固体物理:4_1 布洛赫定理

合集下载

什么是电子的布洛赫定理和能带结构

什么是电子的布洛赫定理和能带结构

什么是电子的布洛赫定理和能带结构?电子的布洛赫定理和能带结构是固体物理学中关于电子在周期性势场中行为的两个重要概念。

下面我将详细解释布洛赫定理和能带结构,并介绍它们的物理背景和应用。

1. 布洛赫定理:布洛赫定理是指在周期性势场中,电子的波函数可以表示为平面波和周期性函数的乘积。

这意味着电子的波函数在周期性势场中是周期性的,具有特定的周期性结构。

布洛赫定理是基于周期性势场的周期性性质而提出的。

在周期性势场中,电子受到周期性的势能影响,因此它们的波函数应该具有相应的周期性特征。

布洛赫定理的提出使得我们能够更好地理解和描述电子在晶体中的行为。

2. 能带结构:能带结构是指固体中电子能量的分布情况。

在固体中,电子的能量是量子化的,只能存在于特定的能级。

能带结构描述了这些能级在动量空间中的分布情况,即电子能量与动量之间的关系。

能带结构的形成是由于布洛赫定理的存在。

根据布洛赫定理,电子的波函数具有周期性,因此它们在动量空间中的分布也是周期性的。

这种周期性分布导致了能级的整体分布,形成了一系列相互重叠的能带。

能带结构可以分为导带和禁带两种。

导带是指电子能量较高的能带,其中存在大量的可移动电子。

禁带是指电子能量较低的能带,其中几乎没有电子存在。

在固体中,导带和禁带之间的能量差异被称为禁带宽度。

能带结构对固体的导电性和光学性质具有重要影响。

导带中存在大量可移动电子,因此固体具有较好的导电性。

禁带中几乎没有电子存在,因此固体具有绝缘性或半导体性质。

禁带宽度的大小决定了导电性和光学性质的特性。

总结起来,布洛赫定理和能带结构是固体物理学中关于电子在周期性势场中行为的重要概念。

布洛赫定理描述了电子波函数的周期性特征,能带结构描述了电子能量在动量空间中的分布情况。

能带结构对固体的导电性和光学性质具有重要影响,它们在材料科学和电子学等领域具有广泛的应用。

固体物理学:4-1 布洛赫定理

固体物理学:4-1 布洛赫定理
§4-1 布洛赫定理
一. 布洛赫定理
一个在周期场中运动的电子的波函数应具 有哪些基本特点?
在量子力学建立以后,布洛赫(F.Bloch)和 布里渊(Brillouin)等人就致力于研究周期场 中电子的运动问题。他们的工作为晶体中电子 的能带理论奠定了基础。
布洛赫定理指出了在周期场中运动的电子 波函数的特点。
4 根据周期性边界条件求本征值 周期性边界条件
对于 对于 对于
—— 整数
—— 引入矢量 满足
—— 倒格子基矢
平移算符的本征值
5 Bloch 定理的证明 平移算符的本征值

作用于电子波函数
电子的波函数 满足布洛赫定理
—— 布洛赫定理 —— 布洛赫函数 —— 晶格周期性函数
三、 平移算符本征值的物理意义
注:由于德布洛意关系
P h
,即
P
k

所以 k 空间也称为动量空间。
kx
2
L
nx
(nx 0,1,2,)
上式告诉我们,沿 k 空间的每个坐标轴方向,
电子的相邻两个状态点之间的距离都是 因此,k 空间中每个状态点所占的体积为
2
L
2 L
图 3 表示二维 k 空间每个点所占的面积是
ky
2

3
1、一维情况的布洛赫定理
在一维情形下,周期场中运动的电子能量E(k)
和波函数 k ( x) 必须满足定态薛定谔方程
2 2m
d2 dx 2
V ( x)
k(x) E(k)k(x)
(1)
k -------表示电子状态的角波数 V( x ) ----周期性的势能函数,它满足
V( x ) = V( x + n a ) a ---- 晶格常数 n -----任意整数

固体物理 04-01布洛赫定理

固体物理 04-01布洛赫定理



Solid State Physics




—— 布洛赫定理
为一矢量 —— 当平移晶格矢量
—— 波函数只增加了位相因子 电子的波函数
—— 布洛赫函数
西
南 晶格周期性函数
科 技 大 学
—— 晶格周期性函数
Solid State Physics
固 体 物
理 布洛赫定理的证明
—— 引入平移算符 证明平移算符与哈密顿算符对易 两者具有相同的本征函数
二十年代初期,在用量子力学研究金属
的电导理论的过程中发展起来的。
西 南 科 技 大 学
Solid State Physics




Felix Bloch,1905.10 – 1983.9
博士论文《金属的传导理论》
发展核磁精密测量的新方法及其有 关的发现,与爱德华·珀塞尔( Edward Mills Purcell, 1912-1997) 分享 1952年诺贝尔物理学奖
Solid State Physics
固 体
物 平移算符本征值的物理意义

1)
—— 原胞之间电子波 函数相位的变化
2) 平移算符本征值量子数
西
南 —— 简约波矢,对应于平移动操作本征值的量子数

技 —— 不同的简约波矢,原胞之间的相位差不同
大 学
Solid State Physics




—— 布洛赫定理

b)晶体中电子的平均自由程为什么会远大于
西
南 原子的间距?

技 大
……

Solid State Physics

布洛赫定理 近自由电子近似-山东大学固体物理

布洛赫定理 近自由电子近似-山东大学固体物理

正格基矢
倒格基矢
a1、a 2、a 3 ,
b 1、b 2、b 3
例2:下图是一个二维晶体结构图,画出它的第一、第二、 第三布里渊区。
aa
a1 ai a2 a j
a2 a j
aa
a1 ai
2π ( i j )
ai b j 2π ij
0 (i j)
b1 2π i a 2π
b2 j a
例3:画出下面二维矩形格子的第一和第二布里渊区的
扩展区图和简约区图,设矩形边长分别为 a,b。
解: a1 ai
a2 bj
2π (i j)
ai b j 2π ij
0 (i j)
b1 2π i a
b2 2π j
b
b
倒格仍为矩形。
a2 bj
a1 ai
a

b

a
j
i
第一区
第二区
目N=N1N2N3。在波矢空间内,由于N的数目很大,波矢点的分 布是准连续的。一个波矢对应的体积为:
b1 ( b2 b3 ) Ω* (2π)3 (2π)3 N1 N2 N3 N N Ω VC
一个波矢代表点对应的体积为: (2π)3 VC
电子的波矢密度为:
Vc ( 2 π) 3
下面我们证明
(r
Rn
)
eikRn
(r)
k(r
2 Rn )
k(r) 2
可以认为电子在整个晶体中自由运动。布洛赫函数的平面
波因子描述晶体中电子的共有化运动,而周期函数的因子描述
电子在原胞中运动,这取决于原胞中电子的势场。
5.1.2 k的取值和范围
设晶体在a1、a2、a3方向各有N

黄昆 固体物理 讲义 第四章

黄昆 固体物理 讲义 第四章

KK
KK
KK K K K K T1ψ ( r ) = ψ ( r + a1 ) = eik ⋅a1ψ ( r )
ψ ( r ) 和ψ ( r + a1 ) 分别是相邻两个原胞中电子的波函数 —— 两者只相差一个位相因子 λ1 = eik ⋅a
K
K
K
K
KK
1
,不同的简 2)平移算符本征值量子数: k 称为简约波矢(与电子波函数的波矢有区别,也有联系) 约波矢,原胞之间的位相差不同。 3)如果简约波矢改变一个倒格子矢量: Gn = n1b1 + n 2 b2 + n3b3 , n1 , n 2 , n3 为整数。
-3-
CREATED BY XCH
固体物理学_黄昆_第四章 能带理论_20050404
由于存在对易关系,根据量子力学可以选取 H 的本征函数,使它同时成为各平移算符的本征函数。
有:
Hψ = Eψ T1ψ = λψ ψ = λ2ψ , T3ψ = λ3ψ 1 , T2
本征值的确定: λ1 , λ2 , λ3
KK ik ⋅a1
则平移算符 T1 , T2 , T3 的本征值可以表示为: λ1 = e
, λ2 = e ik ⋅a2 , λ3 = e ik ⋅a3
KK
KK
将 T ( Rm ) = T1 1 ( a1 )T2 2 ( a 2 )T3 3 ( a 3 ) 作用于电子的波函数ψ ( r )
m m m
K K K
K
K
K
( 2π ) 3 Ω
固体物理学_黄昆_第四章 能带理论_20050404
第四章 能带理论
能带理论是目前研究固体中电子运动的一个主要理论基础. 在二十世纪二十年代末和三十年代初期, 在量子力学运动规律确立以后,它是在用量子力学研究金属电导理论的过程中开始发展起来的.最 初的成就在于定性地阐明了晶体中电子运动的普遍性的特点。 —— 说明了固体为什么会有导体、非导体的区别 —— 晶体中电子的平均自由程为什么会远大于原子的间距……等 —— 能带论为分析半导体提供了理论基础,有力地推动了半导体技术的发展 —— 大型高速计算机的发展, 使能带理论的研究从定性的普遍性规律发展到对具体材料复杂能带结 构的计算 能带理论是一个近似的理论.在固体中存在大量的电子。它们的运动是相互关联着的,每个电子的 运动都要受其它电子运动的牵连,这种多电子系统严格的解显然是不可能的.能带理论是单电子近 似的理论,就是把每个电子的运动看成是独立的在一个等效势场中的运动.在大多数情况下,人们 最关心的是价电子,在原子结合成固体的过程中价电子的运动状态发生了很大的变化,而内层电子 的变化是比较小的,可以把原子核和内层电子近似看成是一个离子实.这样价电子的等效势场,包 括离子实的势场,其它价电子的平均势场以及考虑电子波函数反对称性而带来的交换作用.单电子 近似最早用于研究多电子原子,又称为哈特里(Hartree)-福克(ΦOK)自洽场方法。 能带理论的出发点是固体中的电子不再束缚于个别的原子,而是在整个固体内运动,称为共有化电 子.在讨论共有化电子的运动状态时假定原子实处在其平衡位置,而把原子实偏离平衡位置的影响 看成微扰,对于理想晶体,原子规则排列成晶格,晶格具有周期性,因而等效势场 V(r)也应具有周 期性.晶体中的电子就是在一个具有晶格周期性的等效势场中运动,

固体物理_第4章_能带理论

固体物理_第4章_能带理论

ik ( r R n ) u ( r Rn ) e u (r )
u ( r ) ,代入上式有:
(2 )
则:u (r Rn ) u (r )
即布洛赫波是振幅受到具有同晶格周期相同的周期性函数调制的平面 波。
ˆ ( R ) H HT ( R ) 0 ˆ ˆˆ T n n
根据量子力学知识可知:哈密顿量和平移算符有共同的本征态,可选 择哈密顿量的本征态 (r ) 为共同本征态。
采用波恩-卡曼周期性边界条件有: N ˆ ˆ ˆ ˆ (r ) (r N1a1 ) T ( N1a1 ) (r ) T (a1 )T (a1 )T (a1 ) (r ) 1 1 (r )
,而内层电子的变化较小,可以把内层电子和原子实近似看成离子实 这样价电子的等效势场包括离子实的势场,其他价电子的平均势场以 及电子波函数反对称性而带来的交换作用。 能带理论是单电子近似理论,即把每个电子的运动看成是独立的 在一个等效势场中的运动。单电子近似理论最早用于研究多电子原子
,又称为哈特里(Hartree)-福克(o )自洽场方法。 把多体问题简化为单电子问题需要进行多次简化。1、绝热近似: 原子核或者离子实的质量比电子大的多,离子的运动速度慢,在讨论 电子问题时可以认为离子是固定在瞬时位置上。这样多种粒子的多体 问题就简化为多电子问题;
能带理论取得相当的成功,但也有他的局限性。如过渡金属化 合物的价电子迁移率较小,相应的自由程和晶格常数相当,这时不 能把价电子看成共有化电子,周期场的描述失去意义,能带理论不 再适用。此外,从电子和晶格相互作用的强弱程度来看,在离子晶 体中的电子的运动会引起周围晶格畸变,电子是带着这种畸变一起 前进的,这些情况都不能简单看成周期场中单电子运动。

布洛赫定理

布洛赫定理

2 2 2m U r r E r
其中,U(r) = U(r +Rl)为周期性势场, Rl=l1a1+l2a2+l3a3为格矢, 方程的解应具有下列形式:
k r eikruk r
—— Bloch函数 (Bloch wave function)
2 2 2m U r r E r 其中: U (r Rn ) U (r )
这个方程是整个能带论研究的出发点。 求解这个运动方程,讨论其解的物理意义, 确定晶体中电子的运动规律是本章的主题。
从以上讨论中,可以看到能带论是在三个近似下完成的:
当我开始思考这个问题时,感觉到问题的关键 是解释电子将如何“偷偷地潜行”于金属中的所有 离子之间。……. 经过简明而直观的傅立叶分析, 令我高兴地发现,这种不同于自由电子平面波的波 仅仅借助于一种周期性调制就可以获得。
——F Bloch 一. Bloch定理 • 能带理论的基础 • 针对周期性结构
的解可以表示为: k (r) f (r)uk (r) 其中 uk (r Rn ) uk (r ) 势场的周期性也使与电子相关的所有可测量,包括电子几率
(r)
2
也必定是周期性的,这就给未知函数 f ( r ) 附加了下述
条件: 对于所有
f ( r Rn ) f ( r )
2
2
• 描写晶体(周期性势场)中的单电子运动 考虑一理想完整晶体,所有的原子实都周期性地静 止排列在其平衡位置上,每一个电子都处在除其自身外 其他电子的平均势场和原子实的势场中运动。按照周期 场近似,电子所感受到的势场具有周期性。这样的模型 称为周期场模型。

简述布洛赫定理的内容

简述布洛赫定理的内容

简述布洛赫定理的内容
布洛赫定理是固体物理学中的一项重要定理,它描述了晶体中电子的行为。

该定理是由瑞士物理学家费米和德国物理学家布洛赫在1929年分别提出的。

一、晶体结构和周期性势场
晶体是由原子或分子按照一定规律排列而成的固体。

晶格是指构成晶体的原子或分子在空间中排列成的有序周期性结构。

周期性势场是指在空间中呈现出周期性变化的势场。

二、电子在周期性势场中的运动
当电子遇到一个周期性势场时,它会受到一个平稳而有规律的力,这个力会使电子做简谐振动。

在这种情况下,电子行为类似于弹簧振动器。

三、布洛赫定理和能带结构
布洛赫定理描述了晶格对电子运动的影响。

它指出,在一个周期性势场中,电子波函数可以表示为平面波与一个具有与晶格相同周期的函
数之积。

这个函数被称为布洛赫函数。

通过布洛赫函数,我们可以推导出能带结构。

能带结构描述了材料中
电子的能量和动量之间的关系。

在能带结构中,能量被分成了不同的
区域,每个区域被称为一个能带。

在一个能带内,电子具有相似的能
量和动量。

四、布洛赫定理的应用
布洛赫定理在固体物理学中有着广泛的应用。

它可以用来研究半导体、金属和绝缘体等材料中电子行为的特性。

在半导体领域,布洛赫定理
可以用来解释p-n结和场效应晶体管等器件的工作原理。

总之,布洛赫定理是固体物理学中非常重要的一项定理。

它描述了晶
格对电子运动的影响,并推导出了能带结构。

通过这个定理,我们可
以更好地理解材料中电子行为的特性,并将其应用于实际设备设计中。

固体物理-布洛赫定理

固体物理-布洛赫定理
的波函数按此函数集合展开
—— 将电子的波函数代入薛定谔方程,确定展开式的系数所 满足的久期方程,求解久期方程得到能量本征值
电子波函数的计算
—— 根据每个本征值确定电子波函数展开式中的系数,得到 具体的波函数
§4.1 布洛赫定理
布洛赫定理 —— 势场 V (r ) 具有晶格周期性时,电子的
波函数满足薛定谔方程
b3 bj
2ij
平移算符的本征值 1 eika1 , 2 eika2 , 3 eika3

作用于电子波函数
e (r ) ik (m1a1m2a2 m3a3 )
(r
Rm
)
eik Rm
(r
)
—— 布洛赫定理
电子的波函数
(r )
eikr uk
(r )
—— 布洛赫函数
—— 晶格周期性函数
满足布洛赫定理
平移算符本征值的物理意义
Байду номын сангаас
1) 1 eika1 , 2 eika2 , 3 eika3
2)平移算符本征值量子数 k
—— 原胞之间电子波
函数位相的变化
—— 简约波矢,不同的简约波矢,原胞之间的位相差不同
3)简约波矢改变一个倒格子矢量 Gn n1b1 n2b2 n3b3
平移算符的本征值
为了使简约波矢 的取值和平移算符的本征值一一对应, 将简约波矢的取值限制第一布里渊区
bj 2
kj
bj 2
简约波矢
k
l1 N1
b1
l2 N2
b2
l3 N3
b3
简约波矢的取值
第一布里渊区体积
—— 在
简约波矢
k
l1 N1
b1

布洛赫定理知识点

布洛赫定理知识点

布洛赫定理知识点布洛赫定理是固体物理学中的一个重要概念,它描述了晶体中电子的行为和能量分布。

通过理解和掌握布洛赫定理,可以深入了解固体物理学的许多基本原理和现象。

本文将主要介绍布洛赫定理的概念、应用以及相关知识点。

一、布洛赫定理的概念布洛赫定理是由瑞士物理学家布洛赫(Bloch)于1928年提出的。

它是描述周期性势场中粒子(如电子)行为的一种数学模型。

根据布洛赫定理,晶体中的物理特性可以由一个周期函数和平面波函数的乘积来描述。

具体而言,布洛赫定理给出了如下形式的波函数表示:ψ(r) = u(r)* exp(ik•r)其中,ψ(r)表示晶体中的波函数,u(r)是一个周期函数,k是布拉格波矢,r是晶格中的位置矢量。

根据布洛赫定理,晶体中的波函数具有周期性,即在晶体中的任意位置矢量r上,波函数的模长和相位都具有相同的周期性。

这种周期性使得我们能够用一个有限大小的晶胞作为模型来描述整个晶体的物理特性。

二、布洛赫定理的应用布洛赫定理在固体物理学中有广泛的应用。

下面将介绍一些常见的应用。

1. 能带理论布洛赫定理为解释固体中能带结构提供了重要工具。

能带结构是指能量与波矢之间的关系。

根据布洛赫定理,电子的波函数可以表示为周期函数和平面波函数的乘积,从而可以得到电子的能量本征值和能带结构。

2. 色散关系布洛赫定理可以用来描述晶体中的电子色散关系。

色散关系是能量与波矢之间的关系,描述了晶体中电子的传输性质。

布洛赫定理给出了电子波函数的表示形式,可以通过对波函数进行求解,得到电子能量与波矢的关系。

3. 赝势方法布洛赫定理在赝势方法中也有重要应用。

赝势方法是一种计算固体物理性质的近似方法,通过引入赝势将全电子问题简化为少电子问题。

布洛赫定理提供了计算周期势场中电子行为的数学模型,使得赝势方法在实际计算中得到了广泛应用。

三、布洛赫定理的相关知识点除了上述介绍的应用外,布洛赫定理还涉及一些其他重要的知识点。

1. 布洛赫矢量布洛赫矢量是用来描述布洛赫定理中波函数的平移对称性的参数。

固体物理(2011) - 第4章 能带论 1 布洛赫定理与布洛赫波

固体物理(2011) - 第4章 能带论 1 布洛赫定理与布洛赫波

2 波动方程 [ V ( r )] E 2m 晶格周期性势场 V (r ) V (r Rn )
2
两个具体近似方案
• QED!
1. 近自由电子近似:晶体势场的周期起伏比较弱,周期势能可 以看成是对自由电子平面波情况的微扰。
周期方形波怎么构成? —— F. T.
布洛赫定理的证明 —— 引入平移算符,证明平移算符与哈密顿算符对易 两者具有相同的本征函数
—— 利用周期性边界条件确定平移算符的本征值,最后给出 电子波函数的形式
—— 势场的周期性反映了晶格的平移对称性
晶格平移任意格矢 势场不变
—— 在晶体中引入描述这些平移对称操作的算符
T1 , T 2 , T 3
ik a 1
, 2 e
ik a 2
, 3 e
ik a 3
作用于电子波函数
e
ik ( m1a1 m2a2 m3a3 )
(r )
ik R m (r Rm ) e (r )
—— 布洛赫定理
ik r 电子的波函数 ( r ) e u k ( r )
固体物理
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
So lid S ta te Phy si cs
1 布洛赫定理与布洛赫波 2 近自由电子近似方法 3 紧束缚近似方法 4 其他方法 5 能带电子的态密度 6 布洛赫电子的准经典运动 7 布洛赫电子在恒定电场中的 准经典运动 8 布洛赫电子在恒定磁场中的 准经典运动 9 能带论的局限性
把一个多粒子(电子、离子实)体系问题简化为一 个多电子体系问题。
单光子问题
第二步简化——单电子近似:认为每一个电子都是处于相

《布洛赫定理》课件

《布洛赫定理》课件

证明中的难点和关键点
难点分析
在证明过程中,如何正确运用相关数学公式和定理,以及如何处理复杂的逻辑 推理是主要的难点。
关键点总结
首先,准确理解和运用相关数学工具和概念是至关重要的;其次,构建清晰、 严密的证明逻辑是关键;最后,对定理的深入理解和分析也是不可或缺的。
04
定理的应用
在物理中的应用
量子力学
布洛赫定理在量子力学中有着广泛的应用,它为描 述粒子的波函数提供了重要的数学工具。
固体物理学
在固体物理学中,布洛赫定理常被用于研究晶体的 电子结构和性质,特别是在能带理论中。
粒子物理学
在粒子物理学中,布洛赫定理用于描述粒子的传播 和散射现象,特应用
80%
算法设计
布洛赫定理在算法设计中有着重 要的应用,特别是在动态规划和 图算法中。
100%
数据结构
通过应用布洛赫定理,可以设计 出更高效的数据结构,例如哈希 表和二叉搜索树等。
80%
计算复杂性
布洛赫定理在计算复杂性理论中 也有所应用,它有助于理解不同 算法的时间复杂度和空间复杂度 。
在其他领域的应用
经济学
布洛赫定理在经济学的某些领 域也有所应用,例如在博弈论 和决策理论中。
在实践中,布洛赫定理被广泛应用于组合数学、图论、计算机科 学等多个领域。例如,在计算机科学中,布洛赫定理可以用于解 决图形的布局和优化问题,以及网络设计和路由问题等。此外, 布洛赫定理在物理学、化学和工程学等领域也有广泛的应用。
03
定理的证明
证明的思路和步骤
思路概述
首先,明确定理的定义和要求,然后 通过数学推导和逻辑推理,逐步构建 证明的框架。
对物理学的贡献
布洛赫定理在物理学领域也有着 广泛的应用,它为研究物质波、 量子力学和相对论等领域提供了 重要的理论支持。

布洛赫定理及它的指导意义

布洛赫定理及它的指导意义

JISHOU UNIVERSITY《固体物理》期末考核报告布洛赫定理及它的指导意义布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫(Felix Bloch )而得名。

布洛赫波由一个平面波和一个周期函数u (r )(布洛赫波包)相乘得到。

其中u (r )与势场具有相同周期性。

布洛赫波的具体形式为:式中k 为波矢。

上式表达的波函数称为布洛赫函数。

当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质:这一结论称为布洛赫定理(Bloch's theorem ),其中为晶格周期矢量。

可以看出,具有上式性质的波函数可以写成布洛赫函数的形式。

平面波波矢k(又称“布洛赫波矢”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵矢量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波矢。

对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n以区别。

这些能带的能量在k的各个单值区分界处存在有限大小的空隙,称为能隙。

在第一布里渊区中所有能量本征态的集合构成了电子的能带结构。

在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。

上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波矢k是一个守恒量(以倒易点阵矢量为模),即电子波的群速度为守恒量。

换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷。

从薛定谔方程出发可以证明,哈密顿算符(Hamiltonian)与平移算符(translation)的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。

更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。

布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill,1877年),加斯东·弗洛凯(Gaston Floquet,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov,1892年)等独立地提出。

布洛赫定理的内容

布洛赫定理的内容

布洛赫定理的内容
布洛赫定理是固体物理学中的一个重要定理,描述了周期势场中电子波函数的特性。

具体内容如下:
1. 布洛赫定理指出,在周期势场中,电子的波函数具有形式为
ψ(r) = u(r)exp(ik·r)的解,其中u(r)是一个与周期势场具体形
式相关的函数,exp(ik·r)是一个平面波因子,k是电子的晶格动量。

2. 布洛赫定理说明了电子波函数在周期势场中的行为具有周期性,即ψ(r + R) = ψ(r),其中R是晶格常数。

3. 根据布洛赫定理,电子波函数可以用一个波矢k来标记,称
之为布洛赫矢量。

每个布洛赫矢量对应一个能量本征态,称为布洛赫能带。

4. 布洛赫定理还指出,对于周期势场中的电子,其能量本征态
具有沿晶格方向传播的特性。

这意味着,电子在周期势场中的行为可以用一系列具有不同波矢k的平面波叠加来描述,每个平面波对应不同的能量本征态。

5. 布洛赫定理基于周期势场的周期性,可以有效地描述晶体中
的电子行为,例如能带结构、导电性等。

该定理为固体物理学提供了一个重要的理论框架,对于理解和研究晶体中电子行为具有重要意义。

固体物理学教学大纲

固体物理学教学大纲

《固体物理学》教学大纲(适用于本科物理学专业)课程编码:140613040学时:64学分:4开课学期:第七学期课程类型:专业必修课先修课程:理论力学,电动力学,热力学与统计物理,量子力学教学手段:多媒体一、教学目的与任务:本课程是物理学专业本科生的专业选修课。

通过本课程的学习,使学生了解固体物理学发展的基本情况,以及固体物理学对于近代物理和近代科技的发展起的作用,培养学生的科学素质和科学精神;了解固体物理所研究的基本内容和固体物理研究前沿领域的概况,培养学生的现代意识和科学远见;掌握固体物理学的基本概念和基本规律,培养掌握科学知识的方法;掌握应用固体物理学理论分析和处理问题的手段和方法,培养科学研究的方法。

二、课程的基本内容:1.晶体的结构2.固体的结合3.晶格振动与晶体的热学性质4.能带理论5.晶体中电子在电场和磁场中的运动6.金属电子论三、课程的教学要求:(1)掌握晶体的空间点阵,晶体基矢的表达,倒易点阵,晶面、晶向的概念以及正点阵和倒易点阵的关系。

(2)掌握晶体的结合类型和结合性质。

(3)掌握一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念。

爱因斯坦模型和德拜模型解释固体的比热性质。

(4)掌握自由电子气的概念,自由电子气的费密能量,布洛赫波以及自由电子模型。

(5)掌握布里渊区的概念以及近自由电子近似和紧束缚近似方法计算能带的理论。

(6)了解晶体的对称操作类型,了解非谐效应,确定振动谱的实验方法以及晶格的自由能。

(7)了解金属中电子气的热容量,金属、半导体、绝缘体以及空穴的概念。

四、课程学时分配:第一章晶体结构(8学时)【教学目的】通过本章的教学,使学生了解晶格结构的一些实例;理解和掌握晶体结构的周期性特征及其描述方法;理解和掌握晶体结构的对称性特征及其描述方法;理解和掌握倒格子的定义及其与正格子的关系。

【重点难点】重点:晶体结构的周期性特征及其描述方法、晶体结构的对称性特征及其描述方法、倒格子及其与正格子的关系。

第四章 第一节 布洛赫定理

第四章 第一节 布洛赫定理

该方程可以在一个正点阵元胞内求解,属于在有 限区域内的厄米本征值问题,应该有无穷多分立 的本征值E n(k),对应无穷多的本征函数。
2. 对于一个确定的n, 能量本征值和波函
数都是k的周期函数
我们注意到
其中 将
仍然是正点阵的周期函数 代入能量本征值方程,得到
对比
它们完全相同,因此

有相同的本征值,即
对所有具有时间反演对称性的晶体能谱有:
由式子4.1.20有
两边取共轭,k -> -k
能量本征值必须是实数:
结果
满足同一方程,有
5. 等能面垂直于布里渊区界面
等能面定义为k空间,所有能量相等的k构成的曲面。
布里渊区界面是K h的中垂面,因此相对于K h 和-K h的一对布里渊区界面有镜面反演对称。 设A,B为布里渊区界面上关于m对称的两个点,a, b为 布里渊区界面上关于m对称的两个点。它们之间正好 相差一个倒格矢K h。 过a,b两点等能面的法线为
这就是布洛赫定理。
当平移晶格矢量R时,同一能量本征值的波函数只增 加一个相位因子。
注意:不是R的周期函数!
布洛赫定理的另一种表达形式: 周期势场中的单电子波函数可以写成一个调幅的 平面波(布洛赫波函数):
其中调幅因子u满足R的周期性:
很显然,该函数必然满足布洛赫定理
与自由电子波函数相比,周期场的作用只是用一 个调幅平面波取代了平面波,称为布洛赫波。
平移算符
晶体最重要的特征是平移对称性,定义三个基本的 平移算符: 对任一函数:
它们是可对易的:
同时,平移算符 也是可对易的:
与哈密顿

这四个算符具有相同的本征函数,可以用它们所对 应的本征值的量子数来标志周期中的单电子态。

固体物理 第四章(1)Bloch定理

固体物理 第四章(1)Bloch定理



i

ˆ H i i r i Ei i r i


(4-9)
所有电子都满足薛定谔方程,可略去下标。只要解得 i r i , Ei ,便可得
到晶体电子体系的电子状态和能量,使一个多电子体系的问题简化成一 个单电子问题,所以上述近似也称为单电子近似。

周期势场假设
而并不考虑其它电子的具体运动情况
单电子近似并非所研究的系统只有一个电子。系统可以有多个 电子,但是波函数十单电子的波函数,多个单电子方程。但所 有单电子都满足同样的方程,因此这个单电子方程的解对所有 电子都适用,是所有电子的解。 如果该近似用到不满足这个近似的体系——强关联体系,会出 现反常现象。
4.2 能带理论的基本假设
假设在体积V=L3中有N个带正电荷Ze的离子实,相应地有NZ个价电 子,那么该系统的哈密顿量为:
2 2 1 / e2 ˆ H i 2 i , j 4 0 r i r j i 1 2m
NZ NZ N 2 2 1 ( Ne) 2 Ze 2 / n 2 i , j 4 0 R n R m i 1 n 1 4 0 r i R n i 1 2 M ˆ ˆ Te U ee r i r j Tn U nm R n R m U en r i R n N

(4-12)
的本征函数是按布拉菲格子周期性调幅的平面波,即
k



ik r r e uk r

(4-13)
在周期势场中运动的单电子的波函数不再 是平面波,而是调幅平面波,其振幅不再
uk r R n uk r

固体物理电子教案51布洛赫定理-PPT课件

固体物理电子教案51布洛赫定理-PPT课件

ˆ (3) T

ik R (R n) e
n
ˆ 设 T ( R ) 对应的本征值为 ( R ) ,则有 n n ˆ T ( R ) ( r ) ( r R ) ( R ) ( r ) n n n

n n n 1 2 3 ˆ ˆ ˆ T ( a )T ( a )T ( a ) 1 2 3
根据上式可得到
N 1 ˆ T N a ( r ) ( a )( r ) ( r N a ) ( r ) 1 1 1 1 1

(a1) e
l i2π 2 N 2
N 1 ( a ) 1 1
l i2π 1 N 1
u r u r R n k k
( a ) 、 ( a ) 、 ( a ) ? 1 2 3
在晶格周期性势场中运动的电子的波函数是按晶格周期调 幅的平面波。具有此形式的波函数称为布洛赫波函数。 3.证明布洛赫定理
(1)引入平移对称算符 T(R n)



设晶体在 a 、 a 、 a 方向各有 N 、 N 、 N 个原 , 1 2 3 1 2 3
由周期性边界条件 ( r ) ( r N 1 a 1 ) ( r ) ( r N a 2 2) ( r ) ( r N 3 a 3 )
同理可得: (a 2) e
,
(a3 ) e
i 2π
l3 N3
ˆ 这样 T(Rn ) 的本征值取下列形式
n l nl nl i2 π(11 2 2 3 3) N N N 1 2 3 ( R ) e n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4-1
第四章 能带理论
布洛赫定理
——1928 年布洛赫提出
在周期场中运动的单电子有什么特点呢?布
洛赫(Bloch)发现,不管周期势场的具体函数如
何,在周期场中运动的单电子的波函 (r数) 不
再是平面波,而是调幅平面波,其振幅不再是
常数,而是随晶格周期性变化,即:

(r )
eikr
u(r )
此形式的波函数叫布洛赫函数或布洛赫波
4 – 1 布洛赫定理
第四章 能带理论
第四章 晶体中电子的能带理论
前面我们介绍了绝热近似,是将电子运动与离 子运动分开来考虑:
(1)研究离子运动时,认为电子能跟上离子位置 变化,不考虑其影响——即晶格振动问题,描 述原子或离子围绕平衡位置的小振动问题。
(2)研究电子运动时,假定离子实静止在平衡位 置上,晶格具有严格周期性,而晶格振动对电 子影响当作微扰来处理——即能带理论,研究 固体中的电子状态。
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
• 为了了解固体的各种物理性质与物理效应,必须研 究电子在晶格中的运动。
• 根据绝热近似,我们学习了晶格振动的知识——声 子的色散关系,知道这是与晶体内部的周期性结构 密切相关的。
• 对晶体的电子而言,周期性结构导致电子处于周期 性排列的离子和其它所有电子所产生的势场中运 动——这个场不是常数,而是一个周期性势场。
• 20世纪30年代,布洛赫(Bloch)和布里渊 (Brillouin)等人解决了金属的电导问题,研究了 在周期场中运动的电子性质,于1928年创立了固体 的能带理论。
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
小结:
(1)能带理论 —— 研究固体中电子运动的主要理论基础
(2)能带理论 —— 定性地阐明了晶体中电子运动的普遍性的
u(r ) u(r R)
or
k (r R) eik R k (r ) 用这种波函数描述的电子叫布洛赫电子
东北师范大学物理学院
4 – 1 布洛赫定理
布洛赫定理
第四章 能带理论
晶格具有平移对称性的单电子哈密顿
H
2
2
V
(r )
的本征函数
(r)可表2m示为
(r )
e
ikr
u(r )
其中
u(r )
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
能带理论是一种近似方法
晶体中电子有两类
外层价电子 能量高; 晶体势场较弱; 电子行为类似于自由电子;
故晶体势场对电子运动的影 响看作微扰处理。
内层电子
能量低;
晶体势场较强;
电子基本上围绕原子核 运动;故相邻原子的影
响看作是微扰处理。
近自由电子近似
能带近似计算方法
迄今为止,我们还未得到 E k 的具体形式。
要求能量本征值,必须解薛定谔方程:
2
2m
晶体势场
V2r 也V 必r须 n具k r体 给E出n k,这nk 是r 非常困
难 的的 晶事 体情势。V 常r常,以再简利化用的量模子型力势学来中代微替扰真理实论
来解决。
如何简化?
能带理论建立基础
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
能带理论建立基础
(1)绝热近似 (2)单电子近似 (3)周期场近似
周期场近似:由于晶格的周期性结构,可以合理的假设
所有点子及离子产生的场均具有晶格周期性。
V r V r Rn
Rn n1a1 n2a2 n3a3
东北师范大学物理学院
紧束缚近似
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
本章主要内容
§4-1布洛赫定理 §4-2一维周期场中电子运动的近自由电子近似 §4-3三维周期场中电子运动的近自由电子近似 §4-5紧束缚近似——原子轨道线性组合法 §4-7能态密度和费米面
东北师范大学物理学院
4 – 1 布洛赫定理
是一个具有晶格周期性的函数:
u(r )
u(r
R)
,k
为简约波矢。
东北师范大学物理学院
4 – 1 布洛赫定理
也可理解为:
第四章 能带理论
晶体中电子的波函数是按晶格周期调幅的 平面波,即电子的波函数具有如下形式:
(r ) eikruk (r )
uk (r ) uk (r Rn )
这里 k 为电子的波矢,Rn 是晶格平移矢量.
再(束1晶)缚体电于中子个电别子的波的共函原有数子化,运而动是2m在:2 整认2 个为V 固固r 体体 内中r 运的 E动电 。子r 不
(2)微扰处理:在讨论V 共r 有 V化r电 子Rn 运动状态时,
假与定自原由子电实子论处不在同其在平于衡,位在能置带,理而论把中原V子(r )实不偏是恒离定平的, 衡而位是置具有的与影晶响格同看周成期微的函扰数。。
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
简约波矢的说明
关于简约波矢 k
k 标志着电子状态的量子数,不同的 k 表示
不同状态,具有不同的能量,其物理意义是表示原
胞之间电子波函 数之间的位相差。
自由电子: k 代表动量本征值,其波矢 k 取
值无限制;
布洛赫电子: k 代表准动量,其波矢 k 取值在
4 – 1 布洛赫定理
第四章 能带理论
单电子所处周期性势场图示
V(r )
a
r
能带理论是一种绝热近似下的单电子近似理论。
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
(1)绝热近似 (2)单电子近似 (3)周期场近似
晶体系统多电子问题就简化为周期场中的单电子问题。 晶体电子态就可以用单电子在不同的周期场中运动的状 态来描述.
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
能带理论建立基础
(1)绝热近似 (2)单电子近似 (3)周期场近似
单电子近似:含有大量电子的体系中,每个电子受到其
它电子作用比较接近于平均作用,故用“平均势场”来替代 电子的真实相互作用,即每个电子都在一个相同的有效势场 中运动。这种方法称为单电子近似,对于晶格,单电子有效 势由两部分组成,即晶格离子势和电子间平均作用势。
特点,对固体中电子的状态进行了较为精确的物理描述。
—— 说明了导体、非导体的区别。
定性的
计算机技术的发展
普遍性规律
具体材料 复杂能带结构
的计算
半导体 技术的
发展
微电子工业 高度发展
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
东北师范大学物理学院
4 – 1 布洛赫定理
第四章 能带理论
相关文档
最新文档