2016年北京高考数学真题及答案(理科)
2016年北京高考数学理科答案与解析
2016年北京高考数学(理科)答案与解析1. C【解析】集合{|22}A x x =-<<,集合{|1,0,1,2,3}B x =-,所以{1,0,1}A B =-I .2. C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=.1,2()2x +y =02x-y=0x =0x +y =33. B【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =.4. D【解析】若=a b r r 成立,则以a r ,b r 为边组成平行四边形,那么该平行四边形为菱形,+a b r r ,a b -r r表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b -r r r r不一定成立,从而不是充分条件;反之,+=a b a b -r r r r 成立,则以a r ,b r为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b r r不一定成立,从而不是必要条件.5. C【解析】 A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y -<所以A 错; B .考查的是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12xy ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122xy⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错.6.A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==.7.A【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以的最小值为π6.8.B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加个; ②黑+黑,则丙盒中黑球数加个;③红+黑(红球放入甲盒中),则乙盒中黑球数加个; ④黑+红(黑球放入甲盒中),则丙盒中红球数加个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机. ③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样. 综上,选B .9.1-【解析】()()()11i i 1i ++=-++a a a∵其对应点在实轴上 ∴10+=a ,1=-a10.60【解析】由二项式定理得含2x 的项为()2226C 260-=x x11.2【解析】将极坐标转化为直角坐标进行运算cos =x ρθ,sin =y ρθ直线的直角坐标方程为10--=x∵2cos =ρθ,()222sin cos 2cos +=ρθθρθ∴222+=x y x圆的直角坐标方程为()2211-+=x y圆心()1,0在直线上,因此AB 为圆的直径,2=AB12.6【解析】∵3542+=a a a ∴40=a∵16=a ,413=+a a d ∴2=-d ∴()61661662⨯-=+=S a d13. 2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=aOCBAyx14.2,1a <-.【解析】由()323330x x x '-=-=,得1x =±,如下图,是()f x 的两个函数在没有限制条件时的图象.⑴ ()()max 12f x f =-=;⑵ 当1a -≥时,()f x 有最大值()12f -=;当1a <-时,2x -在x a >时无最大值,且()3max23a x x ->-.所以,1a <-.15.【解析】⑴ ∵222a c b+=+∴222a c b +-=∴222cos 2a c b B ac +-===∴π4B ∠=⑵∵πA B C ++=∴3π4AC +=cos A C +()A A A =++ A A =+πsin()4A =+∵3π4A C +=∴3(0,π)4A ∈∴ππ(,π)44A +∈∴πsin()4A +最大值为1上式最大值为116. 【解析】⑴81004020⨯=,C 班学生40人 ⑵在A 班中取到每个人的概率相同均为15设A 班中取到第个人事件为,1,2,3,4,5i A i = C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j =A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ 12131313145858585858=⨯+⨯+⨯+⨯+⨯ 38= ⑶10μμ<三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值17.【解析】⑴∵面PAD I 面ABCD AD =面PAD ⊥面ABCD∵AB ⊥AD ,AB ⊂面ABCD ∴AB ⊥面PAD ∵PD ⊂面PAD ∴AB ⊥PD 又PD ⊥PA ∴PD ⊥面PAB⑵取AD 中点为O ,连结CO ,PO∵CD AC ==∴CO ⊥AD∵PA PD = ∴PO ⊥AD以O 为原点,如图建系 易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,, 则(111)PB =-u u u v ,,,(011)PD =--u u u v ,,,(201)PC =-u u u v,,,(210)CD =--u u u v,,设n v为面PDC 的法向量,令00(,1)n x y =v , 011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩v u u u v v v u u u v ,,则PB 与面PCD 夹角θ有sin cos ,n θ=<v u u u⑶假设存在M 点使得BM ∥面PCD设AM APλ=,()0,','M y z由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-u u u r ,()1,1,0B ,()0,'1,'AM y z =-u u u u r有()0,1,AM AP M λλλ=⇒-u u u u r u u u r∴()1,,BM λλ=--u u u u rOx yz PABCD∵BM ∥面PCD ,n u u r为PCD 的法向量 ∴0BM n ⋅=u u u u r r即102λλ-++=∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求.18.【解析】 (I )()e a x f x x bx -=+Q∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=- ② 由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴g 的最小值是(2)(12)e 1g =-=-∴()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立 ∴()f x 在(),-∞+∞上单调递增,无减区间.19.【解析】⑴由已知,112c ab a ==,又222a b c =+,解得2,1,a b c ===∴椭圆的方程为2214x y +=. ⑵方法一:设椭圆上一点()00,P x y ,则220014x y +=.直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅故AN BM ⋅为定值.方法二:设椭圆 上一点()2cos ,sin P θθ,直线PA:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos My θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.20.【解析】⑴ (){}25G A =,⑵ 因为存在1n a a >,设数列A 中第一个大于1a 的项为k a ,则1k i a a a >≥,其中21i k -≤≤,所以()k G A ∈,()G A ≠∅. ⑶ 设A 数列的所有“G 时刻”为12k i i i <<<L ,对于第一个“G 时刻”,有11i i a a a >≥,1231i i =-L ,,,,则 111111i i i a a a a ---≤≤.对于第二个“G 时刻”()21i i >,有21i i i a a a >≥(2121i i =-L ,,,).则212211i i i i a a a a ---≤≤.类似的321i i a a -≤,…,11k k i i a a --≤.于是,()()()()11221211k k k k k i i i i i i i i k a a a a a a a a a a ----+-++-+-=-L ≥. 对于N a ,若()N G A ∈,则k i N a a =;若()N G A ∉,则k N i a a ≤,否则由⑵,知1k k i i N a a a +L ,,,中存在“G 时刻”,与只有k 个“G 时刻”矛盾.从而,11k i N k a a a a --≥≥,证毕.。
(精校版)2016年北京理数高考试题文档版(含答案)
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合A =B =,则(A )(B )(C )(D )(2)若x,y 满足 2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x+y 的最大值为(A )0 (B )3 (C )4 (D )5(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为(A )1 (B )2(C )3 (D )4(4)设a ,b 是向量,则“=a b ”是“+=-a b a b ”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B )乙盒中红球与丙盒中黑球一样多(C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
2016年高考数学(理)北京卷参考答案
数学(理)(北京卷)参考答案第1页(共8页)绝密★考试结束前2016年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)C (3)B (4)D (5)C(6)A(7)A(8)B二、填空题(共6小题,每小题5分,共30分) ( 9 )1-(10)60 (11)2(12)6 (13)2(14)2(,1)-∞-三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设得所以222cos 2a c b B ac +-===又因为0πB <∠<, 所以π4B ∠=. (Ⅱ)由(Ⅰ)知3π4A C +=.cos A C+3πcos()4A A =+-()A A A =++A A =+ πsin()4A =+因为3(0,π)4A ∈,所以当π4A ∠=cos A C +取得最大值1.数学(理)(北京卷)参考答案第2页(共8页)(16)(共13分)解:(Ⅰ)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人估计为81004020⨯=人. (Ⅱ)在A 班中取到每个人的概率相同均为15设A 班中取到第i 个人事件为,1,2,3,4,5i A i = C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j =A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ 12131313145858585858=⨯+⨯+⨯+⨯+⨯ 38=(Ⅲ)10μμ<.三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值.数学(理)(北京卷)参考答案第3页(共8页)(17)(共14分)解:(Ⅰ)因为平面PAD ⊥平面ABCD ,所以AB ⊥平面PAD . 所以AB ⊥PD .又因为PA ⊥PD , 所以PD ⊥平面PAB .(Ⅱ)取AD 中点为O ,连结CO ,PO .因为PA PD =, 所以PO ⊥AD .又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为CD AC ==所以CO ⊥AD .以O 为原点,如图建立空间直角坐标系O xyz -.由题意得 易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,, 则(111)PB =- ,,,(011)PD =-- ,,,(201)PC =- ,,,(210)CD =--,, 设n为平面PDC 的法向量,令00(,1)n x y = ,011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨ ⎪⎝⎭⋅=⎪⎩,,则PB 与平面PCD 夹角θ有数学(理)(北京卷)参考答案第4页(共8页)sin cos ,n PBn PB n PBθ⋅=<>===(Ⅲ)设存在M 点使得BM ∥平面PCD设AMAPλ=,()0,','M y z 由(Ⅱ)知()0,1,0A ,()0,0,1P ,()0,1,1AP =- ,()1,1,0B ,()0,'1,'AM y z =-有()0,1,AM AP M λλλ=⇒-所以()1,,BM λλ=--因为BM ∥平面PCD ,n为PCD 的法向量 所以0BM n ⋅=即102λλ-++=所以1=4λ所以综上,存在M 点,即当14AM AP =时,M 点即为所求.数学(理)(北京卷)参考答案第5页(共8页)(18)(共13分)解:(Ⅰ)()e a x f x x bx -=+所以()e e (1)e a x a x a x f x x b x b ---'=-+=-+因为曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ 所以(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=-②由①②解得:2a =,e b =(Ⅱ)由(Ⅰ)可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,所以222()e (1)e (2)e x x x g x x x ---'=---=-所以()g x 的最小值是22(2)(12)e 1g -=-=- 所以()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立所以()f x 在(),-∞+∞上单调递增,无减区间.数学(理)(北京卷)参考答案第6页(共8页)(19)(共14分)解:(Ⅰ)由已知,112c ab a ==, 又222a b c =+,解得2,1,a b c ==所以椭圆的方程为2214x y +=. (Ⅱ)方法一:设椭圆上一点()00,P x y ,则220014x y +=. 直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. 所以00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. 所以0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅数学(理)(北京卷)参考答案第7页(共8页)故AN BM ⋅为定值.方法二:设椭圆上一点()2cos ,sin P θθ, 直线PA :()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. 所以sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-.所以2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.数学(理)(北京卷)参考答案第8页(共8页)(20)(共13分)解:(Ⅰ)(){}25G A =,. (Ⅱ)因为存在1n a a >,设数列A 中第一个大于1a 的项为k a ,则1k i a a a >≥,其中21i k -≤≤,所以()k G A ∈,()G A ≠∅. (Ⅲ)设A 数列的所有“G 时刻”为12k i i i <<< ,对于第一个“G 时刻”1i ,有11i i a a a >≥,1231i i =- ,,,,则 111111i i i a a a a ---≤≤.对于第二个“G 时刻”()21i i >,有21i i i a a a >≥(2121i i =- ,,,).则212211i i i i a a a a ---≤≤.类似的321i i a a -≤,…,11k k i i a a --≤.于是,()()()()11221211k k k k k i i i i i i i i k a a a a a a a a a a ----+-++-+-=- ≥. 对于N a ,若()N G A ∈,则k i N a a =;若()N G A ∉,则k N i a a ≤,否则由⑵,知1k k i i N a a a + ,,,中存在“G 时刻”,与只有k 个“G 时刻”矛盾. 从而,11k i N k a a a a --≥≥,证毕.。
北京市高考数学理科试题附答案
适用精选文件资料分享北京市 2016 年高考数学理科试题(附答案)2016 年一般高等学校招生全国一致考试数学(理)(北京卷)本试卷共 5 页,150 分.考试时长 120 分钟.考生务势必答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40 分)一、选择题共8 小题,每题5 分,共40 分.在每题列出的四个选项中,选出吻合题目要求的一项.(1)已知会集 A= B= ,则(A)(B)(C)(D)(2)若 x,y 满足,则 2x+y 的最大值为(A)0 (B)3 (C)4 (D)5 (3)履行以下列图的程序框图,若输入的 a 值为 1,则输出的 k 值为(A)1 (B)2 (C)3 (D)4 (4)设 a,b 是向量,则“ IaI=IbI ”是“ Ia+bI=Ia - bI ”的(A)充分而不用要条件(B)必需而不充分条件(C)充分必需条件(D)既不充分也不用要条件(5)已知x,y R, 且 x y o ,则(A) - (B)(C) (- 0 (D)lnx+lny (6)某三棱锥的三视图以下列图,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点 P(,t )向左平移 s(s? 0)个单位长度获得点 P′. 若 P′位于函数的图像上,则(A)t= ,s 的最小值为(B)t= ,s 的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,此中红球、黑球各占一半 . 甲、乙、丙是三个空盒 . 每次从袋中任意拿出两个球,将此中一个球放入甲盒,假如这个球是红球,就将另一个球放入乙盒,不然就放入丙盒 . 重复上述过程,直到袋中全部球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球相同多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球相同多第二部分(非选择题共 110 分)二、填空题共 6 小题,每题 5分,共 30 分.(9)设 a R,若复数( 1+i )(a+i )在复平面内对应的点位于实轴上,则 a=_______________。
[精品]2016年北京市高考数学理科试题和答案
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C) (-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=_______________。
(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A,B两点,则=____________________.(12)已知为等差数列,为其前n项和,若,,则.(13)双曲线的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点。
【高考真题】2016年高考真题--北京卷数学(理)(解析版)
2016年普通高等学校招生全国统一考试(北京卷)理科数学(含解析)第Ⅰ卷一、选择题本大题共8个小题;每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·北京,1)已知集合A ={x ||x |<2},B ={-1,0,1,2,3},则A ∩B =( ) A .{0,1} B .{0,1,2} C .{-1,0,1}D .{-1,0,1,2}2.(2016·北京,2)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .53.(2016·北京,3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A .1B .2C .3D .44.(2016·北京,4)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.(2016·北京,5)已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0 B .sin x -sin y >0 C.⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0 D .ln x +ln y >06.(2016·北京,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 7.(2016·北京,7)将函数y =sin ⎝⎛⎭⎫2x -π3图象上的点P ⎝⎛⎭⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( ) A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π38.(2016·北京,8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A .乙盒中黑球不多于丙盒中黑球 B .乙盒中红球与丙盒中黑球一样多 C .乙盒中红球不多于丙盒中红球 D .乙盒中黑球与丙盒中红球一样多第Ⅱ卷(非选择题)二、填空题(共6个小题每小题5分)9.(2016·北京,9)设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.10.(2016·北京,10)在(1-2x )6的展开式中,x 2的系数为________(用数字作答).11.(2016·北京,11)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.12.(2016·北京,12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.13.(2016·北京,13)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________.14.(2016·北京,14)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________. 三、解答题15.(2016·北京,15)(本小题满分13分)在△ABC 中,a 2+c 2=b 2+2ac. (1)求∠B 的大小;(2)求2cos A +cos C 的最大值.16.(2016·北京,16)(本小题满分13分)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):A 班 6 6.5 7 7.5 8B 班 6 7 8 9 10 11 12C 班34.567.5910.51213.5(1)试估计C (2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).17.(2016·北京,17)(本小题满分14分)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ;使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.18.(2016·北京,18)(本小题满分13分)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值;(2)求f (x )的单调区间.19.(2016·北京,19)(本小题满分14分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.20.(2016·北京,20)(本小题满分13分)设数列A :a 1,a 2,…,a N (N ≥2).如果对小于n (2≤n ≤N )的每个正整数k 都有a k <a n ,则称n 是数列A 的一个“G 时刻”.记G (A )是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出G (A )的所有元素; (2)证明:若数列A 中存在a n 使得a n >a 1,则G (A )≠∅;(3)证明:若数列A 满足a n -a n -1≤1(n =2,3,…,N ),则G (A )的元素个数不小于a N -a 1.答案解析1.解析 A ={x ||x |<2}={x |-2<x <2},所以A ∩B ={x |-2<x <2}∩{-1,0,1,2,3}={-1,0,1}. 答案 C2.解析 不等式组表示的可行域如图中阴影部分所示.令z =2x +y ,则y =-2x +z ,作直线2x +y =0并平移,当直线过点A 时,截距最大,即z 取得最大值,由⎩⎪⎨⎪⎧ 2x -y =0,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2,所以A 点坐标为(1,2),可得2x +y 的最大值为2×1+2=4.答案 C3.解析 k =0,b =a =1,第一次循环:a =-11+1=-12≠1,k =0+1=1;第二次循环:a =-11-12=-2≠1,k =1+1=2;第三次循环:a =-11-2=1,满足a =b ,输出k =2.答案 B4.解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 答案 D5.解析 函数y =1x 在(0,+∞)上单调递减,所以1x <1y ,即1x -1y <0,A 错;函数y =sin x 在(0,+∞)上不是单调函数,B 错;函数y =⎝⎛⎭⎫12x在(0,+∞)上单调递减,所以⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y<0,所以C 正确;ln x +ln y =ln xy ,当x >y >0时,xy 不一定大于1,即不一定有ln xy >0,D 错.答案 C6.解析 由三视图知,三棱锥如图所示:由侧视图得高h =1,又底面积S =12×1×1=12.所以体积V =13Sh =16.答案 A7.解析 点P ⎝⎛⎭⎫π4,t 在函数y =sin ⎝⎛⎭⎫2x -π3的图象上, 则t =sin ⎝⎛⎭⎫2×π4-π3=sin π6=12. 又由题意得y =sin ⎣⎡⎦⎤2(x +s )-π3=sin 2x , 故s =π6+k π,k ∈Z ,所以s 的最小值为π6.答案 A8.解析 取两个球往盒子中放有4种情况: ①红+红,则乙盒中红球数加1; ②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1; ④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样,所以①和②的情况一样多.③和④的情况完全随机,③和④对B 选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上选B. 答案 B9.解析 (1+i)(a +i)=a +i +a i +i 2=(a -1)+(a +1)i ,由复数对应点在实轴上得a +1=0,解得a =-1. 答案 -110.解析 展开式的通项T r +1=C r 6·16-r ·(-2x )r =C r 6(-2x )r .令r =2得T 3=C 26·4x 2=60x 2,即x 2的系数为60. 答案 6011.解析 直线的直角坐标方程为x -3y -1=0,圆的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1.圆心坐标为(1,0),半径r =1.点(1,0)在直线x -3y -1=0上,所以|AB |=2r =2. 答案 212.解析 ∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.答案 613.解析 设B 为双曲线的右焦点,如图所示.∵四边形OABC 为正方形且边长为2, ∴c =|OB |=22, 又∠AOB =π4,∴b a =tan π4=1,即a =b . 又a 2+b 2=c 2=8,∴a =2. 答案 214.解析 (1)当a =0时,f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤0,-2x ,x >0.若x ≤0,f ′(x )=3x 2-3=3(x 2-1).由f ′(x )>0得x <-1,由f ′(x )<0得-1<x ≤0. 所以f (x )在(-∞,-1)上单调递增;在(-1,0]上单调递减,所以f (x )最大值为f (-1)=2. 若x >0,f (x )=-2x 单调递减,所以f (x )<f (0)=0. 所以f (x )的最大值为2.(2)f (x )的两个函数在无限制条件时图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值,且-2a >2. 所以a <-1.答案 (1)2 (2)(-∞,-1)15.解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac . 由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4.所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A =2cos A +cos 3π4cos A +sin 3π4sin A=2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. 因为0<A <3π4,所以π4<A +π4<π,故当A +π4=π2,即A =π4时,2cos A +cos C 取得最大值1.16.解 (1)C 班学生人数约为100×85+7+8=100×820=40(人).(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5. 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知, E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.17.(1)证明 ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD . 又AB ⊥AD ,AB ⊂平面ABCD . ∴AB ⊥平面P AD .∵PD ⊂平面P AD .∴AB ⊥PD . 又P A ⊥PD ,P A ∩AB =A . ∴PD ⊥平面P AB .(2)解 取AD 中点O ,连接CO ,PO ,∵P A =PD ,∴PO ⊥AD .又∵PO ⊂平面P AD ,平面P AD ⊥平面ABCD , ∴PO ⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO , ∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0). 则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1). CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PDC 的一个法向量. 由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12. 即n =⎝⎛⎭⎫12,-1,1.设PB 与平面PCD 的夹角为θ. 则sin θ=|cos 〈n ,PB →〉|=⎪⎪⎪⎪⎪⎪n ·PB →|n ||PB →|=⎪⎪⎪⎪⎪⎪12-1-114+1+1×3=33. (3)解 设M 是棱P A 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),∵BM ⊄平面PCD ,∴BM ∥平面PCD ,当且仅当BM →·n =0,即(-1,-λ,λ)·⎝⎛⎭⎫12,-1,1=0,解得λ=14,∴在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 18.解 (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知, f ′(x )与1-x +e x-1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞). 19.(1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1. 当x 0≠0时,直线P A 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪1+2y 0x 0-2.直线PB 方程为y =y 0-1x 0x +1.令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1. ∴|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |·|BM |=4.故|AN |·|BM |为定值.20.(1)解 G (A )的元素为2和5.(2)证明 因为存在a n 使得a n >a 1,所以{i ∈N *|2≤i ≤N ,a i >a 1}≠∅. 记m =min{i ∈N *|2≤i ≤N ,a i >a 1}, 则m ≥2,且对任意正整数k <m ,a k ≤a 1<a m . 因此m ∈G (A ).从而G (A )≠∅.(3)证明 当a N ≤a 1时,结论成立. 以下设a N >a 1.由(2)知G (A )≠∅.设G (A )={n 1,n 2,…,n p },n 1<n 2<…<n p . 记n 0=1.则a 0n <a 1n <a 2n <…<pn a , 对i =0,1,…,p ,记G i ={k ∈N *|n i <k ≤N ,a k >i n a }. 如果G i ≠∅,取m i =min G i ,则对任何1≤k <m i ,a k ≤i n a <i m a . 从而m i ∈G (A )且m i =n i +1.又因为n p 是G (A )中的最大元素,所以G p =∅. 从而对任意n p ≤k ≤N ,a k ≤p n a ,特别地,a N ≤p n a . 对i =0,1,…,p -1,11i n a +-≤i n a .因此1i n a +=11i n a +-+111()i i n n a a ++--≤i n a +1. 所以a N -a 1≤p n a -a 1= i =1p 1()i i n n a a --≤p . 因此G (A )的元素个数p 不小于a N -a 1.。
(精校版)2016年北京理数高考试题文档版(含答案)
⎨ 2016 年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共 5 页,150 分.考试时长 120 分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合 A =B =,则(A )(B )(C )(D )(2)若 x,y 满足 ⎧2x - y ≤ 0 ⎪x + y ≤ 3 ⎪⎩x ≥ 0,则 2x+y 的最大值为 (A )0 (B )3 (C )4 (D )5(3)执行如图所示的程序框图,若输入的 a 值为 1,则输出的 k 值为(A )1 (B )2 (C )3 (D )4(4)设 a ,b是向量,则“ a= b ”是“ a + b = a - b ”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)- (B)(C)(- 0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数若P′位于函数图像上的点P的图像上,则(,t )向左平移s(s﹥0)个单位长度得到点P′.(A)t= ,s 的最小值为(B)t= ,s 的最小值为(C)t= ,s 的最小值为(D)t= ,s 的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110 分)二、填空题共 6 小题,每小题 5 分,共30 分.(9)设a R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= 。
2016年北京市高考数学理科试题(Word版,含答案)
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D )乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A ,B 两点,则 =____________________.(12)已知为等差数列,为其前n 项和,若,,则.(13)双曲线 的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B为该双曲线的焦点。
2016年普通高等学校招生全国统一考试(北京卷)数学试题 (理科)解析版
本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A. {0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.2.若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5【答案】C【解析】考点:线性规划.【名师点睛】可行域是封闭区域时,可以将端点代入目标函数,求出最大值与最小值,从而得到相应范围.若线性规划的可行域不是封闭区域时,不能简单的运用代入顶点的方法求最优解.如变式2,需先准确地画出可行域,再将目标函数对应直线在可行域上移动,观察z 的大小变化,得到最优解.3.执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A.1B.2C.3D.4【答案】B 【解析】试题分析:输入1=a ,则0=k ,1=b ;进入循环体,21-=a ,否,1=k ,2-=a ,否,2=k ,1=a ,此时1==b a ,输出k ,则2=k ,选B.考点:算法与程序框图【名师点睛】解决循环结构框图问题,要先找出控制循环的变量的初值、步长、终值(或控制循环的条件),然后看循环体,循环次数比较少时,可依次列出,循环次数较多时,可先循环几次,找出规律,要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误.4.设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】D考点:1.充分必要条件;2.平面向量数量积. 【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅(θ为a ,b 的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.5.已知x ,y R ∈,且0x y >>,则() A.110x y ->B.sin sin 0x y ->C.11()()022x y -<D.ln ln 0x y +> 【答案】C【解析】试题分析:A :由0>>y x ,得y x 11<,即011<-yx ,A 不正确; B :由0>>y x 及正弦函数sin y x =的单调性,可知0sin sin >-y x 不一定成立; C :由1210<<,0>>y x ,得y x )21()21(<,故0)21()21(<-y x ,C 正确; D :由0>>y x ,得0>xy ,不一定大于1,故0ln ln >+y x 不一定成立,故选C. 考点: 函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.6.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12 D.1【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.7.将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则()A.12t =,s 的最小值为6πB.t = ,s 的最小值为6πC.12t =,s 的最小值为3π D.2t =,s 的最小值为3π 【答案】A考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换8.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】C考点:概率统计分析.【名师点睛】本题将小球与概率知识结合,创新味十足,是能力立意的好题.如果所求事件对应的基本事件有多种可能,那么一般我们通过逐一列举计数,再求概率,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏.另外注意对立事件概率公式的应用.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.设a R ∈,若复数(1)()i a i ++在复平面内对应的点位于实轴上,则a =_______________.【答案】1-.【解析】试题分析:(1)()1(1)1i a i a a i R a ++=-++∈⇒=-,故填:1-.考点:复数运算【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化10.在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60.【解析】试题分析:根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=,故填:60.考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n 项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项r r n r n r b a C T -+=1,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合n 的范围分析.11.在极坐标系中,直线cos 3sin 10ρθρθ--=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2考点:极坐标方程与直角方程的互相转化.【名师点睛】将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式 θρθρsin ,cos ==y x 即可.将直角坐标或直角坐标方程转化为极坐标或极坐标方程,要灵活运用x =θρθρsin ,cos ==y x 以及22y x +=ρ,)0(tan ≠=x xy θ,同时要掌握必要的技巧. 12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..【答案】6【解析】试题分析:∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-, ∴616156615(2)6S a d =+=⨯+⨯-=,故填:6.考点:等差数列基本性质.【名师点睛】在等差数列五个基本量1a ,d ,n ,n a ,n S 中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.13.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________.【答案】2考点:双曲线的性质【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.14.设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________;②若()f x 无最大值,则实数a 的取值范围是________.【答案】2,(,1)-∞-.【解析】试题分析:如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.考点:1.分段函数求最值;2.数形结合的数学思想.【名师点睛】1.分段函数的函数值时,应首先确定所给自变量的取值属于哪一个范围,然后选取相应的对应关系.若自变量值为较大的正整数,一般可考虑先求函数的周期.若给出函数值求自变量值,应根据每一段函数的解析式分别求解,但要注意检验所求自变量的值是否属于相应段自变量的范围;2.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握一次函数、二次函数、幂函数、对数函数等的单调性,将大大缩短我们的判断过程.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题13分)在∆ABC 中,222+=+a c b .(1)求B ∠ 的大小;(2cos cos A C + 的最大值.【答案】(1)4π;(2)1.考点:1.三角恒等变形;2.余弦定理.【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.16.(本小题13分)A 、B 、C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A 、B 、C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记1μ ,表格中数据的平均数记为0μ ,试判断0μ和1μ的大小,(结论不要求证明)【答案】(1)40;(2)38;(3)10μμ<. 【解析】 试题分析:(Ⅰ)根据图表判断C 班人数,由分层抽样的抽样比计算C 班的学生人数;(Ⅱ)根据题意列出“该周甲的锻炼时间比乙的锻炼时间长”的所有事件,由独立事件概率公式求概率.(Ⅲ)根据平均数公式进行判断即可.考点:1.分层抽样;2.独立事件的概率;3.平均数【名师点睛】求复杂的互斥事件的概率的方法:一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式)(1)(A P A P -=,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.17.(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.【答案】(1)见解析;(2(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得λ=. 因此点),,1(),,1,0(λλλλ--=-M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅,即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM .考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.18.(本小题13分)设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.19.(本小题14分)已知椭圆C :22221+=x y a b (0a b >>,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)详见解析.(2)由(Ⅰ)知,)1,0(),0,2(B A ,考点:1.椭圆方程及其性质;2.直线与椭圆的位置关系.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.20.(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素;(2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N ),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(,记10=n .则p n n n n a a a a <⋅⋅⋅<<<210.对p i ,,1,0⋅⋅⋅=,记{}i n k i i a a N k n N k G >≤<∈=*,. 如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1.从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G .从而对任意n k n p ≤≤,p n k a a ≤,特别地,p n N a a ≤.考点:数列、对新定义的理解.【名师点睛】数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型,数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,1=q 或1≠q )等.。
2016年北京市高考数学理科试题含答案
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A =x < ,B =−1,0,1, ,3,则A B =(A )0,1(B )0,1,(C )−1,0,1(D )−1,0,1,(2)若x,y 满足 x −y ≪0,x +y ≪3,x ≫0,,则2x+y 的最大值为(A )0(B )3(C )4(D )5(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为(A )1(B )2(C )3(D )4(4)设a,b 是向量,则“I a I=I b I ”是“I a+b I=Ia-b I ”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(5)已知x,y ∈R,且x >y >o ,则(A )1 -1y >0(B )sin x −sin y >0(C )(1 )x (-1 )y <0(D )lnx+lny >0(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )16(B )13(C )1 (D )1(7)将函数 =sin ( ﹣π3)图像上的点P (π4,t )向左平移s (s ﹥0)个单位长度得到点P ′.若P ′位于函数 =sin ( )的图像上,则(A )t =1 ,s 的最小值为π6(B )t =3 ,s 的最小值为π6(C )t =1 ,s 的最小值为π3(D )t =3 ,s 的最小值为π3(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A )乙盒中黑球不多于丙盒中黑球(B )乙盒中红球与丙盒中黑球一样多(C )乙盒中红球不多于丙盒中红球(D )乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设a ∈R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
2016年高考北京理科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(北京卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2016年北京,理1,5分】已知集合{}|2A x x =<<,{}1,0,1,2,3=-,则A B =( ) (A ){}0,1 (B ){}0,1,2 (C ){}1,0,1- (D ){}1,0,1,2- 【答案】C【解析】集合{}22A x x =-<<,集合{}1,0,1,2,3B x =-,所以{}1,0,1AB =-,故选C .【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.(2)【2016年北京,理2,5分】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,,,则2x y +的最大值为( )(A )0 (B )3 (C )4 (D )5 【答案】C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=,故选C .【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.(3)【2016年北京,理3,5分】执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )(A )1(B )2 (C )3 (D )4【答案】B 【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =,故选B .【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答. (4)【2016年北京,理4,5分】设a ,b 是向量,则“a b =”是“a b a b +=-”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】D【解析】若=a b 成立,则以a ,b 为边组成平行四边形,那么该平行四边形为菱形,+a b ,a b -表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b -不一定成立,从而不是充分条件;反之,+=a b a b -成立,则以a ,b 为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b 不一定成立,从而不是必要条件,故选D .【点评】本题考查的知识点是充要条件,向量的模,分析出“a b =”与“a b a b +=-”表示的几何意义,是解答 的关键.(5)【2016年北京,理5,5分】已知x y ∈R ,,且0x y >>,则( )(A )110x y -> (B )sin sin 0x y ->_ (C )11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(D )ln ln 0x y +>【答案】C【解析】A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y -<所以A 错; B .考查的是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12x y ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122x y ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错,故 选C .【点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题. (6)【2016年北京,理6,5分】某三棱锥的三视图如图所示,则该三棱锥的体积为( )(A )16 (B )13(C )12 (D )1【答案】A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==,故选A .【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.(7)【2016年北京,理7,5分】将函数sin 23y x π⎛⎫=- ⎪⎝⎭图象上的点,4P t π⎛⎫⎪⎝⎭向左平移()0s s >个单位长度得到点P ',若P '位于函数sin 2y x =的图象上,则( ) (A )12t =,s 的最小值为6π (B )3t =,s 的最小值为6π(C )12t =,s 的最小值为3π (D )3t =,s 的最小值为3π【答案】A【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移s 个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以s 的最小值为π6,故选A .【点评】本题考查的知识点是函数()()sin 0,0y x A ωϕω=+>>的图象和性质,难度中档.(8)【2016年北京,理8,5分】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )(A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多 (C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多 【答案】B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个; ②黑+黑,则丙盒中黑球数加1个; ③红+黑(红球放入甲盒中),则乙盒中黑球数加1个; ④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机.③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.故选B .【点评】该题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,中档题. 二、填空题:共6小题,每小题5分,共30分。
2016年北京理科数高考试题(含答案)
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合A =B =,则(A )(B )(C ) (D )(2)若x,y 满足 2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x+y 的最大值为(A )0 (B )3 (C )4 (D )5(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为(A )1 (B )2(C )3 (D )4(4)设a ,b 是向量,则“=a b ”是“+=-a b a b ”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B )乙盒中红球与丙盒中黑球一样多(C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
2016年北京市高考数学试卷(理科)
2016年普通高等学校招生全国统一考试数 学(理)(北京卷)第Ⅰ部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{|||2}A x x =<,{}32101,,,,-=B ,则A B =I ( ) (A ){}10,(B ){}210,, (C ){}101,,- (D ){}2101,,,- (2)若x ,y 满足20,3,0,x y x y x -⎧⎪+⎨⎪⎩≤≤≥则2x y +的最大值为( )(A )0 (B )3 (C )4 (D )5 (3)执行如图所示的程序框图,若输入的a 值为1, 则输出的k 值为( )(A )1 (B )2 (C )3 (D )4(4)设a ,b 是向量.则“||||=a b ”是“||||+=-a b a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (5)已知R y x ∈,,且0x y >>,则( )(A )110x y -> (B )sin sin 0x y -> (C )11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(D )ln ln 0x y +>(6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )(A )16(B )13(C )12(D )11俯视图正(主)视图111(7)将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移(0)s s >个单位长度得到点P '.若P '位于函数sin 2y x =的图象上,则( ) (A )12t =,s 的最小值为6π (B)2t =,s 的最小值为6π (C )12t =,s 的最小值为3π (D)2t s 的最小值为3π(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )(A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多 (C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多第Ⅱ部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a = . (10)在6(12)x -的展开式中,2x 的系数为 .(用数字作答) (11)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则||AB = .(12)已知{}n a 为等差数列,n S 为其前n 项和.若16a =,350a a +=,则6S = .(13)双曲线()0012222>>=-b a by a x ,的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B为该双曲线的焦点.若正方形OABC 的边长为2,则a = .(14)设函数33,,()2,.x x x a f x x x a ⎧-=⎨->⎩≤① 若0a =,则()f x 的最大值为 ;① 若()f x 无最大值,则实数a 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题13分)在ABC ∆中,222a c b +=. (①)求B ∠的大小;(①cos A C +的最大值. (16)(本小题 13分)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(①)试估计(①)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙, 假设所有学生的锻炼时间相互独立, 求该周甲的锻炼时间比乙的锻炼时间长的概率; (①)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小.(结论不要求证明) (17)(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB D A ⊥,1AB =,2AD =,AC CD =(①)求证:PD ⊥平面PAB ;(①)求直线PB 与平面PCD 所成角的正弦值;(①)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP的值;若不存在,说明理由.(18)(本小题13分)设函数()e a x f x x bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+. (①)求a ,b 的值; (①)求()f x 的单调区间.PDBA(19)(本小题14分)已知椭圆2222:1(0)x y C a b a b +=>>(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(①)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N . 求证:||||AN BM ⋅为定值. (20)(本小题13分)设数列12:,,,N A a a a ⋅⋅⋅(2)N ≥.如果对小于(2)n n N ≤≤的每个正整数k 都有k n a a <,则称n 是数列A 的一个“G 时刻”.记()G A 是数列A 的所有“G 时刻”组成的集合. (①)对数列:2,2,1,1,3A --,写出()G A 的所有元素; (①)证明:若数列A 中存在n a 使得1n a a >,则()G A ≠∅;(①)证明:若数列A 满足11n n a a --≤(2,3,,)n N =⋅⋅⋅,则()G A 的元素个数不小于1N a a -.2016年北京高考数学(理科)答案与解析1. C【解析】集合{|22}A x x =-<<,集合{|1,0,1,2,3}B x =-,所以{1,0,1}A B =-I . 2. C 【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=. 3. B【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =.4. D【解析】若=a b r r 成立,则以a r ,b r 为边组成平行四边形,那么该平行四边形为菱形,+a b r r ,a b -r r表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b -r r r r不一定成立,从而不是充分条件;反之,+=a b a b -r r r r 成立,则以a r ,b r为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b r r不一定成立,从而不是必要条件.5. C【解析】 A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y -<所以A 错; B .考查的是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12xy ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122xy⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错.6.A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==.7.A【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移s 个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以s的最小值为π6.8.B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个; ②黑+黑,则丙盒中黑球数加1个; ③红+黑(红球放入甲盒中),则乙盒中黑球数加1个; ④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机.③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响. ①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样. 综上,选B .9.1-【解析】()()()11i i 1i ++=-++a a a∵其对应点在实轴上 ∴10+=a ,1=-a10.60【解析】由二项式定理得含2x 的项为()2226C 260-=x x11.2【解析】将极坐标转化为直角坐标进行运算cos =x ρθ,sin =y ρθ直线的直角坐标方程为10-=x∵2cos =ρθ,()222sin cos 2cos +=ρθθρθ∴222+=x y x圆的直角坐标方程为()2211-+=x y圆心()1,0在直线上,因此AB 为圆的直径,2=AB12.6【解析】∵3542+=a a a ∴40=a∵16=a ,413=+a a d ∴2=-d ∴()61661662⨯-=+=S a d13. 2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图∵OABC 为正方形,2=OA ∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a14.2,1a <-.【解析】由()323330x x x '-=-=,得1x =±,如下图,是()f x 的两个函数在没有限制条件时的图象.⑴ ()()max 12f x f =-=;⑵ 当1a -≥时,()f x 有最大值()12f -=;当1a <-时,2x -在x a >时无最大值,且()3max23a x x ->-.所以,1a <-.15. 【解析】⑴∵222a cb +=∴222a c b +-∴222cos 2a c b B ac +-==∴π4B ∠=⑵∵πA B C ++=∴3π4A C +=cos A C +∵3π4A C +=∴3(0,π)4A ∈∴ππ(,π)44A +∈∴πsin()4A +最大值为1上式最大值为116. 【解析】⑴81004020⨯=,C 班学生40人 ⑵在A 班中取到每个人的概率相同均为15设A 班中取到第i 个人事件为,1,2,3,4,5i A i = C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j =A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ ⑶10μμ<三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值17.【解析】⑴∵面PAD I 面ABCD AD =面PAD ⊥面ABCD∵AB ⊥AD ,AB ⊂面ABCD ∴AB ⊥面PAD ∵PD ⊂面PAD ∴AB ⊥PD 又PD ⊥PA ∴PD ⊥面PAB⑵取AD 中点为O ,连结CO ,PO∵CD AC ==∴CO ⊥AD∵PA PD = ∴PO ⊥AD以O 为原点,如图建系 易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,, 则(111)PB =-u u u v ,,,(011)PD =--u u u v ,,,(201)PC =-u u u v ,,,(210)CD =--u u u v,, 设n v为面PDC 的法向量,令00(,1)n x y =v , 011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨ ⎪⎝⎭⋅=⎪⎩v u u u v v v u u uv ,,则PB 与面PCD 夹角θ有 ⑶假设存在M 点使得BM ∥面PCD设AM APλ=,()0,','M y z由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-u u u r ,()1,1,0B ,()0,'1,'AM y z =-u u u u r有()0,1,AM AP M λλλ=⇒-u u u u r u u u r∴()1,,BM λλ=--u u u u r∵BM ∥面PCD ,n u u r 为PCD 的法向量∴0BM n ⋅=u u u u r r即102λλ-++=∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求.18.【解析】 (I )()e a x f x x bx -=+Q∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=- ② 由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴(g 的最小值是(2)(12)e 1g =-=-∴()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立 ∴()f x 在(),-∞+∞上单调递增,无减区间.19.【解析】⑴由已知,1,122c ab a ==,又222a b c =+,解得2,1,a b c ===∴椭圆的方程为2214x y +=. ⑵方法一:设椭圆上一点()00,P x y ,则220014x y +=. 直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 将220014x y +=代入上式得=4AN BM ⋅ 故AN BM ⋅为定值.方法二:设椭圆 上一点()2cos ,sin P θθ,直线PA:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-故AN BM ⋅为定值.20.【解析】⑴ (){}25G A =,⑵ 因为存在1n a a >,设数列A 中第一个大于1a 的项为k a ,则1k i a a a >≥,其中21i k -≤≤,所以()k G A ∈,()G A ≠∅. ⑶ 设A 数列的所有“G 时刻”为12k i i i <<<L ,对于第一个“G 时刻”1i ,有11i i a a a >≥,1231i i =-L ,,,,则 111111i i i a a a a ---≤≤.对于第二个“G 时刻”()21i i >,有21i i i a a a >≥(2121i i =-L ,,,).则212211i i i i a a a a ---≤≤.类似的321i i a a -≤,…,11k k i i a a --≤.于是,()()()()11221211k k k k k i i i i i i i i k a a a a a a a a a a ----+-++-+-=-L ≥. 对于N a ,若()N G A ∈,则k i N a a =;若()N G A ∉,则k N i a a ≤,否则由⑵,知1k k i i N a a a +L ,,,中存在“G 时刻”,与只有k 个“G 时刻”矛盾.从而,11k i N k a a a a --≥≥,证毕.。
2016年高考北京理科数学试题与答案(word解析版)
D考查的是
点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力
题.
(6)12016年北京,理6,5分】某三棱锥的三视图如图所示,则该三棱锥的体积为
(A)-(B)-(C)-
=sin2x的图象上,则()
.3
(B)t■-,s的最小值为
2
(D)t3,s的最小值为
2
长度得到点
(A)
(C)
答案】A
P,若P位于函数y
,s的最小值为
,s的最小值为3
fn)f
解析】点P4,t在函数y=sin 2x
-訂上,所以t=sin[2b-
7t
fn\
,然后y=sin2x-3向左平
/3.丿
1nnn
移s个单位,即y二sin 2(x • s)…-sin2x,所以s-+kn,kZ,所以s的最小值为,故选a.
2016
(北京卷)
数学(理科)
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中
项.
,选出符合题目要求的一
(1)12016年北京,理1,5分】已知集合A=1x|x<:2l,「:—1,0,1,2,3?,则B二( (A)「0,11(B)10,1,2)(C)1-1,0,1;
(D)
)^-1,0,1,2?
k值为
()
(A)1
答案】B
(B)2
(C)3
(D)
解军析】开始a=1,k=0;第一次循环
第二次循环a=-2
,k=2,第三次循环
结束
-1
"I1
【北京卷】2016年高考数学理科试题(Word版,含答案)
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A ,B 两点,则 =____________________.(12)已知为等差数列,为其前n 项和,若,,则.(13)双曲线 的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B为该双曲线的焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(理)(北京卷) 第 1 页(共 11 页)绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =(A ){0,1} (B ){0,1,2} (C ){1,0,1}-(D ){1,0,1,2}-(2)若,x y 满足20,3,0,x y x y x -⎧⎪+⎨⎪⎩≤≤≥ 则2x y +的最大值为(A )0 (B )3 (C )4(D )5(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为(A )1 (B )2 (C )3 (D )4数学(理)(北京卷) 第 2 页(共 11 页)(4)设,a b 是向量.则“||||=a b ”是“||||+=-a b a b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)已知,R x y ∈,且0x y >>,则(A )110x y-> (B )sin sin 0x y ->(C )11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(D )ln ln 0x y +>(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )16(B )13(C )12(D )1(7)将函数πsin(2)3y x =-图象上的点π(,)4P t 向左平移s (0)s >个单位长度得到点P '.若P '位于函数sin 2y x =的图象上,则 (A )12t =,s 的最小值为π6 (B)t =,s 的最小值为π6 (C )12t =,s 的最小值为π3(D)t =,s 的最小值为π3(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则 (A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多 (C )乙盒中红球不多于丙盒中红球(D )乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)正(主)视图数学(理)(北京卷) 第 3 页(共 11 页)二、填空题共6小题,每小题5分,共30分。
( 9 )设a ∈R .若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a = . (10)在6(12)x -的展开式中,2x 的系数为 .(用数字作答)(11)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则||AB = .(12)已知{}n a 为等差数列,n S 为其前n 项和.若16a =,350a a +=,则6S = . (13)双曲线22221(0,0)x y a b a b-=>>的渐近线为正方形OABC 的边,OA OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a = . (14)设函数33,,()2,.x x x a f x x x a ⎧-⎪=⎨->⎪⎩≤① 若0a =,则()f x 的最大值为 ;② 若()f x 无最大值,则实数a 的取值范围是 .数学(理)(北京卷) 第 4 页(共 11 页)PDA B三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题13分)在ABC △中,222a c b +=. (Ⅰ)求B ∠的大小;cos A C +的最大值.(16)(本小题13分)A,B,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(Ⅰ)试估计C 班的学生人数;(Ⅱ)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A,B,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为1μ,表格中数据的平均数记为0μ,试判断0μ和1μ的大小.(结论不要求证明)(17)(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(Ⅰ)求证:PD ⊥平面PAB ;(Ⅱ)求直线PB 与平面PCD 所成角的正弦值;(Ⅲ)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.数学(理)(北京卷) 第 5 页(共 11 页)(18)(本小题13分)设函数()e a x f x x bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+. (Ⅰ)求,a b 的值; (Ⅱ)求()f x 的单调区间.(19)(本小题14分)已知椭圆2222:1(0)x y C a b a b+=>>,(,0)A a ,(0,)B b ,(0,0)O ,OAB △的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.(20)(本小题13分)设数列12:,,,N A a a a (2)N ≥.如果对小于(2)n n N ≤≤的每个正整数k 都有k n a a <,则称n 是数列A 的一个“G 时刻”.记()G A 是数列A 的所有“G 时刻”组成的集合. (Ⅰ)对数列:2,2,1,1,3A --,写出()G A 的所有元素; (Ⅱ)证明:若数列A 中存在n a 使得1n a a >,则()G A ≠∅;(Ⅲ)证明:若数列A 满足11n n a a --≤(2,3,,)n N =,则()G A 的元素个数不小于1N a a -.(考生务必将答案答在答题卡上,在试卷上作答无效)绝密★考试结束前数学(理)(北京卷) 第 6 页(共 11 页)2016年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)C (3)B (4)D (5)C(6)A(7)A(8)B二、填空题(共6小题,每小题5分,共30分) ( 9 )1-(10)60 (11)2 (12)6 (13)2(14)2(,1)-∞-三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设得222cos 2a c b B ac +-===.又因为0πB <∠<, 所以π4B ∠=. (Ⅱ)由(Ⅰ)知3π4A C ∠+∠=.cos A C+3πcos()4A A +-A A A =A A =πcos()4A =-.因为3π04A <∠<, 所以当π4A ∠=cos A C +取得最大值1.数学(理)(北京卷) 第 7 页(共 11 页)(16)(共13分)解:(Ⅰ)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人数估计为81004020⨯=. (Ⅱ)设事件i A 为“甲是现有样本中A 班的第i 个人”,1,2,,5i =, 事件j C 为“乙是现有样本中C 班的第j 个人”,1,2,,8j =.由题意可知,1(),1,2,,55i P A i ==;1(),1,2,,88j P C j ==. 111()()()5840i j i j P AC P A P C ==⨯=,1,2,,5i =,1,2,,8j =.设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知, 1112212223313233E AC AC A C A C A C A C A C A C =414243A C A C A C 51525354A C A C A C A C .因此1112212223()()()()()()P E P AC P AC P A C P A C P A C =++++313233()()()P A C P A C P A C +++414243()()()P A C P A C P A C +++ 51525354()()()()P A C P A C P A C P A C ++++1315408=⨯=.(Ⅲ)10μμ<.(17)(共14分)解:(Ⅰ)因为平面PAD ⊥平面ABCD ,AB AD ⊥,所以AB ⊥平面PAD . 所以AB PD ⊥. 又因为PA PD ⊥, 所以PD ⊥平面PAB .(Ⅱ)取AD 的中点O ,连结,PO CO .因为PA PD =, 所以PO AD ⊥.又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .数学(理)(北京卷) 第 8 页(共 11 页)因为CO ⊂平面ABCD , 所以PO CO ⊥. 因为AC CD =, 所以CO AD ⊥.如图建立空间直角坐标系O xyz -.由题意得,(0,1,0)A ,(1,1,0)B ,(2,0,0)C ,(0,1,0)D -,(0,0,1)P .设平面PCD 的法向量为(,,)x y z =n ,则0,0,PD PC −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n即0,20.y z x z --=⎧⎨-=⎩令2z =,则1x =,2y =-. 所以(1,2,2)=-n . 又(1,1,1)PB −−→=-,所以cos ,||||PBPB PB −−→−−→−−→⋅〈〉==n n n . 所以直线PB 与平面PCD. (Ⅲ)设M 是棱PA 上一点,则存在[0,1]λ∈使得AM AP λ−−→−−→=.因此点(0,1,)M λλ-,(1,,)BM λλ−−→=--.因为BM ⊄平面PCD ,所以//BM 平面PCD 当且仅当0BM −−→⋅=n , 即(1,,)(1,2,2)0λλ--⋅-=. 解得14λ=. 所以在棱PA 上存在点M 使得//BM 平面PCD ,此时14AM AP =.D数学(理)(北京卷) 第 9 页(共 11 页)(18)(共13分)解:(Ⅰ)因为()e a x f x x bx -=+,所以()(1)e a x f x x b -'=-+.依题设,(2)2e 2,(2)e 1,f f =+⎧⎨'=-⎩ 即222e 22e 2,e e 1.a ab b --⎧+=+⎪⎨-+=-⎪⎩ 解得2a =,e b =.(Ⅱ)由(Ⅰ)知2()e e x f x x x -=+.由21()e (1e )x x f x x --'=-+及2e 0x ->知,()f x '与11e x x --+ 同号. 令1()1e x g x x -=-+,则1()1e x g x -'=-+.所以,当(,1)x ∈-∞时,()0g x '<,()g x 在区间(,1)-∞上单调递减; 当(1,)x ∈+∞时,()0g x '>,()g x 在区间(1,)+∞上单调递增. 故(1)1g =是()g x 在区间(,)-∞+∞上的最小值, 从而()0g x >,(,)x ∈-∞+∞.综上可知,()0f x '>,(,)x ∈-∞+∞.故()f x 的单调递增区间为(,)-∞+∞.(19)(共14分)解:(Ⅰ)由题意得22211,2,c a ab a b c ⎧=⎪⎪⎪⎨=⎪⎪=+⎪⎩解得2a =,1b =.所以椭圆C 的方程为2214x y +=.(Ⅱ)由(Ⅰ)知,(2,0)A ,(0,1)B .设00(,)P x y ,则220044x y +=. 当00x ≠时, 直线PA 的方程为00(2)2y y x x =--. 令0x =,得0022M y y x =--,从而002|||1|12M y BM y x =-=+-.数学(理)(北京卷) 第 10 页(共 11 页)直线PB 的方程为0011y y x x -=+. 令0y =,得001N x x y =--,从而00|||2|21N xAN x y =-=+-.所以00002||||2112x y AN BM y x ⋅=+⋅+-- 2200000000004448422x y x y x y x y x y ++--+=--+00000000448822x y x y x y x y --+=--+4=.当00x =时,01y =-,||2BM =,||2AN =, 所以||||4AN BM ⋅=. 综上,||||AN BM ⋅为定值.(20)(共13分)解:(Ⅰ)()G A 的元素为2和5.(Ⅱ)因为存在n a 使得1n a a >,所以1,{2}i i N i a a ∈>≠∅N ≤≤*.记1,min{2}i i N m i a a =∈>N ≤≤*,则2m ≥,且对任意正整数k m <,1k m a a a <≤. 因此()m G A ∈.从而()G A ≠∅.(Ⅲ)当1N a a ≤时,结论成立.以下设1N a a >. 由(Ⅱ)知()G A ≠∅. 设12(){,,,}p G A n n n =,12p n n n <<<.记01n =.则012p n n n n a a a a <<<<.对0,1,,i p =,记{|,}i i i k n G k n k N a a =∈<>N ≤*.如果i G ≠∅,取min i i m G =,则对任何1i k m <≤,i i k n m a a a <≤.数学(理)(北京卷) 第 11 页(共 11 页) 从而()i m G A ∈且1i i m n +=. 又因为p n 是()G A 中的最大元素,所以p G =∅. 从而对任意p N n k ≤≤,p k n a a ≤,特别地,p N n a a ≤. 对0,1,,1i p =-,11i i n n a a +-≤. 因此111111()1i i i i i n n n n n a a a a a ++++--=+-+≤. 所以1111()p i i p N n n n i a a a a a a p -=--=-∑≤≤. 因此()G A 的元素个数p 不小于1N a a -.。