基于单片机的恒流源.doc
基于单片机的恒流源设计
(1)C1,C21,因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的
数值选择外部元器件。
(2)在误差允许的区域内,C1和C2值都是越小,实现的功能就越精确,如果C1和C2值比正常数值大时,可能会使振荡器更加稳定,可是也会增加响应的时间。
TLC5615芯片的结构框图与特点
场效应晶体管作为主要组成部件的恒流电路,如图2所示。Rg1、Rg2分压,稳定G点电位。由于MOSFET的G电压被钳位.当流过MOSFET的电流有增大的趋势时,负反馈电阻上的压降增大,使MOSFET截止趋势增加,电流下降。同样的当流过MOSFET的电流有减小的趋势时,负反馈电阻上的压降降低,使MOSFET导通趋势增加,电流升高,从而达到恒定输出的作用。具体恒流输出Id如下:
图9:Urst电压时间曲线。
在本设计中采用了按键复位和上电复位的两种模式(如图8所示)上电复位完成系统初始化,同时增加的手动按键复位可以方便调试使用。
在单片机最小系统里晶振的作用是给单片机输入时钟信号,这个时钟信号就是单片机的工作速度。单片机工作的最小时间计量单位就是由这个晶振决定的。
图10晶振电路
基于单片机的恒流源设计
基于单片机的恒流源设计
摘 要
恒流源在日常生活中扮演着重要的角色,很多电子设备需要做恒流源。恒流源的用途很丰富,它能够在脉冲或者差动放大电路中产生作用,同样也能够作为它的有源负载,又可以提供给放大电路偏流用来使它的静态功能工作点处于稳定。
---(1)
---(2)
---(3)
(1)晶体管恒流电路优点:无特殊的元件使得设计简单而且可行性较高,电流输出可以通过Rs控制。
(2)晶体管恒流电路优点:元器件本身差异造成不同管子的晶体管节电压Ube差距较
基于AVR单片机PWM功能的数控恒流源
随着电子技术的深入发展,各种智能仪器越...基于AVR单片机PWM功能的数控恒流源研制854减小字体增大字体作者:桂林电子科技大学梁坤胡鸿志来源:今日电子发布时间:2007-10-19 10:50:33随着电子技术的深入发展,各种智能仪器越来越多,涉及领域越来越广,而仪器对电源的要求也越来越高。
现今,电源设备有朝着数字化方向发展的趋势。
然而绝大多数数控电源设计是通过高位数的A/D和D/A芯片来实现的,这虽然能获得较高的精度,但也使得成本大为增加。
本文介绍一种基于AVR单片机PWM功能的低成本高精度数控恒流源,能够精确实现0~2A恒流。
系统框图图1为系统的总体框图。
本系统通过小键盘和LCD实现人机交流,小键盘负责接收要实现的电流值,LCD 12864负责显示。
AVR单片机根据输入的电流值产生对应的PWM波,经过滤波和功放电路后对压控恒流元件进行控制,产生电流,电流再经过采样电阻到达负载。
同时,对采样电阻两端信号进行差分和放大,送入ADC。
单片机根据采集到的值调整PWM 输出,从而调整了输出电流。
如此反复,直到电流达到设定要求。
图1 数控恒流源系统框图模块介绍1 人机接口模块本模块包括小键盘电路和液晶显示电路。
键盘设计为3×4键盘,由数字键0~9,功能键“删除”及“确认”组成,采用反转法实现键值识别。
显示电路由带中文字库的LCD 12864构成,该液晶可以每行8个汉字显示4行。
由于这部分电路比较简单,在此不详述。
2 核心控制模块系统的核心控制模块为AVR单片机(ATMEGA 16L)。
主要使用了AVR的PWM功能和A/D功能。
AVR单片机片内有一个具有16位PWM功能的定时/计数器。
在普通模式下,计数器不停地累加,计到最大值(TOP=0xffff)后溢出,返回到最小值0x0000重新开始。
当启用PWM 功能即在单片机的快速PWM模式下,通过调整OCR1A的值可实现输出PWM波的占空比变化。
[实用参考]基于单片机的恒流源.doc
前言随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为人们追求的一种趋势,设备的性能、价格,发展空间等备受人们关注,尤其对电子设备的精密度和稳定度最为关注。
性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件就越优越,那么设备的寿命就更长。
基于此,人们对数控恒定电流器件的需要越来越迫切。
电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。
电力电子技术是电能的最佳应用技术之一。
当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。
随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。
随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。
电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。
只有满足产品标准,才能够进入市场。
随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。
数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。
这些理论为其后来的发展提供了一个良好的基础。
在以后的一段时间里,数控电源技术有了长足的发展。
但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。
因此数控电源主要的发展方向,是针对上述缺点不断加以改善。
单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。
新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W的数控电源。
从组成上,数控电源可分成器件、主电路与控制等三部分。
目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。
数字化智能电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。
基于单片机的恒流开关电源-新
毕业论文(设计)中文题目: 基于单片机的恒流开关电源英文题目:MCU-based switching power supply design姓名学号专业班级指导教师提交日期摘要本开关电源设计采用STC12C5A60S2单片机发生47KHZ的PWM脉冲信号,经过IR2104控制MOS,从而控制整个BUCK(降压式变换)电路。
单片机内部自带的10位ADC能通过电压电流检测电流实时反馈电流和电压数值,并由此调整输出的PWM的占空比,形成电流电压闭环控制系统.按键能设置输出电流从0。
2A到2A,以0.01A递增,输出最大10V,液晶能显示实时输出电流与电压。
根据测试,满载的供电效率为88%。
按键设置的输出电流的误差小于0。
01A。
关键词:开关电源,BUCK,STC单片机,IR2104,恒流源MCU-based switching power supply designAbstractThe switching power supply design uses STC12C5A60S2 microcontroller PWM pulse signal 47KHZ happen, after MOS driver IC IR2104 control the whole BUCK circuit。
MCU comes with 10 internal ADC voltage detection current by real—time feedback current and voltage values, and thereby adjust the output PWM duty cycle, forming a voltage closed-loop control system。
Button can set the output voltage from 0V to 10V limit of,1V steps,the LCD can display real—time output voltage and current。
单片机恒流源电路
单片机恒流源电路单片机恒流源电路是一种常用的电路设计,用于实现对电路中负载电流的精确控制。
它通过对电路中的电流进行监测和调节,以保持负载电流恒定不变。
这种电路在很多应用中都有广泛的应用,例如LED照明、电池充放电等。
单片机恒流源电路的原理非常简单。
首先,我们需要一个电流传感器来监测电路中的电流。
常用的电流传感器有霍尔传感器、电阻传感器等。
这里我们以霍尔传感器为例。
霍尔传感器可以根据电流的大小产生相应的电压信号。
接下来,我们需要一个单片机来读取霍尔传感器输出的电压信号,并根据设定的目标电流值来调节电路中的电流。
最后,根据单片机的控制信号,通过PWM技术来调节电路中的开关管的导通时间,从而实现对电路中负载电流的精确控制。
在设计单片机恒流源电路时,我们需要考虑几个关键因素。
首先是电流传感器的选择。
不同的应用场景需要不同的电流传感器,如电流量级、响应速度等。
其次是单片机的选择。
单片机需要具备足够的计算能力和IO口数量,以满足电流控制的要求。
另外,还需要考虑电路的稳定性和可靠性,以及对电流源的精确控制。
在实际应用中,单片机恒流源电路可以实现对LED照明的亮度调节。
LED的亮度与其通电电流成正比,通过对电路中的电流进行精确控制,可以实现LED的亮度调节。
此外,单片机恒流源电路还可以用于电池充放电控制。
通过对电池充电电流或放电电流的精确控制,可以提高电池的使用寿命和安全性。
总结一下,单片机恒流源电路是一种常用的电路设计,用于实现对电路中负载电流的精确控制。
它通过对电流进行监测和调节,以保持负载电流恒定不变。
在实际应用中,它可以实现LED照明的亮度调节、电池充放电控制等功能。
通过合理选择电流传感器和单片机,并进行精确控制,可以提高电路的稳定性和可靠性。
希望本文对单片机恒流源电路的理解和应用有所帮助。
单片机恒流源电路
单片机恒流源电路单片机恒流源电路是一种常用的电子电路设计,用于控制电流的稳定输出。
它在各种电子设备中广泛应用,例如LED照明、电动车充电器等。
本文将介绍单片机恒流源电路的工作原理、设计方法和应用领域。
一、工作原理单片机恒流源电路的主要原理是通过单片机控制电流源的输出电流,使其保持恒定。
具体来说,它通过对电流源的电流进行反馈控制,实现对输出电流的精确调节。
一般情况下,单片机通过比较输入电流和设定电流的大小,控制电流源的导通和截止,从而实现电流的稳定输出。
二、设计方法设计单片机恒流源电路时,需要考虑以下几个方面:电流源的选择、反馈电路的设计和单片机程序的编写。
1. 电流源的选择:常见的电流源包括二极管、晶体管和集成电路等。
选择合适的电流源需要考虑到输出电流的范围和精度要求。
2. 反馈电路的设计:反馈电路主要用于检测输出电流并将其反馈到单片机。
常用的反馈电路包括电流采样电阻、差动放大器和比较器等。
设计反馈电路时需要考虑电流采样的准确性和响应速度。
3. 单片机程序的编写:编写单片机程序需要根据具体的芯片型号和开发环境。
主要包括对输入电流的采样、与设定电流进行比较和控制电流源的开关等。
三、应用领域单片机恒流源电路在各种电子设备中都有广泛应用。
以下是几个常见的应用领域:1. LED照明:LED是一种常见的照明光源,但它的亮度和寿命很大程度上取决于电流的稳定性。
通过使用单片机恒流源电路可以实现对LED驱动电流的精确控制,从而提高LED的亮度和寿命。
2. 电动车充电器:电动车充电器需要提供稳定的充电电流,以保证电池的安全充电。
单片机恒流源电路可以实现对充电电流的精确控制,从而提高电池的充电效率和寿命。
3. 太阳能充电器:太阳能充电器可以将太阳能转换为电能进行充电。
但是太阳能的输出电流会受到环境光照强度的影响,因此需要使用单片机恒流源电路来保持充电电流的稳定。
四、总结单片机恒流源电路是一种常用的电子电路设计,通过单片机控制电流源的输出电流,实现对电流的稳定调节。
基于单片机的恒流源设计
基于单片机的恒流源设计摘要:随着电子技术的发展,产品数字化已经成为一种发展趋势,电子设备的精密度和稳定度备受关注。
性能好的电子设备,首先离不开稳定的电源,基于此,人们对数控恒定电流器件的需求越来越迫切。
本文介绍了一种数控恒流源的设计原理和实施方案,该方案运用D/A转换器(MAX531)、运算放大器等器件来控制场效应管输出电流的原理,以达到输出恒流的目的。
整个系统采用AT89S52单片机作为主控部件,将预置电流值数据送入D/A转换器(MAX531),经硬件电路变换为恒定的直流输出,同时采用基本没有温度漂移的康铜电阻丝作为精密采样电阻。
采用性能优于普通晶体管的场效应管作为恒流源的主要部件,大功率晶体管作为扩流电路的主要器件,结合三端稳压管和多层滤波使得整个系统性能提升了一个层次,从而实现了高精度恒流源的目的。
系统还对输出电流进行实时采样,通过A/D (MAX187)转换器采样回单片机与用户设定的电流值进行比较,实现了对输出电流的监控。
同时通过键盘的控制,实现了输出电流值的预置,可步进调整、输出的电流信号可直接数字显示的功能,并具有输出电流实时监控超限报警等功能。
本设计与以往的恒流源相比,具有精度高、结构简单、工作稳定、操作方便、成本低廉、带负载能力强等优点。
关键词:恒流源;AT89S52单片机;MAX531;MAX187Constant current source design based on MCUAbstract:With the development of electronic technology, digital products has become a trend,the precision and stability of electronic equipment received extensive attention. Good performance of electronic equipment depends on a stable power supply first of all, based on this, people's demands on CNC constant current device is more and more pressing needs.This paper introduces a smart NC open-loop DC current source design principle and the implementation of the programmer, using the D/A (MAX531) converters, op amp, and other devices to control FET on-state principle, the output reached constant current purposes. AT89S52 the entire system uses a single-chip microcomputer control components, preferences current value data will be sent to the D/A converters (MAX531), the hardware circuit for the constant transformation of DC output, but not using the basic temperature drift Concord Managing resistor Silk as a sophisticated sampling resistor. Performance is better than the ordinary use of the FET transistor as a constant current source of major components, high-power transistors as expanding the main circuit device, the combination of three-terminal regulators and the multi-filter makes the whole system a performance boost levels to achieve a high-precision constant current source purposes. Output current of the system to conduct real-time sampling, through the A/D converters with sampling to MCU users to set limit current to compare pressure to control the output current. At the same time, the keyboard control and realized the value of output current can be preset, stepping adjustment, the current signal can be directly figures show that the function, and real-time monitoring of the output current values, such as over-current alarm function.In the past compared to DC current source, the design of a high-precision constant current source, simple structure and work stability, and easy to operate, low cost, with a payload capacity, and other advantages.Key words:Current source ;AT89S52MCU ;MAX531;MAX187目录1 系统结构及功能介绍 (1)1.1系统工作原理概述 (1)1.2系统的设计要求与内容 (2)2 设计方案 (3)2.1方案比较 (3)2.2最终方案的选用 (5)3 硬件系统设计 (6)3.1系统硬件基本组成 (6)3.2各模块单元电路设计 (6)3.3系统主要芯片的选择 (9)4 软件设计 (17)4.1概述 (18)4.2主程序结构 (19)4.3各模块子程序设计 (21)5 系统设计要点 (23)5.1硬件设计要点 (23)5.2共地问题 (24)5.3采样电阻的选择 (24)5.4D/A及A/D电路处理 (25)5.4软件调试 (25)6 数据测试及分析 (25)6.1输出电流测试 (25)6.2步进电流测试 (26)6.3工作时间测试 (26)6.4负载阻值变化测试 (26)7 误差分析及功能改进 (26)参考文献 (28)附录1 (30)1 系统电路原理图 (30)2 系统程序设计 (32)附录2 (37)随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。
单片机恒流源电路
单片机恒流源电路单片机恒流源电路是一种常见的电子电路,用于控制电流的大小保持恒定。
它在许多应用中都扮演着重要的角色,比如电池充电、发光二极管(LED)驱动和电阻等。
本文将介绍单片机恒流源电路的原理、设计和应用。
一、原理单片机恒流源电路的原理是通过负反馈控制电流的大小。
它由一个电流传感器、一个运算放大器和一个功率放大器组成。
电流传感器用于检测电流的大小,运算放大器用于比较检测到的电流与设定的目标电流,功率放大器用于根据比较结果来调节输出电流。
二、设计单片机恒流源电路的设计需要考虑多个因素,包括电流范围、精度要求和稳定性。
首先,确定所需的电流范围,即电流的最大和最小值。
然后,选择适当的电流传感器和运算放大器,以满足所需的精度要求。
最后,设计功率放大器的控制电路,使其能够根据比较结果来调节输出电流。
三、应用单片机恒流源电路在许多应用中都有广泛的应用。
以下是一些常见的应用示例:1. 电池充电:单片机恒流源电路可以用于控制电池的充电电流,以避免过充或过放。
通过监测电池电流并根据需要调节充电电流,可以保证电池的安全充电。
2. LED驱动:单片机恒流源电路可以用于驱动LED,以保持恒定的亮度。
通过监测LED电流并根据需要调节驱动电流,可以确保LED 的稳定亮度。
3. 电阻:单片机恒流源电路可以用于测试电阻的阻值。
通过控制电流的大小并测量电压,可以计算出电阻的阻值。
四、总结单片机恒流源电路是一种常见的电子电路,广泛应用于电池充电、LED驱动和电阻测试等领域。
它通过负反馈控制电流的大小,使其能够保持恒定。
设计单片机恒流源电路需要考虑电流范围、精度要求和稳定性等因素。
通过合理设计和应用,单片机恒流源电路能够实现各种电流控制和测量需求。
基于单片机的恒流电源的设计与实现
第一章绪论........................................................................................................... - 4 -1.1 恒流源的应用............................................................................................... - 4 -1.1.1 在计量领域中的应用........................................................................ - 4 -1.1.2 在半导体器件性能测试中的应用.................................................... - 5 -1.1.3 在传感器中的应用............................................................................ - 5 -1.1.4 现代大型仪器中稳定磁场的产生.................................................... - 5 -1.1.5在长延时热脱扣试验中的应用........................................................... - 6 -1.1.6在其它领域中的应用........................................................................... - 6 -1.2 恒流源的发展历程....................................................................................... - 7 -1.2.1 电真空器件恒流源的诞生................................................................ - 7 -1.2.2 晶体管恒流源的产生和分类............................................................ - 7 -1.2.3 集成电路恒流源的出现和种类........................................................ - 7 -1.3 国内外研究现状........................................................................................... - 7 -1.4 论文的研究内容........................................................................................... - 8 -1.4.1 课题需要解决的主要问题................................................................ - 8 -1.4.2 论文的总体结构................................................................................ - 8 - 第2章系统的总体设计 .......................................................................................... - 10 -2.1恒流源综述.................................................................................................... - 10 -2.2总体方案的选取及系统性能........................................................................ - 10 -2.3恒流源基本设计原理与实现方法................................................................ - 11 -2.3.1引起稳定电源输出不稳定的主要原因............................................. - 11 -2.3.2恒流源的基本设计原理..................................................................... - 12 -2.4 本章小结....................................................................................................... - 14 - 第3章系统的硬件设计 .......................................................................................... - 15 -3.1 单片机功能介绍........................................................................................... - 15 -3.2 A/D模块设计................................................................................................ - 22 -3.2.1 AD7715简介 ...................................................................................... - 22 -3.2.2 硬件电路设计.................................................................................... - 26 -3.3 D/A模块设计................................................................................................ - 26 -3.3.1 MAX532简介..................................................................................... - 26 -3.4.2 硬件电路设计.................................................................................... - 28 -3.5 键盘接口电路设计....................................................................................... - 29 -3.5.1 键盘工作方式.................................................................................... - 30 -3.5.2 接口电路设计.................................................................................... - 30 -3.5.3 按键抖动及消除................................................................................ - 31 -3.6 显示器接口电路设计................................................................................... - 32 -3.7 本章小结....................................................................................................... - 33 - 第4章系统的软件设计 .......................................................................................... - 34 -4.1 控制算法....................................................................................................... - 34 -4.2 软件流程图................................................................................................... - 36 -4.2.1 主程序流程图.................................................................................... - 36 -4.2.2 键盘中断子程序................................................................................ - 37 -4.2.3 显示中断子程序................................................................................ - 38 -4.3 本章小结...................................................................................................... - 40 -5 系统功能测试与分析 .......................................................................................... - 41 -5.1 测试仪器..................................................................................................... - 41 -5.2 测试数据及结果分析................................................................................. - 41 -5.3 本章小结..................................................................................................... - 43 - 结论 ............................................................................................................................ - 44 - 致谢 ............................................................................................................................ - 45 - 参考资料 .................................................................................................................... - 46 - 附录硬件电路图 (48)摘要恒流源,是一种能够向负载提供恒定电流的电源。
基于单片机的高性能数控恒流源设计与实现
换送至 单片机 处理 , 单 片机 再对输 出电流进行 实时调整, 使 电流更加稳 定。 实测结果表 明: 本 系统在输 出电流 为1 0 m A~ 2 0 0 0 mA 的范 围内, 绝对误 差 为
1 n 1 A 。 在5 0 m Av R 上输 出时偏差 小于1 % , 负载调 整率优 于0 . 1 %。 关键 词 : 数控 恒流 源 单 片机 OP A 3 4 0 T I P 1 3 2 D A C 7 5 1 2 中图分类 号: T M9 3 2 文献标识码 : A
文章编 号 : 1 0 0 7 — 9 4 1 6 ( 2 0 1 3 ) 0 4 — 0 0 0 2 — 0 2
电源技术作为一门工程技术 , 有着极强的实践性与广阔的应用 领域[ 1 】 。 当今 , 电子 设 备被 广 泛应 用 于 生 活 与 工 作 中 , 而其 供 电 电源 质量 也直接影响着 电子设备的运行质量 。 其 中恒流源是指为负载提 供恒定电流的 电源, 它被广泛用于精密测量 、 半导体器件性能测试、
2 . 2恒 流 电路
本设计采用单 电源供 电的O P A3 4 0 NA作为控制端 , 使反馈端
图 2 恒 流 电路
图 3 软件 —● , 女, 硕士 , 高级 实验师, 主要从 事 电工电子技 术与 计算机应 用技 术教 学研 究工作 。
数控技术
基于单片机的高性能数控恒流源设计与实现
夏 桂 书
( 中国民 用航 空 飞行 学 院航 空工程 学院 四川 广汉 6 1 8 3 0 7 )
摘要 : 基 于高性 能恒流 源在 现代 智能检 测领域 的广 泛应用 , 论 文设计 了一种具 有 高精度 和 高稳 定性 的数控 恒流 源。 通过 键盘 输入设 定输 出电 流值。 由A T 8 9 C 5 1 编程 实现控制 和显示彳 U 用D A C 转换输 出模拟 电压 , 再由运放O P A 3 4 0 控制达林顿 管T I P 1 3 2 输 出电流。 反 馈 电阻上 的 电压值 由A / D转
单片机恒流源电路
单片机恒流源电路1. 引言单片机恒流源电路是一种常用的电子电路,用于提供稳定的恒定电流输出。
它广泛应用于各种需要精确控制电流的场合,例如LED照明、电池充放电等。
本文将介绍单片机恒流源电路的原理、设计和应用。
2. 原理单片机恒流源电路的基本原理是通过反馈控制,使得输出端所连接的负载上得到稳定的恒定电流。
其主要组成部分包括单片机、运放、功率晶体管和负载。
2.1 单片机单片机是整个系统的核心控制器,负责监测并调节输出端的电流。
它通过读取传感器或外部输入信号,并根据预设的控制算法来生成对应的PWM信号。
2.2 运放运放作为一个比较器,将单片机产生的PWM信号与参考电压进行比较,并生成相应的控制信号。
运放还可以起到缓冲作用,提高系统稳定性。
2.3 功率晶体管功率晶体管是负责调节输出端负载上的电流大小。
它的导通与截止由运放控制信号来控制。
当运放输出高电平时,功率晶体管导通,电流流过负载;当运放输出低电平时,功率晶体管截止,负载上无电流通过。
2.4 负载负载是单片机恒流源电路的输出端,可以是LED灯、电阻等。
通过调节输出端的负载来实现对恒定电流的控制。
3. 设计步骤设计一个单片机恒流源电路需要经历以下几个步骤:3.1 确定需求首先需要明确所需的恒定电流大小和输出端所连接的负载类型。
根据需求确定所需的最大输出电流和最大功耗。
3.2 选择元件根据需求选择合适的单片机、运放和功率晶体管。
考虑到系统稳定性和功耗要求,应选择性能优良且适合应用场景的元件。
3.3 连接和布局按照原理图将选好的元件连接起来,并进行布局设计。
合理安排元件位置,保证信号传输路径短且互不干扰。
3.4 编程调试使用相应的开发工具对单片机进行编程,实现恒流源电路的控制算法。
通过调试和测试,确保系统能够稳定输出恒定电流。
3.5 系统优化根据实际应用需求,对系统进行优化。
例如添加过流保护、过温保护等功能,提高系统的可靠性和安全性。
4. 应用举例单片机恒流源电路在实际应用中有广泛的用途。
单片机恒流源电路
单片机恒流源电路单片机恒流源电路是一种常用的电子电路,用于实现对电路中负载电流的精确控制。
它广泛应用于各种电子设备中,如LED照明、电池充电等领域。
本文将详细介绍单片机恒流源电路的原理、设计和应用。
一、原理单片机恒流源电路的原理基于负反馈控制,通过对负载电流进行精确测量和比较,实现对电流的精确控制。
其基本原理如下:1.1 电流传感器恒流源电路中,需要使用电流传感器来实时测量电路中的负载电流。
常用的电流传感器有电流互感器和电流传感器芯片。
电流互感器通过电感耦合的方式,将电流转化为电压信号进行测量;而电流传感器芯片则通过霍尔效应或电阻分压等原理进行测量。
根据应用需求选择合适的电流传感器是恒流源电路设计的重要一步。
1.2 参考电压源恒流源电路中,需要使用稳定的参考电压源作为电流控制的基准。
常见的参考电压源有基准电压源芯片、电阻分压电路等。
参考电压源的稳定性和精确度直接影响到恒流源电路的性能。
1.3 控制回路恒流源电路的控制回路是实现电流控制的核心。
通常使用单片机来实现对电流的精确控制。
单片机通过采样电流传感器输出的电压信号,与参考电压进行比较,然后根据比较结果调整PWM信号的占空比,从而控制功率放大器的输出电压和电流。
二、设计单片机恒流源电路的设计需要考虑以下几个方面:2.1 电流传感器的选择根据实际应用需求选择合适的电流传感器,考虑其测量范围、精确度和响应时间等参数。
2.2 参考电压源的设计选择合适的参考电压源芯片或设计合理的电阻分压电路,以提供稳定、精确的参考电压。
2.3 控制回路的设计根据单片机的性能和外围电路的要求,设计合适的控制回路。
包括采样电路、比较电路、PWM控制电路等。
2.4 输出功率放大器的设计根据负载的特性和要求,选择合适的功率放大器,设计输出电路。
三、应用单片机恒流源电路广泛应用于各种电子设备中,常见的应用场景有:3.1 LED照明单片机恒流源电路可以实现对LED的精确驱动,保证LED的亮度和寿命。
基于单片机的数控恒流源设计
本科毕业论文(设计)题目(中文)基于单片机的数控恒流源设计a(英文)Design of constant current voltage source based on SCM完成日期 2016 年 4 月摘要恒流源是一种高精度的电源,具有响应速度快,恒流精度高,能长期稳定工作,适合各种性质负载等优点,而具有了越来越广泛的应用。
本文主要论述了一种基于51单片机为控制核心的数控直流源的设计与实现。
本电源具有可预设电流,电流步进,显示电流的功能。
主要由单片机控制模块、键盘输入模块、A/D转换模块、恒流源模块、D/A转换模块和显示模块六部分组成。
系统由单片机设定预置电流信号,经过D/A转换器TLC5615输出模拟电压信号,该信号控制达林顿管的基极,使其集电极输出相应的电流。
再通过A/D转换芯片,实时把采样电路上的模拟信号转换成数字信号,形成反馈,显示出实际的输出电流。
关键词:压控恒流源;单片机;数控电源AbstractConstant current source is a kind of common power source with high precision with fast response, high precision of constant current. It can also work stably for a long time and has various properties of the load. So now it is used more and more widely. This paper mainly discusses the design and implementation of a digital constant current source based on51 MCU as the control core of the system. The power supply has a preset current, current step, current display function. It has 6 parts: Control module, keyboard input module, A/D transform module, D /A transform module , display module and constant current source module. The current signal set by the SCM. Then it through D / A converter TLC5615 , which output to the voltage analog signal and control the Darlington tube base, and output the corresponding current. Finally through the A/D conversion chip, real-time sampling circuit analog signal is converted into digital quantity, feedback form, show the actual output current.Keywords: voltage controlled constant current source; single chip microcomputer; digital power supply目录上海师范大学本科毕业论文(设计)诚信声明…………………………………上海师范大学本科毕业论文(设计)选题登记表…………………………………上海师范大学本科毕业论文(设计)指导记录表 (Ⅳ)中文摘要及关键词 (Ⅴ)英文摘要及关键词 (Ⅵ)1 前言 (1)1.1 研究背景及意义 (1)1.2 国内外研究现状 (1)2 基本原理与方案对比 (2)2.1 总体框图 (2)2.2 恒流源方案对比 (3)2.2.1 晶体管恒流源 (3)2.2.2场效应管恒流源 (4)2.2.3集成电路恒流源 (5)2.2.4 总结.................................................................................52.3 单片机简介 (6)2.4 液晶显示屏简介 (8)2.5 数模转换芯片 (9)2.6 模数转换芯片 (9)3各模块实现………………………………………………………………………103.1 键盘模块 (10)3.2 液晶显示模块 (11)3.3D/A转换模块 (12)3.4 A/D转换模块 (12)3.5恒流源模块 (13)3.6 电路整体工作原理 (14)4 系统软件实现 (15)4.1综述 (15)4.2键盘输入流程图 (16)4.3A/D转换流程图 (17)4.4D/A转换流程图 (18)4.5液晶显示流程图 (19)5 整体测试与分析…………………………………………………………………206 总结与展望………………………………………………………………………22参考文献……………………………………………………………………………23附录A 仿真原理图…………………………………………………………………24附录B 程序部分……………………………………………………………………251 前言1.1 研究背景及意义随着电子技术的发展,我们身边出现了越来越多的智能化数字化的精密电子设备,消费者在关注设备的性能、价格、功能、设计的同时,设备的质量和稳定性越来越成为人们关注的重点。
基于单片机控制的恒流源的设计
基于单片机控制的恒流源的设计一、恒流源的原理恒流源是一种能够输出稳定电流的电路,其原理是通过控制电路中的元件使电路输出的电流保持恒定。
在恒流源电路中,通常会采用反馈控制的方式来实现恒流输出。
二、恒流源的设计步骤1. 选择合适的电源:首先需要选择一个合适的电源,根据实际需求选择直流电源或交流电源,并确定所需的电流范围。
2. 选择恒流源控制器:根据所需的电流范围和控制精度,选择合适的单片机作为恒流源的控制器。
常见的单片机有51系列、AVR系列、STM32系列等。
3. 设计反馈控制电路:根据所选的单片机,设计反馈控制电路来实现恒流输出。
反馈控制电路通常包括电流传感器、运算放大器、比较器等元件。
4. 编写控制程序:根据所选的单片机,编写控制程序来实现恒流源的控制功能。
控制程序需要读取电流传感器的信号并与设定的目标电流进行比较,根据比较结果控制输出电路的开关状态。
5. 调试和优化:完成控制程序的编写后,需要进行调试和优化,确保恒流源能够稳定输出所需的恒定电流。
可以通过调整反馈控制电路的参数、增加滤波电路等方式来优化恒流源的性能。
三、恒流源的应用范围恒流源广泛应用于各种需要稳定电流的场合,例如LED照明、电化学实验、电池充放电测试等。
在LED照明中,恒流源可以提供稳定的电流驱动LED,确保LED的亮度和颜色一致;在电化学实验中,恒流源可以提供恒定的电流用于电解过程;在电池充放电测试中,恒流源可以模拟负载,对电池进行充放电性能测试。
总结:基于单片机控制的恒流源的设计,通过选择合适的电源、单片机和设计反馈控制电路来实现稳定的电流输出。
恒流源广泛应用于LED照明、电化学实验、电池充放电测试等领域,为这些应用提供稳定可靠的电流驱动或负载。
设计恒流源需要注意选择适合的元件和参数,并进行调试和优化,以确保恒流源的性能达到设计要求。
基于单片机控制的恒流源的设计
电源的组成框图如图 1 所示 。 交流输入部分的输入电压是 220V/ 50 Hz , 它接入交流调压部分 。交流调压部分由一个 电机调节的自耦变压器及正反转控制电路组 成 ;整流滤波电路由整流桥和电容组成 ; 输出 调整单元由大功率三极管及驱动电路 、输出取 样及比较放大等电路组成 ; 电压基准有 3 个 , 由模拟开关控制当前 D/ A 转换器的基准 。 开机后 ,通过单片机的键盘可输入所需磁 感应强度 ,然后按确认键 ,单片机开始给 D/ A 由小到大逐渐送入数据 , D/ A 的输出逐渐增 大 ,从而使得输出调整单元中大功率管基极的电流增大 ,输出电流增加 ,负载上的压降将逐渐增 大 ,导致输出调整单元中调整管上 c - e 之间的电压降低 。降低到设定的最低值时 ,将给单片机 输出一个信号 。单片机得到信号后控制输入调整单元中的电机转动 ,带动自耦变压器使得输出 交流电压增大 ,调整管 c - e 间的电压随之增大 ,增大到一定数值时 ,电机停止转动 。流源的设计
· 61 ·
415V 基准切换到 6V 基准 后给 D/ A 送的数应为 : d = 415 ×4096/ 6≈3072
之所以采用变换的 D/ A 基 准 ,是由于铁磁质磁感应强度随 电流变化的非线 性[4] 造 成 的。
本机 中 铁 磁 质 磁 感 应 强 度 随 电
1032 1000 0198929 5792 5500 0176614
1524 1500 0199475 6544 6000 0167484
2052 2000 019933 7504 6500 0153566
2548 2500 0198518 8717 7000 0132456
3106 3000 0196791 9303 7210 0122776
基于单片机的恒流源设计
基于单片机的恒流源设计摘要恒流源在日常生活中扮演着重要的角色,很多电子设备需要工作时候的电流处于稳定状态。
我们把可以保证给工作中负载供给恒定电流的电源叫做恒流源。
恒流源的用途很丰富,它能够在脉冲或者差动放大电路中产生作用,同样也能够作为它的有源负载,又可以提供给放大电路偏流用来使它的静态功能工作点处于稳定。
本文介绍了一种基于AT89C51单片机的数控恒流源的研制,该系统主要是由单片机系统电路、DAC转换电路﹑恒流电路。
设计的恒流系统具有精度高、稳定性高的特点。
在数字输入信号部分主要是利用单片机输出的数字量同时配有按键数字键控功能。
DAC转换模块将单片机输出的数字量转换为模拟量,以作为恒流电路的基准电压。
恒流电路部分以集成运放和达林管组成的电流负反馈电路来实现电流的恒定输出。
本设计为了增加人机交互采用数码管显示,可以使得数控恒流的效果更加直观。
本文阐述了精确实现恒流源的原理设计、完整的硬件原理图和软件流程图,并对部分软件模块的设计思想进行分析。
与此同时,也对生活中的可实现性进行仔细测试和仿真。
关键词:AT89C51;单片机;DA转换;恒流源。
A study of the constant current source based on MCUAbstractConstant current source in everyday life plays an important role in many electronic devices need to work in a stable state when the current. We can guarantee that the work load to a constant current power supply is called the constant current source. Constant current source uses a very rich, it can in the differential amplifier circuit in the pulse or an effect, it also can be used as an active load, and can be used to provide bias current to the amplification circuit of the static function of the operating point so that it is stable.This paper introduces a numerical constant current source AT89C51 microcontrollerdevelopment, the system is dominated by single-chip system circuit, DAC converter circuit﹑constant current circuit. Designed constant current system with high precision,high stability characteristics.In the main part of the digital input signal is digital output using the same chip with digital keying function keys. DAC conversion module microcontroller digital output is converted to analog,as the reference voltage constant current circuit. Part of an integrated constant current circuit op amp tubes and Darling current negative feedback circuit to achieve a constant current output.The design of human-computer interaction in order to increase the use of digital tube display, you can make the effect more intuitive numerical constant. This paper describes the precise design principles to achieve a constant current source, a complete hardware schematics and software flow chart, and part of the software module design ideas for analysis.At the same time, but also the life of the realization careful testing and simulation.Key words:AT89C51;SCM; DA conversion; constant current source第一章课题背景所谓恒流源必是输出电流与端电压无关、无温漂,同时其输出电流应该与所连接的外部结构无关。
基于单片机的恒流源
前言随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为人们追求的一种趋势,设备的性能、价格,发展空间等备受人们关注,尤其对电子设备的精密度和稳定度最为关注。
性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件就越优越,那么设备的寿命就更长。
基于此,人们对数控恒定电流器件的需要越来越迫切。
电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。
电力电子技术是电能的最佳应用技术之一。
当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。
随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。
随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。
电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。
只有满足产品标准,才能够进入市场。
随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。
数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。
这些理论为其后来的发展提供了一个良好的基础。
在以后的一段时间里,数控电源技术有了长足的发展。
但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。
因此数控电源主要的发展方向,是针对上述缺点不断加以改善。
单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。
新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V 的数控电源,功率密度达到每立方英寸50W的数控电源。
从组成上,数控电源可分成器件、主电路与控制等三部分。
目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。
数字化智能电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为人们追求的一种趋势,设备的性能、价格,发展空间等备受人们关注,尤其对电子设备的精密度和稳定度最为关注。
性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件就越优越,那么设备的寿命就更长。
基于此,人们对数控恒定电流器件的需要越来越迫切。
电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。
电力电子技术是电能的最佳应用技术之一。
当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。
随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。
随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。
电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。
只有满足产品标准,才能够进入市场。
随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。
数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。
这些理论为其后来的发展提供了一个良好的基础。
在以后的一段时间里,数控电源技术有了长足的发展。
但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。
因此数控电源主要的发展方向,是针对上述缺点不断加以改善。
单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。
新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V 的数控电源,功率密度达到每立方英寸50W的数控电源。
从组成上,数控电源可分成器件、主电路与控制等三部分。
目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。
数字化智能电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。
当今社会,数控恒压技术已经很成熟,但是恒流源方面特别是数控恒流源的技术菜刚刚起步有待发展,高性能的数控横流器件的开发和应用存在巨大的发展空间。
本数控直流恒流源系统输出电流稳定,不随负载和环境变化,并且有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要稳定度小功率横流源的领域。
第一章绪论1.1恒流源的意义恒流源是能够向负载提供恒定电流的电源,一次恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。
例如在通用的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电源就会相应的减少,为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整期输出电压,从而使劳动强度降低,生产效率得到提高。
恒流源还被广泛应用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。
它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数,并且在差动放大电路、脉冲产生电路中得到广泛应用。
除此之外,现行扫描锯齿波的获得,有线通信工电源,电泳、点解、电镀等化学加工装置电源,电子束加工机、离子注入机等电子光化学设备中的供电电源也都必须用用恒流源!1.2 恒流源的发展历程1.2.1 电真空器件恒流源的诞生世界上最早的恒流源,大约出现在20世纪50年代早期。
当时采用的电真空器件是镇流管,优于镇流管有稳定电流的功能,所以有用于交流电路,常被用来稳定电子管的灯丝电流。
电子管通常不能单独作为横流元件,但可用它来构成各种横流电路。
由于电子管是高雅小电流器件,因此用简单的晶体管电路难于获得高雅小电流恒流源,用电子管电路却容易实现,并且性能相当好!122 晶体管横流源的产生和分类进入60年代,随着半导体技术的发展,设计和制造出了各种性能优越的晶体管和恒流源,并在实际中获得可广泛的应用。
晶体管恒流源电路可封装在同一外壳内,成为一个具有横流功能的独立器件,用它可构成直接调整型恒流源。
用晶体管做调整元件的各种开环和闭环的恒流源,在许多电子电路中得到了应用。
但晶体管恒流源的恒流源的电流稳定度一般不高,且最大输出电流也不活几安培。
它适用于那些对稳定度要求不太高的场合。
1.2.3集成电路恒流源的出现和种类到了70年代,半导体集成技术的发展,使得恒流源的研制进入了一个新的阶段。
长期以来采用分离元件组装的各种恒流源,现在可以集成在一块很小的硅片上面仅需外接少量的元件,集成电路恒流源不仅减小了体积和重量,简化了设计和调试步骤,而且提高了稳定性和可靠性。
在各种恒流源电路中,集成电路恒流源的性能堪称最佳。
第二章系统原理及理论分析2.1恒流实现原理数模转换芯片 AD7543是12位电流输出型,其中 0UT1和0UT2是电流的输出端。
电流的输出级别可这样计算DX= 212式中:DX 是控制级数电压u i 由集成运算放大器U8A 的1脚输出,根据T 型电阻网络型的 D/A 转换关系可知,u i 存在如下通式:U i(b n 」2心 b n/ 2心•……b i • 2 b 。
•2°) R f —B 寧 (1)2 * R 2 式中:U i ——输出电压(V )V REF --- 参考电压(V );R ——T 网络电阻C 1);Rf --- 外接反馈电阻(门)。
电流放大电路存在如下关系:| = _U i ( R 5 R ) b 「民 r 1)R 5 I L = I b 式中:lb ——基极电流(Ui ——输入电压(V );I L ——负载电流(mA )(2)(3)mA )由式(1)、(2)可得到:亠R • Rw) -:/ 4)R4 (: 1)R5由于电路中的放大系数[值远大于1,而R与R i保持恒定,所以可推出负载电流与输入电压存在如下关系:W 斗(5)R4由式(5)、(1)可得到:匚皿鹉(6)2 R4其中,K为比例系数由式(6)可知,负载电流I L不随外部负载R L的变化而改变。
当5保持不变时(即AD7543的输入数字量保持不变),输出电流I L维持不变,能够达到恒流的目的。
为了实现数控的目的,可以通过微处理器控制AD7543的模拟量输出,从而间接改变电流源的输出电流。
从理论上来说,通过控制AD7543的输出等级,可以达到1mA的输出精度。
但是本系统恒流源要求输出电流范围是20mA~2000mA,而当器件处于2000mA的工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶体管1值下降,从而导致电流不能维持恒定。
为了克服大电流工作时电流的波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流的波动,此反馈回路采用数字形式反馈,通过微处理器的实时采样分析后,根据实际输出对电流源进行实时调节。
经测试表明,采用常用的大功率电阻作为采样电阻R o,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善。
2.2系统性能本系统的性能指标主要由两大关系所决定,设定值与D/A采样显示值(系统内部测量值)的关系。
内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。
在没有采用数字闭环之前,设定值与内部测量值的关系只能通过反复测量来得出它们的关系(要送多大的数才能使D /A输出与设定电流值相对应的电压值),再通过单片机乘除法再实现这个关系,从而基本实现设定值与内部测量值相一致。
但由于周围环境等因素的影响,使设定值与内部测量值的关系改变,使得设定值与内部测量值不一致,有时会相差上百毫安,只能重新测量设定值与A / D采样显示值的关系改变D / A入口数值的大小才能重新达到设定值与内部测量值相一致,也就是说还不稳定。
在采用数字闭环后。
通过比较设定值与A /D采样显示值,得出它们的差值,再调整D / A的入口数值,从而使A / D采样显示值逐步逼近设定值最终达到一致。
而我们无须关心D / A入口数值的大小,从而省去了原程序中双字节乘除的部分,使程序简单而不受周围环境等因素的影响。
内部测量值与实际测量值的误差是由于取样电阻与负载电阻和晶体管的放大倍数受温度的影响和测量仪表的误差所造成的,为了减少这种误差,一定要选用温度系数低的电阻来作采样电阻,因此本系统选用锰铜电阻丝来作采样电阻。
2.3单片机最小系统组成单片机系统是整个数控系统的核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整。
主要包括AT89S52单片机、模数转换芯片ADC0809、数模转换芯片AD7543、数码管显示译码芯片74LS47与74LS138等器件下图为组成第三章总体方案论证与比较3.1方案一方案一原理如下图,采用EPROM和D\A转换器等数字器件完成的控制。
次方案使用计数器,一方面完成电压的译码显示,另一方面其输出作为EOROI的地址输入,而由EPROM#输出经D\A变换后控制误差放大的基准电压来实现输出步进。
但由于此方案使用开环控制策略,电路简单,成本低,对最后的输出结果不能进寻根建好的调整和修正,使得输出电流精度不高,且控制数据烧录在EPRO中,是系统设计灵活降低,子适应能力差。
3.2 方案二此方案如下图,主要是以单片机为核心构建控制器,通过对电流值进行预置,单片机输出相应数字信号,经过D\A转换、信号放大、电平转换、压控恒流源,输出电信号。
实际输出的电流再利用精密采样电阻转换成电压信号,经过高输入阻抗差动放大器、D\A转换,将信号反馈到单片机中,再将输出反馈信号于设定值比较,送出调整信号,最后输出新的电流值,这样就形成了闭环调节,锁定输出电流,提高了输出电流的精度和稳定度。
本方案采用单片机进行控制、显示、预置,使得系统灵活方便,电流输出精度和稳定度较高。
但在此方案存在稳定性受限于单片机处理数据的能力。
精品文档,下载后可随意编辑!3.3 方案三方案图如下所示,整体原理框图于方案二大致相同,进行总体控制、算法运算、显示和置数的等功能。
配合VHDL语言设计数字硬件控制模块进行控制,具有运行速度快,工作稳定可靠的特点。
A/D 差动放压控恒采样电阻精品文档,下载后可随意编辑!3.4 最终方案确定1 )方案一采用横流二极管或者横流三极管,精度比较高,但这种电路能实现的恒流源范围很小,智能达到几十毫安,不能达到设计的要求。
2)方案二采用四端可调恒流源,这种器件考改变外围电阻元件参数,从而使电流达到可调的目的,这种器件能够满足20--2000毫安的电流输出要求。
改变输出电流,通常有两种方法:一是通过手动调节来改变输出电流,这种方法不能满足数控调节的要求;二是通过数字电位器来改变需要的电阻参数,虽然可以达到数控的目的,但数字电位器的没一级步进电阻比较大,很难连续调节输出电流。