换成数字信号的电路。

它通过检测输入电压频率来确定发送方使用了哪个频率,并将其转换成对应的数字信号输出。

三、实验器材示波器、函数发生器、计算机四、实验步骤1. 连接电路:将函数发生器输出端连接至FSK模块输入端,再将示波器连接至模块输出端。

2. 设置函数发生器:设置函数发生器输出频率为1000Hz和2000Hz,并使它们交替输出。

3. 测量波形:使用示波器观察并记录模块输出端口上产生的波形。

4. 解调信号:将示波器连接至解调器的输入端,设置解调器参数,观察并记录输出端口上产生的波形。

五、实验结果1. FSK调制结果:通过示波器观察到了交替出现的1000Hz和2000Hz两种频率的正弦波。

2. FSK解调结果:通过示波器观察到了输出端口上产生的数字信号,与输入信号相同。

六、实验分析本实验通过对FSK调制及解调原理的了解和实际操作验证,进一步加深了我们对数字通信技术的认识。

在实验中,我们使用函数发生器产生两个不同频率的信号,并将它们交替发送。

在接收端,我们使用FSK解调器将接收到的信号转换成数字信号输出。

通过观察示波器上产生的波形和数字信号,可以验证FSK调制及解调技术的正确性。

七、实验总结本次实验主要学习了FSK调制及解调原理,并进行了实际操作验证。

在操作过程中,我们掌握了FSK电路连接方法、函数发生器设置方法以及示波器使用方法等技能。

同时,在观察并分析实验结果时,我们深入理解了数字通信技术中FSK调制及解调的应用场景和原理。

fsk调制及解调实验报告

fsk调制及解调实验报告

fsk调制及解调实验报告FSK调制及解调实验报告引言:FSK调制(Frequency Shift Keying)是一种常见的数字调制技术,广泛应用于通信领域。

本实验旨在通过实际操作,深入了解FSK调制与解调的原理和过程,并通过实验结果验证理论分析。

一、实验目的通过实验深入了解FSK调制与解调的原理和过程,掌握实际操作技巧,并通过实验结果验证理论分析。

二、实验原理1. FSK调制原理:FSK调制是通过改变载波信号的频率来表示数字信号的一种调制技术。

在FSK 调制中,两个不同的频率分别代表二进制数字0和1,通过切换频率来表示数字信号的变化。

2. FSK解调原理:FSK解调是将调制后的信号恢复为原始数字信号的过程。

解调器通过检测接收信号的频率变化来区分数字信号的0和1。

三、实验步骤1. 准备工作:搭建实验电路,包括信号发生器、调制电路和解调电路。

确保电路连接正确并稳定。

2. FSK调制实验:将信号发生器的输出连接到调制电路的输入端,调制电路通过改变输入信号的频率来实现FSK调制。

调制电路输出的信号即为FSK调制信号。

3. FSK解调实验:将调制电路的输出连接到解调电路的输入端,解调电路通过检测输入信号的频率变化来恢复原始数字信号。

解调电路输出的信号即为解调后的数字信号。

4. 实验结果记录与分析:记录不同输入信号对应的调制信号和解调后的数字信号,并进行分析。

通过比较解调后的数字信号与原始数字信号的一致性,验证FSK调制与解调的准确性。

四、实验结果与讨论在实验中,我们选择了两个不同频率的输入信号,分别对应二进制数字0和1。

通过调制电路和解调电路的处理,成功实现了FSK调制与解调。

通过对比解调后的数字信号与原始数字信号,我们发现它们完全一致,验证了FSK调制与解调的准确性。

实验结果表明,FSK调制与解调是一种可靠有效的数字调制技术。

五、实验总结通过本次实验,我们深入了解了FSK调制与解调的原理和过程,并通过实际操作验证了理论分析的准确性。

FSK调制解调实验报告

FSK调制解调实验报告

FSK调制解调实验报告实验目的:通过实验,进一步了解FSK(ASK)调制和解调的基本原理和方法,掌握实验仪器的操作技巧,熟悉实验过程中的测量方法和数据处理,培养实验操作能力和数据分析能力。

实验仪器:1.双示波器:2.信号发生器:3.波特率计:4.时钟信号源:实验原理和流程:FSK(Frequency Shift Keying)调制是一种数字调制方法,根据发送信号的不同频率进行调制,接收端根据频率差异来识别不同的信号。

ASK(Amplitude Shift Keying)调制是将数字信号变换为模拟信号的过程,通过调整载波波形的幅度来表示数据的0和1FSK调制的基本原理是:将数字信号转换为频率序列,利用频率切换来表示0和1、在调制时,根据数字信号的0和1,选择不同频率的载波信号进行调制。

解调是将接收到的FSK信号变换为与FSK信号相同的数字信号,可以根据频率的变化判断原始数字信号的0和1实验步骤:1.连接实验电路,将信号发生器的输出接入EL1端,EL2端接入波特率计。

将示波器的两个通道分别接入EL1和EL22.调整信号发生器的频率为f1和f2,设置合适的幅度和起始相位。

3.打开示波器,设置观察模式为X-Y模式,并调整示波器的水平和垂直触发使波形恢复稳定。

4.通过调整信号发生器的频率和幅度,观察并记录调制信号波形。

5.使用示波器观察到的调制信号波形,利用该波形计算波特率。

6.通过信号发生器产生时钟信号,将时钟信号输入到解调电路中进行解调。

7.观察解调后信号的波形并进行比较,记录解调后的数据。

8.对比解调后的数据与原始数据,验证解调是否准确。

实验结果:通过实验观察和测量,得到了调制信号的波形,利用该波形计算出了波特率。

经过解调后,与原始数据进行对比发现解调准确无误。

实验总结:通过这次实验,我们深入了解了FSK(ASK)调制和解调的基本原理和方法。

通过实验操作,我们掌握了实验仪器的操作技巧,熟悉了实验过程中的测量方法和数据处理方法,提高了我们的实验操作能力和数据分析能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉大学教学实验报告
电子信息学院 ** 专业 2016 年 ** 月 ** 日
实验名称数字调制解调实验指导教师 *** 姓名 *** 年级 14级学号 20143012***** 成绩
图1 FSK调制电路原理框图
代表信号载波的恒定偏移。

FSK 的信号频谱如图2 所示。

图2 FSK 的信号频谱
公式给出:,其中B 为数字基带信号的带宽。

假设信号带宽限制在主
FSK 的传输带宽变为:。

图3 FSK锁相环解调器原理示意图
锁相解调的工作原理是十分简单的,只要在设计锁相环时,
此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。

FSK锁相环解调器原理图如图3所示。

FSK。

其中,压控振荡器的频率是由5C2.5R3.5R4.5U3等元件参数确定,中心频率设计在
电位器进行微调。

当输入信号为32KHz时,环路锁定,经形成电路后,输出高电平;当输入信号为
失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

图4 PSK、DPSK调制电路原理框图
,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成
解调器电路采用科斯塔斯环(Constas环)解调,其原理如图5所示。

图5 解调器原理方框图
输入电路由射随器和比较器组成,射随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。

比较电路是将正弦信号转换为脉冲信号,目的是便于控制科斯塔斯特环中的乘法器。

由于跟随器电源电压已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。

)科斯塔斯环提取载波原理(原理中标号参见原理图)
采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6所示。

图6 科斯塔斯特环电路方框原理如图
解调输入电路的输出信号被加到模拟门5U6C和5U6D构成的乘法器,前者为正交载波乘法器,相当于图
,后者为同相载波乘法器,相当于框图中乘法器1。

5U7A,5U7B周边电路为低通滤波器。

的作用是将低通滤波后的信号整形,变成方波信号。

PSK解调信号从5U8的7脚经5U11B.C
,若5U10A两输入信号分别为A和B,因(A、B同为
5E2用来稳压,以便提高VCO的频率稳定度。

VCO信号从7脚经5C21输出至移相90º90º移
根据触发器工作原理和电路连接关系,数字90º移相电路的相位波形图如7
图7 90度数字移相器的波形图
从图看出,载波一超前载波二90度,并且频率为1024KHZ,因此载波一为同相载波,载波二为正交载波。

由于科斯塔斯特环存在相位模糊,解调器可能会出现反向工作。

调制解调
图8 QPSK信号的矢量图表示
信号可以表示为:,其中I(t)称为同相分量,
正交调制器的方框图,如图9所示。

图9 QPSK系统调制器原理框图
调制器可以看作为两个BPSK调制器构成,输入的二进制信息序列经过串并转换,分成两路Q(t),然后对cosωt和sinωt进行调制,相加后即可得到QPSK信号。

经过串并变换之后的两个支路,一路为单数码元,另一路是偶数码元,这两个支路为正交,一个称为同相支路,即I支路,另一个称为正交支
图10 QPSK相干解调框图
)是另外一种四相相移键控。

将QPSK调制框图中的正交支路信号偏移信号。

将正交支路信号偏移TS/2 的结果是消除了已调信号中突然相移π的现象。

每个
OQPSK信号的相位转移图如图11所示。

图11 相位转移图
调制后,相位转移图中的信号点只能沿着正方形四边移动,故相位只能发生π
QPSK 的好。

图12 OQPSK调制器和相干解调器框图
三.主要仪器设备
RZ9681实验平台
.实验模块:
主控模块●基带信号产生与码型变换模块A2
纠错译码与频带解调模块A5
a.基带数据设置与观测
b.ASK调制信号观测
c.载波频率为16kHz
d.载波频率为20kHz
e.载波频率为48kHz
f.全0时信号频率32kHz
g.全1时信号频率16kHz
h.FSK调制信号时域观测 i. FSK调制信号频域观测 j. FSK解调观测
实验二:PSK/DPSK调制解调
k.DPSK调制信号观测 l.DPSK解调 m.相位反转实验三:QPSK/OQPSK调制解调
n.QPSK调制相位观察 o.OQPSK调制相位观察
二.实验操作过程
* 测量点说明
1.主控模块 4.纠错译码与频带解调模块
2.基带产生与码型变换模块 5P1:解调信号输入
2P1:基带数据输出; 5P6:解调数据输出
2P3:基带时钟输出; 5TP3:本地载波输出
3.信道编码与频带调制模块 5. 信道编码与调制模块状态指示
4P5:调制数据输入; 6.纠错译码与解调模块状态指示
4P6:调制数据时钟输入;
4P9:FSK(ASK)调制输出;
实验一:ASK/FSK调制解调
1.实验模块在位检查
在关闭系统电源的情况下,确认下列模块在位:
●基带产生与码型变换模块A2;
●信道编码与频带调制模块A4;
●纠错译码与频带解调模块A5;
2.信号线连接:
用鼠标在液晶上选择“数字调制解调实验”中“ASK/FSK调制解调”,按图连线。

注:流程图中:
“基带设置”用于改变调制数据
“载波频率”用于改变FSK调制的中心频率,默认fc=24KHZ,;
“频率分离”用于改变FSK频偏,默认Δf=8KHZ;。

相关文档
最新文档