人教版高中数学必修5《解三角形》教案

合集下载

高中数学新教材解三角形教案

高中数学新教材解三角形教案

高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。

必修五第一章《解三角形》教案

必修五第一章《解三角形》教案

§1.1.1 正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又si n1c C c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin ab=sin c=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

高中数学必修五解三角形教案

高中数学必修五解三角形教案

高中数学必修五解三角形教案高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习解三角形一、知识点:1、正弦定理:在C中,a、b、c分别为角?、?、C的对边,R 为C的外接圆的半径,则有abc2R.(两类正弦定理解三角形的问题:1、已知sin?sin?sinC两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.)2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;②sin??等式中)③a:b:c?sin?:sin?:sinC;abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2Ra?b?cabc.sin??sin??sinCsin?sin?sinC1113、三角形面积公式:SC?bcsin??absinC?acsin? 222④?a2?b2?c2?2bccosA?2224.余弦定理:?b?a?c?2accos(本文来自: 教师联盟网:高中数学必修五解三角形教案)B 或?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac?? b2?a2?c2?cosC?2ab?(两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.)2225、设a、b、c是C的角?、?、C的对边,则:①若a?b?c,则C?90?为222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为钝角三角形.6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sinA?BCA?BCA?BC?cos,cos?sin,tan?cot 222222二、知识演练1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于()A.60°B.60°或120°C.30°或150°D.120°2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).A.90°B.120°C.130°D.150°2224.在△ABC 中,a?b?c?bc ,则A等于()A.60°B.45°C.120°D.30°5.在△ABC中,A为锐角,lgb-lgc=lgsinA=-lg2, 则△ABC为()A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形b6、锐角?ABC中,B=2A,则a的取值范围是()A(-2,2)B(0,2)C(2,2)D2,)7.在?ABC中.sinA?sinB?sinC?sinBsinC.则A的取值范围是222 ?A.(0,6]B.[ 6,?)C.(0,3]D.[ 3,?)?8.在△ABC中,a=x,b=2,B=45,若△ABC有两解,则x的取值范围是_______________9. ?ABC中,B?60?,AC,则AB+2BC的最大值为_________.10.a,b,c为△ABC的三边,其面积S△ABC=123,bc=48,b-c=2,求a11.在?ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA?2,AB?AC?3.(I)求?ABC的面积;(II)若b?c?6,求a的值.12、在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S?2a?b2?c2)。

高中数学第一章解三角形教案新人教版必修5B

高中数学第一章解三角形教案新人教版必修5B

解三角形复习课 教案(一)教学目标:(1)运用正弦定理、余弦定理,解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

(3)培养学生分析问题、解决问题,自主探究的能力。

(二)教学重点与难点:重点:(1)正弦定理与余弦定理的应用。

(2)题目的条件满足什么形式时适合用正弦、余弦定理解决问题。

难点:(1)利用正弦定理求解过程中一解、二解的情况。

(2)从实际问题抽象出数学问题。

(三)教学过程:观察引入:? 让学生观察思考:在△ABC 中,请给出适当的条件,并根据你给出的条件可以得到什么结论?(培养学生自主探究和学习的能力)根据学生所答,教师归纳总结正弦定理,余弦定理公式:(正弦定理)正弦定理可以用来解两种类型的三角问题:(1)已知两角和任意一边,可以求出其他两边和一角;(2)已知两边和其中一边的对角,可以求出三角形的其他的边和角。

Cab b a c B ca a c bAbc c b a cos 2cos 2cos 2222222222-+=-+=-+= (余弦定理)余弦定理可解以下两种类型的三角形:BR C c B b A a 2sin sin sin === (1)已知三边;(2)已知两边及夹角.(四)例题精讲:让学生自主探究,分析问题,解决问题。

(可用正、余弦2种方法解决,注意解的个数)例2 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西300,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援?(角度精确到10)根据题目要求把实际问题转化成解三角形问题,对应的边长和角度可从已知条件中获得。

(五)课堂练习:1.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )A 有 一个解B 有两个解C 无解D 不能确定2.ABC 中,8b =,c =,ABC S =,则A ∠等于 ( )A 30B 60C 30或150D 60或1203.△ABC 中,若60A =,a =sin sin sin a b cA B C +-+-等于 ( )145,,.ABC a b B A C c ︒∆===例在中,已知求和A 2B 1 24.ABC中,:1:2A B=,C的平分线CD把三角形面积分成3:2两部分,则cos A=()A 13B12C34D 05.果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A 锐角三角形B 直角三角形C 钝角三角形D 由增加的长度决定参考答案:1.C 2。

必修五解三角形教案

必修五解三角形教案

必修五解三角形教案教案标题:必修五解三角形教案教案目标:1. 确保学生理解和掌握三角形的基本概念和性质。

2. 培养学生解决三角形相关问题的能力。

3. 提高学生的逻辑思维和推理能力。

教案步骤:第一步:引入三角形的概念(15分钟)1. 引导学生回顾平面几何的基本概念,如点、线、角等。

2. 引入三角形的概念,解释三角形的定义和特点。

3. 通过示意图和实例,让学生理解三角形的构成要素:三条边和三个角。

第二步:介绍三角形的分类(20分钟)1. 介绍根据边长和角度的关系,将三角形分为等边三角形、等腰三角形和普通三角形。

2. 解释每种三角形的定义和性质,如等边三角形的三边相等、等腰三角形的两边相等等。

3. 通过实例和练习,让学生区分不同种类的三角形,并理解它们之间的关系。

第三步:探究三角形的角度性质(25分钟)1. 引导学生思考三角形内角之和的问题,并让学生猜测三角形内角之和的大小。

2. 引导学生通过实验和推理,发现三角形内角之和恒为180度的规律。

3. 给予学生足够的练习,巩固和应用三角形内角之和的概念。

第四步:解决三角形的问题(30分钟)1. 给学生提供一些实际问题,要求他们应用所学的知识解决。

2. 引导学生分析问题,确定解题思路,并运用所学的三角形性质解决问题。

3. 鼓励学生在解题过程中提出自己的解决方法,并进行讨论和分享。

第五步:总结与拓展(10分钟)1. 总结本节课所学的内容,强调三角形的基本概念和性质。

2. 提醒学生在实际生活中运用三角形的知识,如测量高楼的高度、计算航行船只的位置等。

3. 鼓励学生进一步拓展学习,了解更多与三角形相关的知识和应用。

教学评估:1. 在课堂中通过观察学生的参与和回答问题的表现,评估他们对三角形概念和性质的理解程度。

2. 布置练习题,检验学生对三角形解题方法的掌握和应用能力。

3. 鼓励学生在课后自主学习和探究,通过小测验或作业评估他们的学习成果。

教学资源:1. 幻灯片或黑板,用于呈现概念和示意图。

人教版高中数学必修五高一数学必修五《解三角形》教案

人教版高中数学必修五高一数学必修五《解三角形》教案

1.1.3解三角形的进一步讨论(一)教学目标1.知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

2. 过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

3.情态与价值:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。

(二)教学重、难点重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。

难点:正、余弦定理与三角形的有关性质的综合运用。

(三)学法与教学用具学法:通过一些典型的实例来拓展关于解三角形的各种题型及其解决方法。

教学用具:教学多媒体设备(四)教学设想[创设情景]思考:在∆ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。

(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。

下面进一步来研究这种情形下解三角形的问题。

[探索研究]例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B =可进一步求出B ; 则0180()C A B =-+ 从而sin a C c A= 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。

2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解。

(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。

高中解三角形教案

高中解三角形教案

高中解三角形教案
教案目标:
1. 让学生掌握解三角形的基本概念和方法。

2. 培养学生运用正弦定理、余弦定理等解决实际问题的能力。

3. 提高学生的逻辑推理能力和空间想象能力。

教学内容:
1. 解三角形的基本概念:包括内角、外角、边长、面积等。

2. 解三角形的基本方法:包括正弦定理、余弦定理、面积公式等。

3. 特殊三角形的解法:如直角三角形、等腰三角形、等边三角形等。

教学步骤:
1. 引入新课:通过实际问题,如测量建筑物的高度、计算不规则地形的面积等,引出解三角形的必要性和实用性。

2. 讲解概念:清晰地解释三角形的各个元素,以及它们之间的关系。

3. 方法讲解:详细讲解正弦定理、余弦定理等解三角形的方法,并通过例题加深理解。

4. 实践操作:让学生动手解决一些实际问题,如给定一些边长和角度,求解其他未知量。

5. 总结归纳:回顾本节课所学的内容,总结解三角形的方法和注意事项。

教学方法:
1. 采用启发式教学,鼓励学生主动思考和解决问题。

2. 结合实际案例,使抽象的数学知识具体化,便于学生理解。

3. 分组合作学习,促进学生之间的交流和合作。

评价方式:
1. 课堂提问,检验学生对概念的理解程度。

2. 作业布置,通过解决实际问题来考察学生的解题能力。

3. 小组讨论,评价学生的合作能力和创新思维。

高中数学必修5解三角形教案

高中数学必修5解三角形教案

第2章 解三角形2.1.1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.教学重点:正弦定理的探索和证明及其基本应用.教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程: 一、复习准备:1. 讨论:在直角三角形中,边角关系有哪些?〔三角形内角和定理、勾股定理、锐角三角函数〕如何解直角三角形?那么斜三角形怎么办?2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?〔内角和、大边对大角〕 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课:1. 教学正弦定理的推导:①特殊情况:直角三角形中的正弦定理: sin A =c a sin B =cbsin C =1 即c =sin sin sin a b cA B C==. ② 能否推广到斜三角形? 〔先研究锐角三角形,再探究钝角三角形〕 当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a bA B=. 同理,sin sin a c A C =〔思考如何作高?〕,从而sin sin sin a b cA B C==. ③*其它证法:证明一:〔等积法〕在任意斜△ABC 当中S △ABC =111sin sin sin 222ab C ac B bc A ==. 两边同除以12abc 即得:sin a A =sin b B =sin c C.证明二:〔外接圆法〕如下图,∠A =∠D ,∴2sin sin a aCD R A D===, 同理sin b B =2R ,sin c C=2R .证明三:〔向量法〕过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得…..④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题:① 出例如1:在∆ABC 中,已知045A =,060B =,42a =cm ,解三角形. 分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两角一边② 出例如2:045,2,,ABC c A a b B C ∆===中,求和.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两边及一边对角③ 练习:060,1,,ABC b B c a A C ∆===中,求和.在∆ABC 中,已知10a =cm ,14b =cm ,040=A ,解三角形〔角度精确到01,边长精确到1cm 〕④ 讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量?3. 小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论. 三、稳固练习:1.已知∆ABC 中,∠A =60°,a =,求sin sin sin a b cA B C++++.2. 作业:教材P5 练习1 (2),2题.2.1.2 余弦定理〔一〕教学要求:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题. 教学重点:余弦定理的发现和证明过程及其基本应用. 教学难点:向量方法证明余弦定理. 教学过程: 一、复习准备:1. 提问:正弦定理的文字语言? 符号语言?基本应用?2. 练习:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形. →变式3. 讨论:已知两边及夹角,如何求出此角的对边? 二、讲授新课:1. 教学余弦定理的推导:① 如图在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵AC AB BC =+,∴()()AC AC AB BC AB BC •=+•+222AB AB BC BC =+•+222||||cos(180)AB AB BC B BC =+•-+222cos c ac B a =-+.即2222cos b c a ac B =+-,→② 试证:2222cos a b c bc A =+-,2222cos c a b ab C =+-.③ 提出余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.用符号语言表示2222cos a b c bc A =+-,…等; → 基本应用:已知两边及夹角④ 讨论:已知三边,如何求三角?→ 余弦定理的推论:222cos 2b c a A bc+-=,…等.⑤ 思考:勾股定理与余弦定理之间的关系? 2. 教学例题:① 出例如1:在∆ABC中,已知=ac 060=B ,求b 及A . 分析已知条件 → 讨论如何利用边角关系 → 示范求b→ 讨论:如何求A ?〔两种方法〕〔答案:b =060A =〕 → 小结:已知两边及夹角②在∆ABC 中,已知13a cm =,8b cm =,16c cm =,解三角形.分析已知条件 → 讨论如何利用边角关系 → 分三组练习 → 小结:已知两角一边3. 练习:① 在ΔABC 中,已知a =7,b =10,c =6,求A 、B 和C .② 在ΔABC 中,已知a =2,b =3,C =82°,解这个三角形.4. 小结:余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;余弦定理的应用范围:①已知三边求三角;②已知两边及它们的夹角,求第三边.三、稳固练习:1. 在∆ABC 中,假设222a b c bc =++,求角A . 〔答案:A =1200〕2. 三角形ABC 中,A =120°,b =3,c =5,解三角形. → 变式:求sin B sin C ;sin B +sin C .3. 作业:教材P8 练习1、2〔1〕题.2.1 .3 正弦定理和余弦定理〔练习〕教学要求:进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式. 教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化. 教学过程: 一、复习准备:1. 写出正弦定理、余弦定理及推论等公式.2. 讨论各公式所求解的三角形类型. 二、讲授新课:1. 教学三角形的解的讨论:① 出例如1:在△ABC 中,已知以下条件,解三角形. (i ) A =6π,a =25,b =50; (ii ) A =6π,a =b =50; (iii ) A =6π,a=b =50 (iiii ) A =6π,a =50,b =50.分两组练习→ 讨论:解的个数情况为何会发生变化?② 用如以下图示分析解的情况. 〔A 为锐角时〕② 练习:在△ABC 中,已知以下条件,判断三角形的解的情况. (i ) A =23π,a =25,b =; (ii ) A =23π,a =25,b =10 例1.根据以下条件,判断解三角形的情况(1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解2. 教学正弦定理与余弦定理的活用:已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA① 出例如2:在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,求最大角的余弦.分析:已知条件可以如何转化?→ 引入参数k ,设三边后利用余弦定理求角.② 出例如3:在ΔABC 中,已知a =7,b =10,c =6,判断三角形的类型. 分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断结论:活用余弦定理,得到:=+⇔⇔∆>+⇔⇔∆<+⇔⇔222222222是直角是直角三角形是钝角是钝角三角形是锐角a b c A ABC a b c A ABC a b c A ∆是锐角三角形ABC③ 出例如4:已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状. 分析:如何将边角关系中的边化为角? → 再思考:又如何将角化为边?3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、稳固练习:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,求a bb+的值2. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos A :cos B :cos C = .3. 作业:2.2三角形中的几何计算一、 设疑自探正弦定理、余弦定理是两个重要的定理,在解决与三角形有关的几何计算问题中有着广泛的应用。

《解三角形》教学设计-优秀教案

《解三角形》教学设计-优秀教案

45,C∠.求边长能够很好地激发学生的求知欲望。

在新的问题产生时这个时候也正是产生知识缺陷, 急需新知识的时候教师活动2探究一: 直角三角形边角关系如图:在中, 是最大的角, 所对的斜边是最大的边, 探究边角关系。

探究二: 斜三角形边角关系实验1: 如图, 在等边中, ,对应边的边长, 验证是否成立?实验2: 如图, 在等腰中, , , 对应边的边长, 验证是否成立?实验3:借助多媒体演示, 发现随着三角形的任意变换, 的值相等。

通过这样的一些实验, 我们可以猜想。

学生活动2探究一: 在中, 设, 根据正弦函数定义可得:cbBcaA==∴sin;sincBbAa==∴sinsin又1sin=CCcBbAasinsinsin==∴探究二: 学生通过计算验证结论是否正确探究二:学生通过计算验证结论是否正确活动意图说明从已有的知识结构出发, 不让学生在思维上出现跳跃, 逐层递进, 通过已经熟悉的直角三角形的边角关系的探究作为切入点, 再对特殊的斜三角形进行验证, 过渡到一般的斜三角形边角关系的探究。

让学亲自体验数学实验探究的过程, 逐层递进, 激发学生的求知欲和好奇心, 体会到数学实验的归纳和演绎推理两个侧面。

多媒体技术的引入演示, 让学生更加直观感受到变换, 加深理解。

环节三:教的活动3证明猜想, 得到定理学的活动3分组讨论证明方法并展示活动意图说明经历猜想到证明的过程, 让学生体会到数学新知识得获得仅仅靠猜想和演绎推理是不够的,必须经过严密的数学推导进行证明才可以。

在这个过程中, 也进一步促进学生数学思维思维品质的提升。

7.板书设计(板书完整呈现教与学活动的过程, 最好能呈现建构知识结构与思维发展的路径与关键点。

使用PPT应注意呈现学生学习过程的完整性)课题一、正弦定理定理: 例题练习。

高中数学人教版教案:必修5第一章《解三角形》全章教案

高中数学人教版教案:必修5第一章《解三角形》全章教案

数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。

通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。

本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。

在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。

”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。

人教版高中必修5第一章解三角形课程设计

人教版高中必修5第一章解三角形课程设计

人教版高中必修5第一章解三角形课程设计1. 课程背景本课程设计是基于人教版高中必修五《数学》第一章节“解三角形”而设计的。

通过本课程设计,旨在让学生能够对三角形的性质、三角函数、三角形的解法等内容进行全面深入的学习和了解,并提高学生的解题能力和思维逻辑能力。

2. 教学目标•理解三角形的相关基本概念和性质,如三条中线交于一点、重心、垂心等;•掌握解三角形的基本方法,特别是余弦定理和正弦定理的应用;•掌握三角函数中正弦、余弦、正切、余切等的相关概念和应用;•提高学生解题能力和思维逻辑能力。

3. 教学内容3.1 三角形的基本概念和性质三角形的基本概念包括三边、三角、顶点、内角、外角等;三角形的基本性质包括角的和为180度、边长之和大于第三边、三条中线交于一点等等。

教师可借助ppt或板书等方式,让学生了解三角形的基本概念和性质。

3.2 解三角形的基本方法解三角形的基本方法主要包括余弦定理和正弦定理。

让学生通过多种角度、多个实际问题进行训练,提高学生的运用解三角形基本方法的能力。

3.3 三角函数的相关概念和应用介绍三角函数的基本概念及其与三角形的关系。

要求学生掌握 sin、cos、tan、cot等三角函数的图像、性质和用途,并通过例题、练习题巩固和提高运用三角函数的能力。

4. 教学方法本课程设计采用多种教学方法,如讲授法、探究法、启发法、情景模拟法等。

尤其在解三角形基本方法和三角函数应用中,注重学生独立思考和应用能力的提高。

5. 教学过程与时间安排5.1 三角形的基本概念和性质教学时间:2课时教学过程:1.讲授三角形的基本概念和性质,让学生通过书本、ppt等方式对三角形的基础有全面的了解。

2.安排部分课堂活动,如团队讨论、板书练习等,让学生运用所学知识进行实际操练。

3.安排少量概念题目,以加深学生对于三角形的认识和了解。

5.2 解三角形的基本方法教学时间:3课时教学过程:1.讲解余弦定理和正弦定理的基本定义和运用方法。

高中数学第一章解三角形新教案人教A版必修5 教案

高中数学第一章解三角形新教案人教A版必修5 教案

A BCj图1-2图1-1新课标理念下高中数学必修5第一章 解三角形教法学法的探究交流本章概述:本章是在学习三角函数、平面向量的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并运用它们解决一些与测量和几何计算有关的实际问题。

本章的主要内容是两个重要定理,即正弦定理和余弦定理以及这两个定理在解斜三角形中的应用。

教材地位:本章是在学习了三角函数、平面向量等知识的基础上,进一步学习如何解三角形的。

正、余弦定理是我们学习有关三角形知识的继续和发展,它们进一步揭示了三角形边与角之间的关系,在生产、生活中有着广泛的应用,是我们求解三解形的重要工具。

本章内容与三角形定性研究的结论相联系,与三角函数相联系,同时也体现了向量及其运算的应用。

高考中常与三角函数和向量知识联系起来考查,是高考的一个热点内容。

课标要求:1、理解并掌握正弦定理和余弦定理,并能解决一些简单的三角形度量问题。

2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

学法指导:1、重视数学思想方法的运用。

解三角形作为几何度量问题,要突出几何背景,注意数形结合思想的运用,具体解题时,要注意函数与方程思想的运用。

2、加强新旧知识的联系。

本章知识与初中学习的三角形的边、角关系有着密切联系。

同时,要注意与三角函数、平面向量等知识的联系,将新知识融入已有的知识体系,从而提高综合运用知识的能力。

3、提高数学建模能力。

利用解三角形解决相关的实际问题,根据题意,找出量与量之间的关系,作出示意图,将实际问题抽象成解三角形模型。

学科实践:本章知识在现实生活中有着广泛的应用,如天文测量、航海测量、地理测量以及日常生活中的距离、高度、角度的测量等,解三角形的理论被用于解决许多测量问题。

因此,通过本章的学习,能提高学生解决关于测量和几何计算的实际问题的能力和数学建模能力。

知识点1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin == 正弦定理给出了任意三角形中,三条边及其对应角的正弦值之间的对应关系。

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。

人教版必修5教案解三角形应用举例(四)三角形的面积公式及三角恒等式的证明

人教版必修5教案解三角形应用举例(四)三角形的面积公式及三角恒等式的证明

第一章解三角形§1.2应用举例(第四课时)【创设情景引入新知】杭州一避暑山庄占地的平面图如图所示,它由三个正方形和四个三角形构成,其中三个正方形的面积分别为18亩、20亩和26亩.你知道这个整个避暑山庄占地面积是多少吗?怎么计算呢?请同学们开动脑筋,想想办法吧!【探索问题形成概念】前面我们已知知道三角形的面积公式1,2ABCS ah∆=其中a为底面边长,h为底面上的高.三角形的面积公式除上式之外还有其它的表达形式吗?这节课我们首先将给出三角形面积公式的另一种表达形式.1、三角形的面积公式如右图,△ABC中,边BC、CA、AB上的高分别记为ha、hb、hc根据直角三角形中锐角三角函数的定义,容易证明:sin sinsin sinsin sinabch b C c Bh c A a Ch a B b A======将以上三式应用在三角形的面积公式12S ah=中,可以推导出下面的三角形面积公式;AB Ch ahbhc121212sin sin sin S ab C S ac B S bc A===已知三角形的任意两边及夹角便可求出三角形的面积.【例题】在 △ABC 中,根据下列条件,求三角形的面积S (精确到0.1cm 2) (1)已知a=14.8cm,c=23.5cm,B=148.5°; (2)已知B=62.7°,C=65.8°,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm. 【思路】(1)中已知两边及夹角,可直接应用公式求解;(2)中已知两角和一角的对边,先根据正弦定理求出另一角的对边,再根据三角形内角和定理求出剩余的一角,便可应用面积公式求解;(3)中已知三角形的三边,可根据余弦定理求出其中任意一角,从而应用面积公式求解.【解答】(1)应用S=21acsinB ,得 S=21⨯14.8⨯23.5⨯sin148.5︒≈90.9(cm 2) (2)根据正弦定理,B b sin = Cc sin ,c = BC b sin sinS = 21bcsinA = 21b 2BA C sin sin sin A = 180︒-(B + C)= 180︒-(62.7︒+ 65.8︒)=51.5︒要求三角形的面积需要知道什么条件?思考S = 21⨯3.162⨯︒︒︒7.62sin 5.51sin 8.65sin ≈4.0(cm 2) (3)根据余弦定理的推论,得cosB =ca b a c 2222-+=4.417.3823.274.417.38222⨯⨯-+≈0.7697sinB = B 2cos 1-≈27697.01-≈0.6384应用S=21acsinB ,得 S ≈21⨯41.4⨯38.7⨯0.6384≈511.4(cm 2)【反思】在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形的知识,求出需要的元素,从而求出三角形的面积.【例题】在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68 m,88 m,127 m,这个区域的面积是多少?(精确到0.1 c m 2)?【思路】把这一实际问题化归为一道数学题目,本题已知三角形的三边,先根据余弦定理求角,再利用三角形的面积公式求解。

新人教A版必修5高中数学第1章《解三角形》函数的周期性问题教案

新人教A版必修5高中数学第1章《解三角形》函数的周期性问题教案

高中数学 第1章《解三角形》函数的周期性问题教案新人教A 版必修5一、教学目标:理解周期函数的概念并能运用函数的周期性知识解题。

1.周期函数定义:设函数()f x 的定义域为D ,T 为非零常数,若对任意x D ∈,都有()()f x T f x +=成立,则()f x 是周期函数,T 是()f x 的一个周期。

若在所有的正周期中存在最小值,则称此值为最小正周期。

2.从定义表述中可发现,周期函数不一定存在最小正周期。

二、问题举例 例1.设函数()f x 是定义在R 上的函数选题目的:引导学生理解并掌握周期函数的不同表现形式,感受抽象函数递推式与周期函数的联系; 思路分析:以第(3)小题为例,因为()()12f x f x +=-中的x 是任意的,可2x +替代x ,就可得到()()()()11412f x f x f x f x +=-=-=+-,从而()f x 的一个周期为4;其它几个问题也同样可求得结果。

例2.设函数()f x 是定义在R 上的函数,求解下列问题(1)直线x a =和x b =是函数()y f x =图象的两条对称轴,问()f x 是否为周期函数,若是,其周期为多少?(2)直线x a =是函数()y f x =图象的对称轴,点(),0b 是函数()y f x =图象的对称中心,问问()f x 是否为周期函数,若是,其周期为多少?选题目的:两条对称轴就如人的前后各放置了一面镜子,会在镜子里出现无数多个像,正如周而复始的现象;指导学生研究函数图象对称性与周期性的内在联系,从而能更好地运用对称性和周期性解决相关数学问题。

思路分析:以第(1)题为例,因为x a =和x b =都是函数()y f x =图象的对称轴,所以必有:()()2,f a x f x -=()()2,f b x f x -=则有()()22,f a x f b x -=-用2b x -替代x 可得到()()22,f a b x f x -+=由周期函数的定义可知,()f x 的一个正周期为2a b -。

高中数学解三角形教案

高中数学解三角形教案

高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。

二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。

三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。

2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。

3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。

4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。

五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。

六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。

七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。

(完整word版)人教版高中数学必修5《解三角形》教案

(完整word版)人教版高中数学必修5《解三角形》教案

高中数学必修5 《解三角形》知识点:1、 正弦定理:在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,R 为ABC ∆的外接圆的半径,则有2sin sin sin Ca b c R ===A B . 2、 正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sinC c R =; ②sin 2a RA =,sin 2b RB =,sinC 2c R =; ③::sin :sin :sinC a b c =A B ; ④sin sin sin C sin sin sin Ca b c a b c ++===A +B +A B . 3、 三角形面积公式:111sin sin C sin 222ABC S bc ab ac ∆=A ==B . 4、 余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cosC c a b ab =+-.5、 余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos C 2a b c ab+-=. 6、 设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.主要有以下五大命题热点:一、求解斜三角形中的基本元素是指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高、角平分线、中线)及周长等基本问题.例1 ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB例2 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求sin A 的值.二、判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.例3 在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形三、 解决与面积有关问题主要是利用正、余弦定理,并结合三角形的面积公式来解题.例4 在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________四、求值问题例5 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件222a bc c b =-+ 和321+=b c,求A ∠和B tan 的值.五、正余弦定理解三角形的实际应用利用正余弦定理解斜三角形,在实际生活中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修5 《解三角形》
知识点:
1、 正弦定理:在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,R 为ABC ∆的外接圆的半径,则有2sin sin sin C
a b c R ===A B . 2、 正弦定理的变形公式:
①2sin a R =A ,2sin b R =B ,2sinC c R =; ②sin 2a R A =,sin 2b R B =,sin C 2c R
=; ③::sin :sin :sinC a b c =A B ; ④
sin sin sin C sin sin sin C
a b c a b c ++===A +B +A B . 3、 三角形面积公式:111sin sin C sin 222ABC S bc ab ac ∆=A ==B . 4、 余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cosC c a b ab =+-.
5、 余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222
cos C 2a b c ab
+-=. 6、 设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:
①若222a b c +=,则90C =; ②若222
a b c +>,则90C <;
③若222a b c +<,则90C >.
正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.主要有以下五大命题热点: 一、求解斜三角形中的基本元素
是指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高、角平分线、中线)及周长等基本问题.
例1 ABC ∆中,3π=
A ,BC =3,则ABC ∆的周长为( ) A .33sin 34+⎪⎭⎫ ⎝⎛
+πB B .36sin 34+⎪⎭⎫ ⎝
⎛+πB
C .33sin 6+⎪⎭⎫ ⎝⎛
+πB D .36sin 6+⎪⎭⎫ ⎝
⎛+πB 例2 在ΔABC 中,已知66cos ,364==
B AB ,A
C 边上的中线B
D =5,求sin A 的值.
二、判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状. 例3 在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .正三角形
三、 解决与面积有关问题
主要是利用正、余弦定理,并结合三角形的面积公式来解题.
例4 在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________
四、求值问题
例5 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件222a bc c b =-+ 和
32
1+=b c ,求A ∠和B tan 的值.
五、正余弦定理解三角形的实际应用
利用正余弦定理解斜三角形,在实际生活中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识。

【基础训练】
一、选择题
1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )
A .1
B .1-
C .32
D .32-
2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )
A .A sin
B .A cos
C .A tan
D .A
tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .等腰三角形
4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )
A .2
B .2
3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )
A .006030或
B .006045或
C .0060120或
D .0015030或
6.边长为5,7,8的三角形的最大角与最小角的和是( )
A .090
B .0120
C .0135
D .0150
二、填空题
1.在Rt △ABC 中,0
90C =,则B A sin sin 的最大值是_______________.
2.在△ABC 中,若=++=A c bc b a 则,222_________.
3.在△ABC 中,若====a C B b 则,135,30,200_________.
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________.
三、解答题
1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?
2.在△ABC 中,求证:
)cos cos (a A b B c a b b a -=-
3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++.
4.在△ABC 中,设,3,2π=
-=+C A b c a 求B sin 的值.
【综合训练】
一、选择题
1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )
A .1:2:3
B .3:2:1
C .1:2
D .2
2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( )
A .大于零
B .小于零
C .等于零
D .不能确定
3.在△ABC 中,若B A 2=,则a 等于( )
A .A b sin 2
B .A b cos 2
C .B b sin 2
D .B b cos 2
4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( )
A .直角三角形
B .等边三角形
C .不能确定
D .等腰三角形
5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( )
A .090
B .060
C .0135
D .0
150 6.在△ABC 中,若14
13cos ,8,7=
==C b a ,则最大角的余弦是( ) A .51- B .61- C .71- D .8
1- 7.在△ABC 中,若tan 2A B a b a b --=+,则△ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形
二、填空题
1.若在△ABC 中,060,1,ABC A b S ∆∠===则C
B A c b a sin sin sin ++++=_______. 2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<).
3.在△ABC 中,若=+=C B C B A tan tan ,cos cos 2sin 则_________.
4. 在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________.
5.在△ABC 中,若=+===A c b a 则2
26,2,3_________. 6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________.
三、解答题
1. 在△ABC 中,0120,,ABC A c b a S
=>==,求c b ,.
2. 在锐角△ABC 中,求证:1tan tan tan >⋅⋅C B A .
3. 在△ABC 中,求证:2
cos 2cos 2cos
4sin sin sin C B A C B A =++.
4.在△ABC 中,若0120=+B A ,则求证:
1=+++c a b c b a .
5.在△ABC 中,若223cos cos 222
C A b a c +=,则求证:2a c b +=.
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档