概率论与数理统计教程习题(第四章大数定律与中心极限定理)

合集下载

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。

茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】

是直线上的连续函数,试证:
证:若 g(x)是 m 次多项式函数,即 下证一般情况,对任意的 又选取 N1 充分大,使当
,则由上一题知有
,取 M 充分大,使有
时,有
,于是有
对取定的 M,因为 g(x)是连续函数,所以可以用多项式函数去逼近 g(x),并且在任意
有限区间上还可以是一致的,因而存在 m 次多项式
,于是有
,因为
,故存在充分
由 的任意性知,当
时,有
结论得证.
6.设 D(x)为退化分布: 试问下列分布函数列的极限函数是否仍是分布函数?(其中 n=1,2,…)
(1)
(2)
(3)
解:(1)因为此时的极限函数为
性质: lim F x=0 ,所以不是分布函数. x-
,不满足分布函数的基本
4 / 42
圣才电子书

故当
时,

成立,进一步由
可得
,所以又有
1 / 42
圣才电子书

成立.
十万种考研考证电子书、题库视频学习平 台
(2)先证明
对任意的
,取 M 足够大(譬如
),使有
成立,对取定的 M,存在 N,当 n>N 时,有
这时有
从而有
由 的任意性知
,同理可证
由上面(1)得

成立.
3.如果
3 / 42
圣才电子书

十万种考研考证电子书、题库视频学习
证:先证充分性,令
,则

故 f(x)是 x 的严格单调增函数,因而对任意的
,有
于是对任意的
,当
时,有参见 2.3 第 12 题.
充分性得证.

概率论与数理统计教程(茆诗松)第4章

概率论与数理统计教程(茆诗松)第4章

解:用 Xi=1表示第i个部件正常工作, 反之记为Xi=0. 又记Y=X1+X2+…+X100,则 E(Y)=90,Var(Y)=9.
由此得:
P{Y
85}
ห้องสมุดไป่ตู้
1
85
0.5 9
90
0.966.
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第10页
二、给定 n 和概率,求 y
例4.4.4 有200台独立工作(工作的概率为0.7)的机床,
第6页
4.4.3 二项分布的正态近似
定理4.4.2 棣莫弗—拉普拉斯中心极限定理
设n 为服从二项分布 b(n, p) 的随机变量,则当 n
充分大时,有
lim
n
P
n
np npq
y
( y)
是林德贝格—勒维中心极限定理的特例.
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第7页
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第5页
例4.4.2 设 X 为一次射击中命中的环数,其分布列为
X 10 9 8 7
6
P 0.8 0.1 0.05 0.02 0.03
求100次射击中命中环数在900环到930环之间的概率.
解: 设 Xi 为第 i 次射击命中的环数,则Xi 独立同分布,
且 E(Xi) =9.62,Var(Xi) =0.82,故
P
900
100 i 1
Xi
930
930 100 9.62 100 0.82
900 100 9.62 100 0.82

(第四章)大数定率与中心极限定理习题

(第四章)大数定率与中心极限定理习题

第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。

并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X独立同分布,这一设定在《数理统计》部分一直沿用了下去。

全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。

三个定理。

“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。

§2节主要研究对象为:算术平均值()nXX nX +⋯+=11;§4节的主要研究对象为:n ni i X X X +⋯+=∑=11,比nX 1少了。

§2节的学习,不妨先从复习入手。

第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。

定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X nnn ni i A ==∑=11,于是可用定理一了。

推导本身是一件很愉快的事。

§2节的三个定理可在比对中学习。

定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。

定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。

定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。

“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。

这个结论很精致,十分简单了。

翻开§4节,一堆一堆的符号映入眼中,让人头大。

其实,若标准化方法娴熟,这一节并不难。

茆诗松《概率论与数理统计教程》(第版)-章节题库-第4~8章【圣才出品】

茆诗松《概率论与数理统计教程》(第版)-章节题库-第4~8章【圣才出品】

A.有相同的数学期望
B.服从同一离散型分布
2 / 87
圣才电子书

C.服从同一泊松分布
十万种考研考证电子书、题库视频学习平台
D.服从同一连续型分布
【答案】C
【解析】直接应用辛钦大数定律的条件进行判断,C 项正确。事实上,应用辛钦大数定
律,随机变量序列{Xn,n≥l}必须是“独立同分布且数学期望存在”,A 项缺少同分布条件,
ε=1,有
lim
P
n
n i 1
Xi
<n
=1,又
n i 1
Xi
<n
n i1
X
i<n

所以
lim
n
P
n i 1
X
i<n
=1。
3.设 Xn 表示将一硬币随意投掷 n 次“正面”出现的次数,则( )。
A. lim P{ Xn n x} (x)
n
n
B. lim P{ Xn 2n x} (x)
6 / 87
圣才电子书 十万种考研考证电子书、题库视频学习平台

解:设同时使用紫外线的分机数为 , 设此单定安装的外线共有 条,则应用中心极限定理 又查表知
【答案】
【解析】题目要求我们计算
为此我们需要应用大数定律或依概率收
敛的定义与性质来计算。由题设知 X1,…,Xn 独立同分布:

,根据辛钦大数定律
4.设随机变量列 X1,X2,…,Xn…相互独立且同分布,则 X1,X2,…,Xn,…服从辛 钦大数定律,只要随机变量 X1______。
【答案】期望存在 【解析】辛钦大数定律的条件是 Xi 独立同分布,且期望存在,而切比雪夫大数定律的 条件是 不相关且方差有界。

《概率论与数理统计》习题 第四章 大数定律和中心极限定理

《概率论与数理统计》习题 第四章 大数定律和中心极限定理

第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫ ⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫ ⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n 2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______.解. E(X -Y) = E(X)-E(Y) = 2-2 = 0D(X -Y) = D(X) + D(Y)-)()(2Y D X D XYρ= 1 + 4-2×0.5×1×2 = 3 所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02)由棣莫佛-拉普拉斯定理:)(2198.002.040002.0400lim 22x dt e x X P x t n Φ==⎪⎭⎫ ⎝⎛≤⨯⨯⨯-⎰∞--∞→π 所以 ⎪⎭⎫ ⎝⎛⨯⨯-≤⨯⨯--=≤-=≥98.002.0400798.002.040081)1(1)2(X P X P X P ≈ 1-Φ(-2.5) = Φ(2.5) = 0.9938.2. 设供电网中有10000盏灯, 夜晚每一盏灯开着的概率都是0.7, 假设各灯开、关时间彼此无关, 计算同时开着的灯数在6800与7200之间的概率.解. 假设X 表示10000盏灯中开着的灯数, 所以X ~B(10000, 0.7)由棣莫佛-拉普拉斯定理:)(217.03.010*******lim 22x dt e x X P xt n Φ==⎪⎭⎫ ⎝⎛≤⨯⨯-⎰∞--∞→π所以 )72006800(≤≤X P ⎪⎭⎫ ⎝⎛⨯⨯-≤⨯⨯-≤⨯⨯-=7.03.010000700072007.03.010********.03.01000070006800X P ≈ Φ(4.36)-Φ(-4.36) = 2Φ(4.36)-1 = 2×0.999993-1 = 0.999.。

概率论与数理统计答案第四章大数定律与中心极限定理

概率论与数理统计答案第四章大数定律与中心极限定理

第四章大数定律与中心极限定理4.1 设为退化分布:讨论下列分布函数列的极限是否仍是分布函数?解:(1)(2)不是;(3)是。

4.2 设分布函数如下定义:问是分布函数吗?解:不是。

4.3设分布函数列弱收敛于分布函数,且为连续函数,则在上一致收敛于。

证:对任意的,取充分大,使有对上述取定的,因为在上一致连续,故可取它的分点:,使有,再令,则有(1)这时存在,使得当时有(2)成立,对任意的,必存在某个,使得,由(2)知当时有(3)(4)由(1),(3),(4)可得,即有成立,结论得证。

4.5 设随机变量序列同时依概率收敛于随机变量与,证明这时必有。

证:对任意的有,故即对任意的有成立,于是有从而成立,结论得证。

4.6 设随机变量序列,分别依概率收敛于随机变量与,证明:(1);(2)。

证:(1)因为故即成立。

(2)先证明这时必有。

对任给的取足够大,使有成立,对取定的,存在,当时有成立.这时有从而有由的任意性知,同理可证,由前述(1)有故,结论成立。

4.7 设随机变量序列,是一个常数,且,证明。

证:不妨设对任意的,当时有,因而。

于是有。

结论成立。

4.9 证明随机变量序列依概率收敛于随机变量的充要条件为:证:充分性,令,则,故是的单调上升函数,因而,于是有对任意的成立,充分性得证。

必要性,对任给的,令,因为,故存在充分大的使得当时有,于是有,由的任意性知,结论为真。

4.10 设随机变量按分布收敛于随机变量,又数列,,证明也按分布收敛于。

证:先证明按分布收敛于。

时为显然,不妨设(时的修改为显然),若,,,的分布函数分别记作,,与,则=,当是的连续点时,是的连续点,于是有成立,结论为真。

由4.12知,再由4.6(1)知,于是由前述结论及4.11知按分布收敛于,结论得证。

4.11设随机变量序列按分布收敛于随机变量,随机变量序列依概率收敛于常数,证明按分布收敛于。

证:记的分布函数分别为,则的分布函数为,设是的连续点,则对任给的,存在,使当时有(1)由于F(x)在只能有有限个间断点,可取,使得都是的连续点,这时存在,当时有(2)(3)对取定的,存在,当时有(4)于是当时,由(1),(2),(4)式有又因为于是由(1),(3),(4)式有(6)由(5),(6)两式可得由的任意性即知按分布收敛于,结论得证。

概率论及数理统计教程习题(第四章大数定律及中心极限定理)

概率论及数理统计教程习题(第四章大数定律及中心极限定理)

习题10 (切比雪夫不等式)•填空题1.设随机变量X的数学期望E(X) ,方差D(X) 2,则由切比雪夫不等式,得P(X 3 )2.随机掷6枚骰子,用X表示6枚骰子点数之和,则由切比雪夫不等式,得P(15 X 27)3.若二维随机变量(X,Y)满足,E(X) 2,E(Y) 2,D(X) 1,D(Y) 4,R(X,Y) 0.5,则由切比雪夫不等式,得P(X 丫 6)4.设X1, X2, ,X n,是相互独立、同分布的随机变量序列,且E(X i) 0, D(X i) 一致有n界(i 1,2, ,n,),则lim P( X i n) .ni 1二•选择题1.若随机变量X的数学期望与方差都存在,对 a b,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。

①P(a X b);②P(a X E(X)b);③P( a X a);④P(X E(X)b a).12.随机变量X服从指数分布e(),用切比雪夫不等式估计P(X | -) ( )①;②2③4;④-.)1.lim P(nX i 2三•解答题1.已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若 E(X) 7300,D(X ) 7002,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。

2.如果X-X 2, ,X n 是相互独立、同分布的随机变量序列,E(X i )3.设X i ,X 2, ,X n ,是相互独立、同分布的随机变量序列,E(X i 4)存在,且一致有界(i 1,2, ,n,).对任意实数 0,证明D(X i )8 (i 1,2, ,n) •记 XX i , 由切比雪夫不等式估计概率p(X 4).E(X i ) 0,D(X i )•填空题1.若随机变量X 服从正态分布 N(2,4),则P(X 3)P(0 X 4) ________________ ,P(X 1)5.随机变量X 1,X 2相互独立,且都服从标准正态分布,记丫 2 3X 1 4X 2,则丫概率密度f Y (y)_________________ . ________________•选择题6.若随机变量 X 1,X 2 ,,X n 相互独立,且X i ~ N(,2) (i 1 n1,2, ,n),则 D(— X i )n i 1( )①2 ;②n2; ③2/n ;④2/n 2.7.若随机变量 X,Y 相互独立, 且都服从正态分布N(:,2).设X Y ,X Y ,则cov(,)( ).①2 2 ;②1 ;③ 1;④0.X Y8.若随机变量 X,Y 满足 X ~ N(1, 32) , Y ~ N(0, 42) , R(X,Y) 1/2,则 D( ) 3 2( ).④2.11 (特征函数)2.若随机变量X ~ N (2),且 P(X c) P(X c),则 c3.若随机变量X ~ N(2, 2),且P(2 X4) 0.3,则 P(X 0)4.若X 服从正态分布 N ( 2),记 P( k X当 0.9时,k,当 0.95 时,k•解答题1.某种电池的寿命X (单位:h )服从正态分布N(300, 352) . (1)求寿命大于250小时的概率,(2)求x,使寿命在300 x之间的概率不小于092.测量某一目标的距离时,随机误差X ~ N(0, 402)(单位:m)(1)求P(X 30),(2)若作三次独立测量,求至少有一次测量误差的绝对值不超过30米的概率。

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

第四章 大数定律与中心极限定理习题4.11. 如果X X Pn →,且Y X Pn →.试证:P {X = Y } = 1.证:因 | X − Y | = | −(X n − X ) + (X n − Y )| ≤ | X n − X | + | X n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεY X P X X P Y X P n n ,又因X X Pn →,且Y X Pn →,有02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎫⎩⎨⎧≥−+∞→εY X P n n ,则P {| X − Y | ≥ ε} = 0,取k 1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−k Y X P ,即11||=⎭⎬⎫⎩⎨⎧<−k Y X P , 故11||lim1||}{1=⎭⎬⎫⎩⎨⎧<−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧<−==+∞→+∞=k Y X P k Y X P Y X P k k I . 2. 如果X X Pn →,Y Y Pn →.试证:(1)Y X Y X Pn n +→+; (2)XY Y X Pn n →.证:(1)因 | (X n + Y n ) − (X + Y ) | = | (X n − X ) + (Y n − Y )| ≤ | X n − X | + | Y n − Y |,对任意的ε > 0,有⎭⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεY Y P X X P Y X Y X P n n n n ,又因X X P n →,Y Y P n →,有02||lim =⎭⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εY Y P n n ,故0}|)()({|lim =≥+−++∞→εY X Y X P n n n ,即Y X Y X Pn n +→+;(2)因 | X n Y n − XY | = | (X n − X )Y n + X (Y n − Y ) | ≤ | X n − X | ⋅ | Y n | + | X | ⋅ | Y n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεY Y X P Y X X P XY Y X P n n n n n ,对任意的h > 0,存在M 1 > 0,使得4}|{|1h M X P <≥,存在M 2 > 0,使得8}|{|2hM Y P <≥, 存在N 1 > 0,当n > N 1时,8}1|{|h Y Y P n <≥−, 因| Y n | = | (Y n − Y ) + Y | ≤ | Y n − Y | + | Y |,有4}|{|}1|{|}1|{|22h M Y Y Y P M Y P n n <≥+≥−≤+≥, 存在N 2 > 0,当n > N 2时,4)1(2||2h M X X P n <⎭⎬⎫⎩⎨⎧+≥−ε,当n > max{N 1, N 2}时,有244}1|{|)1(2||2||||22h h h M Y P M X X P Y X X P n n n n =+<+≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N 3 > 0,当n > N 3时,42||1hM Y Y P n <⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11h h h M X P M Y Y P X Y Y P n n =+<≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h > 0,当n > max{N 1, N 2, N 3} 时,有h h h Y Y X P Y X X P XY Y X P n n n n n =+<⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim =≥−+∞→εXY Y X P n n n ,即XY Y X Pn n →.3. 如果X X Pn →,g (x )是直线上的连续函数,试证:)()(X g X g Pn →. 证:对任意的h > 0,存在M > 0,使得4}|{|h M X P <≥, 存在N 1 > 0,当n > N 1时,4}1|{|h X X P n <≥−, 因| X n | = | (X n − X ) + X | ≤ | X n − X | + | X |,则244}|{|}1|{|}1|{|h h h M X P X X P M X P n n =+<≥+≥−≤+≥, 因g (x ) 是直线上的连续函数,有g (x ) 在闭区间 [− (M + 1), M + 1] 上连续,必一致连续, 对任意的ε > 0,存在δ > 0,当 | x − y | < δ 时,有 | g (x ) − g ( y ) | < ε ,存在N 2 > 0,当n > N 2时,4}|{|hX X P n <≥−δ,则对任意的h > 0,当n > max{N 1, N 2} 时,有{}}|{|}1|{|}|{|}|)()({|0M X M X X X P X g X g P n n n ≥+≥≥−≤≥−≤U U δεh hh h M X P M X P X X P n n =++<≥++≥+≥−≤424}|{|}1|{|}|{|δ, 故0}|)()({|lim =≥−+∞→εX g X g P n n ,即)()(X g X g Pn →.4. 如果a X P n →,则对任意常数c ,有ca cX Pn →. 证:当c = 0时,有c X n = 0,ca = 0,显然ca cX Pn →;当c ≠ 0时,对任意的ε > 0,有0||||lim =⎭⎬⎫⎩⎨⎧≥−+∞→c a X P n n ε, 故0}|{|lim =≥−+∞→εca cX P n n ,即ca cX Pn →.5. 试证:X X P n →的充要条件为:n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n .证:以连续随机变量为例进行证明,设X n − X 的密度函数为p ( y ),必要性:设X X Pn →,对任意的ε > 0,都有0}|{|lim =≥−+∞→εX X P n n ,对012>+εε,存在N > 0,当n > N 时,εεε+<≥−1}|{|2X X P n , 则∫∫∫≥<∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||y y n n dy y p y y dy y p y y dy y p y y XX X X E εεεεεεεεεεεεε=+++<≥−+<−+=++≤∫∫≥<11}|{|}|{|1)()(12||||X X P X X P dy y p dy y p n n y y ,故n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n ; 充分性:设n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n , 因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|y y y n dy y p y y dy y p dy y p X X P ⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1X X X X E dy y p y y n n εεεε, 故0}|{|lim =≥−+∞→εX X P n n ,即X X Pn →.6. 设D (x )为退化分布:⎩⎨⎧≥<=.0,1;0,0)(x x x D试问下列分布函数列的极限函数是否仍是分布函数?(其中n = 1, 2, ….)(1){D (x + n )}; (2){D (x + 1/n )}; (3){D (x − 1/n )}.解:(1)对任意实数x ,当n > −x 时,有x + n > 0,D (x + n ) = 1,即1)(lim =++∞→n x D n ,则 {D (x + n )} 的极限函数是常量函数f (x ) = 1,有f (−∞) = 1 ≠ 0,故 {D (x + n )} 的极限函数不是分布函数; (2)若x ≥ 0,有01>+n x ,11=⎟⎠⎞⎜⎝⎛+n x D ,即11lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,若x < 0,当x n 1−>时,有01<+n x ,01=⎟⎠⎞⎜⎝⎛+n x D ,即01lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,则⎩⎨⎧≥<=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01lim x x n x D n 这是在0点处单点分布的分布函数,满足分布函数的基本性质,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+n x D 1的极限函数是分布函数;(3)若x ≤ 0,有01<−n x ,01=⎟⎠⎞⎜⎝⎛−n x D ,即01lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,若x > 0,当x n 1>时,有01>−n x ,11=⎟⎠⎞⎜⎝⎛−n x D ,即11lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,则⎩⎨⎧>≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01lim x x n x D n 在x = 0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−n x D 1的极限函数不是分布函数.7. 设分布函数列 {F n (x )} 弱收敛于连续的分布函数F (x ),试证:{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ). 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,对任意的ε > 0,取正整数ε2>k ,则存在分点x 1 < x 2 < … < x k −1,使得1,,2,1,)(−==k i kix F i L ,并取x 0 = −∞,x k = +∞, 可得k k i k x F x F i i ,1,,2,1,21)()(1−=<=−−L ε, 因 {F n (x )} 弱收敛于F (x ),且F (x ) 连续,有 {F n (x )} 在每一点处都收敛于F (x ),则存在N > 0,当n > N 时,1,,2,1,2|)()(|−=<−k i x F x F i i n L ε,且显然有20|)()(|00ε<=−x F x F n ,20|)()(|ε<=−k k n x F x F ,对任意实数x ,必存在j ,1 ≤ j ≤ k ,有x j −1 ≤ x < x j ,因2)()()()(2)(11εε+<≤≤<−−−j j n n j n j x F x F x F x F x F ,则εεεε−=−−>−−>−−222)()()()(1x F x F x F x F j n ,且εεεε=+<+−<−222)()()()(x F x F x F x F j n ,即对任意的ε > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < ε , 故 {F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ).8. 如果X X Ln →,且数列a n → a ,b n → b .试证:b aX b X a Ln n n +→+. 证:设y 0是F aX + b ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F b aX b aX ,又设y 是满足 | y − y 0 | < h 的F aX + b ( y ) 的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+a b y F a b y X P y b aX P y F X b aX }{)(,有a b y x −=是F X (x )的连续点,且X X L n→, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F b aX b aX n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F b aX b aX b aX b aX b aX b aX n n , 因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续, 存在M ,使得F X (x ) 在x = ± M 处连续,且41)(ε−>M F X ,4)(ε<−M F X ,因X X Ln →,有41)()(lim ε−>=+∞→M F M F X X n n ,4)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,41)(ε−>M F n X ,4)(ε<−M F n X ,可得2)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因数列a n → a ,b n → b ,存在N 3,当n > N 3时,M h a a n 4||<−,4||h b b n <−, 可得当n > max{N 2, N 3}时,⎭⎫⎩⎨⎧>−+−=⎭⎬⎫⎩⎨⎧>+−+2|)()(|2|)()(|h b b X a a P h b aX b X a P n n n n n n n2}|{|24||42||||||ε<>=⎭⎬⎫⎩⎨⎧>+⋅≤⎭⎬⎫⎩⎨⎧>−+⋅−≤M X P h h X M hP h b b X a a P nn n n n , 则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000h b aX b X a h y b aX P y b X a P y F n n n n n n n n b X a n n n U222|)()(|200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>+−++⎭⎬⎫⎩⎨⎧+≤+≤+h y F h b aX b X a P h y b aX P b aX n n n n n n , 且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000h b aX b X a y b X a P h y b aX P h y F n n n n n n n n b aX n U2)(2|)()(|}{00ε+<⎭⎬⎫⎩⎨⎧>+−++≤+≤+y F h b aX b X a P y b X a P n n n b X a n n n n n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F b aX b X a b aX n n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F b aX b aX b aX n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F aX + b ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F b aX b aX b aX b X a n n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F aX + b ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F b aX b aX b aX b X a n n n n n ,即对于F aX + b ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−++|)()(|00y F y F b aX b X a n n n , 故)()(y F y F b aX Wb X a n n n ++→,b aX b X a Ln n n +→+. 9. 如果X X Ln →,a Y Pn →,试证:a X Y X Ln n +→+. 证:设y 0是F X + a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X + a ( y )的任一连续点,因F X + a ( y ) = P {X + a ≤ y } = P {X ≤ y − a } = F X ( y − a ),有x = y − a 是F X (x )的连续点,且X X Ln →, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F a X a X n , 则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F a X a X a X a X a X a X n n ,因a Y Pn →,有02||lim =⎭⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 2,当n > N 2时,22||ε<⎭⎬⎫⎩⎨⎧>−h a Y P n , 则⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2||2}{)(000h a Y h y a X P y Y X P y F n n n n Y X n n U222||200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤+≤+h y F h a Y P h y a X P a X n n n , 且⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2||}{22000h a Y y Y X P h y a X P h y F n n n n a X n U2)(2||}{00ε+<⎭⎬⎫⎩⎨⎧>−+≤+≤+y F h a Y P y Y X P n n Y X n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X + a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X + a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F a X a X a X Y X n n n n ,即对于F X + a ( y ) 的任一连续点y 0,当n > max{N 1, N 2}时,ε<−++|)()(|00y F y F a X Y X n n , 故)()(y F y F a X WY X n n ++→,a X Y X Ln n +→+. 10.如果X X Ln →,0Pn Y →,试证:0Pn n Y X →.证:因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续,则对任意的h > 0,存在M ,使得F X (x ) 在x = ± M 处连续,且41)(h M F X −>,4)(hM F X <−, 因X X L n →,有41)()(lim h M F M F X X n n −>=+∞→,4)()(lim h M F M F X X n n <−=−+∞→,则存在N 1,当n > N 1时,41)(h M F n X −>,4)(hM F n X <−,可得2)(1)(}|{|hM F M F M X P n n X X n <−+−=>,因0Pn Y →,对任意的ε > 0,有0||lim =⎭⎬⎫⎩⎨⎧>+∞→M Y P n n ε,存在N 2,当n > N 2时,2||h M Y P n <⎭⎬⎫⎩⎨⎧>ε, 则当n > max{N 1, N 2}时,有h M Y P M X P M Y M X P Y X P n n n n n n <⎭⎬⎫⎩⎨⎧>+>≤⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>>≤>εεε||}|{|||}|{|}|{|U ,故0}|{|lim =>+∞→εn n n Y X P ,即0Pn n Y X →.11.如果X X Ln →,a Y Pn →,且Y n ≠ 0,常数a ≠ 0,试证:aXY X L n n →. 证:设y 0是F X / a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0//ε<−y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X / a ( y ) 的任一连续点,因)(}{)(/ay F ay X P y a X P y F X a X =≤=⎭⎬⎫⎩⎨⎧≤=,有x = ay 是F X (x )的连续点,且X X Ln →,有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|//ε<−y F y F a X a X n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|0////0//ε<−+−≤−y F y F y F y F y F y F a X a X a X a X a X a X n n ,因X 的分布函数F X (x )满足F X (−∞) = 0,F X (+∞) = 1,F X (x )单调不减且几乎处处连续,存在M ,使得F X (x ) 在x = ± M 处连续,且121)(ε−>M F X ,12)(ε<−M F X ,因X X Ln →,有121)()(lim ε−>=+∞→M F M F X X n n ,12)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,121)(ε−>M F n X ,12)(ε<−M F n X ,可得6)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因0≠→a Y Pn ,有02||lim =⎭⎬⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 3 > 0,当n > N 3时,62||||ε<⎭⎬⎫⎩⎨⎧>−a a Y P n ,有62||||ε<⎭⎬⎫⎩⎨⎧<a Y P n ,且64||2ε<⎭⎬⎫⎩⎨⎧>−M h a a Y P n , 可得当n > max{N 1, N 2, N 3}时,⎭⎬⎫⎩⎨⎧>⋅−⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−2||||||||2)(2h Y a a Y X P h aY Y a X P h a X Y X P n n n n n n n n n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧<⎭⎬⎫⎩⎨⎧>−>≤2||||4||}|{|2a Y M h a a Y M X P n n n U U22||||4||}|{|2ε<⎭⎬⎫⎩⎨⎧<+⎭⎬⎫⎩⎨⎧>−+>≤a Y P M h a a Y P M X P n n n ,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧+≤≤⎭⎬⎫⎩⎨⎧≤=22)(000/h a X Y X h y a XP y Y X P y F n n n n n n Y X n n U22220/0ε+⎟⎠⎞⎜⎝⎛+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤≤h y F h a X Y X P h y a X P a X n n n n n ,且⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧≤≤⎭⎬⎫⎩⎨⎧−≤=⎟⎠⎞⎜⎝⎛−222000/h a X Y X y Y X P h y a X P h y F n n n nn n a X n U2)(20/0ε+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧≤≤y F h a X Y X P y Y X P n n Y X n n n n n ,即22)(220/0/0/εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(0//0/εε+<<−y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X / a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<)(2)(22)(0/1/0/0/y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X / a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>)(2)(22)(0/2/0/0/y F y F h y F y F a X a X a X Y X n n n n ,即对于F X / a ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−|)()(|0/0/y F y F a X Y X n n ,故)()(//y F y F a X WY X n n →,aX Y X L n n →. 12.设随机变量X n 服从柯西分布,其密度函数为+∞<<∞−+=x x n nx p n ,)1π()(22.试证:0Pn X →.证:对任意的ε > 0,)arctan(π2)arctan(π1)1π(}|{|22εεεεεεn nx dx x n n X P n ==+=<−−∫, 则12ππ2)arctan(lim π2}|0{|lim =⋅==<−+∞→+∞→εεn X P n n n , 故0Pn X →.13.设随机变量序列{X n }独立同分布,其密度函数为⎪⎩⎪⎨⎧<<=.,0;0,1)(其他ββx x p其中常数β > 0,令Y n = max{X 1, X 2, …, X n },试证:βPn Y →.证:对任意的ε > 0,P {| Y n − β | < ε} = P {β − ε < Y n < β + ε} = P {max{X 1, X 2, …, X n } > β − ε}= 1 − P {max{X 1, X 2, …, X n } ≤ β − ε} = 1 − P {X 1 ≤ β − ε} P {X 2 ≤ β − ε} … P {X n ≤ β − ε}n⎟⎟⎠⎞⎜⎜⎝⎛−−=βεβ1, 则11lim }|{|lim =⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=<−+∞→+∞→nn n n Y P βεβεβ, 故βPn Y →.14.设随机变量序列{X n }独立同分布,其密度函数为⎩⎨⎧<≥=−−.,0;,e )()(a x a x x p a x 其中Y n = min{X 1, X 2, …, X n },试证:a Y Pn →.证:对任意的ε > 0,P {| Y n − a | < ε} = P {a − ε < Y n < a + ε} = P {min{X 1, X 2, …, X n } < a + ε}= 1 − P {min{X 1, X 2, …, X n } ≥ a + ε} = 1 − P {X 1 ≥ a + ε} P {X 2 ≥ a + ε} … P {X n ≥ a + ε}εεεn na a x n a a x dx −∞++−−∞++−−−=⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−=∫e 1e 1e 1)()(, 则1)e 1(lim }|{|lim =−=<−−+∞→+∞→εεn n n n a Y P ,故a Y Pn →.15.设随机变量序列{X n }独立同分布,且X i ~ U(0, 1).令nni i n X Y 11⎟⎟⎠⎞⎜⎜⎝⎛=∏=,试证明:c Y P n →,其中c 为常数,并求出c .证:设∑∏===⎟⎟⎠⎞⎜⎜⎝⎛==n i i n i i n n X n X n Y Z 11ln 1ln 1ln ,因X i ~ U (0, 1), 则1)ln (ln )(ln 101−=−==∫x x x xdx X E i ,2)2ln 2ln (ln )(ln 12122=+−==∫x x x x x xdx X E i ,1)](ln [)(ln )Var(ln 22=−=i i i X E X E X , 可得1)(ln 1)(1−==∑=n i i n X E n Z E ,n X nZ ni in 1)Var(ln 1)Var(12==∑=,由切比雪夫不等式,可得对任意的ε > 0,221)Var(}|)({|εεεn Z Z E Z P n n n =≤≥−,则01lim }|)({|lim 02=≤≥−≤+∞→+∞→εεn Z E Z P n n n n ,即0}|)({|lim =≥−+∞→εn n n Z E Z P ,1)(−=→n P n Z E Z ,因n Z n Y e =,且函数e x 是直线上的连续函数,根据本节第3题的结论,可得1e e −→=PZ n n Y , 故c Y Pn →,其中1e −=c 为常数.16.设分布函数列{F n (x )}弱收敛于分布函数F (x ),且F n (x ) 和F (x ) 都是连续、严格单调函数,又设 ξ 服从(0, 1)上的均匀分布,试证:)()(11ξξ−−→F F Pn. 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,则对任意的h > 0,存在M > 0,使得21)(h M F −>,2)(h M F <−, 因F (x ) 是连续、严格单调函数,有F −1( y ) 也是连续、严格单调函数, 可得F −1( y ) 在区间 [F (− M − 1), F (M + 1)] 上一致连续, 对任意的ε > 0,存在δ > 0,当y , y * ∈ [F (− M − 1), F (M + 1)] 且 | y − y * | < δ 时,| F −1( y ) − F −1( y *) | < ε, 设y * 是 [F (−M ), F (M )] 中任一点,记x * = F −1( y *),有x * ∈ [−M , M ],不妨设0 < ε < 1, 则对任意的x 若满足 ε≥−|*|x x ,就有 δ≥−|*)(|y x F ,根据本节第7题的结论知,{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ), 则对δ > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < δ, 因当n > N 时,δ<−|)()(|x F x F n 且δ≥−|*(|y x F ,有*)(y x F n ≠,即*)(1y F x n −≠, 则对任意的0 < ε < 1,当n > N 时,*)(1y F n −满足ε<−=−−−−|*)(*)(||**)(|111y F y F x y F n n , 可得对任意的0 < ε < 1,当n > N 时,h M F M F P F F P n −>−∈≥<−−−1)]}(),([{}|)()({|11ξεξξ由h 的任意性可知1}|)()({|lim 11=<−−−+∞→εξξF F P n n ,故)()(11ξξ−−→F F Pn.17.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = µ,试证:µP n k k X k n n →⋅+∑=1)1(2.证:令∑=⋅+=nk k n X k n n Y 1)1(2,并设Var (X n ) = σ 2, 因µµµ=+⋅+=+=∑=)1(21)1(2)1(2)(1n n n n k n n Y E nk n , 且222212222)1(324)12)(1(61)1(4)1(4)Var(σσσ++=++⋅+=+=∑=n n n n n n n n k n n Y nk n , 则由切比雪夫不等式可得,对任意的ε > 0,222)1(3241)Var(1}|{|1σεεεµ++−=−≥<−≥n n n Y Y P n n , 因1)1(3241lim 22=⎥⎦⎤⎢⎣⎡++−+∞→σεn n n n ,由夹逼准则可得1}|{|lim =<−+∞→εµn n Y P , 故µP n k kn X k n n Y →⋅+=∑=1)1(2. 18.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = 0,Var (X n ) = σ 2.试证:E (X n ) = 0,Var (X n ) = σ 2.试证:2121σP n k k X n →∑=. 注:此题与第19题应放在习题4.3中,需用到4.3节介绍的辛钦大数定律.证:因随机变量序列}{2n X 独立同分布,且222)]([)Var()(σ=+=n n n X E X X E 存在,故}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即2121σP n k k X n →∑=.19.设随机变量序列{X n }独立同分布,且Var (X n ) = σ 2存在,令∑==n i i X n X 11,∑=−=n i i n X X n S 122)(1.试证:22σPnS →.证:2122112122122121)2(1)(1X X n X n X X X n X X X X n X X n S n i i ni i n i i n i i i n i i n−=⎟⎟⎠⎞⎜⎜⎝⎛+−=+−=−=∑∑∑∑∑=====,设E(X n ) = µ,{X n }满足辛钦大数定律条件,{X n }服从大数定律,即µP nk k X n X →=∑=11,则根据本节第2题第(2)小问的结论知,22µPX →,因随机变量序列}{2n X 独立同分布,且2222)]([)Var()(µσ+=+=n n n X E X X E 存在,则}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即22121µσ+→∑=P n k k X n ,故根据本节第2题第(1)小问的结论知,22222122)(1σµµσ=−+→−=∑=P n i i nX X n S .20.将n 个编号为1至n 的球放入n 个编号为1至n 的盒子中,每个盒子只能放一个球,记⎩⎨⎧=.,0;,1反之的盒子的球放入编号为编号为i i X i 且∑==ni i n X S 1,试证明:0)(Pn n n S E S →−. 证:因n X P i 1}1{==,nX P i 11}0{−==,且i ≠ j 时,)1(1}1{−==n n X X P j i ,)1(11}0{−−==n n X X P j i , 则n X E i 1)(=,⎟⎠⎞⎜⎝⎛−=n n X i 111)Var(, 且i ≠ j 时,)1(1)(−=n n X X E j i ,)1(11)1(1)()()(),Cov(22−=−−=−=n n n n n X E X E X X E X X j i j i j i , 有1)()(1==∑=ni i n X E S E ,1)1(1)1(11),Cov(2)Var()Var(211=−⋅−+−=+=∑∑≤<≤=n n n n n X X X S nj i j i ni i n , 可得0)]()([1)(=−=⎥⎦⎤⎢⎣⎡−n n n n S E S E n n S E S E ,221)Var(1)(Var n S n n S E S n n n ==⎥⎦⎤⎢⎣⎡−, 由切比雪夫不等式,可得对任意的ε > 0,2221)(Var 1)()(εεεn n S E S n S E S E n S E S P n n n n n n =⎥⎦⎤⎢⎣⎡−≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−, 则01lim )()(lim 022=≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−≤+∞→+∞→εεn n S E S E n S E S P n n n n n n , 故0)(Pn n nS E S →−.习题4.21. 设离散随机变量X 的分布列如下,试求X 的特征函数.1.02.03.04.03210PX解:特征函数ϕ (t ) = e it ⋅ 0 × 0.4 + e it ⋅ 1 × 0.3 + e it ⋅ 2 × 0.2 + e it ⋅ 3 × 0.1 = 0.4 + 0.3 e it + 0.2 e 2it + 0.1 e 3it .2. 设离散随机变量X 服从几何分布P {X = k } = (1 − p ) k − 1 p , k = 1, 2, … .试求X 的特征函数.并以此求E (X ) 和Var (X ). 解:特征函数ititk k ititk k itk p p p p p p t e)1(1e )]1([ee)1(e )(1111−−=−=−⋅=∑∑+∞=−+∞=−ϕ; 因22]e )1(1[e ]e )1(1[]e )1([e ]e )1(1[e )(it it it it it it it p ip p i p p p i p t −−=−−⋅−−⋅−−−⋅⋅=′ϕ,有)()0(2X iE pip ip ===′ϕ,故pX E 1)(=; 因332]e )1(1[]e )1(1[e ]e )1([]e )1(1[e 2]e )1(1[e )(it it it itit itit itp p p i p p ip p i ip t −−−+−=⋅−−⋅−−−−−⋅⋅=′′−−ϕ, 有)(2)2()0(2223X E i pp p p p =−−=−−=′′ϕ,可得222)(p p X E −=, 故222112)Var(p pp p p X −=⎟⎟⎠⎞⎜⎜⎝⎛−−=. 3. 设离散随机变量X 服从巴斯卡分布rk r p p r k k X P −−⎟⎟⎠⎞⎜⎜⎝⎛−−==)1(11}{,k = r , r + 1, …试求X 的特征函数.解:特征函数∑∑+∞=−−+∞=−−+−−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=r k r k it r k itr r r k r k r itkp r k k r p p p r k t )(e)1)(1()1()!1(e )1(11e )(L ϕ ∑∑+∞=−=−−−+∞=−=−−=+−−−=r k p x r k r r it rk p x r k r it ititdx x d r p x r k k r p e )1(111e )1()()!1()e ()1()1()!1()e (L itit it p x r r it p x r r r it p x k k r r r it x r r p x dx d r p x dx d r p e )1(e )1(11e )1(1111)1()!1()!1()e (11)!1()e ()!1()e (−=−=−−−=+∞=−−−−−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=∑rit itr it r it p p p p ⎥⎦⎤⎢⎣⎡−−=−−=e )1(1e ]e )1(1[)e (. 4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1))0(,e 2)(||1>=∫∞−−a dt a x F x t a ; (2))0(,1π)(222>+=∫∞−a dt at a x F x . 解:(1)因密度函数||11e 2)()(x a ax F x p −=′=,故⎥⎥⎦⎤⎢⎢⎣⎡−++=⎥⎦⎤⎢⎣⎡+=⋅=+∞−∞−+∞+−∞−+∞+∞−−∫∫∫0)(0)(0)(0)(||1e e 2e e 2ee 2)(ait a it a dx dx a dx a t x a it x a it x a it x a it x a itx ϕ 222112at a a it a it a +=⎟⎠⎞⎜⎝⎛−−+=; 因222222221)(22)()(a t ta t a t a t +−=⋅+−=′ϕ,有)(0)0(1X iE ==′ϕ, 故E (X ) = 0;因32242242222222221)(26)(2)(22)(2)(a t a t a a t t a t t a a t a t +−=+⋅+⋅−+⋅−=′′ϕ, 有)(22)0(222641X E i a a a =−=−=′′ϕ,可得222)(a X E =, 故222202)Var(aa X =−=;(2)因密度函数22221π)()(ax a x F x p +⋅=′=, 则∫+∞∞−+⋅=dx a x a t itx 2221e π)(ϕ, 由第(1)小题的结论知∫∞+∞−=+=dx x p a t a t itx )(e )(12221ϕ,根据逆转公式,可得∫∫∞+∞−−∞+∞−−−+⋅===dt at a dt t a x p itx itx x a 2221||1e π21)(e π21e 2)(ϕ, 可得||||222e πe 2π21e y a y a itya a a dt a t −−−+∞∞−=⋅=+⋅∫, 故||||222e e ππ1e π)(t a t a itx a a dx ax a t −−+∞∞−=⋅=+⋅=∫ϕ; 因⎩⎨⎧>−<=′−,0,e ,0,e )(2t a t a t atat ϕ 有a a −=+′≠=−′)00()00(22ϕϕ,即)0(2ϕ′不存在, 故E (X ) 不存在,Var (X ) 也不存在.5. 设X ~ N (µ, σ 2),试用特征函数的方法求X 的3阶及4阶中心矩. 解:因X ~ N (µ, σ 2),有X 的特征函数是222e)(t t i t σµϕ−=,则)(e)(2222t i t t t i σµϕσµ−⋅=′−,)(e)(e )(222222222σσµϕσµσµ−⋅+−⋅=′′−−t t i t t i t i t ,因)()(3e)(e)(2223222222σσµσµϕσµσµ−⋅−⋅+−⋅=′′′−−t i t i t t t i t t i ,有ϕ″′(0) = e 0 ⋅ (i µ )3 + e 0 ⋅ 3i µ ⋅ (−σ 2) = − i µ 3 − 3i µσ 2 = i 3E (X 3) = − i E (X 3), 故E (X 3) = µ 3 + 3µσ 2; 又因2222222422)4()(3e)()(6e)(e)(222222σσσµσµϕσµσµσµ−⋅+−⋅−⋅+−⋅=−−−t t i t t i t t i t i t i t ,有ϕ (4)(0) = e 0 ⋅ (i µ )4 + e 0 ⋅ 6(i µ)2 ⋅ (−σ 2) + e 0 ⋅ 3σ 4 = µ 4 + 6µ 2σ 2 + 3σ 4 = i 4E (X 4) = E (X 4), 故E (X 4) = µ 4 + 6µ 2σ 2 + 3σ 4.6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,则X + Y ~ b (n + m , p ).证:因X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,有X 与Y 的特征函数分别为ϕ X (t ) = ( p e it + 1 − p ) n ,ϕ Y (t ) = ( p e it + 1 − p ) m , 则X + Y 的特征函数为ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ) = ( p e it + 1 − p ) n + m ,这是二项分布b (n + m , p )的特征函数, 故根据特征函数的唯一性定理知X + Y ~ b (n + m , p ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,则X + Y ~ P (λ1 + λ2).证:因X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,有X 与Y 的特征函数分别为)1(e1e )(−=itt X λϕ,)1(e2e )(−=itt Y λϕ,则X + Y 的特征函数为)1)(e(21e )()()(−++==itt t t Y X Y X λλϕϕϕ,这是泊松分布P (λ1 + λ2)的特征函数,故根据特征函数的唯一性定理知X + Y ~ P (λ1 + λ2).8. 试用特征函数的方法证明伽马分布的可加性:若X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,则X + Y ~ Ga (α1 + α2 , λ).证:因X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,有X 与Y 的特征函数分别为11)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t X ,21)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t Y ,则X + Y 的特征函数为)(211)()()(ααλϕϕϕ+−+⎟⎠⎞⎜⎝⎛−==it t t t Y X Y X ,这是伽马分布Ga (α1 + α2 , λ)的特征函数,故根据特征函数的唯一性定理知X + Y ~ Ga (α1 + α2 , λ).9. 试用特征函数的方法证明χ 2分布的可加性:若X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,则X + Y ~ χ 2 (n + m ).证:因X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,有X 与Y 的特征函数分别为2)21()(n X it t −−=ϕ,2)21()(m Y it t −−=ϕ,则X + Y 的特征函数为2)21()()()(m n Y X Y X it t t t +−+−==ϕϕϕ,这是χ 2分布χ 2 (n + m )的特征函数,故根据特征函数的唯一性定理知X + Y ~ χ 2 (n + m ).10.设X i 独立同分布,且X i ~ Exp(λ),i = 1, 2, …, n .试用特征函数的方法证明:),(~1λn Ga X Y ni i n ∑==.证:因X i ~ Exp (λ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为11)(−⎟⎠⎞⎜⎝⎛−=−=λλλϕit it t i X ,则∑==ni i n X Y 1的特征函数为nni X Y it t t i n −=⎟⎠⎞⎜⎝⎛−==∏λϕϕ1)()(1,这是伽马分布Ga (n , λ)的特征函数,故根据特征函数的唯一性定理知Y n ~ Ga (n , λ).11.设连续随机变量X 的密度函数如下:+∞<<∞−−+⋅=x x x p ,)(π1)(22µλλ, 其中参数λ > 0, −∞ < µ < +∞,常记为X ~ Ch (λ, µ ).(1)试证X 的特征函数为exp{i µ t − λ | t |},且利用此结果证明柯西分布的可加性; (2)当µ = 0, λ = 1时,记Y = X ,试证ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ),但是X 与Y 不独立;(3)若X 1, X 2, …, X n 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++L 与X 1同分布. 证:(1)根据第4题第(2)小题的结论知:若X *的密度函数为22π1)(*xx p +⋅=λλ,即X * ~ Ch (λ, 0), 则X *的特征函数为ϕ * (t ) = e −λ | t |,且X = X * + µ 的密度函数为22)(π1)(µλλ−+⋅=x x p , 故X 的特征函数为ϕ X (t ) = e i µ t ϕ * (t ) = e i µ t ⋅ e −λ | t | = e i µ t −λ | t |; 若X 1 ~ Ch (λ1, µ1),X 2 ~ Ch (λ2, µ2),且相互独立,有X 1与X 2的特征函数分别为||111e )(t t i X t λµϕ−=,||222e )(t t i X t λµϕ−=, 则X 1 + X 2的特征函数为||)()(21212121e )()()(t t i X X X X t t t λλµµϕϕϕ+−++==,这是柯西分布Ch (λ1 + λ2, µ1 + µ2)的特征函数,故根据特征函数的唯一性定理知X 1 + X 2 ~ Ch (λ1 + λ2, µ1 + µ2); (2)当µ = 0, λ = 1时,X ~ Ch (1, 0),有X 的特征函数为ϕ X (t ) = e −| t |,又因Y = X ,有Y 的特征函数为ϕ Y (t ) = e −| t |,且X + Y = 2X ,故X + Y 的特征函数为ϕ X + Y (t ) = ϕ 2X (t ) = ϕ X (2t ) = e −| 2t | = e −| t | ⋅ e −| t | =ϕ X (t ) ⋅ϕ Y (t ); 但Y = X ,显然有X 与Y 不独立;(3)因X i ~ Ch (λ, µ ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为||e )(t t i X t i λµϕ−=, 则)(121n n X X X nY +++=L 的特征函数为 )(e e )()(1||111t n t t t X t t i n t n ti n ni X ni X nY i in ϕϕϕϕλµλµ===⎟⎠⎞⎜⎝⎛==−⎟⎟⎠⎞⎜⎜⎝⎛⋅−⋅==∏∏,故根据特征函数的唯一性定理知)(121n X X X n+++L 与X 1同分布. 12.设连续随机变量X 的密度函数为p (x ),试证:p (x ) 关于原点对称的充要条件是它的特征函数是实的偶函数.证:方法一:根据随机变量X 与−X 的关系充分性:设X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),根据特征函数的唯一性定理知−X 与X 同分布,因X 的密度函数为p (x ),有−X 的密度函数为p (−x ),故由−X 与X 同分布可知p (−x ) = p (x ),即p (x ) 关于原点对称; 必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ), 因−X 的密度函数为p (−x ),即−X 与X 同分布,则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),且)(][e ][e ][e )()()(t E E E t t X itX itX X it X X ϕϕϕ=====−−−, 故X 的特征函数ϕ X (t )是实的偶函数. 方法二:根据密度函数与特征函数的关系充分性:设连续随机变量X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),因∫+∞∞−−=dt t x p itx )(e π21)(ϕ,有∫∫+∞∞−+∞∞−−−==−dt t dt t x p itxx it )(e π21)(e π21)()(ϕϕ, 令t = −u ,有dt = −du ,且当t → −∞时,u → +∞;当t → +∞时,u → −∞,则)()(e π21)(e π21))((e π21)()(x p du u du u du u x p iuxiux x u i ==−=−−=−∫∫∫+∞∞−−+∞∞−−−∞∞+−ϕϕϕ, 故p (x ) 关于原点对称;必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ),因∫+∞∞−−==dx x p E t itxitX)(e )(e)(ϕ,有∫∫+∞∞−−+∞∞−−==−dx x p dx x p t itx xt i )(e )(e)()(ϕ,令x = −y ,有dx = −dy ,且当x → −∞时,y → +∞;当x → +∞时,y → −∞, 则)()(e )(e ))((e )()(t dy y p dy y p dy y p t X ity ity y it X ϕϕ==−=−−=−∫∫∫+∞∞−+∞∞−−∞∞+−−,且)(][e ][e ][e )()()(t E E E t t X itX itX X t i X X ϕϕϕ====−=−−, 故X 的特征函数ϕ X (t )是实的偶函数.13.设X 1, X 2, …, X n 独立同分布,且都服从N(µ , σ 2)分布,试求∑==ni i X n X 11的分布.证:因X i ~ N (µ , σ 2),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为222e)(t t i X t i σµϕ−=,则∑==n i i X n X 11的特征函数为nt t i n t n t i n ni X n i X n X n t t t i i 2211112222ee)()(σµσµϕϕϕ−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅====⎟⎠⎞⎜⎝⎛==∏∏,这是正态分布⎟⎟⎠⎞⎜⎜⎝⎛n N 2,σµ的特征函数,故根据特征函数的唯一性定理知⎟⎟⎠⎞⎜⎜⎝⎛=∑=n N X n X ni i 21,~1σµ. 14.利用特征函数方法证明如下的泊松定理:设有一列二项分布{b (k , n , p n )},若λ=→∞n n np lim ,则L ,2,1,0,e !),,(lim ==−∞→k k p n k b kn n λλ.证:二项分布b (n , p n )的特征函数为ϕ n (t ) = ( p n e it + 1 − p n ) n = [1 + p n (e it − 1)] n ,且n → ∞时,p n → 0,因)1(e)1(e )1(e 1e )]1(e 1[lim )]1(e 1[lim )(lim −−⋅−→→∞→∞=−+=−+=itit n it n n np p itn p n it n n n n p p t λϕ,。

概率四习题

概率四习题

第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。

并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X 独立同分布,这一设定在《数理统计》部分一直沿用了下去。

全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。

三个定理。

“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。

§2节主要研究对象为:算术平均值()n X X nX +⋯+=11;§4节的主要研究对象为: n ni iX X X+⋯+=∑=11,比nX 1少了。

§2节的学习,不妨先从复习入手。

第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。

定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X n n n ni i A ==∑=11,于是可用定理一了。

推导本身是一件很愉快的事。

§2节的三个定理可在比对中学习。

定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。

定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。

定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。

“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。

这个结论很精致,十分简单了。

翻开§4节,一堆一堆的符号映入眼中,让人头大。

其实,若标准化方法娴熟,这一节并不难。

概率论与数理统计第四章大数定理与中心极限定理习题(含答案)

概率论与数理统计第四章大数定理与中心极限定理习题(含答案)
(C) (D)
其中 为标准正态分布函数.
3.设 , ,其中 、 为常数,且 ,则 ( ).
; ;

4.设某地区成年男子的身高 ,现从该地区随机选出 名男子,则这 名男子身高平均值的方差为( ).
; ; ; .
二、填空题
1.已知离散型随机变量X服从参数为 的泊松分布,利用切比雪夫不等式估计概率
.
2.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切比雪夫不等式估计概率 .
; ; ; .
解:C
二、填空题
1.已知离散型随机变量X服从参数为 的泊松分布,利用切比雪夫不等式估计概率
.
解:由 知,
5.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切比雪夫不等式估计概率 .
解:
6.已知随机变量X的方差为4,则由切比雪夫不等式估计概率 .
解:
7.伯努利(Bernoulli)大数定理表明:当试验次数 很大时,随机事件 在这 次试验中发生的频率 与随机事件 的概率 有较大偏差的可能性很.
解:小。
三、计算题
1.投掷一枚均匀硬币1000次,试利用切比雪夫不等式估计出现正面次数在450次~550次之间的概率.
解:
2.已知连续型随机变量X服从区间 的均匀分布,试利用切比雪夫不等式估计事件 发生的概率.
解:
3.设随机变量 和 的数学期望分别是 和 ,方差分别是 和 ,而相关系数为 .
⑴ 求 及 ;
3.已知随机变量X的方差为4,则由切比雪夫不等式估计概率 .
4.伯努利(Bernoulli)大数定理表明:当试验次数 很大时,随机事件 在这 次试验中发生的频率 与随机事件 的概率 有较大偏差的可能性很.

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理
分析:贝努利概型下,求解事件发生的频率与概率的误差,用到棣莫弗-拉 普拉斯中心极限定理。
解:设 µA 为在 1000 次试验中 A 发生的次数,同时其频率与概率的绝对偏差 为 ε ,则
P
⎧ ⎨ ⎩
µA 1000

1 4
<
ε
⎫ ⎬
=
0.9997


由棣莫弗-拉普拉斯中心极限定理得

P
⎧ ⎨ ⎩
µA 1000
= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
第四章 大数定律与中心极限定理
例 1.设随机变量 X 和Y 的数学期望分别为-2 和 2,方差分别为 1 和 4,而
相关系数为-0.5,则根据切比雪夫不等式有 P{ X + Y ≥ 6} ≤

分析:切比雪夫不等式: P{ X − EX
≥ ε}≤
DX ε2
或 P{ X − EX
<
ε}

1−
DX ε2

注:这是切比雪夫不等式的推广。 当 g(x) = x2 时,即为切比雪夫不等式。
例 3.设随机变量序列 X 1, X 2 , ", X n 相互独立,且都服从参数为 2 的指数分
∑ 布,则当 n

∞ 时,Yn
=

大数定律与中心极限定理 定义与例题

大数定律与中心极限定理 定义与例题

三、典型例题
一加法器同时收到 例1 20 个噪声电压 Vk ( k 1 , 2 , 20 ), 设它们是相互独立的随 且都在区间 ( 0 ,10 ) 上服从均匀分布 机变量 , ,记 V

k 1
20
Vk ,
求 P { V 105 } 的近似值 .
解 E (V k ) 5 ,
解:对每台车床的观察作为一次试验,
每次试验观察该台车床在某时刻是否工作, 工作的概率为0.6,共进行200次试验. 用X表示在某时刻工作着的车床数, 依题意, X~B(200,0.6), 设应供应N千瓦电力,现在的问题是:求满足 P(X≤N)≥0.999 的最小的N.
由德莫佛-拉普拉斯极限定理
X np np(1 p)

i1
n
Xi
n
1
n
EX i
i1
0.
切比雪夫不等式
如 果 随 机 变 量 X的 数 学 期 望 EX 和 方 差 DX 存 在 , 则 对于任一正数, 都有 P

X EX

DX

2
证 明 : 对 于 任 给 正 数 , 由 切 比 雪 夫 不 等 式 ,有 1 D n

i1
n
Xi
n
1
n
EX i
i1
0.
辛钦大数定律
设 随 机 变 量 X 1 , X 2 , , X n , 独 立 同 分 布 , 且 数 学 期 望 存 在 ,则 对 于 任 意 0, 有 1 li m P n n

i1
n
X i 0.
例1 判 断 下 列 说 法 的 对 错 , 并 简 述 理 由 : (1 ) 设 随 机 变 量 X 1 , X 2 , , X n , 独 立 同 具 有 密 度 f ( x ), 则 序 列 X 1 , X 2 , , X n , 满 足 辛 钦 大 数 定 律 . ( 2 ) 设 随 机 变 量 X 1 , X 2 , , X n , 独 立 同 服 从 参 数 为 的 泊 松 分 布 , 则 X 1 , 2 X 2 , , n X n , 满 足 切 比 雪 夫 大 数 定 律 .

概率论与数理统计第四,五章习题课(大数定律及中心极限定理)

概率论与数理统计第四,五章习题课(大数定律及中心极限定理)

因 此 ,E X = 1 ,E Y = 1 , 且 E X Y = E X E Y = 1 ,
以 及 X与 Y不 相 关 。
又 f(x ,y)关 于 y= x 对 称 , 可 知
P (X < Y )= P (X Y ), 于 是 , P (X < Y )= 1 。
2
整理课件
21
13.设随机变量 , 相互独立,且都服从区间
+P(Xj=1|Xj-1=0)P(Xj-1=0)
P(X
j =1)=
a+1 a+ b+1
a a+
b

a a+ b+1
b a+ b
=
a a+ b

于 是 ,由 数 学 归 纳 法 可 知
P
(X
j
=
1
)=
a a+
b

j=1,2,...n.


,E X

j
P(X
j
=1)=
a a+ b

j=1,2,...n.
94
32
整理课件
16
(2) Cov(X,Z)=Cov(X, 1 X - 1 Y) 32
= 1 DX- 1 Cov(X,Y) =6,
3
2
XZ
Cov(X , Z ) DXDZ
27 7
.
(3) X与 Z不 独 立 。 因 为 XZ 0。
整理课件
17
11.设随机变量X与Y相互独立,X服从标准正态分
布,Y服从参数 = 3的泊松分布。


,E
S

n
E
X

1
E
X

概率论与数理统计第四章第四节 大数定理与中心极限定理

概率论与数理统计第四章第四节 大数定理与中心极限定理

第四节 大数定理与中心极限定理概率论与数理统计是研究随机现象统计规律性的学科. 而随机现象的规律性在相同的条件下进行大量重复试验时会呈现某种稳定性. 例如, 大量的抛掷硬币的随机试验中, 正面出现频率; 在大量文字资料中, 字母使用频率; 工厂大量生产某种产品过程中, 产品的废品率等. 一般地, 要从随机现象中去寻求事件内在的必然规律, 就要研究大量随机现象的问题.在生产实践中, 人们还认识到大量试验数据、测量数据的算术平均值也具有稳定性. 这种稳定性就是我们将要讨论的大数定律的客观背景. 在这一节中,我们将介绍有关随机变量序列的最基本的两类极限定理----大数定理和中心极限定理.教学目标:了解大数定理与中心极限定理。

教学重点:大数定理与中心定理。

教学难点:中心定理。

教学内容:一、依概率收敛与微积分学中的收敛性的概念类似, 在概率论中, 我们要考虑随机变量序列的收敛性.定义1 设 ,,,,21n X X X 是一个随机变量序列, a 为一个常数,若对于任意给定的正数ε,有 ,1}|{|lim =<-∞→εa X P n n 则称序列 ,,,,21n X X X 依概率收敛于a , 记为).(∞→−→−n a X Pn定理1 设,,b Y a X Pn P n −→−−→−又设函数),(y x g 在点),(b a 连续, 则),(),(b a g Y X g Pn n −→−.二、切比雪夫不等式定理2设随机变量X 有期望μ=)(X E 和方差2)(σ=X D ,则对于任给0>ε, 有22}|{|εσεμ≤≥-X P .上述不等式称切比雪夫不等式.注:(i) 由切比雪夫不等式可以看出,若2σ越小, 则事件}|)({|ε<-X E X的概率越大, 即, 随机变量X 集中在期望附近的可能性越大. 由此可见方差刻划了随机变量取值的离散程度.(ii) 当方差已知时,切比雪夫不等式给出了X 与它的期望的偏差不小于ε的概率的估计式.如取,3σε= 则有.111.09}3|)({|22≈≤≥-σσσX E X P故对任给的分布,只要期望和方差2σ存在, 则随机变量X 取值偏离)(X E 超过σ3的概率小于0.111.三、大数定理1.切比雪夫大数定律定理3 (切比雪夫大数定律)设 ,,,,21n X X X 是两两不相关的随机变量序列,它们数学期望和方差均存在, 且方差有共同的上界, 即,,2,1,)( =≤i K X D i 则对任意0>ε, 有1)(11lim 11=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-∑∑==∞→εn i i n i i n X E n X n P 注: 定理表明: 当n 很大时,随机变量序列}{n X 的算术平均值∑=ni i X n 11依概率收敛于其数学期望∑=ni i X E n 1)(1.2.伯努利大数定理定理4 (伯努利大数定律)设A n 是n 重伯努利试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率, 则对任意的0>ε, 有1lim =⎭⎬⎫⎩⎨⎧<-→∞εp n n P A n 或 0l i m =⎭⎬⎫⎩⎨⎧≥-→∞εp n n P A n . 注:(i) 伯努利大数定律是定理1的推论的一种特例, 它表明: 当重复试验次数n 充分大时, 事件A 发生的频率nn A依概率收敛于事件A 发生的概率p .定理以严格的数学形式表达了频率的稳定性. 在实际应用中, 当试验次数很大时,便可以用事件发生的频率来近似代替事件的概率.(ii) 如果事件A 的概率很小,则由伯努利大数定律知事件A 发生的频率也是很小的,或者说事件A 很少发生. 即“概率很小的随机事件在个别试验中几乎不会发生”,这一原理称为小概率原理,它的实际应用很广泛. 但应注意到,小概率事件与不可能事件是有区别的. 在多次试验中,小概率事件也可能发生.3.辛钦大数定理 定理5 (辛钦大数定律) 设随机变量 ,,,,21n X X X 相互独立, 服从同一分布,且具有数学期望,,2,1,)( ==i X E i μ 则对任意0>ε, 有11lim 1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμn i i n X n P . 注: (i) 定理不要求随机变量的方差存在;(ii) 伯努利大数定律是辛钦大数定律的特殊情况;(iii) 辛钦大数定律为寻找随机变量的期望值提供了一条实际可行的途径. 例如, 要估计某地区的平均亩产量, 可收割某些有代表性的地块, 如n 块,计算其平均亩产量, 则当n 较大时,可用它作为整个地区平均亩产量的一个估计. 此类做法在实际应用中具有重要意义.四、中心极限定理在实际问题中, 许多随机现象是由大量相互独立的随机因素综合影响所形成, 其中每一个因素在总的影响中所起的作用是微小的. 这类随机变量一般都服从或近似服从正态分布. 以一门大炮的射程为例, 影响大炮的射程的随机因素包括: 大炮炮身结构的制造导致的误差, 炮弹及炮弹内炸药在质量上的误差, 瞄准时的误差, 受风速、风向的干扰而造成的误差等. 其中每一种误差造成的影响在总的影响中所起的作用是微小的, 并且可以看成是相互独立的, 人们关心的是这众多误差因素对大炮射程所造成的总影响. 因此需要讨论大量独立随机变量和的问题.中心极限定理回答了大量独立随机变量和的近似分布问题, 其结论表明: 当一个量受许多随机因素(主导因素除外) 的共同影响而随机取值, 则它的分布就近似服从正态分布.1.林德伯格—勒维定理定理6 (林德伯格—勒维) 设 ,,,,21n X X X 是独立同分布的随机变量序列, 且,,,2,1,)(,)(2n i X D X E i i ===σμ则 ⎰∑∞--=∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-x t n i i n dt e x n n X P 2/1221lim πσμ 注: 定理6表明: 当n 充分大时, n 个具有期望和方差的独立同分布的随机变量之和近似服从正态分布. 虽然在一般情况下, 我们很难求出n X X X +++ 21的分布的确切形式, 但当n 很大时, 可求出其近似分布. 由定理结论有.1),/,(~)1,0(~/1)1,0(~1211∑∑∑====⇒-⇒-n i i ni i ni i X n X n N X N nX n N n n X σμσμσμ近似近似故定理又可表述为: 均值为μ, 方差的02>σ的独立同分布的随机变量 ,,,,21n X X X 的算术平均值X , 当n 充分大时近似地服从均值为μ,方差为n /2σ的正态分布. 这一结果是数理统计中大样本统计推断的理论基础.2. 棣莫佛—拉普拉斯定理在第二章中,作为二项分布的正态近似,我们曾经介绍了棣莫佛—拉普拉斯定理,这里再次给出,并利用上述中心极限定理证明之.定理7(棣莫佛—拉普拉斯定理)设随机变量n Y 服从参数p n ,)10(<<p 的二项分布, 则对任意x , 有)(21)1(lim 22x dt e x p np np Y P x tn n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--∞→π注: 易见,棣莫佛—拉普拉斯定理就是林德伯格—勒维定理的一个特殊情况.3.用频率估计概率的误差设n μ为n 重贝努里试验中事件A 发生的频率, p 为每次试验中事件A 发生的概率,,1p q -=由棣莫佛—拉普拉斯定理,有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-<-=⎭⎬⎫⎩⎨⎧<-pq n npqnp pq nP p n P n n εμεεμ .12-⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-⎪⎪⎭⎫ ⎝⎛Φ≈pq n pq n pq n εεε这个关系式可用解决用频率估计概率的计算问题:4. 李雅普诺夫定理定理8(李雅普诺夫定理) 设随机变量 ,,,,21n X X X 相互独立, 它们具有数学期望和方差: ,2,1,0)(,)(2=>==i X D X E kk k k σμ,记.122∑==nk k nB σ 若存在正数δ, 使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE Bδδμ则随机变量之和∑=n k k X 1的标准化变量:nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x , 满足).(21lim )(lim 2/112x dt e x B X P x F x t n n k k n k k n n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎰∑∑∞--==∞→∞→πμ注:定理8表明, 在定理的条件下, 随机变量.11nnk kn k kn B X Z ∑∑==-=μ当n 很大时,近似地服从正态分布)1,0(N . 由此, 当n 很大时,∑∑==+=nk k n n nk k Z B X 11μ近似地服从正态分布⎪⎪⎭⎫ ⎝⎛∑=21,n n k k B N μ.这就是说,无论各个随机变量),2,1( =k X k 服从什么分布,只要满足定理的条件,那么它们的和∑=nk k X 1当n 很大时,就近似地服从正态分布.这就是为什么正态随机变量在概率论中占有重要地位的一个基本原因.在很多问题中,所考虑的随机变量可以表示成很多个独立的随机变量之和,例如,在任一指定时刻,一个城市的耗电量是大量用户耗电量的总和;一个物理实验的测量误差是由许多观察不到的、可加的微小误差所合成的,它们往往近似地服从正态分布.例题选讲:切比雪夫不等式例1(讲义例1)在每次试验中, 事件A发生的概率为0.75, 利用切比雪夫不等式求: 事件A出现的频率在0.74~0.76之间的概率至少为0.90?中心极限定理例2(讲义例2) 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g标准差是10g, 一盒螺丝钉的重量超过10.2kg的概率.例3 (讲义例3)计算机在进行数学计算时,遵从四舍五入原则。

《概率论与数理统计教程-朱庆峰》第4章 大数定律与中心极限定理 4-3-4

《概率论与数理统计教程-朱庆峰》第4章 大数定律与中心极限定理 4-3-4
解 设 i 为 第 i 个 螺 丝 钉 的 重 量 ( i 1, 2 , , 1 0 0 ),
100
于是一盒螺丝钉的重量为 且它们独立同分布,

i 1
i,
且 由 E i 100,

D i 1 0,
E 10000, D 10000.
近似
由 中 心 极 限 定 理 , 有 ~ N (1 0 0 0 0 , 1 0 0 0 0 ).

n np

x
1 2π

t
2
e
2
d t ( x ).
(2)P( a n b) (
b np npq
) (
a np npq
)
(3)与Poisson定理近似计算二项分布概率的比较
① 当 n较 大 , p充 分 小 时 ( np不 大 ) , 二 项 分 布
测量身高中的平均身高抽取样本得样本观测值充分大时可作为的一次近似值即ppt课件15设随机变量独立同分布证明对任意正数有因为是相互独立的22所以也是相互立的ppt课件16四小结四个大数定理伯努利大数定律切比雪夫大数定律辛钦大数定律马尔可夫大数定律ppt课件17习题43
4.3
大数定律
讨论 “概率是频率的稳定值”的确切含义;
注: (1)定理表明:具有相同数学期望的独立同分布
的随机变量序列的算术平均值依概率收敛于数学期 望.当 n 足够大时,可以用算术平均值近似地代数 学期望,为寻找r.v.的期望值提供了一条实际可行 的途径
例如:测量身高X ~ N( , )中的 (平均身高)
抽取样本( X 1 , X 2 , 当n充分大时, X n ), 得样本观测值( x1 , x2 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题10(切比雪夫不等式)
一.填空题
1. 设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则由切比雪夫不等式,得
≤≥-)3(σμX P .
2. 随机掷6枚骰子,用X 表示6枚骰子点数之和,则由切比雪夫不等式,得
≥<<)2715(X P .
3. 若二维随机变量),(Y X 满足,2)(-=X E ,2)(=Y E ,1)(=X D ,4)(=Y D ,
5.0),(-=Y X R ,则由切比雪夫不等式,得≤≥+)6(Y X P .
4. 设 ,,,,21n X X X 是相互独立、同分布的随机变量序列,且0)(=i X E ,)(i X D 一致有界),,,2,1( n i =,则=<∑=∞
→)(
lim 1
n X
P n
i i
n .
二.选择题
1. 若随机变量X 的数学期望与方差都存在,对b a <,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。

① )(b X a P <<; ② ))((b X E X a P <-<;
③ )(a X a P <<-; ④ ))((a b X E X P -≥-.
2. 随机变量X 服从指数分布)(λe ,用切比雪夫不等式估计≤≥
-)1

λX P ( ).
① λ; ② 2
λ ③ 4
λ; ④
λ
1
.
三.解答题
1. 已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若7300)(=X E ,2700)(=X D ,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。

2. 如果n X X X ,,,21 是相互独立、同分布的随机变量序列,μ=)(i X E ,
8)(=i X D ),,2,1(n i =.记∑==n
i i X n X 1
1,由切比雪夫不等式估计概率)4(<-μX p .
3. 设 ,,,,21n X X X 是相互独立、同分布的随机变量序列,0)(=i X E ,2)(σ=i X D ,
)(4i X E 存在,且一致有界),,,2,1( n i =.对任意实数0>ε,证明1)1(lim 1
22
=<-∑=∞→εσn i i n X n P .
11(特征函数)
一.填空题
1. 若随机变量X 服从正态分布)4,2(N ,则=≥)3(X P . =<<)40(X P ,=≤)1(X P .
2. 若随机变量~X ),(2σμN ,且)()(c X P c X P ≥=≤,则=c .
3. 若随机变量~X ),2(2σN ,且3.0)42(=<<X P ,则=<)0(X P .
4. 若X 服从正态分布),(2σμN ,记ασμσμ=+<<-)(k X k P .
当9.0=α时,=k ,当95.0=α时,=k .
5. 随机变量21,X X 相互独立,且都服从标准正态分布,记21432X X Y -+=, 则Y 概率密度=)(y f Y .
二.选择题
6. 若随机变量n X X X ,,,21 相互独立,且),(~2
σμN X i ),,2,1(n i =,则=
∑=)1(1
n
i i X n D ( )
① 2
σ; ② 2
σn ; ③ n /2
σ; ④ 2
2
/n σ.
7. 若随机变量Y X ,相互独立,且都服从正态分布),(2
σμN .设Y X +=ξ,Y X -=η,则
=),cov(ηξ( ).
① 2
2σ; ② 1; ③ 1-; ④ 0.
8. 若随机变量Y X ,满足)3,1(~2
N X ,)4,0(~2
N Y ,2/1),(-=Y X R ,则=+)2
3(Y
X D ( ).
① 5; ② 4; ③ 3; ④ 2.
三.解答题
1. 某种电池的寿命X (单位:h )服从正态分布)35,300(2N .(1)求寿命大于250小时的概率,(2)求x ,使寿命在x ±300之间的概率不小于0.9.
2. 测量某一目标的距离时,随机误差)40,0(~2N X (单位:m ).
(1)求)30(≤X P ,
(2)若作三次独立测量,求至少有一次测量误差的绝对值不超过30米的概率。

3. 一商店对某种家电采用先使用后付款的方式销售,使用寿命X (单位:年)与销售单价Y (单位:元)关系如下:
若X~N (5, 4), 求平均售价。

4. 若随机变量)1,0(~N X ,设X
e Y =,求随机变量Y 的概率密度)(y
f Y .
12(中心极限定理)
一.填空题
1. 若随机变量X 与Y 相互独立,且都服从标准正态分布,则),(Y X 的联合概率密度为
=),(y x f .
2. 若二维随机变量),(Y X 的联合概率密度为
),(,31),(]3)2(3
)2)(1()1[(3222∞+<-∞+∞<<-∞=
-+--+--y x e y x f y y x x π
则=)(X D ,=)(Y D ,=),(Y X R .
3. 若随机变量X 服从二项分布)8.0,10000(B ,由中心极限定理,有
≈<-)408000(X P . 二.选择题
1. 若二维随机变量),(Y X 服从二元正态分布),,,,(2
2r N y x y x σσμμ,则X 与Y 不相关是X
与Y 不相互独立的( )条件。

① 充分且必要; ② 充分但不必要; ③ 必要但不充分; ④ 即不充分也不必要.
2. 若随即变量序列 ,,,,21n X X X 相互独立,且都服从参数为λ的泊松分布)(λP ,当=X ( )时.)()(lim x x X P n Φ=≤∞
→.(其中)(x Φ为标准正态分布的分布函数).

n
n X
n
i i
∑=-1
λ; ②
λ
λ
n n X
n
i i
∑=-1


λ
λ
n n X
n
i i
∑=-1
; ④
λ
λ
n n X
n
i i
∑=-1
.
三.解答题
1. 30个独立使用的电子元件,它们的寿命i T 都服从指数分布,且每个元件的平均寿命都为100(h ),其使用情况是:一个损坏后,另一个立即起用。

记∑==30
1
i i
T
T ,求总寿命T 超过3500
(h )的概率。

2. 如果计算机在进行加法运算时,对每个加数取整,若每个加数产生的误差i X 是相互独立,且服从区间)5.0,5.0(-上的均匀的随机变量。

(1) 求将1500个数相加时,误差总和的绝对值超过15的概率,
(2) 问最多几个数相加,可使误差总和的绝对值小于10的概率不小于90%.
3. 某车间有200台独立工作的机床,同一时刻只有60%的机床在开动。

每台机床开动时耗电量为E ,问至少要供给该车间多少电能才能以99.9%的概率保证车间不因供电不足而影响生产。

相关文档
最新文档