高考数学一轮复习第6单元不等式推理与证明第39讲数学归纳法理
高考数学一轮复习 第六章 不等式、推理与证明 6.6 数学归纳法(理)
【特别提醒】 1.数学归纳法证题时,误把第一个值n0认为是1,如证明 多边形内角和定理(n-2)π时,初始值n0=3.
2.数学归纳法证题的关键是第二步,证题时应注意: (1)必须利用归纳假设作基础. (2)证明中可利用综合法、分析法、反证法等方法. (3)解题时要搞清从n=k到n=k+1增加了哪些项或减少了 哪些项.
(n∈N*).
2 3 4 2n1 2n
11
1
【n解题1导n引2】根据2n数学归纳法证明等式的步骤进行证
明.
【规范解答】(1)当n=1时,左边= 1 1 1 ,
右边=
1
1
左边=右边.
,
22
11 2
(2)假设n=k时等式成立,
即 1111 1 1 2 3 4 2k1 2k
则k当1n1=kk+11时2,21k,
求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
【证明】(1)当n=2时,左边=f(1)=1,
右边= 左边=右2(1边,12等1式) 成1,立.
(2)假设n=k(k≥2,k∈N*)时,结论成立, 即f(1)+f(2)+…+f(k-1)=k[f(k)-1], 那么,当n=k+1时, f(1)+f(2)+…+f(k-1)+f(k) =k[f(k)-1]+f(k)=(k+1)f(k)-k
【解析】用数学归纳法证明不等式
1 1 1 1 9(n∈N*且n>1)时,
第n 一1步n : 不2等n 式3 的左边3 是n10
2020届高考数学一轮总复习第六单元数列与算法第39讲由递推公式求通项课件理新人教A版
解:(1)依题意,S1=1-a1,即 a1=1-a1, 所以 a1=21=1×1 2. S2=1-2a2,即 a1+a2=1-2a2, 所以 a2=61=2×1 3. S3=1-3a3,即 a1+a2+a3=1-3a3, 所以 a3=112=3×1 4. S4=1-4a4,即 a1+a2+a3+a4=1-4a4, 所以 a4=210=4×1 5.
解得 a1=3,a2=5,a3=7.
(2)由(1)猜想 an=2n+1. 因为 Sn=2nan+1-3n2-4n,① n≥2 时,Sn-1=2(n-1)an-3(n-1)2-4(n-1),② ①-②得:
an=2nan+1-2(n-1)an-3[n2-(n-1)2]-4[n-(n-1)], 所以 2nan+1=(2n-1)an+6n+1(n≥2), 所以 an+1=2n2-n 1an+6n2+n 1,
累加法、累乘法 转化法 归纳、猜想与证明
考点1·累加法、累乘法
【例 1】已知数列{an}中,a1=1,前 n 项和为 Sn=n+3 2an. (1)求 a2,a3; (2)求{an}的通项公式.
分析:由 Sn 与 an 的关系求通项,可利用 an 与 Sn 的关系:
an=SS1n, -Sn-1,
点评:(1)累加法和累乘法是推导等差数列和等比数列 的通项公式时所采用的方法,是递推关系求通项的两种最 基本的方法.
(2)一般地,若 an-an-1=f(n),在 f(n)可求和的条件下, 求 an 可采用累加法;
若aan-n1=g(n),在 g(n)可求积的条件下,求 an 可采用 累乘法.
考点2·转化法
高考总复习第(1)轮 理科数学
答案第39讲 数学归纳法--高考数学习题和答案
f1( 2 )
4 2
,
f2( 2)
2
16 3
,
故
2
f1
( 2
)
2
f2
( 2
)
1.
(Ⅱ)证明:由已知,得 xf0 (x) sin x, 等式两边分别对 x 求导,得 f0 (x) xf0(x) cos x ,
即
f0 (x)
xf1 ( x)
cos
x
sin(x
) 2
,类似可得
2 f1(x) xf2 (x) sin x sin(x ) ,
由 an1
p
p
1
an
c p
an1
p
易知
an
0, n N *
当nk
1时
ak 1 ak
p 1 p
c p
ak p
1
1( c p akp
1)
由 ak
1
cp
0 得 1
1 p
1 p
c ( akp
1)
0
由(Ⅰ)中的结论得 ( ak1 ) p [1 1 ( c 1)]p 1 p 1 ( c 1) c
1
(1)当 n 1 时由 a1 c p 0 ,即 a1p c 可知
a2
p 1 p a1
c p
a11
p
a1[1
1c p ( a1p
1)] a1 ,
1
1
并且 a2 f (a1) c p ,从而 a1 a2 c p
1
故当 n 1 时,不等式 an an1 c p 成立。
1
(2)假设 n k(k 1, k N*) 时,不等式 ak ak1 c p 成立,则
高考数学总复习:第6章《不等式、推理与证明》[7]
[规律方法]
用数学归纳法证明等式的规则
(1)数学归纳法证明等式要充分利用定义,其中两个步骤 缺一不可,缺第一步,则失去了递推基础,缺第二步,则 失去了递推依据.
(2)证明等式时要注意等式两边的构成规律,两边各有多
少项,并注意初始值n0是多少,同时第二步由n=k到n=k +1时要充分利用假设,不利用n=k时的假设去证明,就
[听课记录] (1)由题意,Sn=bn+r, 当 n≥2 时,Sn-1=bn-1+r. 所以 an=Sn-Sn-1=bn-1(b-1).由于 b>0 且 b≠1, 所以 n≥2 时,{an}是以 b 为公比的等比数列. 又 a1=b+r,a2=b(b-1), ∴aa21=b,即b(bb+-r1)=b,解得 r=-1.
D [由 f(n)可知,共有 n2-n+1 项,且 n=2 时,f(2)=12+13+14.]
4 . 用 数 学 归 纳 法 证 明 1 + 2 + 22 + … + 2n + 1 = 2n + 2 -
1(n∈N*)的过程中,在验证n=1时,左端计算所得的项为
_____.
答案 1+2+22 [关Βιβλιοθήκη 要点点拨] 数学归纳法的应用
(1)数学归纳法是一种只适用于与正整数有关的命题的证明 方法,它们的表述严格而且规范,两个步骤缺一不可.第一 步是递推的基础,第二步是递推的依据,第二步中,归纳假
设起着“已知条件”的作用,在n=k+1时一定要运用它,
否则就不是数学归纳法.第二步的关键是“一凑假设,二凑 结论”.
那么,当 n=k+1 时, f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k) =(k+1)f(k)-k =(k+1)f(k+1)-k+1 1-k =(k+1)f(k+1)-(k+1) =(k+1)[f(k+1)-1], ∴当 n=k+1 时结论仍然成立. 由(1)(2)可知:f(1)+f(2)+…+f(n-1) =n[f(n)-1](n≥2,n∈N*).
《高三数学总复习》数学理新课标A版一轮总复习课件 第6章 不等式、推理与证明-5(课时讲课)
课堂教学
23
(3)①分形图的每条线段的末端出发再生成两条线段,由题图 知,一级分形图有 3=(3×2-3)条线段,二级分形图有 9=(3×22 -3)条线段,三级分形图中有 21=(3×23-3)条线段,按此规律 n 级分形图中的线段条数 an=3×2n-3(n∈N*).
课堂教学
9
1.命题“有些有理数是无限循环小数,整数是有理数,所 以整数是无限循环小数”是假命题,推理错误的原因是( )
A.使用了归纳推理 B.使用了类比推理 C.使用了“三段论”,但推理形式错误 D.使用了“三段论”,但小前提错误 解析:由条件知使用了三段论,但推理形式是错误的. 答案:C
课堂教学
1 解析:VV12=313SS12hh12=SS12·hh21=14×12=18.
答案:1∶8
课堂教学
13
5.观察下列不等式 1+212<32, 1+212+312<53, 1+212+312+412<74 …… 按此规律,第五个不等式为__________.
课堂教学
14
解析:观察得出规律,左边为项数个连续自然数平方的倒数和, 右边为项数的 2 倍减 1 的差除以项数,即 1+212+312+412+512+…+n12 <2n-n 1(n∈N*,n≥2),
10
2.数列 2,5,11,20,x,47,…中的 x 等于( )
A.28
B.32
C.33
D.27
解析:由 5-2=3,11-5=6,20-11=9. 则 x-20=12,因此 x=32.
答案:B
课堂教学
11
3.给出下列三个类比结论.
①(ab)n=anbn 与(a+b)n 类比,则有(a+b)n=an+bn;②loga(xy)
高考数学一轮复习第6章不等式、推理与证明第5节综合法、分析法、反证法、数学归纳法课件理北师大版
k2k2+1 3
成立,那么n=k+1时,左边=12+22+…+k2+(k+1)2+k2+…+22
+12,对比n=k时的式子可知,当n=k+1时,等式左边应添加的式子是(k+
1)2+k2,故选B.]
分析法的应用 1.若a,b∈(1,+∞),证明 a+b< 1+ab.
[证明] 要证 a+b< 1+ab, 只需证( a+b)2<( 1+ab)2, 只需证a+b-1-ab<0, 即证(a-1)(1-b)<0. 因为a>1,b>1,所以a-1>0,1-b<0, 即(a-1)(1-b)<0成立, 所以原不等式成立.
=2kk++313-21k2 =2-k+3k1-31k2<0, 所以f(k+1)<32-2k+1 12=g(k+1). 由①②可知,对一切n∈N*,都有f(n)≤g(n)成立.
[规律方法] 1.应用数学归纳法证明不等式应注意的问题 (1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证,则可 考虑应用数学归纳法. (2)用数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成 立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放 缩法、构造函数法等证明方法. 2.利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其 基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推 理论证结论的正确性.
时,在验证n=1成立时,左边应该是( )
A.1
B.1+a
C.1+a+a2
D.1+a+a2+a3
C [n=1时,左边=1+a+a2,故选C.]
3.命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ= (cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”过程应用了 ( )
高考数学(全国理科)一轮复习课件第39讲 数学归纳法ppt版本
课堂考点探究
[总结反思] “归纳—猜想—证明”属于探索性问题的一种,一般要经过计算、观察、 归纳,然后猜想出结论,再用数学归纳法证明.在用这种方法解决问题时,应保证猜想 的正确性和数学归纳法步骤的完整性.
课堂考ห้องสมุดไป่ตู้探究
变式 已知数列{an},{bn}满足 a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前 n 项和为 Sn. (1)求证:数列b1n为等差数列; (2)设 Tn=S2n-Sn,求证:Tn+1>Tn; (3)求证:对任意的 n∈N*都有 1+n2≤S2n≤12+n 成立.
+
1 3×5
+
…
+
1 (2k-1)(2k+1)
+
1 (2k+1)(2k+3)
=
k 2k+1
+
1 (2k+1)(2k+3)
=
k(2k+3)+1 (2k+1)(2k+3)
=
(2k+2k12+)3(k+2k1+3)=2kk++13=2(k+k+11)+1=右边,
所以当 n=k+1 时,等式也成立.
由(1)(2)可知,对一切 n∈N*等式都成立.
[答案] 2k+1 1+2k+1 2+…+2k1+1
课堂考点探究
考点一 用数学归纳法证明等式
例 1 用数学归纳法证明:任意 n∈N*,1×1 3+3×1 5+… +(2n-1)1(2n+1)=2nn+1. 形.
[思路点拨] 先验证 n=1 时等式 成立,然后假设 n=k 时等式成立, 最后验证 n=k+1 时等式也成立, 注意由 n=k 到 n=k+1 时等式左 边添加的项为
课堂考点探究
[总结反思] 用数学归纳法证明等式问题的关键点为:(1)弄清等式两边的构成规律;(2) 在第二步证明时要充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.
高三数学(理)一轮总复习(人教通用)试题:第六章不等式、推理与证明Word版含解析
1.实数大小顺序与运算性质之间的关系 a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇔a +c >b +c ; a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ; a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a > nb (n ∈N ,n ≥2).[小题体验]1.(教材习题改编)用不等号“>”或“<”填空: (1)a >b ,c <d ⇒a -c ________b -d ; (2)a >b >0,c <d <0⇒ac ________bd ; (3)a >b >0⇒3a ________3b . 答案:(1)> (2)< (3)>2.限速40 km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km/h ,写成不等式就是__________.答案:v ≤40 km/h3.若0<a <b ,c >0,则b +c a +c 与a +cb +c 的大小关系为________.答案:b +c a +c >a +c b +c1.在应用传递性时,注意等号是否传递下去,如a ≤b ,b <c ⇒a <c .2.在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).[小题纠偏]1.设a ,b ,c ∈R ,且a >b ,则( ) A .ac >bc B .1a <1b C .a 2>b 2 D .a 3>b 3答案:D2.若ab >0,且a >b ,则1a 与1b 的大小关系是________.答案:1a <1b考点一 比较两个数(式)的大小(基础送分型考点——自主练透)[题组练透]1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定 解析:选B M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1), 又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0. ∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N . 2.(易错题)若a =ln 22,b =ln 33,则a ____b (填“>”或“<”). 解析:易知a ,b 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a .答案:<3.若实数a ≠1,比较a +2与31-a的大小. 解:a +2-31-a =-a 2-a -11-a =a 2+a +1a -1∴当a >1时,a +2>31-a ;当a <1时,a +2<31-a.[谨记通法]比较两个数(式)大小的2种方式如“题组练透”第2题易忽视作商法.考点二 不等式的性质(重点保分型考点——师生共研)[典例引领]1.设a ,b ∈R 则“(a -b )·a 2<0”是“a <b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A (a -b )·a 2<0,则必有a -b <0,即a <b ;而a <b 时,不能推出(a -b )·a 2<0,如a =0,b =1,所以“(a -b )·a 2<0”是“a <b ”的充分不必要条件.2.如果a <b <0,那么下列不等式成立的是( ) A .1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b解析:选D 法一(性质判断):对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝⎛⎭⎫-1b =a -b ab <0,-1a <-1b成立,故D 项正确. 法二(特殊值法):令a =-2,b =-1,则1a =-12>1b =-1,ab =2>b 2=1,-ab =-2>-a 2=-4,-1a =12<-1b =1.故A 、B 、C 项错误,D 项正确.[由题悟法]不等式性质应用问题的3大常见类型及解题策略(1)利用不等式性质比较大小.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充要条件相结合问题.用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.(3)与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.[即时应用]1.若a >b >0,则下列不等式不成立的是( ) A .1a <1bB .|a |>|b |C .a +b <2abD .⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:选C ∵a >b >0,∴1a <1b,且|a |>|b |,a +b >2ab ,又2a >2b ,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b . 2.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4解析:选C ∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), 即a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④正确.考点三 不等式性质的应用(题点多变型考点——纵引横联)[典型母题]已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________.解析:∵-1<x <4,2<y <3, ∴-3<-y <-2,∴-4<x -y <2. 由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18. 答案:(-4,2) (1,18)[类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.[越变越明][变式1] 将母题条件改为“-1<x <y <3”,求x -y 的取值范围. 解:∵-1<x <3,-1<y <3, ∴-3<-y <1, ∴-4<x -y <4.① 又∵x <y , ∴x -y <0,② 由①②得-4<x -y <0.故x -y 的取值范围为(-4,0).[变式2] 若将母题条件改为“-1<x +y <4,2<x -y <3”,求3x +2y 的取值范围. 解:设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎨⎧m =52,n =12,即3x +2y =52(x +y )+12(x -y ),又-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232.故3x +2y 的取值范围为⎝⎛⎭⎫-32,232. [变式3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. 解:由题意知f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由a <f (x ,y )<b ,c <g (x ,y )<d 求F (x ,y )的取值范围,要利用待定系数法解决,即设F (x ,y )=mf (x ,y )+ng (x ,y ),用恒等变形求得m ,n ,再利用不等式的性质求得F (x ,y )的取值范围.[变式4] 若母题条件变为“已知1≤lg xy ≤4,-1≤lg x y ≤2”,求lg x 2y 的取值范围. 解:由1≤lg xy ≤4,-1≤lg xy ≤2, 得1≤lg x +lg y ≤4,-1≤lg x -lg y ≤2,[破译玄机]而lg x 2y =2lg x -lg y =12(lg x +lg y )+32(lg x -lg y ),所以-1≤lg x 2y≤5,即lg x 2y 的取值范围是[-1,5].一抓基础,多练小题做到眼疾手快1.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <BD .A >B解析:选B 由题意得,B 2-A 2=-2ab ≤0,且A ≥0,B ≥0,可得A ≥B . 2.若a <b <0,则下列不等式不能成立的是( ) A .1a -b >1aB .1a >1bC .|a |>|b |D .a 2>b 2解析:选A 取a =-2,b =-1,则1a -b >1a不成立.3.(2016·西安八校联考)“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.4.(2016·资阳一诊)已知a ,b ∈R ,下列命题正确的是( ) A .若a >b ,则|a |>|b | B .若a >b ,则1a <1b C .若|a |>b ,则a 2>b 2 D .若a >|b |,则a 2>b 2解析:选D 当a =1,b =-2时,A ,B ,C 均不正确;对于D ,a >|b |≥0,则a 2>b 2. 5.(2016·贵阳监测考试)下列命题中,正确的是( ) A .若a >b ,c >d ,则ac >bd B .若ac >bc ,则a >bC .若a c 2<bc2,则a <bD .若a >b ,c >d ,则a -c >b -d解析:选C 取a =2,b =1,c =-1,d =-2,可知A 错误;当c <0时,ac >bc ⇒a <b ,∴B 错误;∵a c 2<bc2,∴c ≠0,又c 2>0,∴a <b ,C 正确;取a =c =2,b =d =1,可知D 错误.二保高考,全练题型做到高考达标1.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 2.若角α,β满足-π2<α<β<π,则α-β的取值范围是( )A .⎝⎛⎭⎫-3π2,3π2B .⎝⎛⎭⎫-3π2,0 C .⎝⎛⎭⎫0,3π2 D .⎝⎛⎭⎫-π2,0 解析:选B ∵-π2<α<π,-π2<β<π,∴-π<-β<π2,∴-3π2<α-β<3π2.又∵α<β,∴α-β<0,从而-3π2<α-β<0. 3.(2015·湘潭一模)设a ,b 是实数,则“a >b >1”是“a +1a >b +1b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:选A 因为a +1a -⎝⎛⎭⎫b +1b =(a -b )(ab -1)ab ,若a >b >1,显然a +1a -⎝⎛⎭⎫b +1b =(a -b )(ab -1)ab >0,则充分性成立,当a =12,b =23时,显然不等式a +1a >b +1b 成立,但a >b >1不成立,所以必要性不成立.4.(2016·重庆一中调研)设a >1>b >-1,则下列不等式中恒成立的是( ) A .a >b 2 B .1a >1b C .1a <1bD .a 2>2b解析:选A 对于A ,∵-1<b <1,∴0≤b 2<1,又∵a >1,∴a >b 2,故A 正确;对于B ,若a =2,b =12,此时满足a >1>b >-1,但1a <1b ,故B 错误;对于C ,若a =2,b =-12,此时满足a >1>b >-1,但1a >1b ,故C 错误;对于D ,若a =98,b =34,此时满足a >1>b >-1,但a 2<2b ,故D 错误.5.(2016·江门模拟)设a ,b ∈R ,定义运算“⊗和“⊕”如下:a ⊗b =⎩⎪⎨⎪⎧ a ,a ≤b ,b ,a >b ,a ⊕b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若m ⊗n ≥2,p ⊕q ≤2,则( ) A .mn ≥4且p +q ≤4 B .m +n ≥4且pq ≤4 C .mn ≤4且p +q ≥4D .m +n ≤4且pq ≤4解析:选A 结合定义及m ⊗n ≥2可得⎩⎨⎧m ≥2,m ≤n 或⎩⎪⎨⎪⎧n ≥2,m >n ,即n ≥m ≥2或m >n ≥2,所以mn ≥4;结合定义及p ⊕q ≤2可得⎩⎨⎧p ≤2,p >q 或⎩⎪⎨⎪⎧q ≤2,p ≤q ,即q <p ≤2或p ≤q ≤2,所以p +q ≤4.6.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m ,其中的不等关系可用不等式(组)表示为________.解析:矩形靠墙的一边长为x m ,则另一边长为30-x2m ,即⎝⎛⎭⎫15-x2m ,根据题意知⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎫15-x 2≥216.答案:⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎫15-x 2≥216 7.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是__________(请把正确命题的序号都填上). 解析:①若c =0,则命题不成立.②正确.③中由2c >0知成立. 答案:②③8.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.解析:a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2=(a -b )·⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0, ∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a2≥1a +1b . 答案:a b 2+b a 2≥1a +1b9.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是__________. 解析:∵ab 2>a >ab ,∴a ≠0, 当a >0时,b 2>1>b ,即⎩⎪⎨⎪⎧ b 2>1,b <1,解得b <-1; 当a <0时,b 2<1<b ,即⎩⎪⎨⎪⎧b 2<1,b >1,此式无解. 综上可得实数b 的取值范围为(-∞,-1). 答案:(-∞,-1)10.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1(a -c )2<1(b -d )2.又∵e <0,∴e (a -c )2>e(b -d )2. 三上台阶,自主选做志在冲刺名校1.(2016·合肥质检)已知△ABC 的三边长分别为a ,b ,c ,且满足b +c ≤3a ,则ca 的取值范围为( )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3)解析:选B由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >b a ,∴⎩⎨⎧1<b a +ca ≤3,-1<c a -b a <1,两式相加得,0<2×ca <4,∴ca的取值范围为(0,2). 2.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx 这五个式子中,恒成立的不等式的序号是________.解析:令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立.∵ax =-6,by =-6,∴ax =by ,因此③也不成立. ∵a y =3-3=-1,b x =2-2=-1, ∴a y =bx ,因此⑤不成立.由不等式的性质可推出②④成立. 答案:②④3.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解:设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元, 则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45nx .所以y 1-y 2=14x +34xn -45nx=14x -120nx =14x ⎝⎛⎭⎫1-n 5. 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.第二节 一元二次不等式及其解法“三个二次”的关系[小题体验]1.设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)解析:选C 由题意得T = {x |-4≤x ≤1},根据补集定义, ∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1}.2.(教材习题改编)不等式-x 2+2x -3>0的解集为________. 答案:∅3.已知集合A ={}x |-5<x <1,集合B ={x ∈R|(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.答案:-1 11.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.[小题纠偏]1.不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b 的值是( ) A .10 B .-10 C .14D .-14解析:选D 由题意知-12,13是ax 2+bx +2=0的两根,则a =-12,b =-2.所以a +b =-14.2.若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 解析:①当m =0时,1>0显然成立.②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0.得0<m <1,由①②知0≤m <1. 答案:[0,1)考点一 一元二次不等式的解法(基础送分型考点——自主练透)[题组练透]1.已知函数f (x )=⎩⎪⎨⎪⎧2x 2+1,x ≤0,-2x ,x >0,则不等式f (x )-x ≤2的解集是________.解析:当x ≤0时,原不等式等价于2x 2+1-x ≤2,∴-12≤x ≤0;当x >0时,原不等式等价于-2x -x ≤2,∴x >0.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-12. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-12 2.不等式2x +1x -5≥-1的解集为________.解析:将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧(3x -4)(x -5)≥0,x -5≠0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤43或x >5. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤43或x >53.解下列不等式:(1)(易错题)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4.解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,所以原不等式的解集为{}x |-2≤x <-1或2<x ≤3.[谨记通法]解一元二次不等式的4个步骤(1)化:把不等式变形为二次项系数大于零的标准形式,如“题组练透”第3题中(1)题; (2)判:计算对应方程的判别式;(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根; (4)写:利用“大于取两边,小于取中间”写出不等式的解集.考点二 含参数的一元二次不等式的解法(重点保分型考点——师生共研)[典例引领](2016·青岛模拟)求不等式12x 2-ax >a 2(a ∈R)的解集. 解:原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a 3.当a >0时,不等式的解集为⎝⎛⎭⎫-∞,-a 4∪⎝⎛⎭⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝⎛⎭⎫-∞,a 3∪⎝⎛⎭⎫-a4,+∞. [由题悟法]解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[提醒] 当不等式中二次项的系数含有参数时,不要忘记讨论其等于0的情况.[即时应用]1.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解析:选B 由根与系数的关系得1a =-2+1,-c a =-2,得a =-1,c =-2,∴f (x )=-x 2-x +2(经检验知满足题意),∴f (-x )=-x 2+x +2,其图象开口向下,顶点为⎝⎛⎭⎫12,94.2.解关于x 的不等式:ax 2-(a +1)x +1<0. 解:原不等式可化为(x -1)(ax -1)<0, ∴①当a =0时,可解得x >1,②当a >0时,不等式可化为(x -1)⎝⎛⎭⎫x -1a <0, ∴当a =1时,不等式可化为(x -1)2<0,解集为∅;当0<a <1时,1a >1,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a >1时,1a <1,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1; ③当a <0时,不等可化为(x -1)⎝⎛⎭⎫x -1a >0, ∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <1a . 综上可知,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <1a ; 当a =0时,不等式的解集为{x |x >1};当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1.考点三 一元二次不等式恒成立问题(常考常新型考点——多角探明)[命题分析]一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图象与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.常见的命题角度有:(1)形如f (x )≥0(f (x )≤0)(x ∈R)确定参数的范围;(2)形如f (x )≥0(x ∈[a ,b ])确定参数范围; (3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围.[题点全练]角度一:形如f (x )≥0(f (x )≤0)(x ∈R)确定参数的范围1.已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.解:要使不等式mx 2-2x -m +1<0恒成立, 即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数, 需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m (1-m )<0,不等式组的解集为空集,即m 无解.综上可知不存在这样的实数m 使不等式恒成立. 角度二:形如f (x )≥0(x ∈[a ,b ])确定参数范围2.设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.解:要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一:令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0, 所以m <67,则0<m <67;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0,所以m <6,即m <0.综上所述,m 的取值范围是(-∞,0)∪⎝⎛⎭⎫0,67. 法二:因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0, 所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是(-∞,0)∪⎝⎛⎭⎫0,67. 角度三:形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 解:由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0,解得x <1或x >3.故当x ∈(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零.[方法归纳]一元二次型不等式恒成立问题的3大破解方法⎩⎪⎨⎪⎧ a >0,Δ≤0;(2)ax 2+bx +c ≤0对任意实数x 恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ≤0把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.常见的是转化为一次函数f (x )=ax +b (a ≠0)在[m ,n ]恒成立问题,若f (x )>0恒成立⇔⎩⎪⎨⎪⎧f (m )>0,f (n )>0,若f (x )<0恒成立⇔⎩⎪⎨⎪⎧f (m )<0,f (n )<0一抓基础,多练小题做到眼疾手快1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2)D .(1,2]解析:选D A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.(2016·梧州模拟)不等式2x +1<1的解集是( ) A .(-∞,-1)∪(1,+∞) B .(1,+∞) C .(-∞,-1) D .(-1,1)解析:选A ∵2x +1<1,∴2x +1-1<0,即1-x x +1<0,该不等式可化为(x +1)(x -1)>0,∴x <-1或x >1.3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4]D .[0,4]解析:选D 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以实数a 的取值范围是[0,4].4.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}5.已知关于x 的不等式ax 2+2x +c >0的解集为⎝⎛⎭⎫-13,12,则不等式-cx 2+2x -a >0的解集为________.解析:依题意知,⎩⎨⎧-13+12=-2a ,-13×12=ca ,∴解得a =-12,c =2, ∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0, 解得-2<x <3.所以不等式的解集为(-2,3). 答案:(-2,3)二保高考,全练题型做到高考达标1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},∴A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3.2.不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,2x 2-7x +6>0的解集是( )A .(2,3)B .⎝⎛⎭⎫1,32∪(2,3) C .⎝⎛⎭⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)解析:选B ∵x 2-4x +3<0,∴1<x <3. 又∵2x 2-7x +6>0, ∴(x -2)(2x -3)>0, ∴x <32或x >2,∴原不等式组的解集为⎝⎛⎭⎫1,32∪(2,3). 3.(2016·辽宁一模)若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]解析:选D 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].4.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间解析:选C 设销售价定为每件x 元,利润为y ,则: y =(x -8)[100-10(x -10)],依题意有,(x -8)[100-10(x -10)]>320, 即x 2-28x +192<0, 解得12<x <16,所以每件销售价应为12元到16元之间.5.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.6.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析:∵不等式x 2+ax +4<0的解集不是空集, ∴Δ=a 2-4×4>0,即a 2>16.∴a >4或a <-4. 答案:(-∞,-4)∪(4,+∞)7.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. 解析:原不等式为(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a 8.(2016·西安质检)在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析:原不等式等价于x (x -1)-(a -2)(a +1)≥1, 即x 2-x -1≥(a +1)(a -2)对任意x 恒成立, x 2-x -1=⎝⎛⎭⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32.答案:329.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3, ∴原不等式可化为a 2-6a -3<0, 解得3-23<a <3+2 3.∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, 等价于⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.10.(2016·北京朝阳统一考试)已知函数f (x )=x 2-2ax -1+a ,a ∈R. (1)若a =2,试求函数y =f (x )x (x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f (x )x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x≥2.当且仅当x =1x 时,即x =1时,等号成立. 所以y ≥-2.所以当x =1时,y =f (x )x的最小值为-2.(2)因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校1.(2016·九江一模)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.2.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意, 200⎝⎛⎭⎫5x +1-3x ≥3 000, 整理得5x -14-3x ≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10.即要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10]. (2)设利润为y 元,则 y =900x ·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫5+1x -3x 2 =9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112, 故x =6时,y max =457 500元.即甲厂以6千克/小时的生产速度生产900千克该产品获得的利润最大,最大利润为457 500元.第三节 二元一次不等式(组)及简单的线性规划问题1.一元二次不等式(组)表示的平面区域2.线性规划中的基本概念[小题体验]1.(教材习题改编)不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案:B2.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案:C3.(教材习题改编)设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1.则目标函数z =2x +y 的最大值为________.答案:31.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0). 2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.3.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值. [小题纠偏]1.(2015·福建高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于( )A .-52B .-2C .-32D .2解析:选A 作可行域如图,由图可知,当直线z =2x -y 过点A 时,z 值最小.由⎩⎪⎨⎪⎧x -2y +2=0,x +2y =0得点A ⎝⎛⎭⎫-1,12, z min =2×(-1)-12=-52.2.若用阴影表示不等示组⎩⎨⎧-x +y ≤0,3x -y ≤0所形成的平面区域,则该平面区域中的夹角的大小为________.答案:15°考点一 二元一次不等式(组)表示平面区域(基础送分型考点——自主练透)[题组练透]1.(2016·忻州一模)不等式组⎩⎪⎨⎪⎧x +y ≥2,2x -y ≤4,x -y ≥0所围成的平面区域的面积为( )A .32B .6 2C .6D .3解析:选D 如图,不等式组所围成的平面区域为△ABC ,其中A (2,0),B (4,4),C (1,1),所求平面区域的面积为S △ABO -S △ACO =12(2×4-2×1)=3.2.(易错题)若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析:选C 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点.3.如图阴影部分表示的区域可用二元一次不等式组表示为________.解析:两直线方程分别为x -2y +2=0与x +y -1=0.由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 答案:⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0[谨记通法]确定二元一次不等式(组)表示的平面区域的方法(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式组.若满足不等式组,则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.如“题组练透”第2题易忽视边界.(2)当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.考点二 求目标函数的最值(常考常新型考点——多角探明)[命题分析]线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.常见的命题角度有: (1)求线性目标函数的最值; (2)求非线性目标的最值; (3)线性规划中的参数问题.[题点全练]角度一:求线性目标函数的最值1.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.解析:画出可行域(如图所示). ∵z =3x +y ,∴y =-3x +z .∴直线y =-3x +z 在y 轴上截距最大时,即直线过点B 时,z 取得最大值.由⎩⎪⎨⎪⎧x +y -2=0,x -2y +1=0, 解得⎩⎪⎨⎪⎧x =1,y =1,即B (1,1),∴z max =3×1+1=4. 答案:42.(2016·吉林实验中学)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y +5≥0,x -y ≤0,y ≤0,则z =2x +4y -3的最大值是________.解析:满足约束条件⎩⎨⎧x +y +5≥0,x -y ≤0,y ≤0的区域如图所示,目标函数z =2x +4y -3在点(0,0)处取得最大值,则z max =-3.答案:-3角度二:求非线性目标的最值3.(2016·开封模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≤1,x +y ≥2,y ≤2,则目标函数z =x 2+y 2的取值范围为( )A .[2,8]B .[4,13]C .[2,13]D .⎣⎡⎦⎤52,13解析:选C 作出可行域,如图中阴影部分,将目标函数看作是可行域内的点到原点的距离的平方,从而可得z min =|OA |2=⎝ ⎛⎭⎪⎪⎫|0+0-2|12+122=2,z max =|OB |2=32+22=13.故z 的取值范围为[2,13].4.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解析:画出可行域如图阴影所示,∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx 最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0, 得⎩⎪⎨⎪⎧x =1,y =3. ∴A (1,3).∴yx 的最大值为3. 答案:3角度三:线性规划中的参数问题5.(2015·山东高考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解析:选B 画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验知x =2,y =0符合题意,∴2a +0=4,此时a =2,故选B.6.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1B .2或12C .2或1D .2或-1解析:选D由题中条件画出可行域如图中阴影部分所示,可知A(0,2),B(2,0),C(-2,-2),则z A=2,z B=-2a,z C=2a-2,要使目标函数取得最大值的最优解不唯一,只要z A=z B>z C或z A =z C>z B或z B=z C>z A,解得a=-1或a=2.[方法归纳]1.求目标函数的最值3步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值.2.常见的3类目标函数(1)截距型:形如z=ax+by.求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-ab x+zb,通过求直线的截距zb的最值间接求出z的最值.(2)距离型:形如z=(x-a)2+(y-b)2.(3)斜率型:形如z=y-bx-a.[提醒]注意转化的等价性及几何意义.考点三线性规划的实际应用(重点保分型考点——师生共研)[典例引领](2015·陕西高考)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A .12万元B .16万元C .17万元D .18万元解析:选D 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,z =3x +4y ,作出可行域如图阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18.[由题悟法]1.解线性规划应用题3步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案. 2.求解线性规划应用题的3个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号.(2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、是否是非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.[即时应用](2015·云南省第一次统一检测)某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =________.解析:画出线性目标函数所表示的区域,如图阴影部分所示,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,招聘的教师最多,此时x =a +b =13.答案:13一抓基础,多练小题做到眼疾手快1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解析:选B 根据题意知(-9+2-a )·(12+12-a )<0. 即(a +7)(a -24)<0,解得-7<a <24. 2.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32B .23C .43D .34解析:选C 平面区域如图中阴影部分所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4得A (1,1), 易得B (0,4),C ⎝⎛⎭⎫0,43, |BC |=4-43=83.∴S △ABC =12×83×1=43.3.(2015·广东高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A .4B .235 C .6D .315。
第39讲数学归纳法
3 4
1
1
2 1
3 1
1
因为n>1,且n∈N,故初值n0=2, 代入选B.
3.用数学归纳法证明不等式
1 n 1
+
1 n2
+
1 n3
+…+ >
2n
1
13 14
(n≥2)的过程中,由n=k递推到
1
n=k+1时,不等式左边( C )
A.增加了一项“ 2( k 1) ”
B.增加了两项“ “ ”
2k 1 k 1
D.
2k 3 k 1
n=k 时 , 等 式 左 边 为
(k+1)(k+2)…(k+k),而n=k+1时,等式左边
为 (k+2)(k+3)…(2k+2) , 需 要 增 乘 的 代 数
式为
(2 k 1)(2 k 2) k 1
,即2(2k+1).
5.用数学归纳法证明:凸多边形的内角和 f(n)=(n-2)×180° ( n≥3) , 第 一 步 应 验 证 f(3)=180°;假设n边形内角和f(n)=(n2)×180°,则f(n+1)=f(n)+ 180° ,从而再 用假设.
Sn> lgbn+1.
下面用数学归纳法证明①式.
2
1
(ⅰ)当n=1时,已验证①式成立.
(ⅱ)假设当n=k(k≥1,k∈Z)时,①式成立,
即(1+1)(1+ )…(1+
3
1
1 2n 1
)>
2n 1 .
那么,当n=k+1时, (1+1)(1+ )…(1+ 2k 1 )[1+
高考复习数学(北师大版)第6章 不等式、推理与证明
第六章 不等式、推理与证明
上一页
返回首页
下一页
[五年考情]
高三一轮总复习
上一页
返回首页
下一页
[重点关注]
高三一轮总复习
1.从近五年全国卷高考试题来看,涉及本章知识的既有客观题,又有解答
题.客观题主要考查不等关系与不等式,一元二次不等式的解法,简单线性规
划,合情推理与演绎推理,解答题主要考查不等式的证明、基本不等式与直接证
明.
2.不等式具有很强的工具性,应用十分广泛,推理与证明贯穿于每一个章
节,因此,不等式往往与集合、函数、导数的应用、数列交汇考查,对于证明,
主要体现在不等式证明和不等式恒成立证明以及几何证明.
3.从能力上,突出对函数与方程、转化与化归、分类讨论等数学思想的考
查.
上一页
返回首页
下一页高三一轮总复习Fra bibliotek[导学心语] 1.加强不等式基础知识的复习.不等式的基础知识是进行推理和解不等式 的理论依据,要弄清不等式性质的条件与结论;一元二次不等式、基本不等式是 解决问题的基本工具;如利用导数研究函数单调性,常常归结为解一元二次不等 式问题. 2.强化推理证明和不等式的应用意识.从近年命题看,试题多与数列、函 数、解析几何交汇渗透,对不等式知识、方法技能要求较高.抓好推理论证,强 化不等式的应用训练是提高解综合问题的关键.
上一页
返回首页
下一页
高三一轮总复习
3.重视数学思想方法的复习.明确不等式的求解和推理证明就是一个把条 件向结论转化的过程;加强函数与方程思想在不等式中的应用训练,不等式、函 数与方程三者密不可分,相互转化.
上一页
返回首页
下一页