数值分析考试重点公式总结,可编辑

合集下载

数值分析各章重点公式整理

数值分析各章重点公式整理

数值分析各章重点公式整理数值分析是计算数学的一个分支,主要涉及计算和分析数值近似解的方法。

本文将从数值分析的基本概念、插值与逼近、数值微分和数值积分、非线性方程数值解、线性方程组直接解法、线性方程组迭代解法和特征值问题等几个方面,对数值分析中的重点内容进行整理。

一、数值分析的基本概念数值分析是用数值方法解决实际问题的方法和技术。

其主要研究目标是通过一定的计算机运算来获取数学问题的近似解。

数值分析涉及到误差分析、收敛性分析、稳定性分析等概念,对于数值方法的正确性和可行性提供了理论依据。

二、插值与逼近插值是通过已知数据点构造一个函数,使得这个函数通过已知数据点。

常用的插值方法有拉格朗日插值和牛顿插值。

逼近是选择一种较为简单的函数来近似表示给定的复杂函数。

常用的逼近方法有最小二乘法和切比雪夫逼近。

三、数值微分和数值积分数值微分主要研究如何通过函数值的有限差分来估计导数值。

常用的数值微分方法有前向差分、后向差分和中心差分。

数值积分主要研究如何通过数值方法求出函数在一定区间上的定积分值。

常用的数值积分方法有梯形法则和 Simpson 法则。

四、非线性方程数值解非线性方程通常难以用解析方法求解,而数值方法则可以通过迭代来逼近方程的根。

常用的数值解法有二分法、牛顿法和割线法。

同时,对于多维非线性方程,也可以使用牛顿法的变形,牛顿下山法。

五、线性方程组直接解法线性方程组是数值分析中的一个重要问题。

直接解法主要有高斯消元法、LU 分解法和 Cholesky 分解法。

高斯消元法通过矩阵的初等行变换将线性方程组化为上三角方程组来求解。

LU 分解法将系数矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积,然后通过回代求解。

Cholesky 分解法则适用于对称正定矩阵的解法。

六、线性方程组迭代解法线性方程组的迭代解法通过选取适当的初始解,通过迭代来逼近精确解。

常用的迭代解法有Jacobi迭代法、Gauss-Seidel迭代法和超松弛迭代法。

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

数值分析考试复习总结

数值分析考试复习总结

第一章1误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时 ,一般要经历哪几个阶段?在哪些阶 段将有哪些误差产生?答:实际问题-数学模型-数值方法-计算结果在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差传播误差6•设a =0.937关于精确数x 有3位有效数字,估计a 的相对误差.对于f(x^ .j_x ,估计f(a)对于f(x)的误差和相对误差I l /£、I I 匚 . a-x I .(2^10 . _ _3 | E( f)冃心 _x —G —a |= ------------ _,=] < ------------------ =10、1—x +H — a| 2 沃 0.25| E r(f)|E10,1 -a =4 10;.□2有效数字基本原则:1两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子)例题:4 •改变下列表达式使计算结果比较精确:a 的相对误差:由于1 _3x —a|E(x)|< x — <-10 .E r (X )=—2 XE r (x) < 12 7 2 1 2 10 =— 10 .18(Th1)解 f(a)对于f(x)的误差和相对误差第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为n其中:n (x) - JI. 1n(X - X j ),nX i =「 (X i - X j )j /j工j料例1 n=1时,线性插值公式R(x) = y ° x( )+y 1 (x-X 0)X ----------------- ?(xo-xj ' (X 1 -X o )例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点x 0, x 1的一次插值多项式 为 其中(2) 过点x 0, x 1, x 2的二次插值多项式为其中重点是分段插值: 例题:(1)-1 01/2 1-3 -1/2 0 1 (2)-1 0 1/2 1-3/21/2解⑵:方法一.由Lagrange 插值公式(1) (2) 1 1 - x 1 2x 1 x(3)解⑴⑶1 - COS Xx对 x 0,| x 卜:::1.2x1(1x)(1 2x).⑵2 x(\ X 1 X 、X - 1 x)21 -cosx sin xsin x------------------ = ------------------------------ a s ---------------------x x(1 cosx) 1 cosx1 x可得:L3(x)=x2(x -1 2)方法二•令3 1由L3(-1)=-3,L3(1)=—,定A, B (称之为待定系数法)□2 215.设f(x) =x2,求f(x)在区间[0,1]上的分段线性插值函数f h(x),并估计误差,取等距节点,且h =1/10.解f(x) =x2,人=ih ,i =0,1, ,10,110设X i乞X乞X i 1 ,贝U:误差估计:第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间L 2[a,b ]中讨论2. 离散意义下在n 维欧氏空间R n 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设 L 2[a,b ]的 n 1 维子空间 P =span {1,x,x 2, x n },其中1,x,x 2…,x n 是L 2[a,b ]的线性无关多项式系. n对-f • L 2[a,b ],设其最佳逼近多项式''可表示为:''二a i x i i=0由(f - *, )=o, - P n即 n (x i ,x j )a * =(f ,x i ),0(1) n(*2)j=o其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组) . 由{x [二的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一.11、求f(x)二cos 二X , X- [0,1]的一次和二次最佳平方逼近多项式. 解: 设 P ;(X) =a 0 a 1x , P ;(x)二 b 0 b,x b 2x 2 分别为f (x)的一次、二次最佳平方逼近多项式。

数值分析重点公式

数值分析重点公式

数值分析重点公式下面是一些数值分析中的重点公式:1.最大值和最小值:- 最大值:记作 max(a, b) 表示 a 和 b 中较大的值。

- 最小值:记作 min(a, b) 表示 a 和 b 中较小的值。

2.线性插值:-线性插值:对于给定的两个点(x1,y1)和(x2,y2),如果希望在这两个点之间的x值为x的位置计算对应的y值,可以使用线性插值:y=y1+(y2-y1)*((x-x1)/(x2-x1))。

3.数值微分:-前向差商:用f'(x)≈(f(x+h)-f(x))/h的形式近似表示函数f(x)在点x处的导数,其中h是一个小的正数。

-后向差商:用f'(x)≈(f(x)-f(x-h))/h的形式近似表示函数f(x)在点x处的导数。

-中心差商:用f'(x)≈(f(x+h)-f(x-h))/(2*h)的形式近似表示函数f(x)在点x处的导数。

4.数值积分:-矩形法则:使用函数在每个小矩形中的平均值作为矩形高度来计算定积分的近似值。

-梯形法则:使用底边为区间长度的梯形面积的一半来计算定积分的近似值。

-辛普森法则:使用函数在每个小区间上的平均值和两个端点值的加权平均来计算定积分的近似值。

5.数值解线性方程组:-高斯消元法:将线性方程组转化为上三角矩阵,然后通过回代求解各个未知数。

-LU分解:将线性方程组的系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,再通过回代求解各个未知数。

-追赶法(托马斯算法):适用于解三对角系数矩阵的线性方程组,通过追赶的方式求解。

6.数值解非线性方程:-二分法:通过计算函数在区间端点的值的符号来确定函数在区间内的根的存在,并迭代缩小区间直至满足精度要求。

-牛顿法:通过迭代逼近函数的根,在每一步迭代中使用切线来逼近根的位置。

-弦截法:通过迭代逼近函数的根,在每一步迭代中使用割线来逼近根的位置。

7.数值解常微分方程:-欧拉方法:使用函数在当前点的导数值来估计下一个点的函数值。

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。

近似值的误差e∗(x为准确值):e∗=x∗−x近似值的误差限ε∗:|x∗−x |≤ε∗近似值相对误差e r∗(e r∗较小时约等):e r∗=e∗x≈e∗x∗近似值相对误差限εr∗:εr∗=ε∗|x∗|函数值的误差限ε∗(f(x∗)):ε∗(f(x∗))≈|f′(x∗)| ε∗(x∗)近似值x∗=±(a1.a2a3⋯a n)×10m有n位有效数字:ε∗=12×10m−n+1εr∗=ε∗|x∗|≤12a1×10−n+1第二章:插值法1.多项式插值P(x)=a0+a1x+⋯+a n x n 其中:P(x i)=y i ,i=0,1,⋯,n{a0+a1x0+⋯+a n x0n=y0 a0+a1x1+⋯+a n x1n=y1⋮a0+a1x n+⋯+a n x n n=y n 2.拉格朗日插值L n(x)=∑y k l k(x)nk=0=∑y kωk+1(x)(x−x k)ωn+1′(x k) nk=0n次插值基函数:l k(x)=(x−x0)⋯(x−x k−1)(x−x k+1)⋯(x−x n)(x k−x0)⋯(x k−x k−1)(x k−x k+1)⋯(x k−x n),k=0,1,⋯,n引入记号:ωn+1(x)=(x−x0)(x−x1)⋯(x−x n)余项:R n(x)=f(x)−L n(x)=f(n+1)(ξ)(n+1)!ωn+1(x) ,ξ∈(a,b)3.牛顿插值多项式:P n(x)=f(x0)+f[x0,x1](x−x0)+⋯+f[x0,x1,⋯,x n](x−x0)⋯(x−x n−1) n阶均差(把中间去掉,分别填在左边和右边):f[x0,x1,⋯,x n−1,x n]=f[x1,⋯,x n−1,x n]−f[x0,x1,⋯,x n−1]x n−x0余项:R n(x)=f[x,x0,x1,⋯,x n]ωn+1(x) 4.牛顿前插公式(令x=x0+tℎ,计算点值,不是多项式):P n(x0+tℎ)=f0+t∆f0+t(t−1)2!∆2f0+⋯+t(t−1)⋯(t−n−1)n!∆n f0n阶差分:∆n f0=∆n−1f1−∆n−1f0余项:R n(x)=t(t−1)⋯(t−n)ℎn+1(n+1)!f(n+1)(ξ) ,ξ∈(x0,x n)5.泰勒插值多项式:P n(x)=f(x0)+f′(x0)(x−x0)+⋯+f(n)(x0)n!(x−x0)nn阶重节点的均差:f[x0,x0,⋯,x0]=1n!f(n)(x0)6.埃尔米特三次插值:P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)其中,A的标定为:P′(x1)=f′(x1)7.分段线性插值:Iℎ(x)=x−x k+1x k−x k+1f k+x−x kx k+1−x kf k+1第三章:函数逼近与快速傅里叶变换1. S(x)属于 n维空间φ:S(x)=∑a jφjnj=02.范数:‖x‖∞=max1≤i≤n |x i| and maxa≤i≤b|f(x)|‖x‖1=∑|x i|ni=1 and∫|f(x)|badx‖x‖2=(∑x i2ni=1)12 and (∫f2(x)badx)123.带权内积和带权正交:(f,φk)=∑ω(x i)f(x i)φk(x i)mi=0 and ∫ρ(x)f(x)φk(x)badx(f(x),g(x))=∫ρ(x) f(x)g(x)dxba=0 4.最佳逼近的分类(范数的不同、是否离散):最优一致(∞-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖∞=minP∈H n‖f(x)−P(x)‖∞最佳平方(2-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖22=minP∈H n‖f(x)−P(x)‖22最小二乘拟合(离散点)P∗(x):‖f−P∗‖22=minP∈Φ‖f−P∗‖225.正交多项式递推关系:φn+1(x)=(x−αn)φn(x)−βnφn−1(x)φ0(x)=1,φ−1(x)=0αn=(xφn(x),φn(x))(φn(x),φn(x)),βn=(φn(x),φn(x))(φn−1(x),φn−1(x))6.勒让德多项式:正交性:∫P n(x)P m(x)dx 1−1={0 ,m≠n22n+1, m=n奇偶性:P n(−x)=(−1)n P n(x)递推关系:(n +1)P n+1(x )=(2n +1)xP n (x )−nP n−1(x)7.切比雪夫多项式:递推关系:T n+1(x )=2xT n (x )−T n−1(x )正交性:∫n m √1−x 21−1=∫cos nθcos mθπdx ={0 , m ≠n π2 , m =n ≠0π , m =n =0T n (x )在[−1,1]上有n 个零点:x k =cos2k −12nπ,k =1,⋯,n T n+1(x )在[a,b ]上有n +1个零点:(最优一致逼近)x k =b −a 2cos 2k +12(n +1)π+b +a2,k =0,1,⋯,n 首项x n 的系数:2n−18.最佳平方逼近:‖f (x )−S ∗(x)‖22=min S(x)∈φ‖f (x )−S(x)‖22=min S(x)∈φ∫ρ(x)[f (x )−S (x )]2dx ba法方程:∑(φk ,φj )a j nj=0=(f,φk )正交函数族的最佳平方逼近:a k ∗=(f,φk )(φk ,φk )9.最小二乘法:‖δ‖22=min S(x)∈φ∑ω(x i )[S (x i )−y i ]2mi=0法方程:∑(φk ,φj )a j nj=0=(f,φk )正交多项式的最小二乘拟合:a k∗=(f,P k )(P k ,P k )第四章 数值积分与数值微分1.求积公式具有m 次代数精度求积公式(多项式与函数值乘积的和),对于次数不超过m 的多项式成立,m +1不成立∫f(x)dx b a=∑A k f(x k )nk=02.插值型求积公式I n =∫L n (x)dx b a=∑∫l k (x)dx baf(x k )nk=0=∑A k f(x k )nk=0R [f ]=∫[f (x )− L n (x)]dx ba =∫R n (x)dx ba =∫f (n+1)(ξ)(n +1)!ωn+1(x)dx ba3.求积公式代数精度为m 时的余项R [f ]=∫f (x )dx ba −∑A k f (x k )nk=0=1(m +1)![∫x m+1dx ba−∑A k x k m+1nk=0]4.牛顿-柯特斯公式:将[a,b ]划分为n 等份构造出插值型求积公式I n =(b −a)∑C k (n)f(x k )nk=05.梯形公式:当n=1时,C 0(1)=C 1(1)=12T =b −a 2[f (a )+f(b)],R n (f )=−b −a12(b −a )2f ′′(η) 6.辛普森公式:当n=2时,C 0(2)=16,C 1(2)=46,C 2(2)=16S =b −a 6[f (a )+4f (a +b 2)+f(b)],R n (f )=−b −a 180(b −a 2)4f (4)(η) 7.复合求积公式:ℎ=b−a n,x k =a +kℎ,x k+1/2=x k +ℎ2复合梯形公式:T n =ℎ2[f (a )+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 12ℎ2f ′′(η)复合辛普森公式:S n =ℎ6[f (a )+4∑f(x k+1/2)n−1k=0+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 180(ℎ2)4f (4)(η)8.高斯求积公式(求待定参数x k 和A k ):(1)求高斯点(x k ):令 ωn+1(x )=(x −x 0)(x −x 1)⋯(x −x n )与任何次数不超过n 的多项式p(x)带权ρ(x)正交,即则∫p(x)ωn+1(x )ρ(x)dx ba =0,由n +1个方程求出高斯点x 0,x 1⋯x n 。

数值分析学习公式总结

数值分析学习公式总结

第一章1霍纳(Horner )方法: n a 1-n a 2-n a ……2a 1a 0a输入=c+ n b *c c b n *1- c b *3 c b *2 c b *1n b 1-n b 2-n b 2b 1b 0bAnswer P (x )=0b该方法用于解决多项式求值问题P (x )=n a n x +1-n a 1-n x +2-n a 2-n x +……+2a 2x +1a x +0a2 注:p ˆ为近似值绝对误差:|ˆ|pp E p -=相对误差:|||ˆ|p pp R p -=有效数字:210|||ˆ|1d p p pp R -<-= (d 为有效数字,为满足条件的最大整数) 3 Big Oh(精度的计算): O(h ⁿ)+O(h ⁿ)=O(h ⁿ);O(h m )+O(h n )=O(h r ) [r=min{p,q}]; O(h p )O(h q )=O(h s ) [s=q+p]; 第二章2.1 求解x=g(x)的迭代法 用迭代规则,可得到序列值{}。

设函数g 。

如果对于所有x ,映射y=g(x)的范围满足y , 则函数g 在内有一个不动点; 此外,设定义在内,且对于所有x ,存在正常数K<1,使得,则函数g 在内有唯一的不动点P 。

定理2.3 设有(i )g ,g ’,(ii )K 是一个正常数,(iii )。

如果对于所有如果对于所有x 在这种情况下,P 成为排斥不动点,而且迭代显示出局部发散性。

. 波尔查诺二分法(二分法定理)<收敛速度较慢>试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线L 与x 轴的交点(c,0)>应注意越来越小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法.牛顿—拉夫森迭代函数:)(')()(1111-----==k k k k k p f p f p p g p 其中k=1,2,……证明:用泰勒多项式证明第三章线性方程组的解法 对于给定的解线性方程组Ax=b一Gauss Elimination (高斯消元法 )第一步Forward Elimination 第二步 BackSubstitution二LU Factorization第一步 A = LU 原方程变为LUx=y ;第二步 令Ux=y,则Ly = b 由下三角解出y ; 第三步 Ux=y,又上三角解出x ;三Iterative Methods (迭代法)2n n 22221211n n 1212111b x a x a x a b x a x a x a =+++=+++nn nn 22n 11n 2n n 22221211n n 1212111b x a x a x a b x a x a x a b x a x a x a =+++=+++=+++初始值四 Jacobi Method1.选择初始值2.迭代方程为五Gauss Seidel Method1.迭代方程为00201,,,n x x x 00201,,,n x x x nnk n nn k n k n n k n k nn k k kn n k k a x a x a x a bx a x a x a bx a x a x a b x )()()(1122111222121212111212111--++++++-=++-=++-=k k k kn n k k kn n k k a x a x a bx a x a x a bx )()(1112221121212111212111++++++++-=++-=2.选择初始值 判断是否能用Jacobi Method 或者GaussSeidel Method 的充分条件(绝对对角占优原则)第四章 插值与多项式逼近·第一节 泰勒级数和函数计算一些常用函数的泰勒级数展开:for all x for all x for all x -1 -1for00201,,,nx x x定理4.1(泰勒多项式逼近)设,而是固定值。

最新数值分析重点公式

最新数值分析重点公式

第一章非线性方程和方程组的数值解法I B j J L2) 迭代法收敛阶:lim 匚4 =c^0,若p=1则要求Occ<1F 闾。

3) 单点迭代收敛定理:定理一:若当x 乏[a,b ]时,④(X )E [a,b ]且®'(x)兰I cl, P [a,b ],则迭代格式收敛 于唯一的根;定理二:设 (x)满足:①x :」a,b 1时,:(x) := a,b I ②亦,x 2 亡 ta,b 1 有 ®(x L ) -申(x 2)| 兰I 为—x 2 ,0 <1 c l 则对任意初值x^a,b i 迭代收敛,且:« —xX j 卅一x1 -I I j僅 一 x 兰X i — Xo1 -I定理三:设(x)在〉的邻域内具有连续的一阶导数, 且「'(:•):::1,则迭代格式具有局部收 敛性;定理四:假设 (x)在根〉的邻域内充分可导,则迭代格式x;:(x j )是P 阶收敛的=0,j =1,|l(, P-1,心(:)=0( Taylor 展开证明)f (x),4) Newton 迭代法:x+=x - —-,平方收敛f (x)5) Newton 迭代法收敛定理:设f (x)在有根区间La, b 1上有二阶导数,且满足:①: f (a)f(b) ::0 ; ②: f (x) = 0,x b,b 1 ;③: f 不变号,x •〔a,b 11)二分法的基本原理,误差:b -a④:初值x0•〔a,b 】使得f (x) f (x) ::: 0 ;则Newt on迭代法收敛于根〉。

f i-X26)多点迭代法: f (X i )f (X i ) f(X i 」)X j 1 — XjX 1X jf(X i ) — f(X i 」) f(X i ) — f(X i1) — f(X 1)—f(x)Xi —X 」收敛阶: PJ '5 2 7) Newton 迭代法求重根(收敛仍为线性收敛) ,对Newt on 法进行修改①:已知根的重数「,x 卄“老(平方收敛) ②:未知根的重数: X i 1 二 X - '( ),u(x),(),:•为 f (x)的重根,则〉为 u(x)的单u (X i ) f (X)根。

(完整版)数值分析重点公式

(完整版)数值分析重点公式

第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根; 定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的()()()0,1,,1,()0j P j P ϕαϕα==-≠(Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈; ③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <; 则Newton 迭代法收敛于根α。

6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:12P +=7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。

(完整版)数值分析重点公式

(完整版)数值分析重点公式

第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x ll x x x lαα+-≤---≤--定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠L (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。

6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。

数值分析公式范文

数值分析公式范文

数值分析公式范文数值分析是指用数值计算的方法来解决实际问题的一门学科,它涉及到各种数值计算的方法和算法。

在数值分析中,我们经常需要使用各种数值分析公式来进行数值计算。

下面是一些常见的数值分析公式。

1.数值求导公式:数值求导公式可以用来近似计算函数的导数。

常用的数值求导公式有中心差分公式、前向差分公式和后向差分公式等。

-中心差分公式:f'(x0)≈(f(x0+h)-f(x0-h))/(2h)其中,h是一个很小的数,通常取值很小,比如10的负7次方或更小。

-前向差分公式:f'(x0)≈(f(x0+h)-f(x0))/h-后向差分公式:f'(x0)≈(f(x0)-f(x0-h))/h2.数值积分公式:数值积分公式可以用来近似计算函数的积分。

常用的数值积分公式有梯形公式、辛普森公式和龙贝格公式等。

- 梯形公式:∫[a,b]f(x)dx ≈ (b-a) * (f(a) + f(b)) / 2- 辛普森公式:∫[a,b]f(x)dx ≈ (b-a) * (f(a) + 4f((a+b)/2) + f(b)) / 6-龙贝格公式:龙贝格公式是一种多步递推的数值积分公式,通过多次迭代可以获得更精确的积分结果。

3.数值解微分方程公式:数值解微分方程公式可以用来近似求解常微分方程或偏微分方程的解。

常用的数值解微分方程公式有欧拉法、龙格-库塔法和改进欧拉法等。

-欧拉法:y(n+1)=y(n)+h*f(x(n),y(n))-龙格-库塔法:龙格-库塔法是一种多步迭代的数值解微分方程公式,通过多次迭代可以获得更精确的解。

-改进欧拉法:y(n+1)=y(n)+h*(f(x(n),y(n))+f(x(n+1),y(n+1)))/24.数值线性代数公式:数值线性代数公式可以用来近似求解线性方程组的解。

常用的数值线性代数公式有高斯消元法、LU分解法和雅可比迭代法等。

-高斯消元法:高斯消元法通过消元和回代的方式求解线性方程组。

数值分析 各章重点 公式整理

数值分析 各章重点 公式整理

第一章误差限计算:第二章一多項式函數f(x),在 x = a 的泰勒展開式是:拉格朗日插值基函数:*).(|*)(|*))(( *)(x x f x f x f εε'≈的误差限得).(*)( ),,(,,,,,),,(*1***11**11k nk kn n n n x x f f x x f x x x x x x f εε∑=⎪⎪⎭⎫ ⎝⎛∂∂≈的误差限同理得的近似值为准确值,多元函数 ∏∏∏≠=≠=≠=--=--=nkj j jk j nkj j j knk j j jk x x x x x xxx x l 000)()()(∑==nk kky x lx P 0)()(.||)(||)(||)/( ),(||)(||)( ),()()( 2*2*1*2*2*1*2*1*1*2*2*1*2*1*2*1*2*1x x x x x x x x x x x x x x x x x εεεεεεεεε+≈+≈+=±牛顿插值其中an 为第n 阶差商,0阶差商即为f(x0). 余项 差商表差商导数求法牛顿前插公式(等距点适用)差分表)())(())(()()(110102010----++--+-+=n n n x x x x x x a x x x x a x x a a x N []0101(),,,()()()n n n R x f x x x x x x x x x x =---第三章最小二乘法拟合:直线拟合求a0和a1 多项式拟合⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====mi ii mi m i i i mi i m i i y x x a x a y x a m a 1110211110xa a x y 10)(+=0121011201ni n i i n i i n i i i n n n n i i n i i i a m a x a x y a x a x a x x y a x a x a x x y++⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩∑∑∑∑∑∑∑∑∑∑∑第四章辛普森求积公式插值求积公式 (拉格朗日插值)插值求积公式余项复合梯形公式复合辛普森公式∑⎰=≈nk k kbax f Adx x f 0)()(⎰=bak k dxx l A )()()()()(0k k nkj j jk j k x x x x x x x x x l ωω'-=--=∏≠=[]⎰⎰+=-=+ban ba dxx n fdxx P x f f R )()!1()()()()()1(ωξ[]b a ,∈ξ⎥⎦⎤⎢⎣⎡++=∑-=)()(2)(211b f x f a f h T n k k n 121101()4()2()()6n n n k k k k h S f a f x f x f b --+==⎡⎤=+++⎢⎥⎣⎦∑∑高斯点及系数表将求积区间[a,b]变换到[-1,1]上数值求导两点公式数值求导三点公式22batabx++-=[]),(2)()(1)(1ξfhxfxfhxf''--='[]).(2)()(1)(11ξfhxfxfhxf''+-='),(3)]()(4)(3[21)(221ξfhxfxfxfhxf'''+-+-='),(6)]()([21)(221ξfhxfxfhxf'''-+-=').(3)](3)(4)([21)(2212ξfhxfxfxfhxf'''++-='第五章杜利特尔分解L y=b 求解 y U x=y 求解 x追赶法L y=b 求解 y U x=y 求解 x范数:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn nn n n u u u u u u U l l l L222112112121,111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----11112122111122211n n nn nn n n u u u l a l al b a c b a c b a c b⎪⎩⎪⎨⎧-=-===+++1,,2,1/11111n i ua b l l c u b l i i i i ii i()111112m ax 8)m ax (m ax ((2()0ij nniji nj nijj ni TTTn A a Aa A A a A AA A A A A f E A A λλλ∞≤≤=≤≤=====-=-=∑∑矩阵范数计算公式定理对阶方阵(称为的行范数)称为的列范数)称为的范数)其中表示的最大特征值即常用的条件数第六章雅可比迭代高斯-塞德尔迭代(i=1,2,…,n k=0,1,2,…)收敛性)det(G I -λ求最大特征值)(G ρ,若>1,发散,若>1,收敛。

数值分析重点公式

数值分析重点公式

数值分析重点公式数值分析是数学和计算机科学的交叉学科,研究如何在实际问题中获取精确或近似数值解的方法。

在数值分析中,有许多重要的公式和方法用于解决各种数学和科学问题。

下面是一些数值分析中的重点公式:1.泰勒展开公式:泰勒展开公式可以将一个函数表示为无限级数。

对于一个无穷可微的函数f(x),其泰勒展开可以表示为:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...2. 拉格朗日插值公式:拉格朗日插值公式是一种用于通过已知数据点构造一个多项式函数的方法。

对于n个已知点(xi, yi),拉格朗日插值多项式可以表示为:L(x) = Σ yi * l(i)(x)其中l(i)(x)是拉格朗日基函数,定义为:l(i)(x) = Π (x-xj)/(xi-xj) for j ≠ i3.数值微分公式:数值微分公式用于计算函数的导数。

常用的数值微分公式包括前向差分、后向差分和中心差分。

前向差分公式如下:fd'(x) = (f(x+h) - f(x))/h后向差分公式如下:bd'(x) = (f(x) - f(x-h))/h中心差分公式如下:cd'(x) = (f(x+h) - f(x-h))/(2h)其中h是一个小的非零常数,用于控制近似的精度。

4.数值积分公式:数值积分公式用于计算函数的定积分。

常用的数值积分方法包括矩形法、梯形法和辛普森法则。

梯形法则可以表示为:T(f) = h/2 * [f(x0) + 2Σf(xi) + f(xn)]其中h是区间宽度,n是等分的子区间数,xi是区间的分点。

5.龙格-库塔法:龙格-库塔法是解常微分方程组的一种常用方法。

常见的龙格-库塔法有四阶和五阶,其中四阶龙格-库塔法可表示为:yn+1 = yn + (k1 + 2k2 + 2k3 + k4)/6其中:k1 = hf(xn, yn)k2 = hf(xn + h/2, yn + k1/2)k3 = hf(xn + h/2, yn + k2/2)k4 = hf(xn + h, yn + k3)以上只是数值分析中的一些重点公式,这些公式是解决各种数学和科学问题的基础。

高等数学 数值分析 公式GONGSHI

高等数学 数值分析 公式GONGSHI

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

数值分析重要公式最终修改版

数值分析重要公式最终修改版

1、Doolittle 分解法设A 的各阶主子式非奇异,那么A = LDU = L (DU ) = LU 1 (Doolittle 分解, L 为单位下三角阵)= (LD )U = L 1U (Crout 分解, U 为单位上三角阵)。

例1 用Doolittle 分解法解方程组: ⎪⎩⎪⎨⎧=-+=+-=-+2240532321321321x x x x x x x x x解 记⎪⎪⎭⎫⎝⎛---=214511121A ,⎪⎪⎭⎫⎝⎛=203b 设⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛==332322131211323121111u u u u u u l l l LU A 由矩阵相等得⎪⎪⎪⎭⎫ ⎝⎛=13/74111L ,⎪⎪⎪⎭⎫⎝⎛---=1263121U ,从而由b Ly =, 解得:⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛333321y y y ;由y Ux =, 解得:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛4/12/34/1321x x x(1) Jacobi 迭代格式 C x G x k J k +=+)()1(, ,2,1,0=k)(1U L D G J +-=-,b D C 1-=,)0(x 为初始向量(矩阵形式)A=D+L+U 例 设 b Ax =其中⎪⎪⎭⎫ ⎝⎛----=4114114A ,⎪⎪⎭⎫ ⎝⎛=323b 试求)(J G ρ,)(G G ρ,)(S G ρ)3031(=ω 解:U L D A ++=,⎪⎪⎪⎭⎫⎝⎛=444D ,⎪⎪⎪⎭⎫⎝⎛--=110L ,⎪⎪⎪⎭⎫⎝⎛--=01010U ,=+-=-)(1U L D G J⎪⎪⎪⎭⎫ ⎝⎛0041414141 求 (1)(1)(1)123,,k k k x x x +++ 2 Gauss –Seidel 迭代法(1)迭代格式C xG xk G k +=+)()1(, ,2,1,0=kU L D G G 1)(-+-=,b L D C 1)(-+=,)0(x 为初始向量(矩阵形式)例题0构造收敛的Gauss –Seidel 迭代格式说明收敛理由行变换系数矩阵主对角线元素按行严格占优迭代格式收敛,(1)()123218555k k k x x x +=--+(1)(1)213115424k k k x x x ++=-+(1)(1)(1)31213951010k k k x x x +++=-++(0)(0)(0)123(,,)Tx x x 任选;k=0,1,2….例题1:确定λ 并求代数精度41234()(2)(0)(2)f x dx f f f λλλ-=-++⎰令2()1,,f x x x = 求 λ例题2三次样条函数()s x 【0,1】321x x +-且(1)0,(2)1s s ==求()s x 在【1,2】表达式设32()s x Ax Bx Cx D=+++1(0)(0)S S ='1(0)(0)S S = ''1(0)(0)S S = 1(1)0S =求A B C D例题3梯形法求初值公式[]111111(,)(,)21()2n n n n n n n n n n n y y h f t y f t y y h t y t y +++++=++=+-+- 例题4合曲线y ax b =+{}x span ,11=Φ1)(0=x ϕ,x x =)(1ϕA= T A = T AA = TA y = T b T a A A A y ⎡⎤=⎣⎦b= a= 2散点拟合10()a f x a x=+例1 已知试求它的最小二乘拟合曲线(。

数值分析公式大全

数值分析公式大全

数值分析公式大全1.插值公式:
-拉格朗日插值公式
-牛顿插值公式
-分段线性插值公式
-分段多项式插值公式
- Hermite插值公式
2.数值积分公式:
-矩形法
-梯形法
-辛普森法则
-龙贝格公式
-复合梯形公式
-复合辛普森公式
3.数值微分公式:
-前向差分
-后向差分
-中心差分
-五点差分公式
4.数值方程求根公式:
-二分法
-割线法
-牛顿迭代法
-雅可比迭代法
-弦截法
- Muller法
5.线性方程组求解公式:
- 直接法(LU分解,Cholesky分解)
- 迭代法(雅可比迭代法,Gauss-Seidel迭代法,SOR迭代法)-共轭梯度法
-GMRES法
6.常微分方程数值解法:
- Forward Euler法
- Backward Euler法
- 改进的Euler法
-龙格-库塔法
-预测校正法
7.偏微分方程数值解法:
-有限差分法
-有限元法
-谱方法
-边界元法
8.近似计算公式:
- Taylor级数展开
-泰勒展开的截断误差估计
- 常用数学公式(例如:sin x的级数展开)
9.最优化问题求解公式:
-单变量最优化问题求解公式
-多变量最优化问题求解公式
-线性规划求解公式
-非线性规划求解公式。

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似 解与精确解之间的误差。

近似值的误差:(.为准确值):e*-x*-x近似值的误差限一: 1疋近似值相对误差(较小时约等)近似值相对误差限 :函数值的误差限 :苗⑺“ Ifool 叱)近似值;一士心:化叙…®)"八■有n 位有效数字:第二章:插值法P (对J =0.1/*%?] Oo + %呵+…+偽!曙=九 % +如股+…+ %!珥=Y1 % +舸斗1 +…+ %坊=儿 2•拉格朗日插值 (x- x k )6J n+1(x k ) .次插值基函数: (X- x)-(x-x fc -i)(x-曲十 1)…a — X JJ ) (Xk - X 0)-(X k - X k_i) (x k - x k¥1)-(x k - X…)1•多项式插值其中:P(x) = a()+ OjX + …+ a n ^I>k — O.L —.n = _xl(r -n+l引入记号:^n+l(X)={X-Xo)(A?-粗)…(#- Xj余项:=f(x} - SG)=:;:;詁+W > 5 e 3:3•牛顿插值多项式: ^nW = /(^0)+f 必珀("叼)+・”+/■[和巧严如(龙-坯”心-*_』〔阶均差(把中间去掉,分别填在左边和右边) :店”“皿]丿杯Fmr gd余项:4•牛顿前插公式(令心'小,计算点值,不是多项式):PQ +t h )=/o +帧 + 忖A 讥 + - + 心1)::*%°〔阶差分:AVo = A n "7i -余项:严(和E 3J5•泰勒插值多项式:•阶重节点的均差:6.埃尔米特三次插值:p (x ) -f (^X Q )十打和尤』仗—如+f 1叼公1也](JC-衍)(工一 Xi ) +人(尤-叼)(黑-衍)o — x 2)其中,A 的标定为:咋沪f (社)7.分段线性插值:第三章:函数逼近与快速傅里叶变换p n (x) = 7(X Q ) + f(x Q )(x -和)+ “•+警(U血屯“匈1.-:-属于’.维空间:5(玄)=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

120020001101()017(1)()()()9(x)[()4()2()()].6()[,,,].!n n i i i i n n n i i i i i i i n n n k k k k n n n b x a y x b x a x y h f S f a f x f x f b f f x x x n ξ=====--+==⎧++=⎪⎪⎨⎪+=⎪⎩≈=+++⋅⋅⋅=∑∑∑∑∑∑∑、最小二乘法一次拟合:、复化辛普森公式:差商性质:范数是列和范数)
,(谱范数)。

(=、的特征值。

的按绝对值最大和最小分别是、其中,为对称矩阵时,有,当、2-==-•=1)(||||2||||)(...)3,2,1(,||||||||)(1n 1n 121A A A A A cond A p A A A cond T p p p ρλλλλ100(,)()
(0,1,)n n n n y y h f x y y y x n +=+⎧⎨=⎩=3、欧拉方法:
1121210()2(,)(,)(a),0,1,...n n n n n n h y y K K K f x y K f x h y hK y y n +⎧=++⎪⎪⎪=⎨⎪=++⎪==⎪⎩4、改进欧拉方法:112341213243(22)2(,)(/2,/2)(/2,/2)(,)n n n n n n n n n n h y y K K K K K f x y K f x h y hK K f x h y hK K f x h y hK +⎧=++++⎪⎪=⎪⎪=++⎨⎪=++⎪⎪=++⎪⎩
6、龙格库塔四阶: 1123121312(4)6(,)(/2,/2)(/2,/2)n n n n n n n n h y y K K K K f x y K f x h y hK K f x h y hK hK +⎧=+++⎪⎪⎪=⎨⎪=++⎪=+-+⎪⎩5、龙格库塔三阶: 3001100112200010102211101012200011100110()()()()()()(12)()(12())()()(12)()(12())()()()()()()()()()[,]H x x y x y x y x y x x x l x l x l x x x x x x l x l x l x x x x x x l x x x x l x H x f x f x x ααββααββ=+''++-=+=+--=+=+-=-=-=+、三次埃尔米特插值:(1),,(2)001201012(4)23012()[,,]()()()()()()()()()()4!x x f x x x x x x x A x x x x x x f R x x x x x x x ξ-+--+---=---余项111(1)()()1111()()|()|0|()|012()[(1)]1()1,2,,0,1,2,11i j j i n k k k i ij ij j j i ii J G S B D L U G D L U D L U D L U SOR S D L D U x b a x a x a i n k λλωωωωω---+==+-=+=--+=--==--+=--==><∑∑-1、迭代和迭代: 、方法,为超松弛迭代,为欠松弛迭代11212108()(,)(,)22(a),0,1,...n n n n n n RK y y h K K K f x y h h K f x y K y y n +=++⎧⎪=⎪⎪⎨=++⎪⎪==⎪⎩、二阶方法:*****
***1211
1/||051010*01020110*2r r m n n r m n n e εe εx x ε*.εx*.a a a .a n a x ---+=-==⨯===⨯⨯≤⨯已知有位有效数字,则、误差:绝对误差:误差限其相对误差限相对误差:误差限为13e x x /ε121
21(,())2(,())211222(,())()(,())()(,())(,())[]()
()[]()
()()()[] i i i i i i i i i i i i i x y x y x i x y x y x i i i x y x y i i x K f x y x y x K f x ah y x bhK f x y x ahf bhK f O h y x h a f by f y x y O h y y x hy x h a f b y f λλλλ+'===++''=+++''''=+++''''=++++=+14、在的假设下,有
323123(,())1221211()()()()(/2)()()
11()()[]()22()()11/21 0
/23i i i i i i i i x y x y x i i O h y x y x hy x h y x O h y x hy x h f y f O y x y O h a b h λλλλλ+++'''=+++''''=+++++=⎧⎪=⎨⎪=⎩==根据格式为二阶精度,即-比较若令。

相关文档
最新文档