全国高中物理竞赛专题八 物体的性质训练题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 证明成分相同而体积、温度不相等的两杯液体,混合后总体积不变,在混合过程中与外界隔热.
证明 绝热: ()()1012020mC t t m C t t -+-= 平衡温度: 1122
012
m t m t t m m +=
+
设0
0C 时液体密度0ρ,则 11002200,m V m V ρρ== 两杯液体的初态体积分别为
()()110122021,1V V t V V t ββ=+=+ 混合液体的温度0t ,则
()()'
'
110022001,1V V t V V t ββ=+=+
于是
()()()''12102010200
1122
10200
10120212
11V V V V V V V t m t m t V V V t V t V V ββ
ρββ=+=++++=++=+++=+
得证.
2、 已知氯化钠的摩尔质量2
5.8510kg mol μ-=⨯ ,密度为3
3
2.2210kg m ρ-=⨯ ,估算两相邻钠离子的最近距离(要求一位有效数字).
解:取1molNaCl 为研究对象,其摩尔体积为 V μ
ρ
= 每个分子所占据的体积为
A A
V N N μρ= 由离子晶体NaCl 的排列特点可知:一个Na +
和一个Cl -
占有相当于两个小立方体的空间体积,因此每个小立方体的体积为
'
2A
V N μ
ρ=
故小立方体的边长为
a =
两相邻Na +
的最近距离为
()10410m d -==⨯
3、 厚度均为0.2mm h =的钢片和青铜片,在1293K T =时,将它们的端点焊接起来,成为等长的平面双金属片.若钢和青铜的线膨胀率分别为510K -和5210K -⨯.当把它们的温度升高到2393K T =时,它们弯成圆弧形,试求这圆弧的半径.
解:两金属片膨胀弯曲后两圆弧所对的圆心角相等,每一金属片加热后的长度与它是否弯曲无关,所以根据加热后金属片的长度(弧长)等于相应的半径与圆心角的乘积可求得问题的解.
每一金属片中性层长度等于它加热后的长度,与是否弯曲无关.设弯成圆弧的半径为
R ,ϕ为圆弧所对圆心角,1α和2α分别为钢片和青铜片的线膨胀率:L 为金属片原长,1
L ∆和2L ∆分别为钢片和青铜片由1T 升高到2T 时的伸长量,如图所示.
对于钢片
()11121
2h R L L
L L T T ϕα⎛
⎫-=+∆ ⎪⎝⎭∆=- 对于铜片
()
2
22212h R L L L L T T ϕα⎛
⎫+=+∆ ⎪⎝⎭∆=- 由以上四式可以得到
()()()()
1221212122T T R h T T αααα++-⎡⎤⎣⎦=-- 代入数据以后得
()20.03cm R =
4、 一根1.0m 长的竖直玻璃管,在0
20C 时用某种液体灌到一半,问当玻璃管温度升高到0
30C 时,液体高度变化了多少?取玻璃的线膨胀系数为50
1.010C α-=⨯,液体的体
膨胀系数为5
=4.010C β-⨯.
解:温度升高,玻璃管的截面积会增大,液体的体积也会增大,分别求出这两个量以后即可求得0
30C 时液柱的高度.
设0
0C 时玻璃管的截面积为0S ,液体的体积为0V ,则根据热膨胀规律,在0
20C 时玻璃管的截面积20S 、液体的体积20V 可表示为
()()
20020200201212S S t V V t αβ=+=+
同理,在0
30C 时玻璃管的截面积30S 、液体的体积30V 可表示为 ()()
30030300301212S S t V V t αβ=+=+
另由题意得
20
20
0.5V S = 在0
30C 时液柱的高度可表示为 30
30
V h S =
将有关数据代入后可得0.5001m h =,即当玻璃管温度升高到0
30C 时,液柱的高度增加了0.0001m .
5、 两根均匀的不同金属棒,密度分别为12ρρ、,线膨胀系数分别为12αα、,长度都为l ,一端粘合在一起,温度为0
0C ,悬挂棒于A 点,棒恰成水平并静止,如图所示,若温度升高到0C t ,要使棒保持水平并静止,需改变悬点,设位于B 点,求AB 间的距离.
解:设A 点距两棒粘合端的距离为x ,则
1222
l l x x ρρ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭
解得 12
12
2l x ρρρρ-=
+
同理,设膨胀后长度分别为12l l 、,密度仍近似为12ρρ、,B 点距粘合端的距离为'
x ,则
''121222
l l x x ρρ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭
解得 '
1122
12
12l l x ρρρρ-=+
而 ()()11221,1l l t l l t αα=+=+ 所以 ()()
1122'122lt AB x x ραραρρ-=-=
+ 6、 有三根端点互相连接的线浮在水面上,如图(a )所示,其中1,2两条长1.5cm ,第三条长1cm ,先在圆中A 点处滴下某种杂质,使水的表面张力系数比原来减小了
1
2.5
倍,求每根线上的张力.然后再把该种杂质滴在B 点,再求每根线上的张力.已知水的表面张力系数=0.07N m σ.
解:A 区液面含杂质之后,表面张力减小,因此2、3两根线受到外部液面的净拉力而成为一个圆,1线松弛.当B 区也含杂质后,1、2两根线形成一圆,3线松弛.
1) A 区滴入杂质以后,形成图(b )所示情况,圆周长2312.5cm,cm.2L
L l l R π
=+==
取圆心角为θ的一小段弧,这一段线受相邻线段的张力T 和表面张力F 的作用而平衡,如图(c )所示,根据共点力平衡的条件有
A
B
1
2
3图(a )
图(b )
图(c )
图(d )