八年级数学导学案

合集下载

2023年人教版八年级数学下册第二十章《加权平均数》导学案

2023年人教版八年级数学下册第二十章《加权平均数》导学案

新人教版八年级数学下册第二十章《加权平均数》导学案一、学习目标:1. 理解数据的“权”和加权平均数的意义。

2. 会计算加权平均数。

学习重点:会计算加权平均数。

学习难点:对“权”的理解。

二、知识链接:简单算术平均数(课前预习)三、导学过程:问题1:(先独立完成,然后小组分工合作交流,选代表展示。

)一家公司打算招聘一名英文翻译. 对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下表所示:应试者听说读写甲85 78 85 73乙73 80 82 831.如果这家公司想找一名综合能力较强的翻译,那听、说、读、写成绩按多少比确定?计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.2.如果公司要招聘一名笔译能力较强的翻译,那听、说、读、写成绩按2 :1 :3 :4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.归纳: 一般地,若n 个数x1 , x2, …, x n 的权分别是w1 , w2 … , w n,则叫做这n 个数的加权平均数.权的意义:——————————————————————————————.思考: 如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按3 : 3 : 2 : 2的比确定,那么甲乙两人谁会被录取?问题2: (小组合作完成)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分.各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手 演讲内容 演讲能力 演讲效果A 85 95 95 B9585951、你能确定他俩的名次吗?2、假如你是A 选手,你能设计一种合理方案,使自己获得第一名吗?四、课堂检测1、有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A ....22x y x y mx ny mx nyB C D m nm n++++++ 2、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:候选人测试成绩(百分制) 面试笔试 甲 86 90 乙9283(1) 如果公司认为面试和笔试成绩同等重要,从他们的成绩看,谁将被录取? (2) 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?五、课堂小结六、作业教科书习题20.1 ——113页第1题、122页第5 题20.1.1平均数(2)学习目标1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值4、经历探索加权平均数的应用过程,体验和理解统计的基本思想,学会频数分布表中应用加权平均数的方法学习重点:根据频数分布表求加权平均数学习难点:根据频数分布表求加权平均数教学过程第一步:课堂引入设计的几个问题如下:(1)、请同学读P140探究问题,依据统计表可以读出哪些信息(2)、这里的组中值指什么,它是怎样确定的?(3)、第二组数据的频数5指什么呢?(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

新人教版八年级数学上册全册导学案(104页)

新人教版八年级数学上册全册导学案(104页)

新人教版八年级数学上册全册导学案11.1 与三角形有关的线段一.学习目标1.了解三角形的性质;学会按边划分三角形。

2.应用已掌握的三角形知识解决生活中的实际问题。

3.培养学生热爱数学,热爱生活的情感。

二.学习重难点三角形的性质和分类及应用三.学习过程第一课时三角形的边(一)构建新知1.阅读教材2~4页(1)三角形由_____条线段_____相连组成的几何图形。

(2)长度分别是1.2,3,4,5,6的6根木条能组成_____个不同的三角形。

(3)一根6米长的铁丝围成的三角形,若每边均为整数值,可以围城的三角形有_____________________;若是9米的铁丝呢?(二)合作学习1.已知△ABC的周长为21cm,边AB=xcm,边BC比AB的2倍长3cm。

(1)用含x的代数式表示AC的长。

(2)求x的取值范围。

(3)x求何值时是等腰三角形。

(三)课堂检查1.若一个三角形三边长分别为2,3,x,则x的值可以为 ____(只需填一个整数)。

2.设a,b,c为三角形的三边长度,则|a+b-c|+|a-b-c|=________。

3.若等腰三角形的两条边长分别为23cm和10cm,那么第三边的长为 ____cm。

4.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的三角形有()。

A.三边不等的三角形 B.只两边相等的三角形C.三边相等的三角形 D.不等边三角形和等腰三角形5.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()。

A.5 B.6 C.7 D.106.已知△ABC的两边长(3-x),第三边长为2x,若△ABC的边长均为整数,试判断此三角形的形状。

BCA(四)学习评价 (五)课后练习 1.学习指要 1~2页2.教材8~9页 1题,2题,6题,7题第二课时三角形的高、中线与角平分线(一)构建新知 1.阅读教材4~5页(1)如图,在△ABC 中,作BC 边上的高AD 和中线AE ;并作∠A 的角平分线AF 。

八年级上册数学全册导学案人教版

八年级上册数学全册导学案人教版

八年级上册数学全册导学案(人教版)八年级上数学导学案12.1轴对称(一)学习目标:1、理解什么是轴对称图形;2、理解什么是“两个图形关于一条直线对称”;3、能够说出轴对称与轴对称图形的区别与联系。

自学指导1、自学29 页,重点掌握___________,完成30页练习;2、自学课本30页,图121-3是____个图形,关系。

请找出图中A、B、C的对称点A′、B′、C′3、轴对称图形与轴对称的区别与联系展示内容1、如果一个图形沿一条直线折叠,直线两旁的部分能够________,这个图形就叫做___________,这条直线就是它的_________。

2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形________,那么就说这两个图形____________________。

3、教材P30练习与P31练习。

4、教材P30与P31的思考,找同学回答。

5、教材P36习题12.1的1、2.12.1 轴对称学习目标1、识记线段垂直平分线的定义2、理解轴对称图形的性质3、掌握并会用线段垂直平分线的性质二、自学指导(15分钟)认真阅读P31页思考-P32页探究前的内容(1)思考部分可在课本上沿MN对折或用测量的方法进行探究(2)探究部分要动手操作,找出你发现的规律:P1A =__,P2A=__,(特别注意l与线段AB的关系)由此可得到线段垂直平分线的性质:____________三、展示内容1、如图,△ABC中,AD垂直平分BC,AB=5,则AC =__2、△ABC与△A,B,C,关于直线l对称,且AB=4cm,则A,B,=__3、如图△ABC与△DEF关于直线MN对称,直线MN 与线段AD的关系是____4、如图△ABC中BC的垂直平分线交AB于E,若△ABC的周长为10,BC=4,则△ACE周长为___5、如图AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB、CE的长度有什么关系,AB+BD与DE有什么关系?课题:12.1轴对称 (三)学习目标:1、掌握线段垂直平分线的判定2、熟练运用线段垂直平分线的性质和判定解决实际问题。

人教版数学八年级上册全册课时导学案

人教版数学八年级上册全册课时导学案

人教版数学八年级上册全册导学案第一学时:11.1.1三角形的边一、学习目标1.认识三角形,•能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题二、重点:知道三角形三边不等关系.难点:判断三条线段能否构成一个三角形的方法.三、合作探究知识点一:三角形概念及分类1、学生自学教科书内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。

如图,线段____、______、______是三角形的边;点A 、B 、C 是三角形的______; _____、 ______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。

图中三角形记作__________。

(2)三角形按角分类可分为_____________、______________、_________________。

(3)三角形按边分类可分为 _____________三角形 _____________——————— _____________(4)如图1,等腰三角形ABC 中,AB=AC,腰是__________,底是_________,顶角指_______,底角指_____________.等边三角形DEF 是特殊的_______三角形,DE=____=_____.图1四、练习一:1、如图.下列图形中是三角形的有_______________?A B C D E F A B C2、图3中有几个三角形?用符号表示这些三角形.知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_____AC AB+ AC _____ BC AC +BC _____ AB从中你可以得出结论:三角形任意两边的和大于第三边,任意两边的差小于第三边。

2021—2022学年人教版数学八年级上册 全册导学案

2021—2022学年人教版数学八年级上册 全册导学案

2021—2022学年人教版数学八年级上册全册导学案一、总体信息•课本名称:人教版数学八年级上册•出版社:人民教育出版社•学年:2021-2022二、教材概览数学八年级上册共包括以下八个单元:1.复习与认识2.整式的基本概念和性质3.一元二次方程的解法4.平面直角坐标系5.一次函数的初步研究6.相交线与平行线7.图形的对称性8.统计图及其应用每个单元的内容涵盖整合知识、概念解释、例题讲解、习题练习等方面。

三、导学教学目标及重点1.科学思考:培养学生的科学思维和解决实际问题的能力。

2.知识传授:掌握数学的基本概念、基础方法和技能,积累精选数学例题,掌握数学学科知识,并联合生活与实际中的问题进行深入探究。

3.技能训练:培养学生的做题方法、技巧,掌握常用的运算技能,提高计算的准确性。

4.交际拓展:在交际中形成良好的合作意识和集体协作能力,增强探究问题、解决问题的信心和自信。

四、单元内容介绍1. 复习与认识本单元主要是对七年级的复习和一些知识的介绍。

重点包括:整数、分数、小数及有理数的概念、化简带有多项式的复合分数、坐标系的概念与使用、正负数在图形中的应用、小数转分数、小数的意义等。

2. 整式的基本概念和性质本单元主要介绍整式的基本概念、常见整式的运算法则及其基本性质。

包括多项式的概念、同类项与合并同类项、多项式的加减法、多项式的乘法、因式分解、差的平方公式和完全平方公式等。

3. 一元二次方程的解法本单元主要介绍一元二次方程,包括方程的概念、一元二次方程的一般形式及求解方法,特别是通过因式分解法和配方法解一元二次方程,以及求解实际问题中的一元二次方程。

4. 平面直角坐标系本单元主要介绍平面直角坐标系,包括平面直角坐标系及其要素、点的坐标、直线的斜率、不等式和坐标系等知识,强调掌握直线的斜率与性质、直线方程的求法等。

5. 一次函数的初步研究本单元主要介绍一次函数的初步研究,包括一次函数的概念、函数图象、方程及其特点、斜率及其意义和应用等知识,重点突出函数的斜率和函数图象之间的关系。

八年级上册数学第一章导学案

八年级上册数学第一章导学案

1.1(1)探索勾股定理导学案主备:审核: 审批:班级:使用人:【学习目标】1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

【学前准备】1、画一个直角三角形并测量三边的长。

2、准备一张坐标纸【自学探究】阅读课本2-5页回答下列问题1、a=3㎝,b=4㎝和a=6㎝,b=8㎝①请你量出斜边c的长度。

(1)(2)②、进行有关的计算(1) a2+b2= c2=(2) a2+b2= c2=③、得出结论:3cm6cm8cm2、思考:(1)观察图1-1, A的面积是__________个单位面积;B的面积是__________个单位面积;C的面积是__________个单位面积。

(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(3)你能发现图1-1中三个正方形A,B,C围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A,B,C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。

预习后你还有什么问题?最想和大家讨论交流的问题是什么?【合作交流】勾股定理例题:P2引例【随堂练习】1、P5随堂练习1、2【小结】你学到了什么:你还有什么问题:【今日作业】1. 求出下列直角三角形中未知边的长度。

2、求斜边长17厘米、一条直角边长15厘米的直角三角形的面积【巩固练习】1.在△ABC中,∠C=90°,(l)若 a=5,b=12,则 c=(2)若c=41,a=9,则b=2.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为3.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 & 32 D.37 & 334.一个抽斗的长为24cm,宽为7cm,在抽斗里放铁条,铁条最长能是多少?【延伸拓展】1.若正方形的面积为2cm2,则它的对角线长为2cm()2.已知四边形 ABCD中,AD∥BC,∠A=90°,AB=8,AD=4,BC=6,则以DC为边的正方形面积为3.在△ABC中,∠ACB=90°,AC=12,CB=5,M、N在AB上且AM=AC,BN=BC则MN的长为() A.2 B.26 C.3 D.42、P7数学理解31.1.2探索勾股定理导学案主备:审核:审批:班级:使用人:【学习目标】利用拼图及列式变形等方法验证勾股定理。

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册第一单元:有理数的加减第一课时:有理数的加法- 研究目标:掌握有理数的加法运算- 研究内容:正数加正数、负数加负数、正数加负数、有理数加零的运算法则- 研究重点:灵活运用有理数的加法规则解决实际问题- 研究方法:理解规则,多做练题第二课时:有理数的减法- 研究目标:掌握有理数的减法运算- 研究内容:正数减正数、负数减负数、正数减负数、有理数减零的运算法则- 研究重点:理解减法的本质,解决实际问题- 研究方法:理解规则,多做练题第三课时:加减混合运算- 研究目标:运用有理数加减法解决实际问题- 研究内容:有理数的混合运算,包括正数、负数的加减混合运算- 研究重点:分析问题,运用加减法的规则解决问题- 研究方法:多做实际问题练,加强思维训练第二单元:比例与相似第一课时:比例- 研究目标:了解比例的概念,掌握比例的基本性质- 研究内容:比例的定义、比例的基本性质- 研究重点:掌握比例的性质,能够应用到实际问题中- 研究方法:理解概念,多做练题第二课时:比例的应用- 研究目标:学会应用比例解决实际问题- 研究内容:比例的应用,包括物体的放大缩小、图形的相似等- 研究重点:分析问题,应用比例的知识解决实际问题- 研究方法:多做应用题,强化实际操作能力第三课时:相似图形- 研究目标:了解相似图形的性质和判定条件- 研究内容:相似图形的定义、相似图形的性质- 研究重点:掌握相似图形的性质和确定相似关系的条件- 研究方法:理解概念,多做练题......(继续给出下一单元的导学案)。

人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案第一单元有理数导学目标- 掌握有理数的概念和表示方法;- 理解有理数的大小比较规则;- 能够进行有理数的加法和减法运算。

导学内容1. 有理数的概念:有理数是一种可以表示为分数形式的数,包括整数和分数。

2. 有理数的表示方法:- 整数可以用正负号和数字表示,如正整数用"+"表示,负整数用"-"表示;- 分数可以用分子和分母表示,分子表示分数的数值,分母表示分数的单位。

3. 有理数的大小比较规则:- 两个有理数大小比较时,可以先化为相同分母的分数,然后比较分子的大小;- 同号的有理数比较大小,绝对值大的数更大;异号的有理数比较大小,正数更大。

4. 有理数的加法和减法运算:- 加法:同号有理数相加,先相加后保持原符号;异号有理数相加,先相减后取绝对值较大的符号;- 减法:减去一个有理数等于加上它的相反数。

导学步骤1. 引入话题:通过举例子和学生互动引入有理数的概念。

2. 讲解表示方法:介绍整数和分数的表示方法,结合练让学生掌握如何表示有理数。

3. 比较大小规则:通过例题引导学生理解有理数的大小比较规则。

4. 运算操练:设计一些加法和减法的练题,让学生运用所学的规则进行计算。

5. 总结归纳:请学生总结有理数的概念、表示方法和运算规则,并进行相互讨论。

导学评价本节导学案主要介绍了有理数的概念、表示方法以及大小比较规则和运算规则。

通过学生的活动参与和练习题的操练,可以评价学生是否掌握了有关内容。

可以在课堂上进行小组讨论和个别辅导,帮助学生消化和理解所学内容。

八年级数学导学案

八年级数学导学案

八年级数学导学案一、一元二次方程1. 一元二次方程的定义一元二次方程是指最高次数为2的一元方程,一般形式为$ax^2 + bx + c = 0$,其中$a、b$和$c$为实数且$a ≠ 0$。

2. 一元二次方程的解一元二次方程的解可以通过求解方程$ax^2 + bx+ c = 0$来找到。

根据一元二次方程的求根公式$x = \frac{-b ± \sqrt{b^2 - 4ac}}{2a}$,可以求得方程的根为两个实数、两个相等的实数或两个复数。

3. 实际问题中的应用一元二次方程可以用来解决很多实际问题,比如抛物线的运动轨迹、物体自由下落的时间等。

通过建立数学模型,可以将现实问题转化为一元二次方程,然后求解方程来得出答案。

二、二次根式1. 二次根式的概念二次根式是指形如$\sqrt{a}$的数,其中$a$为一个非负实数。

二次根式的运算包括化简、加减、乘除等。

2. 二次根式的化简化简二次根式就是将根号内的数化为最简形式,不能再约分的形式。

如$\sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$。

3. 二次根式的加减二次根式的加减需要先化简,然后根据同类项进行合并。

如$2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$。

4. 二次根式的乘法和除法二次根式的乘法和除法同样需要化简后进行计算。

如$(2\sqrt{3})(3\sqrt{3}) = 6\sqrt{9} = 18$。

三、函数概念1. 函数的定义函数是一种对应关系,对于每个自变量$x$,对应唯一的因变量$y$。

函数可以用方程$y = f(x)$表示。

2. 函数的图像函数的图像是在平面直角坐标系中表示的,横轴为自变量$x$,纵轴为因变量$y$。

函数的图像可以是一条曲线、直线、抛物线等。

3. 函数的性质函数可以是奇函数或偶函数,也可以是增函数或减函数。

奇函数的图像关于原点对称,偶函数的图像关于$y$轴对称;增函数的函数值随着自变量的增加而增加,减函数则相反。

八年级数学上册导学案(全册,答案)

八年级数学上册导学案(全册,答案)

第一章轴对称与轴对称图形1.1 我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像; 把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗? 学生分组思考、讨论、交流,选代表发言, 教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

八年级下(初二下)数学全册导学案

八年级下(初二下)数学全册导学案

目录序号章节起始页码1 学习目标 22 16.1二次根式 53 16.2二次根式的乘除154 16.3二次根是的加减295 17.1勾股定理376 17.2勾股定理的逆定理537 18.1平行四边形638 18.2特殊的平行四边形899 19.1函数11510 19.2一次函数14311 19.3课题学习选择方案18612 20.1数据的集中趋势19513 20.2数据的波动程度222 备注学习目标第十六章二次根式备注1、了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算第十七章勾股定理备注2、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

第十八章平行四边形备注3、理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。

4、探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

5、了解两条平行线之间距离的意义,能度量两条平行线之间的距离。

6、探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。

正方形具有矩形和菱形的一切性质7、探索并证明三角形的中位线定理。

学习目标第十九章一次函数备注8、探索简单实例中的数量关系和变化规律,了解常量、变量的意义。

9、结合实例,了解函数的概念和三种表示法,能举出函数的实例。

10、能结合图像对简单实际问题中的函数关系进行分析11、能确定简单实际问题中函数自变量的取值范围,并会求出函数值。

12、能用适当的函数表示法刻画简单实际问题中变量之间的关系13、结合对函数关系的分析,能对变量的变化情况进行初步讨论14、结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式15、会利用待定系数法确定一次函数的表达式。

八年级下册数学导学案全册

八年级下册数学导学案全册

八年级(下)数学导学案目录第一章因式分解1.1多项式的因式分解 4 1.2.1提公因式法因式分解(一) 6 1.2.2提公因式法因式分解(二)8 1.3.1公式法因式分解(一)10 1.3.2公式法因式分解(二)12 1.3.3十字相乘法因式分解14 1.4 小结与复习16 第一章单元测试卷18第二章分式2.1 分式和它的基本性质(一) 20 2.1 分式和它的基本性质(二) 22 2.2.1分式的乘法与除法 24 2.2.2 分式的乘方 26 2.3.1 同底数幂的除法 28 2.3.2 零次幂和负整数指数幂 30 2.3.3 整数指数幂的运算法则 32 2.4.1 同分母的分式加、减法 34 2.4.2异分母的分式加、减(一) 36 2.4.3异分母的分式加、减(二) 38 2.5.1 分式方程(一) 40 2.5.2 分式方程(二) 42 2.5.2分式方程的应用(一) 44 2.5.2分式方程的应用(二) 46 《分式》单元复习(一) 48 《分式》单元复习(二) 50 分式达标检测52第三章四边形3.1.1平行四边形的性质(一)56 3.1.1平行四边形的性质(二)58 3.1.2 中心对称图形(续)60 3.1.3 平行四边形的判定(一)62 3.1.3 平行四边形的判定(二)64 3.1.4 三角形的中位线66 3.2.1 菱形的性质68 3.2.2 菱形的判定703.3矩形(一)72 3.3矩形(二)74 3.4 正方形76 3.5 梯形(一)78 3.5 梯形(二)80 3.6 多边形的内角和与外角和(一)82 3.6多边形的内角和与外角和(二)84 第三章总复习单元测试(一)86 第三章总复习单元测试(二)90第四章二次根式4.1.1 二次根式94 4.1.2 二次根式的化简(一)96 4.1.2 二次根式的化简(二)98 4.2.1 二次根式的乘法100 4.2.2 二次根式的除法102 4.3.1 二次根式的加、减法104 4.3.2 二次根式的混合运算106 二次根式的复习课108 第四章二次根式测试卷110第五章概率的概念5.1概率的概念112 5.2概率的含义 114 第五章概率单元测试1161.1多项式的因式分解学习目标:1.了解分解因式的意义,以及它与整式乘法的相互关系.2.感受因式分解在解决相关问题中的作用.3.通过因式分解培养学生逆向思维的能力。

八年级数学上册导学案

八年级数学上册导学案

八年级数学上册导学案一、全等三角形。

1. 知识目标。

- 理解全等三角形的概念,能识别全等三角形中的对应边、对应角。

- 掌握全等三角形的性质:全等三角形的对应边相等,对应角相等。

2. 学习过程。

- 自主学习。

- 阅读教材相关章节,找出全等三角形的定义,并用自己的话表述。

例如:能够完全重合的两个三角形叫做全等三角形。

- 观察教材中的全等三角形图形,标记出对应顶点、对应边和对应角。

- 探究活动。

- 剪出两个全等的三角形(可以使用纸张),通过平移、旋转、翻折等操作,观察对应边和对应角的关系,验证全等三角形的性质。

- 思考:如果已知两个三角形全等,如何准确地找出它们的对应边和对应角呢?- 例题分析。

- 例1:已知△ABC≌△DEF,∠A = 50°,∠B = 60°,求∠F的度数。

- 解:因为△ABC≌△DEF,根据全等三角形对应角相等,所以∠C=∠F。

- 在△ABC中,∠C = 180° - ∠A - ∠B = 180° - 50° - 60° = 70°,所以∠F = 70°。

- 例2:已知△ABC≌△DEF,AB = 3cm,BC = 4cm,AC = 5cm,求DE、EF、DF的长度。

- 解:因为△ABC≌△DEF,根据全等三角形对应边相等,所以DE = AB = 3cm,EF = BC = 4cm,DF = AC = 5cm。

- 课堂练习。

- 选择题:下列说法正确的是()- A. 全等三角形是指形状相同的两个三角形。

- B. 全等三角形是指面积相等的两个三角形。

- C. 全等三角形的周长和面积都相等。

- D. 所有的等边三角形都是全等三角形。

- 填空题:若△ABC≌△A'B'C',∠A = 40°,∠B = 80°,则∠C'=____。

- 解答题:已知△ABC≌△DEF,∠A = 30°,∠B = 70°,AB = 5cm,求∠D、∠E、DE的大小。

新人教版八年级数学上册全册导学案(137页)

新人教版八年级数学上册全册导学案(137页)

新人教版八年级数学上册全册导学案第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系.难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列函数中,是二次函数的有__A,B,C__.A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若y=(b-2)x2+4是二次函数,则__b≠2__.探究2某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.(1)求y与x之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y=-10x2+1400x-40000(50<x<100).(2)由题意得:-10x2+1400x-40000=8000,化简得x2-140x+4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如果函数y=(k+1)xk2+1是y关于x的二次函数,则k的值为多少?2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是(A)A.二次函数B.一次函数C.正比例函数D.反比例函数3.已知,函数y=(m-4)xm2-m+2x2-3x-1是关于x的函数.(1)m为何值时,它是y关于x的一次函数?(2)m为何值时,它是y关于x的二次函数?点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD中,AB=2 cm,BC=4 cm,P是BC上的一动点,动点Q仅在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,点P从B点开始沿射线BC方向运动,设BP=x cm,正方形PQRS与矩形ABCD重叠部分面积为y cm2,试分别写出0≤x≤2和2≤x≤4时,y与x之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a≠0.2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2二次函数y=ax2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象.难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y=x2,y=12x2和y=2x2的图象;点拨精讲:根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:______.(5)在同一坐标系中画出函数y=-x2,y=-12x2和y=-2x2的图象,找出图象的异同.点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y 轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a 越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.教材P 41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填空:(1)函数y =(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y =x 2,y =12x 2和y =-2x 2的图象如图所示,请指出三条抛物线的解析式. 解:(1)抛物线,(0,0),y 轴,向上;(2)根据抛物线y =ax 2中,a 的值来判断,在x 轴上方开口小的抛物线为y =x 2,开口大的为y =12x 2,在x 轴下方的为y =-2x 2. 点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y =ax 2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2 已知函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求这个最低点;当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0.解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数. (2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m>-2,∴只能取m =2. ∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x>0时,y 随x 的增大而增大.(3)若函数有最大值,则抛物线开口向下,∴m +2<0,即m<-2,∴只能取m =-3.∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴m =-3时,函数有最大值为0.∴x>0时,y 随x 的增大而减小.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.二次函数y =ax 2与y =-ax 2的图象之间有何关系?2.已知函数y =ax 2经过点(-1,3).(1)求a 的值;(2)当x<0时,y 的值随x 值的增大而变化的情况.3.二次函数y =-2x 2,当x 1>x 2>0,则y 1与y 2的关系是__y 1<y 2__.4.二次函数y =ax 2与一次函数y =-ax(a ≠0)在同一坐标系中的图象大致是( B )点拨精讲:1.二次函数y =ax 2的图象的画法是列表、描点、连线,列表时一般取5~7个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2.抛物线y =ax 2的开口大小与|a|有关,|a|越大,开口越小,|a|相等,则其形状相同.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3 二次函数y =a (x -h )2+k 的图象和性质(1)1.会作函数y=ax2和y=ax2+k的图象,能比较它们的异同;理解a,k对二次函数图象的影响,能正确说出两函数图象的开口方向、对称轴和顶点坐标.2.了解抛物线y=ax2上下平移规律.重点:会作函数的图象.难点:能正确说出两函数图象的开口方向、对称轴和顶点坐标.一、自学指导.(10分钟)自学:自学课本P32~33“例2”及两个思考,理解y=ax2+k中a,k对二次函数图象的影响,完成填空.总结归纳:二次函数y=ax2的图象是一条抛物线,其对称轴是y轴,顶点是(0,0),开口方向由a的符号决定:当a>0时,开口向上;当a<0时,开口向__下__.当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.抛物线有最__低__点,函数y有最__小__值.当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.抛物线有最__高__点,函数y有最__大__值.抛物线y=ax2+k可由抛物线y=ax2沿__y__轴方向平移__|k|__单位得到,当k>0时,向__上__平移;当k<0时,向__下__平移.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.在抛物线y=x2-2上的一个点是(C)A.(4,4)B.(1,-4)C.(2,2) D.(0,4)2.抛物线y=x2-16与x轴交于B,C两点,顶点为A,则△ABC的面积为__64__.点拨精讲:与x轴的交点的横坐标即当y等于0时x的值,即可求出两个交点的坐标.3.画出二次函数y=x2-1,y=x2,y=x2+1的图象,观察图象有哪些异同?点拨精讲:可从开口方向、对称轴、形状大小、顶点、位置去找.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1抛物线y=ax2与y=ax2±c有什么关系?解:(1)抛物线y=ax2±c的形状与y=ax2的形状完全相同,只是位置不同;(2)抛物线y =ax 2向上平移c 个单位得到抛物线y =ax 2+c ;抛物线y =ax 2向下平移c 个单位得到抛物线y =ax 2-c.探究2 已知抛物线y =ax 2+c 向下平移2个单位后,所得抛物线为y =-2x 2+4,试求a ,c 的值.解:根据题意,得⎩⎨⎧a =-2,c -2=4,解得⎩⎪⎨⎪⎧a =-2,c =6. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(13分钟)1.函数y =ax 2-a 与y =ax -a(a ≠0)在同一坐标系中的图象可能是( D )2.二次函数的图象如图所示,则它的解析式为( B )A .y =x 2-4B .y =-34x 2+3 C .y =32(2-x)2 D .y =32(x 2-2) 3.二次函数y =-x 2+4图象的对称轴是y 轴,顶点坐标是(0,4),当x<0,y 随x 的增大而增大.4.抛物线y =ax 2+c 与y =-3x 2的形状大小,开口方向都相同,且其顶点坐标是(0,5),则其表达式为y =-3x 2+5,它是由抛物线y =-3x 2向__上__平移__5__个单位得到的.5.将抛物线y =-3x 2+4绕顶点旋转180°,所得抛物线的解析式为y =3x 2+4.6.已知函数y=ax2+c的图象与函数y=5x2+1的图象关于x轴对称,则a=__-5__,c=__-1__.点拨精讲:1.函数的图象与性质以及抛物线上下平移规律.(可结合图象理解)2.抛物线平移多少个单位,主要看两顶点坐标,确定两顶点相隔的距离,从而确定平移的方向与单位长,有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(2)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.难点:能正确说出图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2的平移规律.一、自学指导.(10分钟)自学:自学课本P33~34“探究”与“思考”,掌握y=a(x-h)2与y=ax2之间的关系,理解并掌握y=a(x-h)2的相关性质,完成填空.画函数y=-12x2、y=-12(x+1)2和y=-12(x-1)2的图象,观察后两个函数图象与抛物线y=-12x2有何关系?它们的对称轴、顶点坐标分别是什么?点拨精讲:观察图象移动过程,要特别注意特殊点(如顶点)的移动情况.总结归纳:二次函数y=a(x-h)2的顶点坐标为(h,0),对称轴为直线x=h.当a>0时,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大,抛物线有最低点,函数y有最小值;当a<0时,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y 随x的增大而减小,抛物线有最高点,函数y有最大值.抛物线y=ax2向左平移h个单位,即为抛物线y =a(x +h)2(h>0);抛物线y =ax 2向右平移h 个单位,即为抛物线y =a(x -h)2(h>0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟) 1.教材P 35练习题;2.抛物线y =-12(x -1)2的开口向下,顶点坐标是(1,0),对称轴是x =1,通过向左平移1个单位后,得到抛物线y =-12x 2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1在直角坐标系中画出函数y =12(x +3)2的图象. (1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答,当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 取最大值或最小值?(3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象? 解:(1)对称轴是直线x =-3,顶点坐标(-3,0);(2)当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的增大而增大;当x =-3时,y 有最小值;(3)将函数y =12x 2的图象沿x 轴向左平移3个单位得到函数y =12(x +3)2的图象. 点拨精讲:二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点. 探究2 已知直线y =x +1与x 轴交于点A ,抛物线y =-2x 2平移后的顶点与点A 重合.(1)求平移后的抛物线l 的解析式;(2)若点B(x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小.解:(1)∵y =x +1,∴令y =0,则x =-1,∴A(-1,0),即抛物线l 的顶点坐标为(-1,0),又抛物线l 是由抛物线y =-2x 2平移得到的,∴抛物线l 的解析式为y =-2(x +1)2.(2)由(1)可知,抛物线l 的对称轴为x =-1,∵a =-2<0,∴当x>-1时,y 随x 的增大而减小,又-12<x 1<x 2,∴y 1>y 2. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.不画图象,回答下列问题:(1)函数y=3(x-1)2的图象可以看成是由函数y=3x2的图象作怎样的平移得到的?(2)说出函数y=3(x-1)2的图象的开口方向、对称轴和顶点坐标.(3)函数有哪些性质?(4)若将函数y=3(x-1)2的图象向左平移3个单位得到哪个函数图象?点拨精讲:性质从增减性、最值来说.2.与抛物线y=-2(x+5)2顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数关系式是y=2(x+5)2.3.对于函数y=-3(x+1)2,当x>-1时,函数y随x的增大而减小,当x=-1时,函数取得最大值,最大值y=0.4.二次函数y=ax2+bx+c的图象向左平移2个单位长度得到y=x2-2x+1的图象,则b=-6,c=9.点拨精讲:比较函数值的大小,往往可根据函数的性质,结合函数图象,能使解题过程简洁明了.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(3)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2+k的图象.2.能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2+k的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2+k的图象.难点:能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2+k的平移规律.一、自学指导.(10分钟)自学:自学课本P35~36“例3、例4”,掌握y=a(x-h)2+k与y=ax2之间的关系,理解并掌握y=a(x-h)2+k的相关性质,完成填空.总结归纳:一般地,抛物线y =a(x -h)2+k 与y =ax 2的形状相同,位置不同,把抛物线y =ax 2向上(下)向左(右)平移,可以得到抛物线y =a(x -h)2+k ,平移的方向、距离要根据h ,k 的值来决定:当h>0时,表明将抛物线向右平移h 个单位;当k<0时,表明将抛物线向下平移|k|个单位.抛物线y =a(x -h)2+k 的特点是:当a>0时,开口向上;当a<0时,开口向下;对称轴是直线x =h ;顶点坐标是(h ,k).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟 1.教材P 37练习题2.函数y =2(x +3)2-5的图象是由函数y =2x 2的图象先向左平移3个单位,再向下平移5个单位得到的;3.抛物线y =-2(x -3)2-1的开口方向是向下,其顶点坐标是(3,-1),对称轴是直线x =3,当x>3时,函数值y 随自变量x 的值的增大而减小.一、小组讨论:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填写下表:解析式 开口方向 对称轴 顶点坐标 y =-2x 2 向下 y 轴 (0,0) y =12x 2+1 向上 y 轴 (0,1) y =-5(x +2)2 向下 x =-2 (-2,0) y =3(x +1)2-4向上x =-1(-1,-4)点拨精讲:解这类型题要将不同形式的解析式统一为y =a(x -h)+k 的形式,便于解答. 探究2 已知y =a(x -h)2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a ,h ,k 的值;(2)在同一坐标系中,画出y =a(x -h)2+k 与y =-12x 2的图象;(3)观察y =a(x -h)2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;(4)观察y =a(x -h)2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:(1)∵抛物线y=-12x2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线是y=-12(x-1)2+2,∴a=-12,h=1,k=2;(2)函数y=-12(x-1)2+2与y=-12x2的图象如图;(3)观察y=-12(x-1)2+2的图象可知,当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小;(4)由y=-12(x-1)2+2的图象可知,对于一切x的值,y≤2.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.将抛物线y=-2x2向右平移3个单位,再向上平移2个单位,得到的抛物线解析式是y=-2(x-3)2+2.点拨精讲:抛物线的移动,主要看顶点位置的移动.2.若直线y=2x+m经过第一、三、四象限,则抛物线y=(x-m)2+1的顶点必在第二象限.点拨精讲:此题为二次函数简单的综合题,要注意它们的图象与性质的区别.3.把y=2x2-1的图象向右平移1个单位,再向下平移2个单位,得到的新抛物线的解析式是y=2(x-1)2-3.4.已知A(1,y1),B(-2,y2),C(-2,y3)在函数y=a(x+1)2+k(a>0)的图象上,则y1,y2,y3的大小关系是y2<y3<y1.点拨精讲:本节所学的知识是:二次函数y=a(x-h)2+k的图象画法及其性质的总结;平移的规律.所用的思想方法:从特殊到一般.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(1)1.会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.2.能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法. 3.会求二次函数的最值,并能利用它解决简单的实际问题.重点:会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.难点:能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.一、自学指导.(10分钟)自学:自学课本P 37~39“思考、探究”,掌握将一般式化成顶点式的方法,完成填空. 总结归纳:二次函数y =a(x -h)2+k 的顶点坐标是(h ,k),对称轴是x =h ,当a>0时,开口向上,此时二次函数有最小值,当x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当x<h 时,y 随x 的增大而增大,当x>h 时,y 随x 的增大而减小;用配方法将y =ax 2+bx +c化成y =a(x -h)2+k的形式,则h =-b2a ,k =4ac -b 24a;则二次函数的图象的顶点坐标是(-b 2a ,4ac -b 24a ),对称轴是x =-b 2a ;当x =-b2a 时,二次函数y =ax 2+bx +c 有最大(最小)值,当a<0时,函数y 有最大值,当a>0时,函数y 有最小值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.求二次函数y =x 2+2x -1顶点的坐标、对称轴、最值,画出其函数图象. 点拨精讲:先将此函数解析式化成顶点式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,画出的抛物线才能准确反映这个抛物线的特征.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 将下列二次函数写成顶点式y =a(x -h)2+k 的形式,并写出其开口方向、顶点坐标、对称轴.(1)y=14x2-3x+21;(2)y=-3x2-18x-22.解:(1)y=14x2-3x+21=14(x2-12x)+21=14(x2-12x+36-36)+21=14(x-6)2+12∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.(2)y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.点拨精讲:第(2)小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.探究2用总长为60 m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?(1)S与l有何函数关系?(2)举一例说明S随l的变化而变化?(3)怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l =15时,场地的面积S 最大(S 的最大值为225).点拨精讲:二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.y =-2x 2+8x -7的开口方向是向下,对称轴是x =2,顶点坐标是(2,1);当x =2时,函数y 有最大值,其值为y =1.2.已知二次函数y =ax 2+2x +c(a ≠0)有最大值,且ac =4,则二次函数的顶点在第四象限.3.抛物线y =ax 2+bx +c ,与y 轴交点的坐标是(0,c),当b 2-4ac =0时,抛物线与x 轴只有一个交点(即抛物线的顶点),交点坐标是(-b2a ,0);当b 2-4ac >0时,抛物线与x轴有两个交点,交点坐标是(-b±b 2-4ac2a ,0);当b 2-4ac<0时,抛物线与x 轴没有交点,若抛物线与x 轴的两个交点坐标为(x 1,0),(x 2,0),则y =ax 2+bx +c =a(x -x 1)(x -x 2).点拨精讲:与y 轴的交点坐标即当x =0时求y 的值;与x 轴交点即当y =0时得到一个一元二次方程,而此一元二次方程有无解,两个相等的解和两个不相等的解三种情况,所以二次函数与x 轴的交点情况也分三种.注意利用抛物线的对称性,已知抛物线与x 轴的两个交点坐标时,可先用交点式:y =a(x -x 1)(x -x 2),x 1,x 2为两交点的横坐标.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(2)能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.重难点:能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.一、自学指导.(10分钟)自学:自学课本P39~40,自学“探究、归纳”,掌握用待定系数法求二次函数的解析式的方法,完成填空.总结归纳:若知道函数图象上的任意三点,则可设函数关系式为y=ax2+bx+c,利用待定系数法求出解析式;若知道函数图象上的顶点,则可设函数的关系式为y=a(x-h)2+k,把另一点坐标代入式中,可求出解析式;若知道抛物线与x轴的两个交点(x1,0),(x2,0),可设函数的关系式为y=a(x-x1)(x-x2),把另一点坐标代入式中,可求出解析式.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.二次函数y=4x2-mx+2,当x<-2时,y随x的增大而减小;当x>-2时,y随x 的增大而增大,则当x=1时,y的值为22.点拨精讲:可根据顶点公式用含m的代数式表示对称轴,从而求出m的值.2.抛物线y=-x2+6x+2的顶点坐标是(3,11).3.二次函数y=ax2+bx+c的图象大致如图所示,下列判断错误的是(D)A.a<0B.b>0C.c>0D.ac>0第3题图第4题图第5题图4.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为(A)A.0 B.-1 C.1 D.2点拨精讲:根据二次函数图象的对称性得知图象与x轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a-b+c的值.5.如图是二次函数y=ax2+3x+a2-1的图象,a的值是-1.点拨精讲:可根据图象经过原点求出a的值,再考虑开口方向.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),求函数的关系式和对称轴.解:设函数解析式为y =ax 2+bx +c ,因为二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),则有⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3.解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴函数的解析式为y =x 2-2x -3,其对称轴为x =1.探究2 已知一抛物线与x 轴的交点是A(3,0),B(-1,0),且经过点C(2,9).试求该抛物线的解析式及顶点坐标.解:设解析式为y =a(x -3)(x +1),则有 a(2-3)(2+1)=9, ∴a =-3,∴此函数的解析式为y =-3x 2+6x +9,其顶点坐标为(1,12).点拨精讲:因为已知点为抛物线与x 轴的交点,解析式可设为交点式,再把第三点代入即可得一元一次方程,较之一般式得出的三元一次方程组简单.而顶点可根据顶点公式求出.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.已知一个二次函数的图象的顶点是(-2,4),且过点(0,-4),求这个二次函数的解析式及与x 轴交点的坐标.2.若二次函数y =ax 2+bx +c 的图象过点(1,0),且关于直线x =12对称,那么它的图象还必定经过原点.3.如图,已知二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.点拨精讲:二次函数解析式的三种形式:1.一般式y=ax2+bx+c;2.顶点式y=a(x-h)2+k;3.交点式y=a(x-x1)(x-x2).利用待定系数法求二次函数的解析式,需要根据已知点的情况设适当形式的解析式,可使解题过程变得更简单.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.2二次函数与一元二次方程(1)1.理解二次函数与一元二次方程的关系.2.会判断抛物线与x轴的交点个数.3.掌握方程与函数间的转化.重点:理解二次函数与一元二次方程的关系;会判断抛物线与x轴的交点个数.难点:掌握方程与函数间的转化.一、自学指导.(10分钟)自学:自学课本P43~45.自学“思考”与“例题”,理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点情况,会利用二次函数的图象求对应一元二次方程的近似解,完成填空.总结归纳:抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.二次函数的图象与x轴的位置关系有三种:当b2-4ac>0时,抛物线与x轴有两个交点;当b2-4ac=0时,抛物线与x轴有一个交点;当b2-4ac<0时,抛物线与x轴有0个交点.这对应着一元二次方程ax2+bx+c=0根的三种情况:有两个不等的实数根,有两个相等实数。

人教版八年级数学上册《分式》导学案:从分数到分式

人教版八年级数学上册《分式》导学案:从分数到分式

人教版八年级数学上册《分式》导学案从分数到分式【学习目标】1.理解分式的概念,并会判断一个代数式是否为分式;会求分式的值;2.理解分式有意义.无意义的条件;会确定分式值为零的条件.【知识梳理】1.分式的概念如果把除法算式A ÷B 写成 的形式,其中A. B 都是 ,且B 中含有 ,我们把代数式BA 就叫做分式.其中, 叫做分式的分子, 叫做分式的分母.对于任意一个分式,分母都不能为 .2.分式有意义.无意义和值为0的条件一般地,对分 都有分式有意义⇔ 分式无意义⇔分式的值为0⇔【典型例题】知识点一 分式的概念1.下列各式中,哪些是整式?哪些是分式?14(x −y ) x 22−1.2.下列各式哪些是分式,哪些是整式?① ② ③ ④ ⑤ ⑥ ⑦2x +y3 ⑧ ⑨知识点二 分式的意义3.求分式3)2)(3--+x x x (满足下列条件的x 值. (1)有意义 (2)分式的值为0B A4.要使分式21+x 有意义,则x 的取值应满足 A.2-=x B.2≠x C.2->x D.2-≠x 5.使分式112+-x x 的值为0,这时=x . 知识点三 求分式的值6.已知3=x ,求分式 的值.【巩固训练】1.下列代数式是分式的是( ) A.2x B.1+x x C.y x +2 D.πx 2.若分式的值为零,则x 的值为( ) A.0 B.1 C.-1 D.1±3.下列分式中,一定有意义的是( ) A.432--x x B.x x 312+ C.112+-y y D.11+-x x4.求x 的值:(1)若分式 14-2+x x 的值为0 (2)若分式 11-+x x 的值为0 (3)若分式24-2-x x 的值为0.5.给定下列分式: ﹣ ﹣ …其中x ≠0(1)把任意一个分式除以前一个分式,你发现了什么规律?(2)请你根据发现的规律,试写出给定的这列分式的第5个分式?(3)你能否写出第n 个分式?112+-x x 2-1x x +。

新人教版八年级下册数学导学案(总)

新人教版八年级下册数学导学案(总)

0.2 1-2a⑶(a-1)2⑸(-65)2a新人教版八年级下册数学导学案(总)③从运算结果来看:(a)2=,a2==第一周导学案编号001【课题】二次根式(1课时) 4.归纳,二次根式的性质有:①a≥0,a≥(双重非负性)②(a)=a(a≥0)【学习目标】1、使学生理解二次根式的概念2、使学生掌握二次根式的化简和计算【重点难点】重点:二次根式有意义的条件难点:算术平方根的意义课前准备:1、什么叫做一个数的平方根?如何表示?一般地,若一个数的等于a,则这个数就叫做a的平方根,a的平方根是2、什么是一个数的算术平方根?如何表示?③【二、合作交流】小组内交流完成教材P4练习1、2题(组内核对答案,不懂的才问)【三、展示评价】对学生自主学习和合作交流部分学习困难较大的知识点进行点评。

【四、再认重构】(请同学们静下心来认真独立完成下面的检测)1.当a是怎么样的实数时,下列各式在实数范围内有意义?若一个的平方等于a,则这个数就叫做a的算术平方根,表示为3、认真完成教材P2思考的三个小题:⑴-a+2⑵1⑷-5a⑴,⑵⑶观察以上结果,它们都有什么特点?【一、自主学习】阅读教材P2–P4,结合教材完成下面问题:1.二次根式的定义:注意:定义包含三个内容①1.必需含有二次根号“”②被开方数a≥0③a可以是数,也可以是含有字母的式子判断:2-234a m(m≥0)n2+1是二次根式的有(被开方数或者字母的取值必须大于等于零)2.二次根式有意义的条件:练习:当a是怎样的实数时,下列各式在实数范围内有意义?⑴a-2⑵5-2a⑶-2a⑷a2+23.(a)2和a2的区别:①从运算顺序来看,(a)2是而a2是;②从取值范围来看,(a)2中a而a2中a;2.计算:⑴(7)2⑵(-23)2⑶(3)2⑷(-7)253⑹(-)2⑺-(-m)2653.思维拓展:⑴若a.b为实数,且2-a+b-2=0,求2+b2-2b+1⑵已知24n是整数,求正整数n的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学导学案日使用日期:月日班级:姓名:导学案编辑人:课题:分式方程的应用学习目标1、知识与技能:(1)通过具体情景,理解方程的意义,经历从实际问题中建立数学模型求解数学问题的过程;(2)会列分式方程解有关实际问题。

2、过程与方法:通过具体分析实际问题,列出分式方程解决问题的建模过程,培养分析与解决问题的能力,掌握列分式方程解应用题的一般步骤。

3、积极主动地参加分析、解决问题与合作交流的过程,体验将实际问题“数学化”的建模思想,感受发现与成功的乐趣,增强数学应用意识。

学习重点:会列会式方程解有关问题学习程序学习笔记学习内容一、预习与交流通过预习教材P57~P59的内容,完成下面各题。

1、行程问题:路程=2、工程问题:工作量3、利润问题:利润=卖价- ,利润率=100%4、浓度问题:溶液的深度=100%。

二、合作与探究教学点1:含有字母系数的分式方程归纳:含有字母系数的分式方程与公式变形类题目的学习中经常出现,它们的解法与解数字系数的分式方程一样,解决这类问题需分清已知量与未知量,注意未知数系数的条件。

例1、解关于x的方程(a≠b)学生展示1、若(r1+r2≠0),则R等于()A、B、r1+r2C、D、以上答案都不对2、对关于x的方程,以下说法正确的是()A、方程的解是x=m+5B、当m>-5时,方程的解都是正数C、当m<-5时,方程的解都是负数D、方程的解无法确定3、若方程无解,则m= 。

教学点2:分式方程的应用例2:A、B两地相距80km,一辆公共汽车从A地出发,开往B地,2小时后,又从A地同方向开出一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求这两种车的速度。

学生展示4、赵强同学借了一本书,共280页,要在两周内读完,当他读了一半时,发现平均每天要多读21页才能在借期内读完,他读前一半时,平均每天读X页,要求x,则可列出方程来解答5、在为灾区捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班捐款2400元,乙班捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的,求甲、乙两班各有多少人捐款?反馈与诊断1、炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙方队每天安装x台,根据题意,下面所列方程中正确的是()A、B、C、D、2、在课外活动跳绳时,相同时间内小妹跳了90下,小君跳了120下,已知小群每分钟比小林多跳20下,设小林每分钟跑x下,则可列关于x的方程3、海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降,请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格。

甲经理:“三通”前买台湾苹果的成本价格是今年的2倍。

乙经理:同样用10万元采购台湾苹果,今年却比“三通”前多购买了2万公斤。

四、课堂反思对照课堂目标思考:1、今天尝到了什么知识?2、我感受到了什么?3、还存在什么疑惑呢?八年级数学导学案编写日期:月日使用日期:月日班级:姓名:导学案编辑人:课题:第二章复习(2)学习目标、学习重点:学习程序学习笔记学习内容核心问题聚集焦点1:分式的概念例1:x为何值是,分式有意义追踪训练当x为何值时,分式的值大于或小于0?焦点2:分式的运算例2:计算:2、计算:焦点3:化简求值例3:先化简,再求值:,其中x=23、已知x+=4,求的值焦点4:解可化为一元一次方程的分式方程例4:当a为何值时,方程的解是负数?4、若关于x的方程有增根,求k的值。

焦点5:列方程解应用题例5:甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了两小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度分别是多少?5、为了支援地震灾区搞震救灾,某休闲用品公司主动承担灾区生产2万顶帐篷的任务,计划10天完成。

(1)按此计划,该公司平均每天应生产帐篷顶。

(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同进通过技术革新等手段使每位工人的效率比原计划提高了25%,结果提前2天完成了任务,求该公司原计划安排多少名工人生产帐篷?五、课堂反思对照课堂目标思考:1、我今天学到了什么知识:2、我感受到了什么:3、还存在什么疑惑:八年级数学导学案编写日期:月日使用日期:月日班级:姓名:导学案编辑人:课题:平等四边形的性质和中心对称图形(1)学习目标1、知识与技能:了解四边形的有关概念,掌握平行四边形的概念和边、解的性质,能运用2、过程与方法:通过联想三角形的概念,归纳抽象四边形的有关概念和平行四边形的概念,通过观察,猜想和合情推理,获得平行四边形的边、角性质定理,初步了解研究四边形的途径和方法,体会图形变换和转化思想。

3、情感态度与价值观:在自主探索、观察、推理过程中,体验探索的乐趣,感受推理的重要性与作用培养探索意识和推理能力,形成良好的学习习惯。

学习重点:平行四边形的概念和性质学习程序学习笔记核心问题聚焦一、预习与交流通过预习教材P67~P71的内容,完成下面各题。

1、填一填(1)叫做四边形。

(2)叫做四边形的边;叫做上边形的顶点。

(3)四边形ABCD如果具有如下性质:,这样的四边形凸四边形。

(4)在四边形中,叫做四边形的对角线。

(5)四边形叫做对角,叫做对边。

(6)叫做平行四边形。

2、量一量,教材P69图310中的线段OA、OC、OB、OD的长,并比较OA、OC、OB、OD的大小,由此你能得出什么结论?(2)想一想:你知道平行四边形的对角线为什么互相平分吗?(3)请你用语言把平行四边形的这条性质叙说出来2、阅读教材P73的“动脑筋”后完成书上的填空以及下面的填空:在平面内如果一个图形G绕一个点O旋转180,所得到的像与原来的图形G互相重合,那么图形G叫做图形,点O叫做,此时也称科形G关于点O ,原来的图形叫原像,新图形叫做在这个旋转下的像。

二、合作与探究教学点1:平行四边行对角线具在的性质归纳:平行四边形的对角线互相平分如图,在平行四边形ABCD中,OA=OC=AC,OB=OD=BD。

例1:如图,已知 ABCD的对角线AC和BD相交于点O,OE⊥BC于E,OF⊥AD于F,求证:OE=OF。

学生展示:1、ABCD中,两对角线AC与BD相交于点O,已知AB=8cm,BC=6cm,△ABO的周长是18cm,那么△OAD的周长是。

2、已知点O是 ABCD的对解线的交点,若 ABCD的面积为80cm2,则△OAB的面积为:。

3、若 ABCD的周长为22cm,△AOD的周长比△AOB的周长小3cm,则AD= ,AB= 。

教学点2:中心对称图形归纳:1、中心对称图形的概念:在平面内如果一个图形G绕一个点O旋转180,所得到的像与原来的图形G互相重合,那么图形G叫做中心对称图形,点O叫做图形G的对称中心,此时也称科形G关于点O对称,原来的图形叫原像,新图形叫做在这个旋转下的像,2、平行四边形是中心对称图形,对角线的交点是它的对称中心。

例2:如图, ABCD的对角线AC与BD相交于点O,则点A的对称点是:,点B的对称点是,平行四边形的对称中心点是。

学生展示:4、下列图形中是中心对称图形的是()A、等腰三角形B、直角三角形C、锐角三角形D、平行四边形5、下列说法中错误的个数是()①平行四边形是中心对称图形,其对称中心是两条对角线的交点;②平行四边形是一组对角的和为180③平行四边形是对边相等,对争也相等;④平行四边形的对角线相等;⑤平行四边形对角线的交点到一组对边的距离相等。

A、2个B、3个C、4个D、5个6、 ABCD绕点O旋转180后的四个顶点A、B、C、D的像分别是,边AB、BC、CD、AD的像分别是,对角线AC、BD的像分别是。

三、反馈与诊断1、如图,平行四边形ABCD中,AC与BD相交于点O,已知AC=26cm,BD=20cm,则AO= cm,OD= cm。

第1题图2、如图所示,在平行四边形ABCD中,O为对角线AC、BD的交点,则图中与△AOD全等的是()A、△ABCB、△ADCC、△BCDD、△COB3、如图,平行四边形ABCD的周长为16cm,AC、BD第2题图相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A、4cmB、6cmC、8cmD、10cm4、如图,在平行四边形ABCD中,对角线AC、BD相交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有()A、1条B、2条C、3条D、4条5、如图所示,在平行四边形ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F,那么OE 与OF是否相等?为什么?第3题图第5题图第4题图四、课堂反思1、今天尝到了什么知识?2、我感受到了什么?3、还存在什么疑惑呢?八年级数学导学案编写日期:月日使用日期:月日班级:姓名:导学案编辑人:课题:中心对称图形(续)学习目标1、知识与技能:(1)进一步了解中心对称图形的概念,会识别一个图形是不是中心对称图形;(2)了解中心对称图形的性质。

2、过程与方法:经历根据对称中心找对称点的过程,培养动手操作的能力,进一步理解中心对称的含义。

3、情感态度与价值观:通过生活中的中心对称图形,感受几何美,激发学习数学的热情。

学习重点:中心对称图形的识别和性质。

学习程序学习笔记学习内容一、预习与交流通过预习教材P75~P76的内容,完成下面各题:1、填一填(1)在平面内,把点E绕点O旋转180得到点F,此时称,也称点E和点F是在这个旋转下的。

(2)中心对称图形上,每一对对应点的边线段都经过,并且。

2、说一说(1)说出两个是中心对称图形的英语字母。

(2)说出一个生活中的中心对称图形。

3、想一想(1)线段是中心对称图形吗?如果是,指出它的对称中心。

(2)等边三角形是中心对称图形吗?为什么?二、合作与探究教学点1:中心对称图形的识别探究:1、下图中的三个“风车”,哪个是中心对称图形?哪个不是中心对称图形?2、下图中的(1)、(2)、(3)分别是三块桌布的中间图案,哪个是中心对称图形?哪个不是中心对称图形?3、你根据什么来判定一个图形是不是中心对称图形?学生展示1、下列图形中,既是中心对称图形,又是轴对称图形的是()2、如图所示,观察下列“风车”的平面图案,其中中心对称图形有()A、1个B、2个C、3个D、4个3、下列交通标志中,既是轴对称图形又是中心对称图形的是()教学点2:中心对称图形的性质探究:1、我们知道平行四边形是中心对称图形,对角线的交点是对称中心,现在擦掉平行四边形ABCD的大部分,只留下点D签名能找到点B吗?你是怎么想的?2、如果点D和点B关于点O中心对称,你能得到什么?3、如图,已知圆上有两个点A、C,点A和点C关于圆心对称,你能找到圆心吗?你怎么想到这样作呢?4、通过上面问题,你能说说中心对称图形有什么性质吗?例:如图,作△ABC关于点O的中心对称图形△DEF。

相关文档
最新文档