二次函数解析式的几种解法

合集下载

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解

求二次函数解析式的四种基本方法二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础;熟练地求出二次函数的解析式是解决二次函数问题的重要保证;二次函数的解析式有三种基本形式:1、一般式:y=ax 2+bx+c a ≠0;2、顶点式:y=ax -h 2+k a ≠0,其中点h,k 为顶点,对称轴为x=h;3、交点式:y=ax -x 1x -x 2 a ≠0,其中x 1,x 2是抛物线与x 轴的交点的横坐标;4.对称点式: y=ax -x 1x -x 2+m a ≠0求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式;2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式;3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式;4.若已知二次函数图象上的两个对称点x 1、mx 2、m,则设成: y=ax -x 1x -x 2+m a ≠0,再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可;探究问题,典例指津:例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c a ≠0;解:设这个二次函数的解析式为y=ax 2+bx+c a ≠0 依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4;例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式;分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=ax -h 2+k a ≠0,其中点h,k 为顶点;解:依题意,设这个二次函数的解析式为y=ax -42-1 a ≠0又抛物线与y 轴交于点)3,0(;∴a0-42-1=3 ∴a=41 ∴这个二次函数的解析式为y=41x -42-1,即y=41x 2-2x+3; 例3、如图,已知两点A -8,0,2,0,以AB 为直径的半圆与y 轴正半轴交于点C0、4;求经过A 、B 、C 三点的抛物线的解析式;分析:A 、B 两点实际上是抛物线与x 轴的交点,所以可设交点式y=ax -x 1x -x a ≠0,其中x 1,x 2是抛物线与x 轴的交点的横坐标;2解:依题意,设这个二次函数的解析式为y=ax+8x -2例4、 已知函数y=x 2+kx -3k>0,图象的顶点为C 并与x 轴相交于两点A 、B 且AB=4 1求实数k 的值;2若P 为上述抛物线上的一个动点除点C 外,求使S △ABC =S △ABP 成立的点P 的坐标;变式练习,创新发现1、已知抛物线过A -2,0、B1,0、C0,2三点;求这条抛物线的解析式;2、已知抛物线的顶点坐标为)1,2(,与y 轴交于点)5,0(,求这条抛物线的解析式;2、已知二次函数y ax bx c =++2的图象的顶点为1,-92,且经过点-2,0,求该二次函数的函数关系式;3、已知二次函数图象的对称轴是x=-3,且函数有最大值为2,图象与x 轴的一个交点是-1,0,求这个二次函数的解析式;4、已知二次函数y ax bx c =++2的图象如图所示,则这个二次函数的关系式是________;5、已知:抛物线在x 轴上所截线段为4,顶点坐标为2,4,求这个函数的关系式6、已知二次函数y m x mx m m =-++-()()()123212≠的最大值是零,求此函数的解析式; 7. 已知某抛物线是由抛物线y=x 2-x-2经过平移而得到的,且该抛物线经过点A1,1,B2,4,求其函数关系式;9、已知四点A1,2,B0,6,C -2,20,D -1,12,试问是否存在一个二次函数,使它的图象同时经过这四个点 如果存在,请求出它的关系式;如果不存在,说明理由;5、。

求二次函数解析式的方法

求二次函数解析式的方法

求二次函数解析式的方法
求解二次函数的解析式一般有以下几种方法:
1. 完全平方公式
二次函数一般的标准形式为:f(x) = ax^2 + bx + c(a≠0)。

如果a=1,那么直接使用完全平方公式:f(x) = (x + p)^2 + q,其中p和q可通过对b和c进行变形求得。

2. 因式分解法
当二次函数可分解为两个一次项相乘时,可以使用因式分解法求解。

首先将二次函数进行因式分解,然后将因式设置为0,求解出x的值。

3. 配方法
当二次函数无法使用完全平方公式和因式分解法求解时,可以使用配方法。

配方方法通常是将二次函数写成一个完全平方的形式,然后进行变量的替换或重新归一化,从而得到一个容易求解的形式。

4. 公式法
当二次函数无法通过上述方法求解时,可以使用根的公式求解。

根的公式为:x = (-b±√(b^2-4ac))/(2a),其中a、b和c为二次函数的系数。

这个公式可以给出二次函数的两个根。

需要注意的是,以上是一般情况下求解二次函数的方法。

在特殊的情况下,可能需要采用其他的求解方法或利用特殊性质进行求解。

二次函数解析式的几种求法

二次函数解析式的几种求法

例3.已知抛物线的顶点为(3,-2),且与 x轴两交点间的距离为4,求它的解析式.
分析:根据已知抛物线的顶点坐标(3,-2),可设函数关系式 为y=a(x-3)2-2,同时可知抛物线的对称轴为x=3,再由 与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为 (1,0)和(5,0),任选一个代入 y=a(x-3)2-2,即 可求出a的值.
设解析式为
∵顶点C(1,4) ∴ h=1, k=4. ∴ 又∵A(-1,0)在抛物线上,

∴ a = -1 ∴ 即:
三、应用举例
例1、已知二次函数
求其解析式。 解法三:交点式 设解析式为 ∵抛物线与x 轴的两个交点坐标 为 A (-1,0)、B(3,0) ∴ y = a (x+1) (x- 3) 又 C(1,4)在抛物线上 ∴ 4 = a (1+1) (1-3) ∴ a = -1 ∴ y = - ( x+1) (x-3) 即:
课堂练习:
1.根据下列条件,分别求出对应的二次函数的关系 式. (1)已知二次函数的图象经过点(0,2)、(1,1)、 (3,5); (2)已知抛物线的顶点为(-1,2),且过点(2,1); (3)已知抛物线与x轴交于点(-1,0)、(2,0),且经过点 (1,2).
2.二次函数图象的对称轴是x = -1,与y轴交点的纵坐 标是 –6,且经过点(2,10),求此二次函数的关系式.
三、应用举例
例1、已知二次函数 求其解析式。
解Байду номын сангаас一: 一般式 设解析式为 ∵顶点C(1,4), ∴对称轴 x=1.
的图像如图所示,
∵A(-1,0)关于 x=1对称, ∴B(3,0)。
∵A(-1,0)、B(3,0)和

二次函数解析式的8种求法

二次函数解析式的8种求法

二次函数解析式的8种求法河北 高顺利二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉:一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1由m 2–2m –1 = 2得m =-1 或m =3∴ m = 3 .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 .分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一)三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.解: 253212++=χχy = ()23212-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的.这两类题目多出现在选择题或是填空题目中四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得:40542a b c a b c a b c -=++⎧⎪=-+⎨⎪=-+⎩ 解得:⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y2、设二次函数解析式为:y = a ( x – h )2 + k , 图象顶点是(-2,3)∴h =-2,k =3, 依题意得:5=a ( -1 + 2)2+3,解得:a =2∴y = 2( x +2)2 + 3=11822++x x3、设二次函数解析式为:y = a ( x – 1χ) ( x – 2χ).图像与x 轴交于(-2,0),(4,0)两点,∴1χ=-2,2χ=4依题意得:-29= a ( 1 +2) ( 1– 4) ∴a =21 ∴ y = 21 ( x +1) ( x – 4)=223212--x χ. 七、翻折型(对称性):已知一个二次函数c b a ++=χχγ2,要求其图象关于轴对称(也可以说沿轴翻折);轴对称及经过其顶点且平行于轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y = a ( x – h )2 + k 的形式.(1)关于轴对称的两个图象的顶点关于轴对称,两个图象的开口方向相反,即互为相反数.(2)关于轴对称的两个图象的顶点关于轴对称,两个图象的形状大小不变,即相同.(3)关于经过其顶点且平行于轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即互为相反数.例6 已知二次函数,求满足下列条件的二次函数的解析式:(1)图象关于轴对称;(2)图象关于轴对称;(3)图象关于经过其顶点且平行于轴的直线对称.x x y x x x a y y ax a 5632+-=x x y x y x解:可转化为,据对称式可知 ①图象关于轴对称的图象的解析式为, 即:. ②图象关于轴对称的图象的解析式为:,即:;③图象关于经过其顶点且平行于轴的直线对称的图象的解析式为,即.八、数形结合数形结合式的二次函数的解析式的求法,此种情况是融代数与几何为一体,把代数问题转化为几何问题,充分运用三角函数、解直角三角形等来解决问题,只要充分运用有关几何知识求出解析式中的待定系数,以达到目的.例7、如图,已知抛物线c b y ++-=χχ271和x 轴正半轴交与A 、B 两点,AB =4,P 为抛物线上的一点,他的横坐标为-1,∠PAO =45 ,37cot =∠PBO .()1求P 点的坐标;()2求抛物线的解析式.解: 设P 的坐标为(-1,y ), ∵P 点在第三象限∴y <0,过点P 作PM ⊥X 轴于点M . 点M 的坐标为(-1,0)|BM| = |BA |+ |AM|5632+-=x x y 2)1(32+-=x y x 2)1(32---=x y 5632-+-=x x y y 2)1(32++=x y 5632++=x x y x 2)1(32+--=x y 1632++-=x x y∵∠PAO =45∴ |PM | = |AM| = |y | =-y ∵374cot =--==∠y y PM BM PBO ∴y = -3∴P 的坐标为(-1,-3)∴A 的坐标为(2,0)将点A 、点P 的坐标代如函数解析式 ⎪⎪⎩⎪⎪⎨⎧+--=-++-=c b c b 7132740 解得:87b = ; 127c =- ∴抛物线的解析式为:21812777y χχ=-+-.。

二次函数三种解析式的求法

二次函数三种解析式的求法

二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。

本文将分别介绍这三种求法,并且给出相应的例题加以说明。

第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。

二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。

假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。

例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。

将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。

然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。

第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。

对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。

假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。

例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。

我们可以代入上述方程进行求解。

将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。

然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。

下面将详细介绍这四种方法。

方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。

对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。

1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。

其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。

所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。

方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。

1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。

十种二次函数解析式求解方法

十种二次函数解析式求解方法

十种二次函数解析式求解方法〈一〉三点式。

1, 已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。

2, 已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。

〈二〉顶点式。

1, 已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。

2, 已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。

〈三〉交点式。

1, 已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。

2, 已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。

〈四〉定点式。

1, 在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q,求抛物线的解析式。

2, 抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。

3, 抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。

1, 把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。

2, 抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.〈六〉距离式。

1, 抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。

2, 已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。

〈七〉对称轴式。

1、 抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。

二次函数解析式的方法

二次函数解析式的方法

二次函数解析式的方法
二次函数是高中数学中的一个重要概念。

它是一种二次方程,通常用y=ax+bx+c的形式表示。

其中,a、b、c是常数,a不等于0。

求解二次函数的解析式可以使用以下方法:
1. 完全平方公式:将二次函数的一般式y=ax+bx+c转化为顶点式y=a(x-h)+k,其中(h,k)为顶点坐标。

这个转化可以使用完全平方公式完成,即将x+bx部分平方,得到(x+ b/2a)- (b-4ac)/4a,再乘以a后,得到y=a(x+ b/2a)- (b-4ac)/4a。

2. 配方法:当二次函数的a不为1时,可以使用配方法将其转化为一个完全平方的形式。

具体来说,对于y=ax+bx+c,我们可以先将a提出来,得到y=a(x+ bx/a+c/a),然后将x+ bx/a部分配方,即将它写成(x+b/2a)- (b-4ac)/4a的形式。

这样,原来的二次函数就可以表示为y=a(x+b/2a)- (b-4ac)/4a+c。

3. 公式法:对于已知二次函数的解析式y=ax+bx+c,我们可以使用求根公式来求解它的两个解。

根据二次方程的求根公式,
y=ax+bx+c的解析式可以表示为x=(-b±√(b-4ac))/2a。

以上三种方法都可以求解二次函数的解析式,具体使用哪种方法取决于具体情况。

在解决实际问题时,可以根据需要选择合适的方法,以便更准确地求解问题。

- 1 -。

二次函数的解析式三种方法

二次函数的解析式三种方法

二次函数的解析式三种方法二次函数是一种常见的函数类型,在数学学习中,学生们需要对其进行深入的了解和掌握,以便于解决与二次函数相关的问题。

本文将介绍三种求解二次函数的解析式的方法,包括公式法、顶点法和描点法。

每种方法的步骤和注意事项都将被详细介绍。

一、公式法公式法是一种求解二次函数解析式的基本方法。

二次函数的标准形式可以表示为 y = ax²+bx+c,其中 a、b、c 都是实数常数,而 x 是自变量。

一个常见的二次函数的例子为y = x²。

1. 求取 a、b、c 的值在使用公式法求解二次函数的解析式之前,需要先计算出二次函数中的 a、b、c 值。

通常情况下,这些值可以从已知的条件中直接得到。

如果已知二次函数经过点 (2,4) 和 (−1,3),则可以根据这些坐标计算出 a、b、c的值。

可以得到两个方程:4 = a(2)²+b(2)+c3 = a(−1)²+b(−1)+c然后,可以将这些方程化简为:4 = 4a+2b+c3 = a−b+c接下来,可以使用代数法或消元法来求解 a、b、c 的值。

可以将第二个方程中的 a解出来,然后带入第一个方程中,得到:a = 2b−14 = 8b−4+2b+cc = −8b+8可以得到二次函数的解析式为:y = (2b−1)x²+bx+8−8b2. 使用公式法求解二次函数一旦确定了二次函数中的 a、b、c 值,可以使用公式法求解二次函数的解析式。

具体而言,可以使用以下公式:x = (-b ± √(b²-4ac))/(2a)这个公式可以得到二次函数的解析式中的两个根。

如果二次函数的解析式没有实数根,则说明这个二次函数不存在。

在上面的例子中,可以将 a、b、c 的值带入到公式中,得到:x = (-b ± √(b²-4ac))/(2a)x = (-b ± √(b²-4(2b−1)(8−8b)))/(2(2b−1))根据这个公式,可以得到二次函数的解析式的两个实数根,也就是二次函数与 x 轴相交的点。

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数。

常见的四种方法求二次函数解析式包括配方法、因式分解法、求根公式法和完成平方法。

1.配方法:配方法适用于二次函数的系数不为1时,即a≠1的情况。

步骤:a) 将二次函数写成完全平方的形式,即通过将ax^2+bx+c中的b项分拆成两个相等的项得到。

例如:y=x^2+6x+5可以写成y=(x+3)^2-4b)化简得到二次函数的解析式。

例如:在上述例子中,化简得到y=x^2+6x+5=(x+3)^2-42.因式分解法:因式分解法适用于二次函数可以被因式分解的情况,即可以找到两个一次因式的乘积形式。

步骤:a) 将二次函数写成完全平方的形式,即通过将ax^2+bx+c中的b项分拆成两个相等的项得到。

例如:y=x^2+6x+5可以写成y=(x+1)(x+5)。

b)化简得到二次函数的解析式。

例如:在上述例子中,化简得到y=x^2+6x+5=(x+1)(x+5)。

3.求根公式法:求根公式法适用于二次函数的解存在有理根的情况。

步骤:a) 根据二次函数的系数a、b、c,计算出二次函数的判别式Δ=b^2-4ac。

b)根据判别式Δ的数值,判断方程的解的情况:-如果Δ>0,则有两个不相等的实根;-如果Δ=0,则有两个相等的实根(重根);-如果Δ<0,则没有实根,但可能有两个虚根。

c)根据求根公式x=(-b±√Δ)/(2a),求出实根或复根。

4.完成平方法:完成平方法适用于二次函数的系数为1时,即a=1的情况。

步骤:a)将二次函数进行配方,将其转化成完全平方的形式。

例如:y=x^2+6x+___,需要找到一个数来补全。

根据(b/2)^2的性质,可以将6/2=3得到的平方数补全,即y=x^2+6x+9b)化简得到二次函数的解析式。

例如:在上述例子中,化简得到y=x^2+6x+9=(x+3)^2通过以上四种方法,可以根据具体的二次函数形式,选择适合的方式来求得二次函数的解析式。

二次函数的三种解析式

二次函数的三种解析式

二次函数的三种解析式二次函数是高中数学中的一个重要内容,其解析式可以有三种形式。

下面将分别介绍它们的计算公式、特点和应用。

一、顶点式顶点式是一种简洁明了的表示二次函数的方式。

它的通式为:y=a(x-h)^2+k,其中a、h、k分别代表二次函数的导数、顶点横坐标、顶点纵坐标。

在这个式子中,a控制函数的开口方向和缩放程度,h决定了函数图像的移动方向和距离,k则是函数图像的最低点或最高点。

使用顶点式有一个明显的好处,那就是可以轻松地推导出函数的最值和零点。

具体地说,函数的最小值为k,最大值为正负无穷,当且仅当a的符号与k的符号一致时成立;函数的零点可以通过方程y=0求解,即x=h。

二、一般式一般式是表达二次函数的另一种方式,它较为复杂但能够包括所有二次函数。

一般式的通式为:y=ax^2+bx+c,其中a、b、c还是分别表示函数的导数、一次项系数和常数项。

使用一般式计算一般为求解函数的导数、顶点坐标和零点。

其中函数图像的顶点坐标可以用二次函数顶点公式求解,即h=-b/2a和k=-Δ/4a,其中Δ=b^2-4ac;函数的零点可以使用求根公式求解,即x=(-b±√Δ)/2a。

三、描点式描点式是较为简单粗暴的表示二次函数的方式。

它的基本原理是,通过描出函数图像上的若干个点,然后拟合出二次函数的解析式。

描点式解析式的范式为:y=a(x-x1)(x-x2),其中a是二次项系数,x1和x2是函数图像上任意两个不同的点对应的横坐标。

相对于顶点式和一般式,描点式的优点在于计算简单,随时可用。

但缺点也很明显,就是易受图像上的干扰影响,甚至有可能产生误差。

总结:综上所述,二次函数可以用三种解析式进行表示:顶点式、一般式和描点式。

虽然它们的计算方法不同,但本质上都是描述同一个函数。

在不同情景下,可以灵活地采用不同的解析式,以达到最佳计算效果。

求二次函数解析式的四种方法

求二次函数解析式的四种方法

求二次函数解析式的四种方法一、根据函数的顶点坐标和开口方向求解析式方法:设二次函数解析式为 y = ax^2 + bx + c,已知顶点坐标为 (h, k)。

1.根据开口方向求a的取值:-若二次函数开口向上,则a>0;-若二次函数开口向下,则a<0。

2.根据已知点求解a、b、c的值:将已知顶点坐标代入解析式,得到方程 k = ah^2 + bh + c。

由此,可得到关系式:- 若 a = 0,则b ≠ 0,方程为 kh + c = k;- 若a ≠ 0,则方程为 ah^2 + bh + c = k。

解方程组,得到a、b、c的值。

3.根据a、b、c的值写出二次函数的解析式:将求得的 a、b、c 的值带入解析式 y = ax^2 + bx + c,即得到最终的二次函数解析式。

二、根据已知的三个点求解析式方法:设已知的三个点为(x₁,y₁),(x₂,y₂),(x₃,y₃)。

1.求解a的值:通过使用待定系数法,假设解析式为 y = ax^2 + bx + c,将三个点代入解析式得到一个方程组:{a(x₁)² + bx₁ + c = y₁{a(x₂)² + bx₂ + c = y₂{a(x₃)² + bx₃ + c = y₃解方程组,得到a的值。

2.求解b、c的值:将求得的a的值带入上述方程组中,并解方程组,得到b、c的值。

3.写出二次函数的解析式:将求得的 a、b、c 的值带入二次函数的一般形式 y = ax^2 + bx + c,即得到最终的二次函数解析式。

三、根据已知的顶点坐标和另一点求解析式方法:设已知的顶点坐标为(h,k),另一点坐标为(x,y)。

1.求解a的值:代入已知顶点坐标 (h, k),得到方程 k = ah^2 + bh + c。

再代入另一点坐标 (x, y),得到方程 y = ax^2 + bx + c。

消去c,并利用两个方程,可以解得a的值。

谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法二次函数是初中数学非常重要的知识点,也是中考的必考内容。

本人在多年的教学中体会较多,现就二次函数的解析式的几种求法,谈谈几点看法。

二次函数的解析式的求法有很多种,但常见的也就以下几种。

(一)三点式即已知抛物线的三点坐标,求其解析式例如:一抛物线经过点(-1,-1)(0,2)(1,1)求这个函数的解析式。

解法如下:我们知道,二次函数的一般形式为y=ax²+bx+c,只需把上述三点代入y=ax²+bx+c即可解:设所求的二次函数的解析式为y=ax²+bx+c,把点(-1,-1)(0,2)(1,1)代入得 a-b+c=-1 a=2c=-2 b=1a+b+c=1 ,解得 c=-2即所求的二次函数的解析式为y=2x²+x-2(二)顶点式我们知道二次函数经过配方可得y=a(x-h)²+k的形式。

例:已知二次函数的顶点为(-1,-2)且经过点(1,10),求这个函数的表达式?解法如下:解:设所求抛物线为y=a (x+1)²-2, 再把(1,10)代入上式求得c=3.所以所求二次函数的解析式为y=3(x+1)²-2 即 y=3x ²+6x+1(三)交点式我们知道二次函数y=ax ²+bx+c 与x 轴的两交点的横坐标亦即是方程ax ²+bx+c=0的两个根,利用这种关系,也能够求出一些二次函数的解析式。

例如:某二次函数与x 轴的两交点为(3,0)(1,0)且经过点(0,3)求这个二次函数的解析式。

解:设所求的二次函数的表达式为y=a (x-3)(x-1),把(0,3) 代人上式得a=1, ∴所求函数的解析式为y=(x-3)(x-1), 即y=x ²-4x+3(四)平移法例:平移二次函数y=2x ²的图像是它经过点(-1,1)(2,3)两点,求这时函数对应的二次函数的解析式?我们知道,平移二次函数的图像时,a 的值是不变的,所以,只要确定b 、c 的值就能够了。

十种二次函数解析式求解方法

十种二次函数解析式求解方法

十种二次函数解析式求解方法1. 使用配方法:当二次函数无法直接因式分解时,可以使用配方法来求解。

假设二次函数的解析式为y=ax^2+bx+c,先将常数项c移到等式的另一边,得到y=ax^2+bx=-c。

然后再在x^2的系数a前面添加一个实数k,使得ax^2+bx=-c可以表示为(ax^2+bx+k^2)-k^2=-c。

然后将等式两边进行平移,即得到(ax^2+bx+k^2)=k^2-c。

这样,原本的二次函数就可以表示为一个完全平方的形式加上一个常数。

然后可以通过完全平方公式来求解。

2.利用零点的性质:二次函数的解析式可以表示为y=a(x-x1)(x-x2),其中x1和x2分别是二次函数的两个零点。

通过求解方程a(x-x1)(x-x2)=0,即可得到这两个零点的值。

3. 利用判别式:对于一元二次方程ax^2+bx+c=0,方程的判别式Δ=b^2-4ac可以判断方程的解的情况。

当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根,但有两个共轭的复数根。

4.利用顶点的性质:二次函数的解析式可以表示为y=a(x-h)^2+k,其中(h,k)是二次函数的顶点的坐标。

通过将方程和y=k相等,然后通过解方程(x-h)^2=(k-k)/a,可以得到x的值。

然后将x的值代入二次函数的解析式,即可得到y的值。

5. 利用对称性:二次函数的解析式可以表示为y=ax^2+bx+c。

二次函数的对称轴的方程为x=-b/2a。

通过将x=-b/2a代入二次函数的解析式,即可得到对称轴上的y的值。

6. 利用平方差公式:对于二次函数的解析式y=(x-p)^2-q,其中p 和q分别是二次函数的顶点的横坐标和纵坐标。

通过展开平方得到y=x^2-2px+p^2-q,然后将原始的二次函数的解析式和展开后的二次函数的解析式相等,即可得到p和q的值。

7.利用导数的性质:二次函数的导数为一次函数,通过求解一次函数的解析式,可以得到二次函数的极值点,即顶点。

二次函数解析式的几种解法

二次函数解析式的几种解法

2. 利用顶点坐标求解。
一般式解法
1 基本思路
通过配方法将二次函数转换为一般式。
3 例子
解方程:3x²+ 7x - 2 = 0
2 步骤
1. 将函数转化为完全平方。 2. 利用平方差公式进行化简。
配方法解法
1 基本思路
通过配方法将二次函数转化为标准形式。
3 例子
解方程:2x²+ 5x + 2 = 0
二次函数解析式的几种解 法
通过本演示文稿,我们将深入探讨二次函数解析式的各种解法,包括标准式, 顶点式,一般式,配方法,完全平方,右边等于零,左边等于零,带分数, 分组整理,移项,平移等方法。
二次函数概述
• 二次函数的基本形式:f(x) = ax²+ bx + c • 二次函数的图像特征:抛物线 • 常见二次函数的例子与应用
2. 通过其他解法求解。
解析式与图像的关系
1 关系说明
2 特征分析
3 例子
探索二次函数解析式 与其图像之间的关系。
分析二次函数的解析 式对图像形状的影响。
分析方程:y = x²- 4x +4
标准式解法
1 基本思路
将二次函数转化为标准形式。
3 例子
解方程:2x²- 5x - 3 = 0
2 步骤
1. 将函数写为完全平方的形式。 2. 通过完全平方公式进行化简。
顶点式解法
1 基本思路
利用顶点坐标求解二 次函数。
2 步骤
3 例子
1. 将二次函数转换为 顶点式。
解方程:x²- 4x + 3 = 0
通过带分数的形式进行二次函数的求解。
3 例子
解方程:x²- 2x - 8 = 0

求二次函数解析式的三种方法

求二次函数解析式的三种方法

求二次函数解析式的三种方法二次函数是形如$y=ax^2+bx+c$的函数,其中$a \neq 0$。

它是数学中的基本函数之一,广泛应用于物理学、经济学、工程学等学科中。

解析式是指能够明确表达函数关系的数学表达式。

下面将介绍三种常用的方法来确定二次函数的解析式。

第一种方法是使用差值法。

差值法是通过给定的点来确定二次函数的解析式。

假设已知二次函数过三个不同的点$(x_1,y_1)$,$(x_2,y_2)$,$(x_3,y_3)$,那么可以将这三个点带入二次函数的解析式中,得到如下的方程组:$$\begin{cases}ax_1^2+bx_1+c=y_1 \\ax_2^2+bx_2+c=y_2 \\ax_3^2+bx_3+c=y_3 \\\end{cases}$$解这个方程组可以得到$a$,$b$,$c$的值,从而确定二次函数的解析式。

第二种方法是使用顶点法。

顶点法是通过二次函数的顶点坐标来确定解析式。

二次函数的顶点坐标可以通过公式$x=-\frac{b}{2a}$来求得。

将这个顶点坐标代入二次函数的解析式中,可以得到一个等于顶点对应的函数值的方程。

结合另外一个给定点的坐标,可以得到一个方程组。

解这个方程组可以得到$a$,$b$,$c$的值,从而确定二次函数的解析式。

第三种方法是使用因式分解法。

因式分解法是将二次函数的解析式进行因式分解,从而得到函数的解析式。

对于一般形式的二次函数$y=ax^2+bx+c$,我们可以将其写成$y=a(x-p)(x-q)$的形式,其中$p$和$q$是实数。

展开右边的乘积,可以得到如下的方程:$$ax^2+bx+c=a(x^2-(p+q)x+pq)$$通过比较系数,可以得到以下等式:$$\begin{cases}p+q=-\frac{b}{a} \\pq=\frac{c}{a}\end{cases}$$解这个方程组可以得到$p$和$q$的值,从而确定二次函数的解析式。

以上就是三种常用的方法来确定二次函数解析式的介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联立①和②解得:b=-4;c=-10

这个抛物线的解析式:y=x2 -4x -10
2015年白沙中学数学组
春天辛勤的耕耘 例题6:
秋天丰厚的收获
执教人生 桃李天下
已知抛物线图象与y=2x2 形状,大小相同。抛物线顶点 的横坐标是3;且函数的图象经过点A(4,6)求这个 抛物线的解析式?
解:根据题意设函数的解析式是:y=a(x-h)2 +k ( a≠0)
24 8 8
4
2 x 2
对称轴直线方程 2 ( , 4) 顶点坐标 2
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
已知一次函数的图像经过点A(0,-3) 点(2,-1),求一次函 数的解析式 解:设所求的一次函数的解析式y=kx+b为(k≠0) ∵点A(0,-3)点B(2,-1)在所求的一次函数 y=kx+b的图象上。
3.交点式:y=a(x-x1)(x-x2) (a≠0)
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
知识讲解
1.用待定系数法求二次函数的解析式 (1)设:设函数的一般形式
主要
(2)把点的坐标代人函数关系式中 (3)求出函数中字母常数 (4)代回(1)求出函数解析式
步骤
怀念是年少时一种梦想;追求是人生的一道风景线。努力 2015年白沙中学数学组 学习是我们青年无悔的选择。
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
例14.要修建一个圆形喷水池,在池中心竖直安装 一根水管.在水管的顶端安装一个喷水头,使喷出 的抛物线形水柱在与池中心的水平距离为1m处 达到最高,高度为3m,水柱落地处离池中心3m,水 管应多长?
解:如图建立直角坐标系,
点(1,3)是图中这段抛物线的顶点. 3 因此可设这段抛物线对应的函数是 A y=a(x-1)2+3 (0≤x≤3) 2 ∵这段抛物线经过点(3,0) ∴ 0=a(3-1)2+3 解得: a=- 3 因此抛物线的解析式为: 1 3 4 2 y= -( 4 x-1) +3 (0≤x≤3)
b Qx 2 2a
2 2 2a

a
Hale Waihona Puke 1 2①4ac b2 4ac 22 Q 3 4a 4a
联立①和②解得:
2015年白沙中学数学组
1 2 ∴抛物线的解析式 y 2 x 2 x 5
a 1 c 5
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
点(0,0) (1,2) (2,3)在二次函数图象上
0 00c
(2)将题目中三点坐标代入已设函数解析式中
(3)求出函数中字母常数a,b,c的值 (3)把a,b,c的值代人函数解析式中
2 a bc 3 4a 2b c
解得:
a
5 b 2
1 2
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
1.求下列函数的对称轴和顶点坐标 (2) y 2x2 2 2x 3 (1) y 2 x2 3x 1
a 2, b 3, c 1 解:
3 3 b Q 2 (2) 4 2a
解:a 2, b 2 2, c 3
a
4 2 y x 函数的解析式是: 9
2015年白沙中学数学组
4 9
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
例题2: 抛物线的顶点坐标是(0,-3),点(2,1) 在函数的图象上,求这个抛物线的解析式?
解:根据题意设函数的解析式是:y=ax2 +k ( a≠0)
∵抛物线的顶点坐标是(0,-3)
二次函数的解析式为y=ax2+bx+c=(x+4)2+4
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
例题9:
抛物线过点 (0,0) (1,2) (2,3)三点,求函数的解析式 小结: 过三点求出抛物线解析式 解:设二次函数解析式 (1)设出二次函数一般式y=ax2+bx+c(a≠0) 为y=ax2+bx+c
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
例题8:
二次函数y=ax2+bx+c的图象向右平移3个单位长度, 在向下平移2个单位,得到函数y=x2+2x+3求a,b,c 的值和求二次函数的解析式。
解:∵y=x2+2x+3=(x+1)2 +2 ( a≠0)
抛物线顶点坐标是(-1,2)
把函数y=(x+1)2+2图象向上平移2个单位得y=(x+1)2+4 向左平移3个单位长度y=(x+4)2+4 即:y=ax2+bx+c=(x+4)2+4 即:a=1,b=8,c=20
抛物线图象与y=2x2 形状,大小相同
抛物线顶点的横坐标是3
∵抛物线的图象经过点A(4,6) ∴6=2× (4-3)2 ∴h=3 ②
∴a=2

+k

由③解得:k=4 这个抛物线的解析式:y=2(x-3)2 +4
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
例题7: 二次函数的对称轴是y轴,图象经过点A(-3,2)和点
解:根据题意设函数的解析式是:y=a(x-h)2 ( a≠0)
∵抛物线的顶点坐标是(-3,0) ∵点(-2,25)在函数y=a(x-h)2 ∴25=a× (-2-h)2 ② ∴h=
-3

的图象上,
由①和②得:a=25
这个抛物线的解析式:y=25(x+3)2
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
所以 解得:
3 0 k c 1 2 k c k 1 c 3
一、设 二、代 三、解 四、还原
所以所求的一次函数解析式为y=x-3
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
二次函数解析式有哪几种表达式?
1. 一般式:y=ax2+bx+c (a≠0) 2.顶点式:y=a(x-h)2+k (a≠0) 特殊形式
c0
所求的抛物线解析式为:
1 2 5 y x x 2 2
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
练习题:已知抛物线与x轴交于A(-1,0),B (1,0)并经过点M(0,1),求抛物线的解析式. 解:设所求的二次函数的解析式为y=ax2+bx+c a-b+c=0 a=-1 a+b+c=0 解得 b=0 c=1 c=1
∴抛物线的顶点坐标是(2,4-c)
抛物线的顶点坐标在x轴上。 ∴4-c=0
2015年白沙中学数学组
∴c=4
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下 例题13: 抛物线y=2x2+bx+c过点(2,3)且顶点在直线y=3x-2上求 抛物线的解析式 解:∵抛物线的顶点坐标顶点在直线y=3x-2上,
执教人生 桃李天下
例题4: 抛物线的顶点坐标是(-2,2),点(-1,-5) 在函数的图象上,求这个抛物线的解析式?
解:根据题意设函数的解析式是:y=a(x-h)2 +k ( a≠0)
∵抛物线的顶点坐标是(-2,2) ∴h=
- 2 ,k=2

这个抛物线的解析式:y=a(x+2)2 +2
∵点(-1,-5)在函数y=a(x-h)2 ∴-5=a× (-1+2)2
+k的图象上,
+2

由②得:a=-7
这个抛物线的解析式:y=-7(x+2)2 +2
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
例题5: 抛物线y=x2+bx+c的图象经过点A(-2,2)点B(-1,-5) 求这个抛物线的解析式? 解:根据题意知:点A(-2,2)点B(-1,-5)在函 数y=x2+bx+c的图象上 ∴2=(-2)2+(-2)×b + c ① ∴-5=(-1)2+(-1)×b + c
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
用待定系数法求二次函数的解析式
例题1:二次函数的对称轴是y轴,顶点是原点,且图象经过
点(-3,4);求二次函数的解析式? 解:根据题意设函数的解析式是:y=ax2 ( a≠0) ∵点(-3,4)在函数y=ax2 图象上 ∴ 4=a ×(-3)2 即:9a=4
例题11: (0,-2),求二次函数的解析式。
二次函数的图象与X轴交于A(2,0) ,B(-1,0)且过点
解:∵抛物线与X轴交于点(2,0)(-1,0) ∴设解析式为:y=a(x-2)(x+1) 把点(0,-2)代入a(0-2)(0+1)=-2 ∴y=(x-2)(x+1) 即:y=x2-x-2
解得 a=1
本例中函数的图像与x轴的交点A(x1,0) ,B(x2,0)求 函数的解析式通过设为y=a(x-x1)(x-x2);代值求出a
在求出函数的解析式。
2015年白沙中学数学组
春天辛勤的耕耘
秋天丰厚的收获
执教人生 桃李天下
例题12: 1.已知抛物线y=x2-4x+c
相关文档
最新文档