华东师范大学CMOS差分放大器版图设计报告

华东师范大学CMOS差分放大器版图设计报告
华东师范大学CMOS差分放大器版图设计报告

Project report

课程名称:VLSI版图设计

作业内容:差分放大器版图设计

任课教师:田应洪

学生姓名:刘毓达

学校院系:华东师范大学电子工程系所在班级:集成电路工程

一、设计目标

本次版图设计我做的是CMOS差分放大器的设计。CMOS差分放大器是模拟电路中最基本也是最重要的电路单元之一,掌握其版图对更进一步加深对电路的理解极为重要,更为关键的是,良好的版图能力是一个合格的模拟电路设计者所必须具备的素质。本次所画差分放大器的原理图如下:

二、设计要求

设计规则是设计人员与工艺人员之间的接口与“协议”,是版图设计必须无条件的服从的准则,可以极大地避免由于短路、断路造成的电路失效和容差以及寄生效应引起的性能劣化。设计规则主要包括几何规则、电学规则以及走线规则。

1.工艺

本次版图设计使用无锡上华CSMC 0.6um的工艺库。

2.DRC

在版图完成后必须要通过DRC规则检查。只有通过DRC的版图才初步具备实际的生产价值。DRC文件为工艺库中自带。以下为部分规则示意:

3.I/O端口

两个输入端口,两个输出端口,VDD及VSS接口。如原理图所示。

4.尺寸

差分放大器共使用了5个MOS管。两个PMOS,三个NMOS管。其

中P管尺寸为W/L=80/1,N管尺寸为W/L=64/1。均使用叉指结构。

P管分成8个W/L为10:1的管。

N管分成16个W/L为4:1的管。

PAD尺寸为:

poly层:120*120um

metal1和metal2层:110*110um

nwell层:100*100um

pad层:96*96um

via层:88*88um

三、版图设计

首先考虑五个管子的布局。从上面所给的管子尺寸可以看到,每一个晶体管都是又细又长的一条。对于实际生产显然不合适,所以经过考虑将每个晶体管做成叉指结构,这样使版图密集紧凑,并且能很好的工作。对于总体布局,应充分考虑外部pad的连接,避免外部引线过长及交叉。

总体布局图

考虑各个器件的匹配。由于M1和M2的源漏需要与M3和M4的源漏连接,让它们的栅相互靠近,这样就比较容易把输出连接至M3和M4。同时,两个P管的栅也面对面放置,这样两个输入差分对管就能保持好的匹配。就像一些版图大师所说的那样:“通过使栅的方向一致,可以保证良好的匹配。虽然n型器件和p 器件并没有真正的匹配要求,但让你所有的栅都有同一个方向是非常好的做法。这一做法的附加好处是使你的金属线方向一致。”

完成后的差分放大器版图:

P管的版图:

Dummy版图:

输入管及电流源版图:VDD及衬底接触:

输入差分管及电流源版图:

CMOS版图设计

第5章CMOS版图设计

5.1 版图设计基本概念 5.2 设计规则 5.3 基本工艺层版图 5.4 FET版图尺寸的确定 5.5 逻辑门的版图设计 5.6标准单元版图 5.7 设计层次化 2/78

3/78 5.1 版图设计基本概念 ? 什么是版图设计? ?Layout design :定义各工艺层图形的形状、尺寸以 及不同工艺层的相对位置。

?版图设计的内容 ?布局:就是将组成集成电路的各部分合理地布置在芯 片上。安排各个晶体管、基本单元、复杂单元在芯片 上的位置。 ?布线:就是按电路图给出的连接关系,在版图上布置 元器件之间、各部分之间的连接。设计走线,实现管 间、门间、单元间的互连。 ?尺寸确定:确定晶体管尺寸(W、L)、互连尺寸(宽 度)以及晶体管与互连之间的相对尺寸等。 4/78

?版图设计的目标 ?满足电路功能、性能指标、质量要求 ?尽可能节省面积,以提高集成度,降低成本 ?尽可能缩短连线,以减少复杂度,缩短延时、改善 可靠性 5/78

EDA工具的作用(EDA: Electronic Design Automation) ?版图编辑 ?规定各个工艺层上图形的形状、尺寸、位置(Layout Editor) ?规则检查 ?版图与电路图一致性检查(LVS,Layout Versus Schematic) ?设计规则检查(DRC,Design Rule Checker) ?电气规则检查(ERC,Electrical Rule Checker) ?布局布线 ?Place and route,自动给出版图布局与布线 6/78

采用折叠式结构的两级全差分运算放大器的设计

目录 1. 设计指标 (1) 2. 运算放大器主体结构的选择 (1) 3. 共模反馈电路(CMFB)的选择 (1) 4. 运算放大器设计策略 (2) 5. 手工设计过程 (2) 5.1 运算放大器参数的确定 (2) 5.1.1 补偿电容Cc和调零电阻的确定 (2) 5.1.2 确定输入级尾电流I0的大小和M0的宽长比 (3) 5.1.3 确定M1和M2的宽长比 (3) 5.1.4确定M5、M6的宽长比 (3) 5.1.5 确定M7、M8、M9和M10宽长比 (3) 5.1.6 确定M3和M4宽长比 (3) 5.1.7 确定M11、M12、M13和M14的宽长比 (4) 5.1.8 确定偏置电压 (4) 5.2 CMFB参数的确定 (4) 6. HSPICE仿真 (5) 6.1 直流参数仿真 (5) 6.1.1共模输入电压范围(ICMR) (5) 6.1.2 输出电压范围测试 (6) 6.2 交流参数仿真 (6) 6.2.1 开环增益、增益带宽积、相位裕度、增益裕度的仿真 (6) 6.2.2 共模抑制比(CMRR)的仿真 (7) 6.2.3电源抑制比(PSRR)的仿真 (8) 6.2.4输出阻抗仿真 (9) 6.3瞬态参数仿真 (10) 6.3.1 转换速率(SR) (10) 6.3.2 输入正弦信号的仿真 (11) 7. 设计总结 (11) 附录(整体电路的网表文件) (12)

采用折叠式结构的两级全差分运算放大器的设计 1. 设计指标 5000/ 2.5 2.551010/21~22v DD SS L out dias A V V V V V V GB MHz C pF SR V s V V ICMR V P mW μ>==?== >=±=?≤的范围 2. 运算放大器主体结构的选择 图1 折叠式共源共栅两级运算放大器 运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看, 有套筒 式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。本设计采用的是如图1所示的折叠式共源共栅两级运算放大器,采用折叠式结构可以获得很高的共模输入电压范围,与套筒式的结构相比,可以获得更大的输出电压摆幅。 由于折叠式共源共栅放大器输出电压增益没有套筒式结构电压增益那么高,因此为了得到更高的增益,本设计采用了两级运放结构,第一级由M0-M10构成折叠式共源共栅结构,第二级由M11-M14构成共源级结构,既可以提高电压的增益,又可以获得比第一级更高的输出电压摆幅。 为了保证运放在闭环状态下能稳定的工作,本设计通过米勒补偿电容Cc 和调零电阻Rz 对运放进行补偿,提高相位裕量! 另外,本文设计的是全差分运算放大器,与单端输出的运算放大器相比较,可以获得更高的共模抑制比,避免镜像极点及输出电压摆幅。 3. 共模反馈电路(CMFB )的选择 由于采用的是高增益的全差分结构,输出共模电平对器件的特性和失配相当敏感,而且不能通过差动反馈来达到稳定,因此,必须增加共模反馈电路(CMFB )来检测两个输出端

3.2模拟集成电路设计-差分放大器版图

集成电路设计实习Integrated Circuits Design Labs I t t d Ci it D i L b 单元实验三(第二次课) 模拟电路单元实验-差分放大器版图设计 2007-2008 Institute of Microelectronics Peking University

实验内容、实验目的、时间安排 z实验内容: z完成差分放大器的版图 z完成验证:DRC、LVS、后仿真 z目的: z掌握模拟集成电路单元模块的版图设计方法 z时间安排: z一次课完成差分放大器的版图与验证 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page1

实验步骤 1.完成上节课设计放大器对应的版图 对版图进行、检查 2.DRC LVS 3.创建后仿真电路 44.后仿真(进度慢的同学可只选做部分分析) z DC分析:直流功耗等 z AC分析:增益、GBW、PM z Tran分析:建立时间、瞬态功耗等 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page2

Display Option z Layout->Options ->Display z请按左图操作 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page3

由Schematic创建Layout z Schematic->Tools->Design Synthesis->Layout XL->弹出窗口 ->Create New->OK >选择Create New>OK z Virtuoso XL->Design->Gen From Source->弹出窗口 z选择所有Pin z设置Pin的Layer z Update Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page4

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

华东师范大学CMOS差分放大器版图设计报告

Project report 课程名称:VLSI版图设计 作业内容:差分放大器版图设计 任课教师:田应洪 学生姓名:刘毓达 学校院系:华东师范大学电子工程系所在班级:集成电路工程

一、设计目标 本次版图设计我做的是CMOS差分放大器的设计。CMOS差分放大器是模拟电路中最基本也是最重要的电路单元之一,掌握其版图对更进一步加深对电路的理解极为重要,更为关键的是,良好的版图能力是一个合格的模拟电路设计者所必须具备的素质。本次所画差分放大器的原理图如下: 二、设计要求

设计规则是设计人员与工艺人员之间的接口与“协议”,是版图设计必须无条件的服从的准则,可以极大地避免由于短路、断路造成的电路失效和容差以及寄生效应引起的性能劣化。设计规则主要包括几何规则、电学规则以及走线规则。 1.工艺 本次版图设计使用无锡上华CSMC 0.6um的工艺库。 2.DRC 在版图完成后必须要通过DRC规则检查。只有通过DRC的版图才初步具备实际的生产价值。DRC文件为工艺库中自带。以下为部分规则示意:

3.I/O端口 两个输入端口,两个输出端口,VDD及VSS接口。如原理图所示。 4.尺寸 差分放大器共使用了5个MOS管。两个PMOS,三个NMOS管。其

中P管尺寸为W/L=80/1,N管尺寸为W/L=64/1。均使用叉指结构。 P管分成8个W/L为10:1的管。 N管分成16个W/L为4:1的管。 PAD尺寸为: poly层:120*120um metal1和metal2层:110*110um nwell层:100*100um pad层:96*96um via层:88*88um 三、版图设计 首先考虑五个管子的布局。从上面所给的管子尺寸可以看到,每一个晶体管都是又细又长的一条。对于实际生产显然不合适,所以经过考虑将每个晶体管做成叉指结构,这样使版图密集紧凑,并且能很好的工作。对于总体布局,应充分考虑外部pad的连接,避免外部引线过长及交叉。

差分编码器设计和高频小信号放大器的设计

专业课程设计任务书 第一周课题(四选一) 1.1M调幅接收机设计 要求:中心频率f0=1MHz,低频信号频率f m=10kHz。 2.锁相频率合成器设计 要求:锁相环使用C4046芯片,频率范围为10k~100k,步进10k。 3.LC低通滤波器设计 要求:设计一五阶Butterworth低通滤波器,截止频率为1.6MHz,输入、输出阻抗为50Ω 4.差分编码器(码发生器和编码器)设计 要求:码发生器输出一n=4的m序列伪码,码元传输速率10kB 第二周课题(三选一) 5.FSK调制解调系统设计 要求:码元传输速率1kB,载波频率分别为300kHz和600kHz 6.高频小信号放大器设计 要求:中心频率f0=1MHz,通频带30kHz<2Δf0.7<50kHz,电压增益不低于15dB 7.高频LC振荡电路设计制作 要求:(1)设计一个LC正弦波振荡电路 (2)电路采用单电源12V (3)可采用考毕兹,克拉波或西勒振荡器电路稳定输出频率 (4)振荡频率在1-2MHz连续可调 (5)在频率范围内输出峰峰值大于4V且无明显失真

课题一 课程设计报告内容索引 内容页码 1、课程设计题目 (5) 2、主要技术指标(电路功能及其精度等) (5) 3、方案论证及选择 (5) 4、系统组成框图 (8) 5、单元电路设计及说明 (9) 6、总体电路图 (10) 7、元器件列表 (10) 8、总结 (10) 9、参考文献 (11)

一、课程设计题目 差分编码器设计 要求:码发生器输出N=4的序列伪码,码元传输速率10KB 二、主要技术指标 1、码发生器输出n=4的序列伪码 2、码元传输速率为10KB 三、方案论证及选择 方案一 1基本原理: DQPSK(Differential QuadriPhase-Shift Keying,差分四相正交相移健控)是在QPSK(四相正交绝对调相)的基础上作的改进,它克服了QPSK信号载波的相位模糊问题,用相邻码元之间载波相位的相对变化来表示两位二进制数字信息。常用的DQPSK系统的方框图如图1所示,信息源来的信码先通过串/并变换电路分成两路并行二进制信号,再送入差分编码器实现两路二进制(即四进制)的差分编码。由于格雷码有其自身的优点,即判决接收到一个信号码元时,如发生错误,最容易判为它相邻的信号码元,即最多错一比特,所以送入QPSK四相绝对调制器要用格雷码。由于差分编码器是对自然二进制作差分编码,所以要在差分编码器和QPSK调制器之间做一个二-格变换电路,把双比特自然二进制码变换为双比特格雷码,再输入QPSK调制器。

Layout(集成电路版图)注意事项及技巧总结

Layout主要工作注意事项 ●画之前的准备工作 ●与电路设计者的沟通 ●Layout 的金属线尤其是电源线、地线 ●保护环 ●衬底噪声 ●管子的匹配精度 一、l ayout 之前的准备工作 1、先估算芯片面积 先分别计算各个电路模块的面积,然后再加上模块之间走线以及端口引出等的面积,即得到芯片总的面积。 2、Top-Down 设计流程 先根据电路规模对版图进行整体布局,整体布局包括:主要单元的大小形状以及位置安排;电源和地线的布局;输入输出引脚的放置等;统计整个芯片的引脚个数,包括测试点也要确定好,严格确定每个模块的引脚属性,位置。 3、模块的方向应该与信号的流向一致 每个模块一定按照确定好的引脚位置引出之间的连线 4、保证主信号通道简单流畅,连线尽量短,少拐弯等。 5、不同模块的电源,地线分开,以防干扰,电源线的寄生电阻尽可能较小,避免各模块的 电源电压不一致。 6、尽可能把电容电阻和大管子放在侧旁,利于提高电路的抗干扰能力。 二、与电路设计者的沟通

搞清楚电路的结构和工作原理明确电路设计中对版图有特殊要求的地方 包含内容:(1)确保金属线的宽度和引线孔的数目能够满足要求(各通路在典型情况和最坏情况的大小)尤其是电源线盒地线。 (2)差分对管,有源负载,电流镜,电容阵列等要求匹配良好的子模块。 (3)电路中MOS管,电阻电容对精度的要求。 (4)易受干扰的电压传输线,高频信号传输线。 三、layout 的金属线尤其是电源线,地线 1、根据电路在最坏情况下的电流值来确定金属线的宽度以及接触孔的排列方式和数目,以避免电迁移。 电迁移效应:是指当传输电流过大时,电子碰撞金属原子,导致原子移位而使金属断线。在接触孔周围,电流比较集中,电迁移更容易产生。 2、避免天线效应 长金属(面积较大的金属)在刻蚀的时候,会吸引大量的电荷,这时如果该金属与管子栅相连,可能会在栅极形成高压,影响栅养化层质量,降低电路的可靠性和寿命。 解决方案:(1)插一个金属跳线来消除(在低层金属上的天线效应可以通过在顶层金属层插入短的跳线来消除)。 (2)把低层金属导线连接到扩散区来避免损害。 3、芯片金属线存在寄生电阻和寄生电容效应 寄生电阻会使电压产生漂移,导致额外的噪声的产生 寄生电容耦合会使信号之间互相干扰 关于寄生电阻: (1)镜像电流镜内部的晶体管在版图上放在一起,然后通过连线引到各个需要供电的版图。

CMOS反相器电路版图设计与仿真

CMOS反相器电路版图设计与仿真 姓名:邓翔 学号:1007010033 导师:马奎 本组成员:邓翔石贵超王大鹏

CMOS反相器电路版图设计与仿真 摘要:本文是基于老师的指导下,对cadence软件的熟悉与使用,进行CMOS反相器的电路设计和电路的仿真以及版图设计与版图验证仿真。 关键字:CMOS反相器;版图设计。 Abstract:This article is based on the teacher's guidance, familiar with cadence software and use, for CMOS inverter circuit design and circuit simulation and landscape and the landscape design of the simulation. Key word:CMOS inverter;Landscape design. 一引言 20世纪70年代后期以来,一个以计算机辅助设计技术为代表的新的技术改革浪潮席卷了全世界,它不仅促进了计算机本身性能的进步和更新换代,而且几乎影响到全部技术领域,冲击着传统的工作模式。以计算机辅助设计这种高技术为代表的先进技术已经、并将进一步给人类带来巨大的影响和利益。计算机辅助设计技术的水平成了衡量一个国家产业技术水平的重要标志。 计算机辅助设计(Computer Aided Design,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。 电子技术的发展使计算机辅助设计(CAD)技术成为电路设计不可或缺的有力工具。国内外电子线路CAD软件的相继推出与版本更新,是CAD技术的应用渗透到电子线路与系统设计的各个领域,如电路图和版图的绘制、模拟电路仿

运算放大器电路及版图设计报告

目录 摘要 (2) 第一章引言 (3) 第二章基础知识介绍 (4) 2.1 集成电路简介 (4) 2.2 CMOS运算放大器 (4) 2.2.1理想运放的模型 (4) 2.2.2非理想运算放大器 (5) 2.2.3运放的性能指标 (5) 2.3 CMOS运算放大器的常见结构 (6) 2.3.1单级运算放大器 (6) 2.3.2简单差分放大器 (6) 2.3.3折叠式共源共栅(Folded-cascode)放大器 (7) 2.4版图的相关知识 (8) 2.4.1版图介绍 (8) 2.4.2硅栅CMOS工艺版图和工艺的关系 (8) 2.4.3 Tanner介绍 (9) 第三章电路设计 (10) 3.1总体方案 (10) 3.2各级电路设计 (10) 3.2.1第三级电路设计 (10) 3.2.2第二级电路设计 (11) 3.2.3第一级电路设计 (12) 3.2.4三级运放整体电路图及仿真结果分析 (14) 第四章版图设计 (15) 4.1版图设计的流程 (15) 4.1.1参照所设计的电路图的宽长比,画出各MOS管 (15) 4.1.2 布局 (17) 4.1.3画保护环 (17) 4.1.4画电容 (17) 4.1.5画压焊点 (18) 4.2 整个版图 (19) 第五章 T-Spice仿真 (21) 5.1提取T-Spice文件 (21) 5.2用T-Spice仿真 (24) 5.3仿真结果分析 (26) 第六章总结 (27) 参考文献 (28)

摘要 本次专业综合课程设计的主要内容是设计一个CMOS三级运算跨导放大器,该放大器可根据不同的使用要求,通过开关的开和闭,选择单级、两级、三级组成放大器,以获得不同的增益和带宽。用ORCAD画电路图,设计、计算宽长比,仿真,达到要求的技术指标,逐级进行设计仿真。然后用L-Edit软件根据设计的宽长比画版图,最后通过T-Spice仿真,得到达到性能指标的仿真结果。 设计的主要结果归纳如下: (1)运算放大器的基本工作原理 (2)电路分析 (3)设计宽长比 (4)画版图 (5)仿真 (6)结果分析 关键词:CMOS运算跨导放大器;差分运放;宽长比;版图设计;T-Spice仿真

全差分运算放大器设计

全差分运算放大器设计 岳生生(0126) 一、设计指标 以上华CMOS 工艺设计一个全差分运算放大器,设计指标如下: 直流增益:>80dB 单位增益带宽:>50MHz 负载电容:=5pF 相位裕量:>60度 增益裕量:>12dB 差分压摆率:>200V/us 共模电压:(VDD=5V) 差分输入摆幅:>±4V 运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的 ,DSAT N V 之和小于,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于。对于单 级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 性能指标分析 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 1 1 1 3 5 7 1 1 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益9 2 2 9 11 2 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=-+P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR : 1)、输入级: max 1max |2| Cc out DS C C d SR dt I v I C C = = = 单位增益带宽1m u C g C ω= ,可以得到 1m C u g C ω =

电流镜负载的差分放大器设计概要

电流镜负载的差分放大器设计 摘要 在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。而且,工作在饱和区的MOS器件可以当作一个电流源。 在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。但是,这一方法可能引起一个无休止的循环。一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。而电流镜的作用就是精确地复制电流而不受工艺和温度的影响。在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。而且,短沟器件的阈值电压对沟道长度有一定的依赖性。因此,电流值之比只能通过调节晶体管的宽度来实现。而本题就是利用这一原理来实现的。

一、设计目标(题目) (3) 二、相关背景知识 (4) 1、单个MOSTFET的主要参数包括: (4) 三、设计过程 (5) 1、电路结构 (5) 2、主要电路参数的手工推导 (6) 3、参数验证(手工推导) (7) 四、电路仿真 (7) 1、NMOS特性仿真及参数推导 (7) 2、PMOS特性仿真及参数推导 (10) 3、最小共模输入电压仿真 (12) 4、电流镜负载的差分放大器特性仿真及参数推导 (14) 五、性能指标对比 (18) 六、心得 (18)

一、设计目标(题目) 电流镜负载的差分放大器 设计一款差分放大器,要求满足性能指标: ● 负载电容pF C L 1= ● V VDD 5= ● 对管的m 取4的倍数 ● 低频开环增益>100 ● GBW(增益带宽积)>30MHz ● 输入共模范围>3V ● 功耗、面积尽量小 参考电路图如下图所示 设计步骤: 1、仿真单个MOS 的特性,得到某W/L 下的MOS 管的小信号输出电阻和跨导。 2、根据上述仿真得到的器件特性,推导上述电路中的器件参数。 3、手工推导上述尺寸下的差分级放大器的直流工作点、小信号增益、带宽、输入共模范围。

CMOS反相器的版图设计

实验一:CMOS反相器的版图设计 一、实验目的 1、创建CMOS反相器的电路原理图(Schematic)、电气符号(symbol)以及版图(layout); 2、利用’gpdk090’工艺库实例化MOS管; 3、运行设计规则验证(Design Rule Check,DRC)确保版图没有设计规则错误。 二、实验要求 1、打印出完整的CMOS反相器的电路原理图以及版图; 2、打印CMOS反相器的DRC报告。 三、实验工具 Virtuoso 四、实验内容 1、创建CMOS反相器的电路原理图; 2、创建CMOS反相器的电气符号; 3、创建CMOS反相器的版图; 4、对版图进行DRC验证。

1、创建CMOS反相器的电路原理图及电气符号图 首先创建自己的工作目录并将/home/iccad/cds.lib复制到自己的工作目录下(我的工作目录为/home/iccad/iclab),在工作目录内打开终端并打开virtuoso(命令为icfb &). 在打开的icfb –log中选择tools->Library Manager,再创建自己的库,在当前的对话框上选择File->New->Library,创建自己的库并为自己的库命名(我的命名为lab1),点击OK后在弹出的对话框中选择Attach to an exiting techfile并选择gpdk090_v4.6的库,此时Library manager的窗口应如图1所示: 图1 创建好的自己的库以及inv 创建好自己的库之后,就可以开始绘制电路原理图,在Library manager窗口中选中lab1,点击File->New->Cell view,将这个视图命名为inv(CMOS反相器)。需要注意的是Library Name一定是自己的库,View Name是schematic,具体如图2所示: 图2 inv电路原理图的创建窗口 点击OK后弹出schematic editing的对话框,就可以开始绘制反相器的电路原理图(schematic view)。其中nmos(宽为120nm,长为100nm.)与pmos(宽为240nm,长为100nm.)从gpdk090_v4.6这个库中添加,vdd与gnd在analogLib这个库中添加,将各个原件用wire连接起来,连接好的反相器电路原理图如图3所示:

福州大学集成电路版图设计实验报告

福州大学物信学院 《集成电路版图设计》 实验报告 姓名:席高照 学号:111000833 系别:物理与信息工程 专业:微电子学 年级:2010 指导老师:江浩

一、实验目的 1.掌握版图设计的基本理论。 2.掌握版图设计的常用技巧。 3.掌握定制集成电路的设计方法和流程。 4.熟悉Cadence Virtuoso Layout Edit软件的应用 5.学会用Cadence软件设计版图、版图的验证以及后仿真 6.熟悉Cadence软件和版图设计流程,减少版图设计过程中出现的错误。 二、实验要求 1.根据所提供的反相器电路和CMOS放大器的电路依据版图设计的规则绘制电路的版图,同时注意CMOS查分放大器电路的对称性以及电流密度(通过该电路的电流可能会达到5mA) 2.所设计的版图要通过DRC、LVS检测 三、有关于版图设计的基础知识 首先,设计版图的基础便是电路的基本原理,以及电路的工作特性,硅加工工艺的基础、以及通用版图的设计流程,之后要根据不同的工艺对应不同的设计规则,一般来说通用的版图设计流程为①制定版图规划记住要制定可能会被遗忘的特殊要求清单②设计实现考虑特殊要求及如何布线创建组元并对其进行布局③版图验证执行基于计算机的检查和目视检查,进行校正工作④最终步骤工程核查以及版图核查版图参数提取与后仿真 完成这些之后需要特别注意的是寄生参数噪声以及布局等的影响,具体是电路而定,在下面的实验步骤中会体现到这一点。 四、实验步骤 I.反相器部分: 反相器原理图:

反相器的基本原理:CMOS反相器由PMOS和NMOS构成,当输入高电平时,NMOS导通,输出低电平,当输入低电平时,PMOS导通,输出高电平。 注意事项: (1)画成插齿形状,增大了宽长比,可以提高电路速度 (2)尽可能使版图面积最小。面积越小,速度越高,功耗越小。 (3)尽可能减少寄生电容和寄生电阻。尽可能增加接触孔的数目可以减小接触电阻。(4)尽可能减少串扰,电荷分享。做好信号隔离。 反相器的版图: 原理图电路设计: 整体版图:

差分放大器设计

第4节 差分放大器设计 [学习要求] 掌握差分放大器的主要特性参数及其测试方法;学会设计具有恒流源的差分放大器及电路的调试技术。 [重点与难点] 重点:差分放大器的传输特性及差模特性。 难点:恒流源的镜像电流;输入输出信号的连接方式对性能的影响。 [理论内容] 一、具有恒流源的差分放大器 具有恒流源的差分放大器,应用十分广泛。特别是在模拟集成电路中,常作为输入级或中间放大级,电路如图1所示。其中,T 1、T 2称为差分对管,常采用双三极管如5G921或BG319等,它与电阻R Bl 、R B2、R Cl 、R C2及电位器RP 共同组成差分放大器的基本电路。T 3、T 4与电阻R E3、R E4、R 共同组成恒流源电路,为差分对管的射极提供恒定电流。均压电阻R 0I 1、R 2给差分放大器提供对称差模输入信号。晶体管T 1与T 2、T 3与T 4的特性应相同,电路参数应完全对称,改变RP 可调整电路的对称性。由于电路的这种对称性结构特点及恒流源的作用,无论是温度的变化,还是电源的波动(称之为共模信号),对T 1、T 2两管的影响都是一样的。因此,差分放大器能有效地抑制零点漂移。 图1具有恒流源的差分放大器 1、输入输出信号的连接方式

如图1所示,差分放大器的输入信号与输出信号可以有4种不同的连接方 .id V . od V 式: ·双端输入—双端输出连接方式为①—A'—A ,②—B'—B ;③—C ,④—D 。 ·双端输入—单端输出连接方式为①—A'—A ,②—B'—B ;③、④分别接一电阻 RL 到地。 ·单端输入—双端输出连接方式为①—A ,②—B —地:③—C ,④—D 。 ·单端输入—单端输出连接方式为①—A ,②—B —地:③、④分别接一电阻R L 到地。 连接方式不同,电路的特性参数有所不同。 2、静态工作点的计算 静态时,差分放大器的输入端不加信号。对于恒流源电路的电流值 .id V 0 4444422I I I I I I I Q C Q C Q C Q C Q B R ≈≈+=+=β (1) 故称为0I R I 的镜像电流,其表达式为 407.0E EE R R R V V I I +??== (2) 上式表明,恒定电流主要由电源电压0I EE V ?及电阻R 、4E R 决定 对于差分对管T1、T2组成的对称电路,则有 2021I I I Q C Q C == (3) 21 01121C CC C Q C CC Q C Q C R I V R I V V V ?=?== (4) {}(){}mA I mV mA I mV r mA mA E be ?++?=?++?=226130026)1(3000ββ (5) 可见差分放大器的静态工作点,主要由恒流 源电流的大小决定 0I 二、主要特性参数及其测试方法 1、传输特性 传输特性是指差分放大器在差模信号输

集成电路版图设计论文

集成电路版图设计 班级12级微电子姓名陈仁浩学号2012221105240013 摘要:介绍了集成电路版图设计的各个环节及设计过程中需注意的问题,然后将IC版图设计与PCB版图设计进行对比,分析两者的差异。最后介绍了集成电路版图设计师这一职业,加深对该行业的认识。 关键词: 集成电路版图设计 引言: 集成电路版图设计是实现集成电路制造所必不可少的设计环节,它不仅关系到集成电路的功能是否正确,而且也会极大程度地影响集成电路的性能、成本与功耗。近年来迅速发展的计算机、通信、嵌入式或便携式设备中集成电路的高性能低功耗运行都离不开集成电路掩模版图的精心设计。一个优秀的掩模版图设计者对于开发超性能的集成电路是极其关键的。 一、集成电路版图设计的过程 集成电路设计的流程:系统设计、逻辑设计、电路设计(包括:布局布线验证)、版图设计版图后仿真(加上寄生负载后检查设计是否能够正常工作)。集成电路版图设计是集成电路从电路拓扑到电路芯片的一个重要的设计过程,它需要设计者具有电路及电子元件的工作原理与工艺制造方面的基础知识,还需要设计者熟练运用绘图软件对电路进行合理的布局规划,设计出最大程度体现高性能、低功耗、低成本、能实际可靠工作的芯片版图。集成电路版图设计包括数字电路、模拟电路、标准单元、高频电路、双极型和射频集成电路等的版图设计。具体的过程为: 1、画版图之前,应与IC 工程师建立良好沟通在画版图之前,应该向电路设计者了解PAD 摆放的顺序及位置,了解版图的最终面积是多少。在电路当中,哪些功能块之间要放在比较近的位置。哪些器件需要良好的匹配。了解该芯片的电源线和地线一共有几组,每组之间各自是如何分布在版图上的? IC 工程师要求的工作进度与自己预估的进度有哪些出入? 2、全局设计:这个布局图应该和功能框图或电路图大体一致,然后根据模块的面积大小进行调整。布局设计的另一个重要的任务是焊盘的布局。焊盘的安排要便于内部信号的连接,要尽量节省芯片面积以减少制作成本。焊盘的布局还应该便于测试,特别是晶上测试。 3、分层设计:按照电路功能划分整个电路,对每个功能块进行再划分,每一个模块对应一个单元。从最小模块开始到完成整个电路的版图设计,设计者需要建立多个单元。这一步就是自上向下的设计。 4、版图的检查: (1)Design Rules Checker 运行DRC,DRC 有识别能力,能够进行复杂的识别工作,在生成最终送交的图形之前进行检查。程序就按照规则检查文件运行,发现错误时,会在错误的地方做出标记,并且做出解释。

全差分套筒式运算放大器设计

全差分套筒式运算放大器设计 1、设计内容 本设计基于经典的全差分套筒式结构设计了一个高增益运算放大器,采用镜像电流源作为偏置。为了获得更大的输出摆幅及差模增益,电路采用了共模反馈及二级放大电路。 本设计所用到的器件均采用SMIC 0.18μm的工艺库。 2、设计要求及工艺参数 本设计要实现的各项指标和相关的工艺参数如表1和表2所示:

3、放大器设计 3.1 全差分套筒式放大器拓扑结构与实际电路 图1 全差分套筒式放大器拓扑结构 图2 最终电路图

3.2 设计过程 在图1中,Mb1和M9组成的恒流源为差放提供恒流源偏置,且M1,M2完全一样,即两管子所有参数均相同。Mb2、M7和M8构成了镜像电流源,M5、M6和M7、M8构成了共源共栅电流源,M1、M2、M3、M4构成了共源共栅结构,可以显著提高输出阻抗,提高放大倍数(把M3的输出阻抗提高至原来的(gm3 + gmb3)ro2倍。但同时降低了输出电压摆幅。为了提高摆幅,控制增益,在套筒式差分放大器输出端增加二级放大。 本设计中功率上限为10mW,可以给一级放大电路分配3mA的电流。设计要求摆幅为3V,所以图1中M1、M3、M5、M9的过驱动电压之和不大于1.8-3/2=0.3V。我们可以平均分配每个管子的过驱动电压。根据漏电计算流公式(1)(考虑沟道长度调制效应),可以计算出每个管子的宽长比。 I D=1 2μn C ox W L (V GS?V TH)2(1+λV DS)(1) 其中,C ox等于ε/t ox,μn和t ox可以从工艺库中查找。 4、仿真结果 经过调试优化之后的仿真结果如以下各图所示: 图3 增益及相位裕度 从图中可以看出,本设计的低频增益达到了74.25dB,达到了预期要求。3dB 带宽为35kHz左右,比较小,可见设计还有改进的余地。 当CL为2pF时,相位裕度: PM=180°+∠βH(ω)=180°?125.5°=54.5° 电源电压为1.8V时,输出摆幅如下图所示,达到了3V。

版图对电路的影响—差分放大器

版图对电路的影响—差分放大器(一) 标准小信号模型 将Rss视为电流源,输出电阻无穷大,平衡状态下的小信号差动增益|Av|=gmRd,单边输出增益减半。尾流源让共模电平对偏置电流的影响尽可能的小。理想差分放大器共模增益为零,共模抑制比无穷大。 一、共模输入变化引起输出的变化 电路对称 Rd1=Rd2=Rd Vin1=Vin2 gm1=gm2=gm, Vgs1=Vgs2=Vgs Vin1=Vin2=Vin=Vgs+2gmVgsRss

Vx=Vy=Vout=-gmVgsRd Avc=Vout/Vin=(-gm)Rd/(1+2gmRss) 仅负载失配 Rd1≠Rd2 Vin1=Vin2=Vin Vgs1=Vgs2=Vgs beta1=beat2=beta gm=beta*(Vgs-Vth) gm1=gm2=gm Vin=Vgs+2gmVgsRss Vx=-gmVgsRd1 Vy=-gmVgsRd2 Vx-Vy=-gmVgs(Rd1-Rd2) Avc=(Vx-Vy)/Vin=(-gm)(Rd1-Rd2)/(1+2gmRss) 仅晶体管失配 beta1≠beta2 gm1≠gm2 Vgs1=Vgs2=Vgs Rd1=Rd2=Rd Vin1=Vin2=Vin Vin=Vgs+(gm1+gm2)VgsRss Vx=-gm1VgsRd Vy=-gm2VgsRd Vx-Vy=-VgsRd(gm1-gm2) Avc=Vx-Vy/Vin=-Rd(gm1-gm2)/[1+(gm1+gm2)Rss]

摘录自(1): 1、共模扰动频率的增加与尾流源并联的电容会使电流产生很大的变化(即使 尾流源输出阻抗很大,在高频时也会变得很严重) 2、电路不对称既来自负载电阻,也来自输入晶体管。通常后者产生的失配要 大得多。 由i=q/t, q=cv, f=1/t得到i=cvf,所以尾流部分的寄生电容与输入频率会影响到尾流源,进而影响到整个差动电路的性能。 C=Eox * Area / Tox,很容易看出面积越大电容也越大。以W/L = 100 / 1的晶体管为例,画成finger =1时,diff_area_f1=100 * (1.5*2 + 1) = 400, all _area_f1=400 + (0.5*4*2) = 404;当finger =2 时,diff_area_f2 = 50 * (1.5*3 +1*2) = 325, all_area_f2=325 + (0.5*6.5*2) = 331.5。每次减小重合部分的面积。设MOS宽度为W,重合部分宽度为ds,channel长度为g,gate出diff为cap,finger 数目为n,有(W/n+2*cap)(n*ds+ds+n*g)>=(W+2*cap)(2*ds+g),得出当n>=W*ds/[2*cap*(g+ds)]时,finger=n的整体面积大于finger=1的面积。 如果ds=x * cap, g=y *cap则 n = [W/(2*cap)] *[x / (x+y)],finger=n 如果y=z*x,其中z=g/d,则 n=W/[2*(1+z)*cap],将(1+z)*cap作为一个整体k,则

差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

集成电路版图设计笔试面试大全

集成电路版图设计笔试面试大全 1. calibre语句 2. 对电路是否了解。似乎这个非常关心。 3. 使用的工具。 , 熟练应用UNIX操作系统和L_edit,Calibre, Cadence, Virtuoso, Dracula 拽可乐(DIVA),等软件进行IC版图 绘制和DRC,LVS,ERC等后端验证 4. 做过哪些模块 其中主要负责的有Amplifier,Comparator,CPM,Bandgap,Accurate reference,Oscillator,Integrated Power MOS,LDO blocks 和Pad,ESD cells以及top的整体布局连接 5. 是否用过双阱工艺。 工艺流程见版图资料 在高阻衬底上同时形成较高的杂质浓度的P阱和N阱,NMOS、PMOS分别做在这两个阱中,这样可以独立调节两种沟道MOS管的参数,使CMOS电路达到最优特性,且两种器件间距离也因采用独立的阱而减小,以适合于高密度集成,但是工艺较复杂。 制作MOS管时,若采用离子注入,需要淀积Si3N4,SiO2不能阻挡离子注入,进行调沟或调节开启电压时,都可以用SiO2层进行注入。 双阱CMOS采用原始材料是在P+衬底(低电阻率)上外延一层轻掺杂的外延层P-(高电阻率)防止latch-up效应(因为低电阻率的衬底可以收集衬底电流)。 N阱、P阱之间无space。

6. 你认为如何能做好一个版图,或者做一个好版图需要注意些什么需要很仔细的回答~答:一,对于任何成功的模拟版图设计来说,都必须仔细地注意版图设计的floorplan,一般floorplan 由设计和应用工程师给出,但也应该考虑到版图工程师的布线问题,加以讨论调整。总体原则是 模拟电路应该以模拟信号对噪声的敏感度来分类。例如,低电平信号节点或高阻抗节点,它们与输入信号典型相关,因此认为它们对噪声的敏感度很高。这些敏感信号应被紧密地屏蔽保护起来,尤其是与数字输出缓冲器隔离。高摆幅的模拟电路,例如比较器和输出缓冲放大器应放置在敏感模拟电路和数字电路之间。数字电路应以速度和功能来分类。显而易见,因为数字输出缓冲器通常在高速时驱动电容负载,所以应使它离敏感模拟信号最远。其次,速度较低的逻辑电路位于敏感模拟电路和缓冲输出之间。注意到敏感模拟电路是尽可能远离数字缓冲输出,并且最不敏感的模拟电路与噪声最小的数字电路邻近。 芯片布局时具体需考虑的问题,如在进行系统整体版图布局时,要充分考虑模块之间的走线,避免时钟信号线对单元以及内部信号的干扰。模块间摆放时要配合压焊点的分布,另外对时钟布线要充分考虑时延,不同的时钟信号布线应尽量一致,以保证时钟之间的同步性问题。而信号的走线要完全对称以克服外界干扰。 二(电源线和地线的布局问题

相关文档
最新文档