新人教A版高中数学选修2-2综合测试题【2】及答案

合集下载

高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

1.2.2 基本初等函数的导数公式及导数的运算法则(二)[A 基础达标]1.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4解析:选D.y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)(x -1)+(x +1)2=3x 2+2x -1, 所以y ′|x =1=4.2.函数y =cos(-x )的导数是( ) A .cos x B .-cos x C .-sin xD .sin x解析:选C.法一:[cos(-x )]′=-sin(-x )·(-x )′=sin(-x )=-sin x . 法二:y =cos(-x )=cos x ,所以[cos(-x )]′=(cos x )′=-sin x .3.(2018·郑州高二检测)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:选C.因为f ′(x )=2x -2-4x =2(x -2)(x +1)x,又x >0,所以f ′(x )>0即x-2>0,解得x >2.4.对于函数f (x )=e xx 2+ln x -2kx,若f ′(1)=1,则k 等于( )A.e 2B.e 3 C .-e 2D .-e 3解析:选A.因为f ′(x )=e x(x -2)x 3+1x +2kx2,所以f ′(1)=-e +1+2k =1,解得k =e2,故选A. 5.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2e xf ′(1)+3ln x ,则f ′(1)=( )A .-3B .2eC.21-2eD.31-2e解析:选D.因为f ′(1)为常数, 所以f ′(x )=2e xf ′(1)+3x,所以f ′(1)=2e f ′(1)+3, 所以f ′(1)=31-2e.6.若f (x )=log 3(2x -1),则f ′(2)=________. 解析:因为f ′(x )=[log 3(2x -1)] ′= 1(2x -1)ln 3(2x -1)′=2(2x -1)ln 3,所以f ′(2)=23ln 3.答案:23ln 37.已知函数f (x )=ax 4+bx 2+c ,若f ′(1)=2,则f ′(-1)=________. 解析:法一:由f (x )=ax 4+bx 2+c ,得f ′(x )=4ax 3+2bx .因为f ′(1)=2, 所以4a +2b =2, 即2a +b =1.则f ′(-1)=-4a -2b =-2(2a +b )=-2. 法二:因为f (x )是偶函数, 所以f ′(x )是奇函数, 所以f ′(-1)=-f ′(1)=-2. 答案:-28.已知f (x )=exx,若f ′(x 0)+f (x 0)=0,则x 0的值为________.解析:因为f ′(x )=(e x )′x -e x x ′x 2=e x(x -1)x2(x ≠0). 所以由f ′(x 0)+f (x 0)=0, 得e x0(x 0-1)x 20+e x0x 0=0. 解得x 0=12.答案:129.求下列函数的导数: (1)y =cos(1+x 2); (2)y =sin 2⎝ ⎛⎭⎪⎫2x +π3; (3)y =ln(2x 2+x ); (4)y =x ·2x -1.解:(1)设u =1+x 2,y =cos u ,所以y ′x =y ′u ·u ′x =(cos u )′·(1+x 2)′ =-sin u ·2x =-2x sin(1+x 2). (2)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin v ·cos v=2sin 2v =2sin ⎝ ⎛⎭⎪⎫4x +2π3. (3)设u =2x 2+x ,则y ′x =y ′u ·u ′x =(ln u )′·(2x 2+x )′ =1u ·(4x +1)=4x +12x 2+x. (4)y ′=x ′·2x -1+x ·(2x -1)′. 先求t =2x -1的导数. 设u =2x -1,则t =u 12,t ′x =t ′u ·u ′x =12·u -12·(2x -1)′=12×12x -1×2=12x -1 . 所以y ′=2x -1+x 2x -1=3x -12x -1. 10.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解:因为曲线y =ax 2+bx +c 过点P (1,1), 所以a +b +c =1.① 因为y ′=2ax +b ,所以4a +b =1.②又因为曲线过点Q (2,-1), 所以4a +2b +c =-1.③ 联立①②③,解得a =3,b =-11,c =9.[B 能力提升]11.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选 C.因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.12.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=-x e -x解析:选D.若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-xe-x,则f ″(x )=2e-x-x e-x=(2-x )e -x,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )>0,不是凸函数.13.已知曲线y =e 2x·cos 3x 在点(0,1)处的切线与直线l 的距离为5,求直线l 的方程.解:因为y ′=(e 2x)′·cos 3x +e 2x·(cos 3x )′=2e 2x·cos 3x -3e 2x·sin 3x , 所以y ′|x =0=2,所以经过点(0,1)的切线方程为y -1=2(x -0), 即y =2x +1.设符合题意的直线方程为y =2x +b ,根据题意,得5=|b -1|5,解得b =6或-4. 所以符合题意的直线方程为y =2x +6或y =2x -4. 14.(选做题)已知函数f (x )=ax 2+ln x 的导数为f ′(x ). (1)求f (1)+f ′(1);(2)若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围. 解:(1)由题意,函数的定义域为(0,+∞), 由f (x )=ax 2+ln x , 得f ′(x )=2ax +1x,所以f (1)+f ′(1)=3a +1.(2)因为曲线y =f (x )存在垂直于y 轴的切线,故此时切线斜率为0,问题转化为在x ∈(0,+∞)内导函数f ′(x )=2ax +1x存在零点,即f ′(x )=0⇒2ax +1x=0有正实数解,即2ax 2=-1有正实数解,故有a <0,所以实数a 的取值范围是(-∞,0).。

人教a版数学【选修2-2】练习:1.3.2函数的极值与导数(含答案)

人教a版数学【选修2-2】练习:1.3.2函数的极值与导数(含答案)

选修2-2 第一章 1.3 1.3.2一、选择题1.已知函数f (x )在点x 0处连续,下列命题中,正确的是( ) A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 [答案] C[解析] 导数为0的点不一定是极值点,例如f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,但x =0不是f (x )的极值点,故A 错;由极值的定义可知C 正确,故应选C.2.(2013·北师大附中高二期中)函数y =14x 4-13x 3的极值点的个数为( )A .0B .1C .2D .3[答案] B[解析] y ′=x 3-x 2=x 2(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表3.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0[答案] D[解析] y ′=3ax 2+2bx 由题设0和13是方程3ax 2+2bx =0的两根,∴a +2b =0.4.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9[答案] D[解析] f ′(x )=12x 2-2ax -2b =0的一根为x =1,即12-2a -2b =0. ∴a +b =6,∴ab ≤(a +b 2)2=9,当且仅当a =b =3时“=”号成立.5.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. 6.(2013·辽宁实验中学期中)函数f (x )=-x e x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定[答案] C[解析] f ′(x )=(-x e x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1e x. 当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ). 二、填空题7.(2014·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.[答案] 4x -y -3=0[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0. 8.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.[答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a≥cos x 恒成立,∴-1a≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.9.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________. [答案] -23[解析] f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0.∴a =-23.三、解答题10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. [解析] (1)由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1. [点评] 若函数f (x )在x 0处取得极值,则一定有f ′(x 0)=0,因此我们可根据极值得到两个方程,再由f (1)=-1得到一个方程,解上述方程组成的方程组可求出参数.一、选择题11.(2014·山东省德州市期中)已知函数f (x )=e x (sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )A .e 2π(1-e 2012π)e 2π-1B .e π(1-e 2012π)1-e 2πC .e π(1-e 1006π)1-e 2πD .e π(1-e 1006π)1-e π[答案] B[解析] f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π+e 3π+e 5π+…+e 2011π=e π[1-(e 2π)1006]1-e 2π=e π(1-e 2012π)1-e 2π,故选B.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.13.(2014·西川中学高二期中)已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( )A .-1<a <2B .-3<a <6C .a <-3或a >6D .a <-1或a >2[答案] C[解析] f ′(x )=3x 2+2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6. 二、填空题14.已知函数y =x 3+ax 2+bx +27在x =-1处有极大值,在x =3处有极小值,则a =________________,b =________.[答案] -3 -9[解析] y ′=3x 2+2ax +b ,方程y ′=0有根-1及3,由韦达定理应有⎩⎨⎧-1+3=-2a3,-3=b 3.∴⎩⎪⎨⎪⎧a =-3,b =-9.经检验a =-3,b =-9符合题意. 三、解答题15.(2013·新课标Ⅰ文,20)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -12).令f ′(x )=0得,x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).16.(2014·三峡名校联盟联考)已知函数f (x )=ln x +x 2+ax . (1)当a =-3时,求函数y =f (x )的极值点;(2)当a =-4时,求方程f (x )+x 2=0在(1,+∞)上的根的个数. [解析] (1)f (x )=ln x +x 2-3x ,f ′(x )=1x +2x -3,令f ′(x )=0,则x =1或x =12,由f ′(x )>0得0<x <12,或x >1,∴f (x )在(0,12)和(1,+∞)上单调递增,在(12,1)上单调递减,∴f (x )的极大值点x =12,极小值点x =1.(2)当a =-4时,f (x )+x 2=0,即ln x +2x 2-4x =0, 设g (x )=ln x +2x 2-4x ,则g ′(x )=1x +4x -4=4x 2-4x +1x ≥0,则g (x )在(0,+∞)上单调递增,又g (1)=-2<0,g (2)=ln2>0, 所以g (x )在(1,+∞)上有唯一实数根.17.(2014·温州八校联考)已知函数f (x )=-x 3+ax 2+b (a 、b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. [解析] (1)∵f (x )=-x 3+ax 2+b , ∴f ′(x )=-3x 2+2ax =-3x (x -2a 3).当a =0时,f ′(x )≤0函数f (x )没有单调递增区间; 当a >0时,令f ′(x )>0,得0<x <2a3,函数f (x )的单调递增区间为(0,23a );当a <0时,令f ′(x )>0,得2a3<x <0, 函数f (x )的单调递增区间为(23a,0).(2)由(1)知,a ∈[3,4]时,x 、f ′(x )、f (x )的取值变化情况如下:∴f (x )极小值=f (0)=b ,f (x )极大值=f (2a 3)=4a 327+b ,∵对任意a ∈[3,4],f (x )在R 上都有三个零点, ∴⎩⎪⎨⎪⎧ f (0)<0,f (2a 3)>0,即⎩⎪⎨⎪⎧b <0,4a 327+b >0.得-4a 327<b <0.∵对任意a ∈[3,4],b >-4a 327恒成立,∴b >(-4a 327)max =-4×3327=-4.∴实数b 的取值范围是(-4,0).。

人教a版数学【选修2-2】练习:1.2.2基本初等函数的导数公式(一)(含答案)

人教a版数学【选修2-2】练习:1.2.2基本初等函数的导数公式(一)(含答案)

选修2-2 第一章 1.2 1.2.2 第1课时一、选择题1.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0[答案] A[解析] ∵直线x +4y -8=0的斜率k =-14,∴直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.2.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( ) A .193B .163C .103D .133[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163.∴选B.3.(2014·山师附中高二期中)设f (x )=sin x -cos x ,则f (x )在x =π4处的导数f ′(π4)=( )A . 2B .- 2C .0D .22[答案] A[解析] ∵f ′(x )=cos x +sin x , ∴f ′(π4)=cos π4+sin π4=2,故选A.4.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n的值为( )A .1nB .1n +1C .n n +1D .1[答案] B[解析] 对y =x n +1(n ∈N *)求导得y ′=(n +1)x n ,令x =1得在点(1,1)处的切线的斜率k=n +1,在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =nn +1.则x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.5.(2014·合肥一六八高二期中)下列函数中,导函数是奇函数的是( ) A .y =sin x B .y =e x C .y =ln x D .y =cos x -12[答案] D[解析] 由y =sin x 得y ′=cos x 为偶函数,故A 错;又y =e x 时,y ′=e x 为非奇非偶函数,∴B 错;C 中y =ln x 的定义域x >0,∴C 错;D 中y =cos x -12时,y ′=-sin x 为奇函数,∴选D.6.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒 [答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.二、填空题7.过曲线y =cos x 上点P ⎝⎛⎭⎫π3,12且与在这点的切线垂直的直线方程为________. [答案] 2x -3y -2π3+32=0[解析] ∵y =cos x ,∴y ′=-sin x , 曲线在点P ⎝⎛⎭⎫π3,12处的切线斜率是 y ′|x =π3=-sin π3=-32.∴过点P 且与切线垂直的直线的斜率为23, ∴所求的直线方程为y -12=23⎝⎛⎭⎫x -π3, 即2x -3y -2π3+32=0.[点评] 在确定与切线垂直的直线方程时,应注意考察函数在切点处的导数y ′是否为零,当y ′=0时,切线平行于x 轴,过切点P 垂直于切线的直线斜率不存在.8.(2014·杭州质检)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为________. [答案] (2,+∞)[解析] 由f (x )=x 2-2x -4ln x ,得函数定义域为(0,+∞),且f ′(x )=2x -2-4x =2x 2-2x -4x =2·x 2-x -2x =2·(x +1)(x -2)x ,f ′(x )>0,解得x >2,故f ′(x )>0的解集为(2,+∞).9.在曲线y =4x 2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________.[答案] (2,1)[解析] 设P (x 0,y 0),∵y ′=⎝⎛⎭⎫4x 2′=(4x -2)′=-8x -3,tan135°=-1, ∴-8x -30=-1.∴x 0=2,y 0=1.三、解答题10.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2, ∴y ′=3x 2-2x 3.(2)∵y =(x +1)⎝⎛⎭⎫1x -1=-x 12+x -12,∴y ′=-12x -12-12x -32=-12x ⎝⎛⎭⎫1+1x . (3)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.一、选择题11.(2014·长春市期末调研)已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A .-e B .e C .-1eD .1e[答案] D[解析] y ′=1x =k ,∴x =1k ,切点坐标为⎝⎛⎭⎫1k ,1, 又切点在曲线y =ln x 上,∴ln 1k =1,∴1k =e ,k =1e.12.(2014·山师附中高二期中)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-2 [答案] C[解析] 由条件知,点A 在直线上,∴k =2,又点A 在曲线上,∴a +b +1=3,∴a +b =2.由y =x 3+ax +b 得y ′=3x 2+a ,∴3+a =k ,∴a =-1,∴b =3,∴2a +b =1.13.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A .π2B .0C .钝角D .锐角 [答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.14.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2013(x )等于( )A .sin xB .-sin xC .cos xD .-cos x[答案] C[解析]f0(x)=sin x,f1(x)=f0′(x)=(sin x)′=cos x,f2(x)=f1′(x)=(cos x)′=-sin x,f3(x)=f2′(x)=(-sin x)′=-cos x,f4(x)=f3′(x)=(-cos x)′=sin x,∴4为最小正周期,∴f2013(x)=f1(x)=cos x.故选C.二、填空题15.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=________.[答案]212[解析]f′(x)=x′·[(x-a1)(x-a2)…(x-a8)]+[(x-a1)(x-a2)…(x-a8)]′·x=(x-a1)(x-a2)…(x-a8)+[(x-a1)(x-a2)…(x-a8)]′·x,所以f′(0)=(0-a1)(0-a2)...(0-a8)+[(0-a1)(0-a2)...(0-a8)]′.0=a1a2 (8)因为数列{a n}为等比数列,所以a2a7=a3a6=a4a5=a1a8=8,所以f′(0)=84=212.16.(2014·宁夏三市联考)经过点P(2,1)且与曲线f(x)=x3-2x2+1相切的直线l的方程是________.[答案]4x-y-7=0或y=1[解析]设切点为(x0,x30-2x20+1),由k=f′(x0)=3x20-4x0,可得切线方程为y-(x30-2x20+1)=(3x20-4x0)(x-x0),代入点P(2,1)解得:x0=0或x0=2.当x0=0时切线方程为y=1;当x0=2时切线方程为4x-y-7=0.综上得直线l的方程是:4x-y-7=0或y=1.三、解答题17.已知两条曲线y=sin x、y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析]由于y=sin x、y=cos x,设两条曲线的一个公共点为P(x0,y0),∴两条曲线在P(x0,y0)处的斜率分别为k1=y′|x=x0=cos x0,k2=y′|x=x0=-sin x0.若使两条切线互相垂直,必须cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin2x0=2,这是不可能的,∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.18.已知函数f (x )=ax -6x 2+b 的图象在点M (-1,f (-1))处的切线的方程为x +2y +5=0,求函数的解析式.[分析] f (x )在点M 处切线方程为x +2y +5=0有两层含义,(一)是点M 在f (x )的图象上,且在直线x +2y +5=0上,(二)是f ′(-1)=-12.[解析] 由条件知,-1+2f (-1)+5=0, ∴f (-1)=-2, ∴-a -61+b=-2,(1) 又直线x +2y +5=0的斜率k =-12,∴f ′(-1)=-12,∵f ′(x )=-ax 2+12x +ab(x 2+b )2,∴-a -12+ab (1+b )2=-12,(2) 由(1)(2)解得,a =2,b =3.(∵b +1≠0,∴b =-1舍去). ∴所求函数解析式为f (x )=2x -6x 2+3.。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限解析:∵z=2-i=5/√26-i√26/√26=(5-i√26)/√26。

在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A.10/3B.5/7C.-1/7D.-3/7解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=0时,x=-3/7.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A.①②③B.①③C.①D.②③解析:类比①的结论为:平行于同一个平面的两个平面平行,成立;类比②的结论为:一个平面如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个平面与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A.(0,+∞)B.(-∞,1)C.(1,2)D.(2,+∞)解析:令y′=8x-1/x^2=0,得x=1/2,y′<0时,x<1/2;y′>0时,x>1/2.答案:C6.下列计算错误的是()A.∫π-πsinxdx=0B.∫1/2xdx=1/8C.∫(x^2-1)(x+1)dx=∫(x^3-x^2+x-1)dxD.∫(x^2+1)/(x^2-2x+2)dx=∫(1+2/(x^2-2x+2))dx解析:B选项计算错误,正确结果为∫1/2xdx=1/8.答案:B1.剔除格式错误和明显有问题的段落:无明显问题的段落为第7、9、10、11题,保留。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z =2-i2+i (i 为虚数单位)在复平面内对应的点所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限解析: ∵z =2-i 2+i =(2-i )2(2+i )(2-i )=4-4i -15=35-45i ,∴复数z 对应的点的坐标为⎝⎛⎭⎫35,-45,在第四象限. 答案: D2.函数f (x )=x 3+4x +5的图象在x =1处的切线在x 轴上的截距为( ) A .10 B .5 C .-1D .-37解析: f ′(x )=3x 2+4,f ′(1)=7,f (1)=10,y -10=7(x -1),y =0时,x =-37.答案: D3.类比下列平面内的三个结论所得的空间内的结论成立的是( ) ①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直; ③如果一条直线与两条平行直线中的一条相交,则必与另一条相交. A .①②③ B .①③ C .①D .②③解析: 类比①的结论为:平行于同一个平面的两个平面平行,成立;类比②的结论为:一个平面如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个平面与两个平行平面中的一个相交,则必与另一个相交,成立.答案: A4.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析: y ′=3x 2-6x -9=0,得x =-1,x =3,当x <-1时,y ′>0;当x >-1时,y ′<0. 当x =-1时,y 极大值=5,x 取不到3,无极小值. 答案: C5.函数y =4x 2+1x 的单调递增区间是( )A .(0,+∞)B .(-∞,1)C .⎝⎛⎭⎫12,+∞D .(1,+∞)解析: 令y ′=8x -1x 2=8x 3-1x 2>0,即(2x -1)(4x 2+2x +1)>0,且x ≠0,得x >12.答案: C6.下列计算错误的是( ) A .⎠⎛π-πsin x d x =0B .⎠⎛1x d x =23C .cos x d x =2cos x d xD .⎠⎛π-πsin 2x d x =0解析: 由微积分基本定理或定积分的几何意义易得结果. 答案: D7.用数学归纳法证明1n +1+1n +2+…+13n +1>1(n ∈N +)时,在验证n =1时,左边的代数式为( )A .12+13+14B .12+13C .12D .1解析: 当n =1时,不等式左边为11+1+11+2+13×1+1=12+13+14.答案: A8.函数y =ax 3-x 在(-∞,+∞)上的减区间是[-1,1],则( ) A .a =13B .a =1C .a =2D .a ≤0解析: x ∈[-1,1],y ′=3ax 2-1≤0,且y ′|x =±1=0, ∴3a =1,a =13.答案: A9.若z1,z2∈C,则z1z2+z1z2是()A.纯虚数B.实数C.虚数D.不能确定解析:设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1z2+z1z2=(a+b i)(c-d i)+(a -b i)(c+d i)=(2ac+2bd)∈R.答案:B10.设z=log2(m2-3m-3)+ilog2(m-3)(m∈R),若z对应的点在直线x-2y+1=0上,则m的值是()A.±15 B.15C.-15 D.15解析:log2(m2-3m-3)-2log2(m-3)+1=0,log2m2-3m-3(m-3)2=-1,m2-3m-3(m-3)2=12,m=±15,而m>3,所以m=15.答案:B11.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)解析:设m(x)=f(x)-(2x+4),则m′(x)=f′(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).答案:B12.按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是()A .C 4H 9B .C 4H 10 C .C 4H 11D .C 6H 12解析: 后一种化合物应有4个C 和10个H , 所以分子式是C 4H 10. 答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.已知复数z =-1+i1+i -1,则在复平面内,z 所对应的点在第__________ 象限.解析: z =-1+i1+i -1=-1+i.答案: 二14.垂直于直线2x -6y +1=0并且与曲线y =x 3+3x 2-5相切的直线方程是________. 解析: 设切点为P (a ,b ),函数y =x 3+3x 2-5的导数为y ′=3x 2+6x ,切线的斜率k =y ′|x =a =3a 2+6a =-3,得a =-1,代入到y =x 3+3x 2-5,得b =-3,即P (-1,-3),y +3=-3(x +1),3x +y +6=0.答案: 3x +y +6=015.已知函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与直线y =0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为274,则a 的值为________.解析: 由题意可知,f ′(x )=3x 2+2ax +b ,f ′(0)=0 ∴b =0,∴f (x )=x 2(x +a ),有274=∫-a 0[0-(x 3+ax 2)]d x =-⎝⎛⎭⎫x 44+ax 33| -a 0=a 412,∴a =±3. 又-a >0⇒a <0,得a =-3.答案: -316.若Rt △ABC 中两直角边为a ,b ,斜边c 上的高为h ,则1h 2=1a 2+1b 2,如图,在正方体的一角上截取三棱锥P -ABC ,PO 为棱锥的高,记M =1PO 2,N =1P A 2+1PB 2+1PC 2,那么M ,N 的大小关系是________.解析: 在Rt △ABC 中,c 2=a 2+b 2①,由等面积法得ch =ab , ∴c 2·h 2=a 2·b 2②,①÷②整理得1h 2=1a 2+1b2.类比得,S 2△ABC =S 2△P AB +S 2△PBC +S 2△P AC ③,由等体积法得S △ABC ·PO =12P A ·PB ·PC ,∴S 2△ABC ·PO 2=14P A 2·PB 2·PC 2④, ③÷④整理得M =N . 答案: M =N三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知曲线y =5x ,求: (1)曲线上与直线y =2x -4平行的切线方程; (2)求过点P (0,5)且与曲线相切的切线方程. 解析: (1)设切点为(x 0,y 0),由y =5x , 得y ′|x =x 0=52x 0.∵切线与y =2x -4平行, ∴52x 0=2,∴x 0=2516,∴y 0=254,则所求切线方程为y -254=2⎝⎛⎭⎫x -2516,即2x -y +258=0. (2)∵点P (0,5)不在曲线y =5x 上,故需设切点坐标为M (x 1,y 1),则切线斜率为52x 1.又∵切线斜率为y 1-5x 1,∴52x 1=y 1-5x 1=5x 1-5x 1,∴2x 1-2x 1=x 1,得x 1=4.∴切点为M (4,10),斜率为54,∴切线方程为y -10=54(x -4),即5x -4y +20=0.18.(本小题满分12分)设复数z 满足|z |=1且(3+4i)z 是纯虚数,求复数z . 解析: 设z =a +b i(a ,b ∈R ),由|z |=1,得a 2+b 2=1. ①(3+4i)z =(3+4i)(a +b i)=3a -4b +(4a +3b )i 是纯虚数,则3a -4b =0. ②联立①②解得⎩⎨⎧a =45,b =35或⎩⎨⎧a =-45,b =-35.所以z =45+35i 或z =-45-35i.19.(本小题满分12分)已知函数f (x )=ax 3+bx +1的图象经过点(1,-3)且在x =1处,f (x )取得极值.求:(1)函数f (x )的解析式;(2)f (x )的单调递增区间.解析: (1)由f (x )=ax 3+bx +1的图象过点(1,-3)得a +b +1=-3, ∵f ′(x )=3ax 2+b , 又f ′(1)=3a +b =0,∴由⎩⎪⎨⎪⎧ a +b =-43a +b =0得⎩⎪⎨⎪⎧a =2b =-6,∴f (x )=2x 3-6x +1. (2)∵f ′(x )=6x 2-6,∴由f ′(x )>0得x >1或x <-1,∴f (x )的单调递增区间为(-∞,-1),(1,+∞).20.(本小题满分12分)已知a >b >c ,求证:1a -b +1b -c ≥4a -c.证明: 已知a >b >c ,因为a -ca -b +a -c b -c =a -b +b -c a -b +a -b +b -c b -c =2+b -c a -b +a -bb -c ≥2+2b -c a -b ·a -bb -c=4,所以a -ca -b +a -c b -c ≥4,即1a -b +1b -c ≥4a -c.21.(本小题满分13分)用总长14.8 m 的钢条做一个长方体容器的框架.如果所做容器的底面的一边长比另一边长多0.5 m ,那么高是多少时容器的容积最大?并求出它的最大容积.解析: 设该容器底面的一边长为x m ,则另一边长为(x +0.5)m ,此容器的高为h =14.84-x -(x +0.5)=3.2-2x (0<x <1.6).于是,此容器的容积为V (x )=x (x +0.5)(3.2-2x )=-2x 3+2.2x 2+1.6x ,其中0<x <1.6. 由V ′(x )=-6x 2+4.4x +1.6=0,得x =1或x =-415(舍去).因为V (x )在(0,1.6)内只有一个极值点,且x ∈(0,1)时,V ′(x )>0,函数V (x )单调递增;x ∈(1,1.6)时,V ′(x )<0,函数V (x )单调递减.所以,当x =1时,函数V (x )有最大值V (1)=1×(1+0.5)×(3.2-2×1)=1.8(m 3),h =3.2-2=1.2(m).即当高为1.2 m 时,长方体容器的容积最大,最大容积为1.8 m 3.22.(本小题满分13分)设函数f (x )=x 22(x -1),给定数列{a n },其中a 1=a >1,a n +1=f (a n )(n∈N +).(1)若{a n }为常数列,求a 的值;(2)判断a n 与2的大小,并证明你的结论. 解析: (1)若{a n }为常数列,则a n =a . 由a n +1=f (a n ),得a =f (a ). 因为f (x )=x 22(x -1),所以a =a 22(a -1).又a >1,所以a =2(a -1),解得a =2. (2)当a =2时,由(1)知a n =2.当a ≠2时,因为a 1=a ,a n +1=f (a n )=a 2n2(a n -1),所以a 2=a 212(a 1-1)=a 22(a -1).所以a 2-2=a 22(a -1)-2=a 2-4a +42(a -1)=(a -2)22(a -1)>0,即a 2>2.因为a 3-2=a 222(a 2-1)-2=(a 2-2)22(a 2-1)>0,所以a 3>2.猜想当n ≥2时,a n >2. 下面用数学归纳法证明:①n =2时,a 2>2,显然猜想成立. ②假设当n =k (k ≥2)时,猜想成立,即a k >2. 当n =k +1时,a k +1=f (a k )=a 2k2(a k -1),所以a k +1-2=a 2k -4a k +42(a k -1)=(a k -2)22(a k -1).由a k >2,知a k +1-2>0,所以a k +1>2.根据①和②可知,当a ≠2时,对于一切不小于2的正整数n 都有a n >2.综上所述,当a =2时,a n =2;当1<a <2时,a 1<2,a n >2(n ≥2);当a >2时,a n >2.模块综合检测(B)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析: 求出复数z ,再确定z 对应的点的坐标.∵z =1+2i ,∴z =1-2i ,∴z 在复平面内对应的点位于第四象限. 答案: D2.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )解析: 根据导函数值的大小变化情况,确定原函数的变化情况.从导函数的图象可以看出,导函数值先增大后减小,x =0时最大,所以函数f (x )的图象的变化率也先增大后减小,在x =0时变化率最大.A 项,在x =0时变化率最小,故错误;C 项,变化率是越来越大的,故错误;D 项,变化率是越来越小的,故错误.B 项正确.答案: B3.“因为指数函数y =a x 是增函数(大前提),而y =⎝⎛⎭⎫13x是指数函数(小前提),所以函数y =⎝⎛⎭⎫13x是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错解析: 推理形式没有错误,而大前提“y =a x 是增函数”是不正确的,当0<a <1时,y =a x 是减函数;当a >1时,y =a x 是增函数.答案: A4.若复数z =1+b i2+i (b ∈R ,i 是虚数单位)是纯虚数,则复数z 的共轭复数是( )A .35iB .-35iC .iD .-i解析: 因为z =1+b i 2+i =(1+b i )(2-i )(2+i )(2-i )=2+b 5+2b -15i 是纯虚数,所以2+b =0且2b -1≠0,解得b =-2.所以z =-i ,则复数z 的共轭复数是i. 答案: C5.类比平面内正三角形“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是( )①棱长相等,同一顶点上的任意两条棱的夹角都相等; ②各个面都是全等的正三角形,相邻两个面所成的二面角相等; ③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等. A .① B .② C .③D .①②③解析: 三个性质都是正确的,但从“类比”角度看,一般是“线→面”、“角→二面角”.答案: B6.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-1处取得极小值,则函数y =xf ′(x )的图象可能是( )解析: 由题意知f ′(-1)=0,当x <-1时f ′(x )<0,当x >-1时f ′(x )>0, ∴当x <-1时,x ·f ′(x )>0, 当-1<x <0时,x ·f ′(x )<0, 当x >0时,x ·f ′(x )>0. 答案: B7.若⎠⎛1a ⎝⎛⎭⎫2x +1x d x =3+ln 2且a >1,则实数a 的值是( ) A .2 B .3 C .5D .6解析: ⎠⎛1a ⎝⎛⎭⎫2x +1x d x =(x 2+ln x )| a 1=a 2+ln a -1=3+ln 2,所以a =2. 答案: A8.观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出一般式子为( )A . 1+122+132+…+1n 2<12n -1(n ≥2)B . 1+122+132+…+1n 2<2n +1n (n ≥2)C . 1+122+132+…+1n 2<2n -1n (n ≥2)D . 1+122+132+…+1n 2<2n2n +1(n ≥2)解析: 由合情推理可得. 答案: C9.在平面内有n (n ∈N +,n ≥3)条直线,其中任何两条不平行,任何三条不过同一点,若n 条直线把平面分成f (n )个平面区域,则f (9)等于( )A .18B .22C .37D .46解析: f (3)=7, f (4)-f (3)=4, f (5)-f (4)=5, …f (n )-f (n -1)=n . 以上各式相加: ∴f (n )=7+4+5+…+n∴f (9)=7+4+5+…+9=7+6×(4+9)2=46.答案: D10.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2 解析: 设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ).又y ′=1x +a ,∴y ′|x =x 0=1x 0+a=1,即x 0+a =1. 又y 0=ln(x 0+a ), ∴y 0=0.∴x 0=-1.∴a =2. 答案: B11.定义复数的一种运算z 1* z 2=|z 1|+| z 2 |2 (等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =3,则z *z 的最小值为( )A .92B .322C .32D .94解析: z *z =|z |+|z |2=2a 2+b 22=a 2+b 2=(a +b )2-2ab ,又∵ab ≤⎝⎛⎭⎪⎫a +b 22=94, ∴-ab ≥-94,z *z ≥9-2×94=92=322. 答案: B12.函数f (x )是定义在R 上的奇函数,且f (1)=0,当x >0时,有xf ′(x )-f (x )x 2>0恒成立,则不等式f (x )>0的解集为( )A .(-1,0)∪(1,+∞)B .(-1,0)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1)解析: 由题意知g (x )=f xx 在(0,+∞)上是增函数,且g (1)=0,∵f (x )是R 上的奇函数, ∴g (x )是R 上的偶函数. f (x )x的草图如图所示: 由图象知:当x >1时,f (x )>0,当-1<x <0时,f (x )>0.∴不等式f (x )>0的解集为(-1,0)∪(1,+∞). 答案: A二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析: 根据题意先求出P ,Q 的坐标,再应用导数求出切线方程,然后求出交点. 因为y =12x 2,所以y ′=x ,易知P (4,8),Q (-2,2),所以在P ,Q 两点处切线的斜率的值为4或-2.所以这两条切线的方程为l 1:4x -y -8=0,l 2:2x +y +2=0, 将这两个方程联立方程组求得y =-4. 答案: -414.⎠⎛01(1-x 2+x )d x =________.解析: ⎠⎛011-x 2d x =14π,⎠⎛01x d x =12x 2| 10=12-0=12, ∴⎠⎛01(1-x 2+x )d x =14π+12.答案: 14π+1215.通过类比长方形,由命题“周长为定值l 的长方形中,正方形的面积最大,最大值为l 216”,可猜想关于长方体的相应命题为________________________________________ ________________________________________________________________________. 解析: 表面积为定值S 的长方体中,正方体的体积最大,最大值为⎝⎛⎭⎫S 632. 答案: 表面积为定值S 的长方体中,正方体的体积最大,最大值为⎝⎛⎭⎫S 63216.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是________. 解析: f ′(x )=3x 2+2x +m 要使f (x )是R 上的单调函数, 需使Δ=4-12m ≤0, ∴m ≥13.答案: m ≥13三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)若复数z =1+i ,求实数a ,b 使得az +2b z =(a +2z )2. 解析: 由z =1+i ,可知z =1-i ,代入az +2b z =(a +2z )2,得a (1+i)+2b (1-i)=[a +2(1+i)]2,即a +2b +(a -2b )i =(a +2)2-4+4(a +2)i.所以⎩⎪⎨⎪⎧a +2b =(a +2)2-4,a -2b =4(a +2),解得⎩⎪⎨⎪⎧ a =-4,b =2或⎩⎪⎨⎪⎧a =-2,b =-1.18.(本小题满分12分)已知函数f (x )=ln(1+x )-x +k2x 2(k ≥0).当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程.解析: 当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x -1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.19.(本小题满分12分)用数学归纳法证明:当n ∈N *时,1+22+33+…+n n <(n +1)n . 证明: (1)当n =1时,左边=1,右边=2,1<2,不等式成立. (2)假设当n =k (k ∈N *)时不等式成立,即1+22+33+…+k k <(k +1)k ;那么,当n =k +1时,左边=1+22+33+…+k k +(k +1)k +1<(k +1)k +(k +1)k +1=(k +1)k (k +2)<(k +2)k +1=[(k +1)+1]k +1=右边,即左边<右边,即当n =k +1时不等式也成立.根据(1)和(2)可知,不等式对任意n ∈N *都成立.20.(本小题满分12分)设函数f (x )=x 33-(a +1)x 2+4ax +b ,其中a ,b ∈R .(1)若函数f (x )在x =3处取得极小值12,求a ,b 的值;(2)求函数f (x )的单调递增区间;(3)若函数f (x )在(-1,1)内有且只有一个极值点,求实数a 的取值范围. 解析: (1)因为f ′(x )=x 2-2(a +1)x +4a , 所以f ′(3)=9-6(a +1)+4a =0,得a =32.由f (3)=12,解得b =-4.(2)因为f ′(x )=x 2-2(a +1)x +4a =(x -2a )(x -2), 令f ′(x )=0,得x =2a 或x =2.当a >1时,f (x )的单调递增区间为(-∞,2),(2a ,+∞); 当a =1时,f (x )的单调递增区间为(-∞,+∞); 当a <1时,f (x )的单调递增区间为(-∞,2a ),(2,+∞).(3)由题意可得⎩⎪⎨⎪⎧a <1,f ′(-1)·f ′(1)<0,解得-12<a <12.所以a 的取值范围是⎝⎛⎭⎫-12,12. 21.(本小题满分13分)某厂生产产品x 件的总成本c (x )=1 200+275x 3(万元),已知产品单价P (万元)与产品件数x 满足:P 2=kx,生产100件这样的产品单价为50万元.(1)设产量为x 件时,总利润为L (x )(万元),求L (x )的解析式;(2)产量x 定为多少件时总利润L (x )(万元)最大?并求最大值(精确到1万元). 解析: (1)由题意有502=k100,解得k =25×104, ∴P =25×104x =500x, ∴总利润L (x )=x ·500x -1 200-2x 375=-2x 375+500x -1 200(x >0).(2)由(1)得L ′(x )=-225x 2+250x,令L ′(x )=0⇒250x =225x 2,令t =x ,得250t =225t 4⇒t 5=125×25=55,∴t =5,于是x =t 2=25,所以当产量定为25时,总利润最大. 这时L (25)≈-416.7+2 500-1 200≈883.答:产量x 定为25件时总利润L (x )最大,约为883万元. 22.(本小题满分13分)已知函数f (x )=x 3+ax 2-3x (a ∈R ). (1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =13是函数f (x )的极值点,求函数f (x )在[-a,1]上的最大值;(3)在(2)的条件下,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出b 的取值范围;若不存在,请说明理由.解析: (1)f ′(x )=3x 2+2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴在[1,+∞)上恒有f ′(x )≥0. ∴-a3≤1且f ′(1)=2a ≥0.∴a ≥0.(2)由题意知f ′⎝⎛⎭⎫13=0,即13+2a3-3=0, ∴a =4.∴f (x )=x 3+4x 2-3x .令f ′(x )=3x 2+8x -3=0得x =13或x =-3.∵f (-4)=12,f (-3)=18,f ⎝⎛⎭⎫13=-1427,f (1)=2, ∴f (x )在[-a,1]上的最大值是f (-3)=18.(3)若函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,即方程x 3+4x 2-3x =bx 恰有3个不等实根.∵x =0是其中一个根,∴方程x 2+4x -(3+b )=0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+4(3+b )>0,-(3+b )≠0, ∴b >-7且b ≠-3.∴满足条件的b 存在,其取值范围是(-7,-3)∪(-3,+∞).。

人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

高中新课标数学选修(2-2)第三章测试题一、选择题1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( )A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件D.既不是充分也不必要条件 答案:B2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2C.1D.1-答案:D3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D.2a =或0a =答案:D4.设1z ,2z 为复数,则下列四个结论中正确的是( )A.若22120z z +>,则2212z z >-B.12z z -C.22121200z z z z +=⇔== D.11z z -是纯虚数或零 答案:D5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A7.已知复数1cos z i θ=-,2sin z i θ=+,则12z z ·的最大值为( )A.32 D.3答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( )A.2-B.C.D.4答案:B9.在复平面内,复数12ω=-+对应的向量为OA u u u r ,复数2ω对应的向量为OB u u u r .那么向量AB u u u r对应的复数是( )A.1 B.1- D.答案:D10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小;②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ;⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.A.0 B.1 C.2 D.3 答案:B11.复数()a bi a b +∈R ,等于它共轭复数的倒数的充要条件是( ) A.2()1a b += B.221a b += C.221a b -= D.2()1a b -=答案:B12.复数z 满足条件:21z z i +=-,那么z 对应的点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 答案:A 二、填空题13.若复数cos sin z i θθ=-·所对应的点在第四象限,则θ为第 象限角. 答案:一14.复数z i =与它的共轭复数z 对应的两个向量的夹角为 . 答案:60°15.已知2z i =-,则32452z z z -++= . 答案:2 16.定义运算a b ad bc c c =-,则符合条件2132i z zi-=+的复数z = . 答案:7455i -三、解答题17.已知复数(2)()x yi x y -+∈R ,的模为3,求yx的最大值. 解:23x yi -+=∵,22(2)3x y -+=∴,故()x y ,在以(20)C ,为圆心,3为半径的圆上,yx表示圆上的点()x y ,与原点连线的斜率. 如图,由平面几何知识,易知yx的最大值为3. 18.已知1z i a b =+,,为实数. (1)若234z z ω=+-,求ω;(2)若2211z az bi z z ++=--+,求a ,b 的值.解:(1)2(1)3(1)41i i i ω=++--=--, 2ω=∴;(2)由条件,得()(2)1a b a ii i+++=-,()(2)1a b a i i +++=+∴,121a b a +=⎧⎨+=⎩,,∴解得12a b =-⎧⎨=⎩,.19.已知2211z x x i =++,22()z x a i =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围. 解:12z z >∵, 42221()x x x a ++>+∴,22(12)(1)0a x a -+->∴对x ∈R 恒成立.当120a -=,即12a =时,不等式成立; 当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩, 综上,112a ⎛⎤∈- ⎥⎝⎦,. 20.已知()z i z ω=+∈C ,22z z -+是纯虚数,又221116ωω++-=,求ω. 解:设()z a bi a b =+∈R ,2(2)2(2)z a bi z a bi--+=+++∴2222(4)4(2)a b bia b +-+=++. 22z z -+∵为纯虚数, 22400a b b ⎧+-=⎨≠⎩,.∴222211(1)(1)(1)(1)a b i a b i ωω++-=++++-++∴2222(1)(1)(1)(1)a b a b =++++-++ 222()44a b b =+++844b =++ 124b =+.12416b +=∴.1b =∴.把1b =代入224a b +=,解得a =.z i =∴.2i ω=∴.21.复数3(1)()1i a bi z i++=-且4z =,z 对应的点在第一象限内,若复数0z z ,,对应的点是正三角形的三个顶点,求实数a ,b 的值.解:2(1)(1)()2()221i i z a bi i i a bi a bi i++=+=+=---···,由4z =,得224a b +=. ①∵复数0,z ,z 对应的点是正三角形的三个顶点,z z z =-∴,把22z a bi =--代入化简,得1b =. ② 又Z ∵点在第一象限内,0a <∴,0b <.由①②,得1a b ⎧=⎪⎨=-⎪⎩.故所求a =1b =-.22.设z 是虚数1z z ω=+是实数,且12ω-<<.(1)求z 的值及z 的实部的取值范围.(2)设11zzμ-=+,求证:μ为纯虚数; (3)求2ωμ-的最小值.(1)解:设0z a bi a b b =+∈≠R ,,,, 则1a bi a bi ω=+++2222a b a b i a b a b ⎛⎫⎛⎫=++- ⎪ ⎪++⎝⎭⎝⎭.因为ω是实数,0b ≠,所以221a b +=,即1z =.于是2a ω=,即122a -<<,112a -<<.所以z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,;(2)证明:2222111211(1)1z a bi a b bi bi z a bi a b a μ------====-++++++.因为112a ⎛⎫∈- ⎪⎝⎭,,0b ≠,所以μ为纯虚数;(3)解:22222122(1)(1)b a a a a a ωμ--=+=+++1222111a a a a a -=-=-+++12(1)31a a ⎡⎤=++-⎢⎥+⎣⎦因为112a ⎛⎫∈- ⎪⎝⎭,,所以10a +>,故223ωμ-·≥431-=. 当111a a +=+,即0a =时,2ωμ-取得最小值1. 高中新课标数学选修(2-2)第三章测试题一、选择题1.实数x ,y 满足(1)(1)2i x i y ++-=,则xy 的值是( ) A.1 B.2C.2-D.1-答案:A2.复数cos z i θ=,[)02πθ∈,的几何表示是( ) A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(01)(01)-,,, D.(C)中线段PQ ,但应除去原点 答案:C3.z ∈C ,若{}22(1)1M z z z =-=-|,则( )A.{}M =实数B.{}M =虚数C.{}{}M实数复数苘D.{}M ϕ=答案:A4.已知复数1z a bi =+,21()z ai a b =-+∈R ,,若12z z <,则( ) A.1b <-或1b > B.11b -<< C.1b > D.0b >答案:B5.已知复数z 满足2230z z --=的复数z 的对应点的轨迹是( ) A.1个圆 B.线段C.2个点D.2个圆答案:A6.设复数()z z ∈C 在映射f 下的象是zi ·,则12i -+的原象为( ) A.2i - B.2i + C.2i -+ D.13i +-答案:A7.设A ,B 为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面的( )A.第一象限 B.第二象限C.第三象限D.第四象限答案:B8.已知()22f z i z z i +=++,则(32)f i +=( ) A.9i B.93i +C.9i -D.93i --答案:B 9.复数2()12miA Bi m AB i-=+∈+R ,,,且0A B +=,则m =( )B.23 C.23-D.2答案:C10.(32)(1)i i +-+表示( ) A.点(32),与点(11),之间的距离 B.点(32),与点(11)--,之间的距离 C.点(32),与原点的距离 D.点(31),与点(21),之间的距离 答案:A11.已知z ∈C ,21z -=,则25z i ++的最大值和最小值分别是( )11 B.3和1C.和3答案:A12.已知1z ,2z ∈C ,12z z +=1z =2z =12z z -=( )A.1 B.12C.2答案:D 二、填空题13.若()1()f z z z =-∈C ,已知123z i =+,25z i =-,则12z f z ⎛⎫= ⎪ ⎪⎝⎭.答案:19172626i - 14.“复数z ∈R ”是“11z z=”的 . 答案:必要条件,但不是充分条件 15.A ,B 分别是复数1z ,2z 在复平面上对应的两点,O 为原点,若1212z z z z +=-,则AOB △为 . 答案:直角16.若n 是整数,则6(1)(1)nn i i -+-=· . 答案:8±或8i ±三、解答题17.已知复数3z z -对应的点落在射线(0)y x x =-≤上,1z +=z . 解:设()z a bi a b =+∈R ,,则33324z z a bi a bi a bi -=+-+=+, 由题意得4120ba b ⎧=-⎪⎨⎪>⎩,,①又由1z +=22(1)2a b ++=, ② 由①,②解得21a b =-⎧⎨=⎩,,2z i =-+∴.18.实数m 为何值时,复数216(815)55m z m i m i m m -⎛⎫=++++ ⎪++⎝⎭.(1)为实数; (2)为虚数; (3)为纯虚数;(4)对应点在第二象限.解:226(815)5m m z m m i m +-=++++.(1)z 为实数28150m m ⇔++=且50m +≠,解得3m =-; (2)z 为虚数2815050m m m ⎧++≠⇔⎨+≠⎩,,解得3m ≠-且5m ≠-;(3)z 为纯虚数226058150m m m m m ⎧+-=⎪⇔+⎨⎪++≠⎩,,解得2m =;(4)z 对应的点在第二象限226058150m m m m m ⎧+-<⎪⇔+⎨⎪++>⎩,,解得5m <-或32m -<<.19.设O 为坐标原点,已知向量1OZ u u u u r ,2OZ u u u u r分别对应复数12z z ,,且213(10)5z a i a =+-+,22(25)1z a i a=+--,a ∈R .若12z z +可以与任意实数比较大小,求1OZ u u u u r ,2OZ u u u u r 的值.解:213(10)5z a i a =--+,则31232[(10)(25)]51z z a a i a a+=++-+-+-的虚部为0, 22150a a +-=∴.解得5a =-或3a =. 又50a +≠∵,3a =∴.则138z i =+,21z i =-+,1318OZ ⎛⎫= ⎪⎝⎭u u u u r ,,2(11)OZ =-u u u u r ,. 1258OZ OZ =u u u u r u u u u r ∴·.20.已知z 是复数,2z i +与2zi-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.解:设()z x yi x y =+∈R ,,2(2)z i x y i +=++为实数,2y =-∴.211(22)(4)2255z x i x x i i i -==++---为实数, 4x =∴,则42z i =-.22()(124)8(2)z ai a a a i +=+-+-∵在第一象限, 212408(2)0a a a ⎧+->⎨->⎩,,∴解得26a <<. 21.已知关于x 的方程2(6)90()x i x ai a -+++=∈R 有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足2z a bi z --=,求z 为何值时,z 有最小值并求出最小值. 解:(1)将b 代入题设方程,整理得2(69)()0b b a b i -++-=, 则2690b b -+=且0a b -=,解得3a b ==;(2)设()z x yi x y =+∈R ,,则2222(3)(3)4()x y x y -++=+, 即22(1)(1)8x y ++-=.∴点Z 在以(11)-,为圆心,22为半径的圆上, 画图可知,1z i =-时,min 2z =.。

高中人教A版数学选修2-2答案

高中人教A版数学选修2-2答案

高中人教A 版数学选修2-2测试题答案一、选择题1.A 2.C 3.A 4.D 5.A 6.B 7.B 8.D 9.B 10.C 11.B 12.D 二、填空题13.(-∞,-1) 14.n +(n +1)+(n +2)+…+(3n -2)=(2n -1)215.1316.-1-3i 三、解答题17.证明 反证法.假设1+y x ≥2,1+xy≥2,即1+y ≥2x,1+x ≥2y .∴2+x +y ≥2x +2y .即x +y ≤2. 这与x +y >2矛盾. ∴1+y x 和1+x y中至少有一个小于2.18.解 设方程有实根x 0,则x 20+(a +b i)x 0+1+a i =0,即(x 20+ax 0+1)+(bx 0+a )i =0.∵a ,b ,x 0∈R ,∴⎩⎪⎨⎪⎧ x 20+ax 0+1=0,bx 0+a =0.①②∵b >0,∴x 0=-a b. 将其代入①得b 2-a 2b +a 2=0.③∵b >0,∴Δ≥0,即a 4-4a 2≥0,a 2≠0, ∴a 2≥4,又a >0,∴a ≥2.故a 的最小值为2,所以b =2. ∴x 0=-1. 原方程的解集为{-1}.19.解 f (x )=ax (x -2)2=a (x 3-4x 2+4x ).∴f ′(x )=a (3x 2-8x +4)=a (3x -2)(x -2).由f ′(x )=0,得x =23或x =2;当a >0时,f (x )在x =23处,取极大值; 由f ⎝ ⎛⎭⎪⎫23=32,得a =27, 当a <0时,f (x )在x =2时,取极大值, 由f (2)=32,得a 不存在,∴a =27. 20.(1)解 依题意知函数的定义域为x >0,∵f ′(x )=x +1x,故f ′(x )>0,∴f (x )的单调增区间为(0,+∞).(2)证明 设g (x )=23x 3-12x 2-ln x ,∴g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=x -12x 2+x +1x>0,∴g (x )在(1,+∞)上为增函数,∴g (x )>g (1)=16>0,∴当x >1时,12x 2+ln x <23x 3.21.解 设桶的底面半径为r ,桶高为h ,材料费用为W ,每平方米的木板价钱为a (a >0,r >0),则V =πr 2h ,所以h =V πr 2.所以W =2πr ·h ·a +πr 2·5a =a ·⎝ ⎛⎭⎪⎫2Vr +5πr 2,又W ′r=a (10πr -2V r 2),由W ′r =0,得10πr -2Vr2=0,解得r =3V5π,当r =3V5π附近左侧时,W ′r <0,右侧时,W ′r >0.所以在r =3V5π时,W 取极小值,又此函数只有一个极值点,所以当r=3V5π时,h =325Vπ,此时所用材料费用最少.22.解 推测S n =2n +12-12n +12 (n ∈N *).用数学归纳法证明如下:(1)当n =1时,S 1=2+12-12+12=89,等式成立;(2)假设当n =k 时等式成立,即S k =2k +12-12k +12,那么当n =k +1时,S k +1=S k +8k +12k +122k +32=2k +12-12k +12+8k +12k +122k +32=[2k +12-1]2k +32+8k +12k +122k +32=2k +122k +32-2k +32+8k +12k +122k +32=2k +122k +32-2k +122k +122k +32=2k +32-12k +32=[2k +1+1]2-1[2k +1+1]2.也就是说,当n =k +1时,等式成立.根据(1)和(2),可知对一切n ∈N *,等式均成立.。

最新人教A版高中数学选修2-2 综合测试题2(含答案解析)

最新人教A版高中数学选修2-2 综合测试题2(含答案解析)

高中新课标数学选修(2-2)综合测试题一、选择题(每题小题5分)1.设y=2x -x ,则x ∈[0,1]上的最大值是( ) A 0 B -41 C 21 D 412.若质点P 的运动方程为S(t)=2t 2+t (S 的单位为米,t 的单位为秒),则当t=1时的瞬时速度为( ) A 2米/秒 B 3米/秒 C 4米/秒 D 5米/秒 3.曲线y=-313x -2在点(-1,35-)处切线的倾斜角为( ) A 30º B 45º C 135º D 150º 4.函数y=-2x + 3x 的单调递减区间是( )A (-∞,-36) B (-36,36) C(-∞,-36)∪(36,+∞) D (36,+∞)5.过曲线y=3x +1上一点(-1,0),且与曲线在该点处的切线垂直的直线方程是( ) A y=3x+3 B y=3x +3 C y=-3x -31D y=-3x-3 6.曲线y=313x 在点(1,31)处的切线与直线x+y-3=0的夹角为 A 30º B 45º C 60º D 90º7.已知函数)(x f =3x +a 2x +b 的图象在点P (1,0)处的切线与直线3x+y=0平行.则a 、b 的值分别为( ). A -3, 2 B -3, 0 C 3, 2 D 3, -4 8.已知)(x f =a 3x +32x +2,若)1(/-f =4,则a 的值等于( ) A319 B 310 C 316 D 313 9.函数y = 3x -12x +16在 [-3,3]上的最大值、最小值分别是( ) A 6,0 B 32, 0 C 2 5, 6 D 32, 1610.已知a>0,函数y=3x -a x在[1,+∞)上是单调增函数,则a 的最大值为( ) A 0 B 1 C 2 D 311.已知)(x f =23x -62x +m (m 为常数),在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值为( )A -37B -29C -5D -1112.已知)(x f =x +3x , 且x 1+x 2<0, x 2+x 3<0, x 3+x 1<0则( )A f(x 1)+f(x 2)+f(x 3)>0B f(x 1)+f(x 2)+f(x 3)<0C f(x 1)+f(x 2)+f(x 3)=0D f(x 1)+f(x 2)+f(x 3)符号不能确定.二、填空题(每小题4分)13.过抛物线y=)(x f 上一点A (1,0)的切线的倾斜角为45°则)1(/f =__________. 14.函数)(x f =3x -3x 的递减区间是__________15.过点P(-1,2)且与曲线y=32x -4x +2在点M(1,1)处的切线平行的直线方程是__________. 16.函数)(x f =x (1-2x )在[0,1]上的最大值为__________. 三、解答题17.已知函数)(x f =a 4x +b 2x +c 的图像经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f 的解析式;12分18.证明:过抛物线y=a(x -x 1)(x -x 2)(a ≠0, x 1< x 2)上两点A(x 1,0),B(x 2,0)的切线与x 轴所成的锐角相等。

新课程人教版高中数学选修2-2课后习题解答(全)

新课程人教版高中数学选修2-2课后习题解答(全)

第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-.这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502k E =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.2、()9.8 6.5h t t '=-+.3、3213()34r V Vπ'=. 4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x x y x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少.习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减. 4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减. 所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-.(2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:注:图象形状不唯一.因此,当3x =-时,()f x 有极大值,并且极大值为54;当3x =时,()f x 有极小值,并且极小值为54-.(3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-;当2x =时,()f x 有极大值,并且极大值为22(4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-;当1x =时,()f x 有极大值,并且极大值为2练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数.2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x =时,()f x 有极小值,并且极小值为16-.(3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22;当2x =时,()f x 有极小值,并且极小值为10-.(4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-;当4x =时,()f x 有极大值,并且极大值为128.6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++.下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减. 当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减. 当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+,所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R R ππππ=+=+,0R >. 令2()40VS R R Rπ'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>.因此,R =是函数()S R 的极小值点,也是最小值点.此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,(第3题)矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m因此铁丝的长为22()(1)244xa x al x x x x xπππ=++-=++,0x <<令22()104al x xπ'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点. 所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b -=-+⨯=--,54ba x <<. 令845()0c ac bc L x xb b +'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想. 练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n=-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤.练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式11()nni i i b af x b a nξ==-∆==-∑∑, 从而11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此04π=⎰.5、(1)03114x dx -=-⎰.由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰;49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作:12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l iln nξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n -上质量 2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm n ξ→∞==∑,所以20l m x dx =⎰..。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。

第一象限B。

第二象限C。

第三象限D。

第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。

10B。

5/3C。

-1D。

-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A。

①②③B。

①③C。

①D。

②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。

极大值5,极小值-27B。

极大值5,极小值-11C。

极大值5,无极小值D。

极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A。

(0,+∞)B。

(-∞,1)C。

(1,2)D。

(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC ­A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC ­A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

高中数学人教新课标A版 选修2-2 第一章 导数及其计算

高中数学人教新课标A版 选修2-2 第一章 导数及其计算

高中数学人教新课标A版选修2-2 第一章导数及其计算一、单选题(共12题;共24分)1.(2分)函数的图像在点处的切线方程为()A.B.C.D.2.(2分)若,则等于()A.-1B.2C.3D.63.(2分)已知物体位移S(单位:米)和时间t(单位:秒)满足:,则该物体在时刻的瞬时速度为()A.1米/秒B.2米/秒C.3米/秒D.4米/秒4.(2分)函数的图象如图所示,则阴影部分的面积是()A.B.C.D.5.(2分)已知函数,导函数为,那么等于()A.B.C.D.16.(2分)已知函数,为的导函数,则的值为()A.-1B.C.0D.7.(2分)函数的单调递增区间是()A.B.C.D.8.(2分)已知函数在上可导且满足,则下列一定成立的为()A.B.C.D.9.(2分)若点P是曲线上任一点,则点P到直线的最小距离是()A.B.3C.D.10.(2分)若函数在区间上单调递减,则实数a的取值范围是()A.B.C.D.11.(2分)下列给出四个求导运算:①;②;③;④.其中运算结果正确的个数是()A.1B.2C.3D.412.(2分)设是在上的可导函数,且,,,则下列一定不成立的是()A.B.C.D.二、多选题(共4题;共12分)13.(3分)已知函数的导函数的图象如图所示,下列结论中正确的是()A.-1是函数的极小值点B.-3是函数的极小值点C.函数在区间上单调递增D.函数在处切线的斜率小于零14.(3分)已知函数,若,则下列选项正确的是()A.B.C.D.当时,15.(3分)已知,下列结论正确的是()A.在上单调递增B.C.的图象在点处的切线方程为D.若关于的不等式有正整数解,则16.(3分)已知函数,给出下面四个命题:①函数的最小值为;②函数有两个零点;③若方程有一解,则;④函数的单调减区间为.则其中错误命题的序号是()A.①B.②C.③D.④三、填空题(共4题;共4分)17.(1分)设函数.若,则a=.18.(1分)曲线的一条切线的斜率为2,则该切线的方程为.19.(1分)已知函数,若,,则实数m的取值范围是.20.(1分)已知函,,用max{m,n}表示m,n中的最大值,设.若在上恒成立,则实数a的取值范围为四、解答题(共6题;共50分)21.(5分)已知函数,若,求在处的切线方程.22.(10分)已知函数.(1)(5分)求在点处的切线;(2)(5分)求在区间上的最大值和最小值.23.(10分)已知函数,其中.(1)(5分)求,求在上的最大值和最小值;(2)(5分)若是函数的一个极值点,求实数的值.24.(5分)已知函数.(Ⅰ)求曲线的斜率等于的切线方程;(Ⅱ)设曲线在点处的切线与坐标轴围成的三角形的面积为,求的最小值.25.(10分)已知函数f(x)=2lnx+1.(1)(5分)若f(x)≤2x+c,求c的取值范围;(2)(5分)设a>0时,讨论函数g(x)= 的单调性.26.(10分)已知函数.(1)(5分)当a=1时,讨论f(x)的单调性;(2)(5分)当x≥0时,f(x)≥ x3+1,求a的取值范围.答案解析部分1.【答案】B【解析】【解答】,,,,因此,所求切线的方程为,即.故答案为:B.【分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.2.【答案】D【解析】【解答】解:∵∴∴故答案为:D.【分析】先对函数求导,然后把代入,即可求得答案3.【答案】A【解析】【解答】由题意,当时,.故答案为:A.【分析】求出S关于t的导数,令即可得结果.4.【答案】C【解析】【解答】由图可得阴影部分的面积为,故答案为:C.【分析】利用定积分的几何意义即可表示出封闭图形的面积.5.【答案】C【解析】【解答】因为,则,所以.故答案为:C.【分析】先对函数求导,再将代入,即可得出结果.6.【答案】C【解析】【解答】由可得,,所以,.故答案为:C【分析】求幂函数和对数函数的导数,代入1即可得出结果.7.【答案】D【解析】【解答】由已知,当时,当时,所以增区间为.故答案为:D.【分析】求出导函数,由确定增区间.8.【答案】A【解析】【解答】构造函数,则,当时, .所以,函数在上单调递增,,,即,即,S故答案为:A.【分析】构造函数,利用导数判断函数在上的单调性,可得出与的大小关系,经过化简可得出正确选项.9.【答案】C【解析】【解答】要使点P到直线的最小距离,只需点为曲线与直线平行的切线切点,即点为斜率为的切线的切点,设,,解得或(舍去),点到直线的距离为,所以曲线上任一点到直线距离最小值为.故答案为:C.【分析】与直线平行且与曲线相切时,切点到直线的距离最小,利用导数求出切点坐标即可.10.【答案】A【解析】【解答】函数,.则,因为在区间上单调递减,则在区间上恒成立,即,所以在区间上恒成立,所以,解得,故答案为:A.【分析】先求得导函数,根据函数单调递减可知在区间上恒成立,即可由定义域及不等式求得a的取值范围.11.【答案】B【解析】【解答】解:①,故错误.②,故正确.③,故错误.④,故正确.故答案为:B.【分析】对于①②③④直接利用函数的导数的运法则求出结果,即可做出判定.12.【答案】A【解析】【解答】是在上的可导函数,且,设,,为单调递增函数或常数函数.又,,在区间上是常数函数,,.又,,.故答案为:A.【分析】设,可得设,故为单调递增函数或常数函数.由,,可得,故在区间上是常数函数,可求的值,可得的正误. 再根据,求出的取值范围,进而判断的正误,即得答案.13.【答案】B,C【解析】【解答】由图象得时,,时,,故在单调递减,在单调递增,故是函数的极小值点.对选项D:显然,故错误.故答案为:BC.【分析】根据导函数图象,求得函数单调性,结合极值点定义,即可容易判断选择.14.【答案】C,D【解析】【解答】对于A选项,函数,定义域为,.令,则;令,可得.所以,函数的单调递减区间为,单调递增区间为.当时,,则,A选项错误;对于B选项,构造函数,定义域为,,当时,;当时, .所以,函数的单调递减区间为,单调递增区间为,当时,,B选项错误;对于C选项,,由于函数在上单调递增,当时,,即,所以,,C选项正确;对于D选项,由A选项知,函数在区间上单调递增,当时,,则,即,D选项正确.故答案为:CD.【分析】利用导数判断函数的单调性,可判断A选项;构造函数,利用导数判断函数的单调性,可判断B选项;由函数的单调性可判断C选项;利用函数在区间上的单调性可判断D选项.15.【答案】A,D【解析】【解答】,则,易知在上单调递增,在上单调递减,A符合题意;又,,所以,B不符合题意;对于C,,,故切线方程,C不正确;若有正整数解,则,所以,因为,所以,所以,所以,即,所以D符合题意;故答案为:AD.【分析】对函数求导,得到,利用导数的符号判断出函数的单调区间,可以判断A项正确;将化简,整理,得到大小,从而判断出B项不正确;利用导数的几何意义,结合直线方程的点斜式求得切线方程,可以判断出C项不正确;将不等式转化为,两边取对数,得到,结合式子的特征,得到D项正确,进而得到结果.16.【答案】B,C,D【解析】【解答】因为函数,所以当时,,当时,,所以当时,的最小值为,如图所示:当时,,当时,,所以函数有一个零点;若方程有一解,则或,函数的单调递减区间为,故错误命题的序号是②③④。

高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(1+i)16-(1-i)16=() A .-256B .256i C .0 D .256解析:(1+i)16-(1-i)16=[(1+i)2]8-[(1-i)2]8=(2i)8-(-2i)8=0. 答案:C2.已知函数f (x )=ln x -x ,则函数f (x )的单调递减区间是() A .(-∞,1) B .(0,1)C .(-∞,0),(1,+∞)D .(1,+∞)解析:f ′(x )=1x -1=1-xx,x >0.令f ′(x )<0,解得x >1.答案:D3.设f (x )=10x+lg x ,则f ′(1)等于( ) A .10 B .10ln 10+lg e C.10ln 10+ln 10 D .11ln 10解析:f ′(x )=10x ln 10+1x ln 10,所以f ′(1)=10ln 10+1ln 10=10ln 10+lg e. 答案:B4.若函数f (x )满足f (x )=e xln x +3xf ′(1)-1,则f ′(1)=() A .-e 2B .-e3C .-eD .e解析:由已知可得f ′(x )=e xln x +exx+3f ′(1),令x =1,则f ′(1)=0+e +3f ′(1),解得f ′(1)=-e2.答案:A5.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除解析:因为“至少有一个”的否定为“一个也没有”. 答案:B6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:因为f ′(x )=12x 2-2ax -2b ,又因为在x =1处有极值,所以a +b =6,因为a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号,所以ab 的最大值等于9.答案:D7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( ) A .10B .14C .13D .100解析:设n ∈N *,则数字n 共有n 个,所以n (n +1)2≤100,即n (n +1)≤200,又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.答案:B8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.故选D.答案:D8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.答案:D10.证明不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立;(2)假设n =k (k ∈N *且k ≥1)时,不等式成立,即 k 2+k ≤k +1,则当n =k +1时,(k +1)2+(k +1)= k 2+3k +2≤k 2+3k +2+(k +2)=(k +2)2=(k +1)+1.所以当n =k +1时,不等式成立.上述证法( ) A .过程全都正确 B .n =1时验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.答案:D11.已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A.13B.43 C .2D.83解析:由f ′(x )的图象知,f ′(x )=2x +2, 设f (x )=x 2+2x +c ,由f (0)=0知,c =0, 所以f (x )=x 2+2x ,由x 2+2x =0得x =0或x =-2. 故所求面积S =-∫0-2(x 2+2x )d x =-⎝ ⎛⎭⎪⎫13x 3+x 2|0-2=43.答案:B12.已知定义在R 上的奇函数f (x ),设其导数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值X 围为()A .(-1,2) B.⎝⎛⎭⎪⎫-1,12C.⎝ ⎛⎭⎪⎫12,2D .(-2,1) 解析:因为f (x )是奇函数,所以不等式xf ′(x )<f (-x )等价于xf ′(x )<-f (x ),即xf ′(x )+f (x )<0,即F ′(x )<0.当x ∈(-∞,0]时,函数F (x )单调递减;由于F (x )=xf (x )为偶函数,所以F (x )在[0,+∞)上单调递增.所以F (3)>F (2x -1)等价于F (3)>F (|2x -1|), 即3>|2x -1|,解得-1<x <2. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 解析:因为z =(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5. 答案:514.在△ABC 中,D 为边BC 的中点,则AO →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题:_______________.解析:将“△ABC ”类比为“四面体A ­BCD ”,将“D 为边BC 的中点”类比为“△BCD 的重心”,于是有类比结论:在四面体A ­BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →).答案:在四面体A ­BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →)15.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =____________.解析:f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,令f ′(x )=0,则x 2+2x -a =0,x ≠-1.又f (x )在x =1处取得极值,所以x =1是x 2+2x -a =0的根,所以a =3.答案:316.下列四个命题中,正确的为________(填上所有正确命题的序号). ①若实数a ,b ,c 满足a +b +c =3,则a ,b ,c 中至少有一个不小于1; ②若z 为复数,且|z |=1,则|z -i|的最大值等于2; ③对任意x ∈(0,+∞),都有x >sin x ; ④定积分∫π0π-x 2d x =π24.解析:①若实数a ,b ,c 满足a +b +c =3,则用反证法证明,假设a ,b ,c 都小于1,则a +b +c <3,与已知矛盾,故可得a ,b ,c 中至少有一个不小于1,故①正确;②若z 为复数,且|z |=1,则由|z -i|≤|z |+|-i|=2,可得|z -i|的最大值等于2,故②正确;③令y =x -sin x ,其导数为y ′=1-cos x ,y ′≥0,所以y =x -sin x 在R 上为增函数,当x =0时,x -sin x =0,所以对任意x ∈(0,+∞),都有x -sin x >0,故③正确.④定积分∫π0π-x 2d x 表示以原点为圆心,π为半径的圆的面积的四分之一,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ∈R,问复数z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应点的轨迹是什么?解:由a 2-2a +4=(a -1)2+3≥3. -(a 2-2a +2)=-(a -1)2-1≤-1. 知z 的实部为正数,虚部为负数, 所以复数z 的对应点在第四象限.设z =x +y i(x ,y ∈R),则⎩⎪⎨⎪⎧x =a 2-2a +4,y =-(a 2-2a +2), 因为a 2-2a =(a -1)2-1≥-1, 所以x =a 2-2a +4≥3,消去a 2-2a ,得y =-x +2(x ≥3), 所以复数z 对应点的轨迹是一条射线, 其方程为y =-x +2(x ≥3). 18.(本小题满分12分)设函数f (x )=1x +2,a ,b ∈(0,+∞). (1)用分析法证明:f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23;(2)设a +b >4,求证:af (b ),bf (a )中至少有一个大于12.证明:(1)要证明f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23,只需证明1a b+2+1b a+2≤23, 只需证明b a +2b +ab +2a ≤23,即证b 2+4ab +a 22a 2+5ab +2b 2≤23,即证(a -b )2≥0,这显然成立,所以f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23.(2)假设af (b ),bf (a )都小于或等于12,即a b +2≤12,b a +2≤12,所以2a ≤b +2,2b ≤a +2,两式相加得a +b ≤4, 这与a +b >4矛盾,所以af (b ),bf (a )中至少有一个大于12.19.(本小题满分12分)已知函数f (x )=ex +2(x 2-3).(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数y =f (x )的极值. 解:(1)函数f (x )=e x +2(x 2-3),则f ′(x )=ex +2(x 2+2x -3)=ex +2(x +3)(x -1),故f ′(0)=-3e 2,又f (0)=-3e 2,故曲线y =f (x )在点(0,f (0))处的切线方程为y +3e 2=-3e 2(x -0),即3e 2x +y +3e 2=0.(2)令f ′(x )=0,可得x =1或x =-3, 如下表:↗↘↗所以当x =-3时,函数取极大值,极大值为f (-3)=e ,当x =1时,函数取极小值,极小值为f (1)=-2e 3.20.(本小题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )在[1,e]上的最大值,最小值;(2)求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3图象的下方.解:(1)由f (x )=12x 2+ln x 有f ′(x )=x +1x ,当x ∈[1,e]时,f ′(x )>0,所以f (x )max =f (e)=12e 2+1.f (x )min =f (1)=12.(2)设F (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x,当x ∈[1,+∞)时,F ′(x )<0,且F (1)=-16<0故x ∈[1,+∞)时F (x )<0,所以12x 2+ln x <23x 3,得证.21.(本小题满分12分)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ); (3)设x 1,x 2是f (x )的两个零点,证明:f ′⎝ ⎛⎭⎪⎫x 1+x 22>0.解:(1)f (x )的定义域为(0,+∞),由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -ax=(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增. 若a >0,则令f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0.此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )- [12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ).所以g ′(x )=2-a a +x -aa -x =2x2x 2-a 2.当0<x <a 时,g ′(x )<0,所以g (x )在(0,a )上是减函数. 而g (0)=0,所以g (x )<g (0)=0.故当0<x <a 时,f (a +x )<f (a -x ).(3)由(1)可知,当a ≤0时,函数f (x )至多有一个零点, 故a >0,从而f (x )的最小值为f (a ),且f (a )<0. 不妨设0<x 1<x 2,则0<x 1<a <x 2,所以0<a -x 1<a . 由(2)得f (2a -x 1)<f (x 1)=0=f (x 2), 从而x 2>2a -x 1,于是x 1+x 22>a .由(1)知,f ′⎝⎛⎭⎪⎫x 1+x 22>0.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)用数学归纳法证明你的猜想,并求出a n 的表达式. 解:(1)因为a n =S n -S n -1(n ≥2) 所以S n =n 2(S n -S n -1),所以S n =n 2n 2-1S n -1(n ≥2) 因为a 1=1,所以S 1=a 1=1. 所以S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1(n ∈N *). (2)①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N *)时,等式成立,即S k =2k k +1, 当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2k k +1, 所以a k +1=2(k +2)(k +1),所以S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1.所以n =k +1时等式也成立,得证.所以根据①、②可知,对于任意n ∈N *,等式均成立. 由S n =n 2a n ,得2n n +1=n 2a n ,所以a n =2n (n +1).。

(人教A版)高中数学【选修2-2】:本册综合测试试卷(含答案)

(人教A版)高中数学【选修2-2】:本册综合测试试卷(含答案)

本册综合测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1+2i (1-i )2=( ) A .-1-12i B .-1+12i C .1+12iD .1-12i解析 1+2i (1-i )2=1+2i -2i =(1+2i )i -2i ·i =-1+12i .答案 B2.若f(x)=e x ,则lim Δx →0f (1-2Δx )-f (1)Δx=( ) A .e B .-e C .2eD .-2e解析 ∵f(x)=e x ,∴f ′(x)=e x ,f ′(1)=e . ∴lim Δx →0f (1-2Δx )-f (1)Δx =-2lim Δx →0f (1-2Δx )-f (1)-2Δx=-2f ′(1)=-2e .答案 D3.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32D .33解析 观察前几项知,5=2+3,11=5+2×3,20=11+3×3, x =20+4×3=32,47=32+5×3. 答案 C4.函数y =f(x)在区间[a ,b]上的最大值是M ,最小值是m ,若m =M ,则f ′(x)( )A .等于0B .大于0C .小于0D .以上都有可能答案 A5.已知函数f(x)=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,- 3 )∪(3,+∞)D .(-3, 3 )解析 f ′(x)=-3x 2+2ax -1,若f(x)在(-∞,+∞)上为单调函数只有f ′(x)≤0, ∴Δ=(2a)2-4(-3)(-1)≤0, 解得-3≤a ≤ 3. 答案 B6.用数学归纳法证明不等式1+12+13+…+12n -1<n(n ∈N *且n >1)时,第一步应验证不等式( )A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3答案 B7.对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,有f ′(x )>0,g ′(x )>0,则x <0时,有( )A .f ′(x )>0,g ′(x )>0B .f ′(x )<0,g ′(x )>0C .f ′(x )<0,g ′(x )<0D .f ′(x )>0,g ′(x )<0解析 由f (-x )=-f (x )及g (-x )=g (x )知,f (x )为奇函数,g (x )为偶函数,由函数奇偶性的性质得f ′(x )>0,g ′(x )<0.答案 D8.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=13(23-13)=73,S 2=⎠⎛121x d x =ln x ⎪⎪⎪ 21=ln 2,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e .∵e 2-e >4,ln 2<lne =1,2<73<3, ∴S 3>S 1>S 2. 答案 B9.曲线y =13x 3+12x 2在点T(1,56)处的切线与两坐标轴围成的三角形的面积为( )A .4918B .4936C .4972D .49144解析 y ′=x 2+x ,y ′|x =1=2,∴切线方程为y -56=2(x -1),与坐标轴的交点分别为(0,-76),(712,0),故切线与坐标轴围成的三角形的面积S =12×76×712=49144.答案 D10.在平面直角坐标系中,直线x -y =0与曲线y =x 2-2x 所围成的面积为( )A .1B .52C .92D .9解析 如图所示由⎩⎪⎨⎪⎧y =x 2-2x ,y =x ,得交点(0,0),(3,3). ∴阴影部分的面积为S =⎠⎛03(x -x 2+2x)d x =⎠⎛03(-x 2+3x)d x =(-13x 3+32x 2)⎪⎪⎪ 30=-9+272=92.答案 C11.用反证法证明命题:“若a ,b ∈N ,ab 能被5整除,则a ,b 中至少有一个能被5整除”,那么假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 有一个能被5整除D .a ,b 有一个不能被5整除 答案 B12.桌上放着红桃、黑桃和梅花三种牌,共20张,下列判断正确的是( )①桌上至少有一种花色的牌少于6张;②桌上至少有一种花色的牌多于6张;③桌上任意两种牌的总数将不超过19张.A .①②B .①③C .②③D .①②③答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.关于x 的不等式mx 2-nx +p >0(m ,n ,p ∈R )的解集为(-1,2),则复数m +p i 所对应的点位于复平面内的第________象限.解析 因为mx 2-nx +p >0(m ,n ,p ∈R )的解集为(-1,2),所以⎩⎪⎨⎪⎧m <0,(-1)+2=n m ,(-1)×2=p m ,解得m <0,p >0.故复数m +p i 所对应的点位于复平面内的第二象限. 答案 第二14.已知函数f (x )=3x 2+2x ,若⎠⎛1-1f(x)d x =2f(a)成立,则a =________.解析 ∵⎠⎛1-1(3x 2+2x)d x =(x 3+x 2)⎪⎪⎪ 1-1=2, ∴2(3a 2+2a)=2.即3a 2+2a -1=0, 解得a =-1,或a =13. 答案 -1或13 15.观察下列等式: (1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5, …照此规律,第n 个等式可为________________.解析 观察上列等式可得第4个等式为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7,…,第n 个等式为(n +1)(n +2)(n +3)…(n +n)=2n ×1×3×5×…×(2n -1).答案 (n +1)(n +2)(n +3)…(n +n)=2n ×1×3×…×(2n -1) 16.若函数f(x)=4xx 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析 f ′(x)=4(x 2+1)-4x·2x (x 2+1)2=4(1+x )(1-x )(x 2+1)2,令f ′(x)>0,得(1+x)(1-x)>0,解得-1<x<1.若在区间(m,2m +1)上是单调增函数,则有⎩⎪⎨⎪⎧m>-1,2m +1<1,解得-1<m<0.但m =0时,也适合,故-1<m ≤0.答案 (-1,0]三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)用反证法证明:在△ABC 中,若sin A>sin B ,则∠B 必为锐角.证明 假设B 不是锐角,则0°<∠A<∠A +∠C =180°-∠B ≤90°, ∴sin A<sin (180°-B),即sin A<sin B ,这与已知sin A>sin B 矛盾,故∠B 必为锐角.18.(12分)已知f(x)为二次函数,且f(-1)=2,f ′(0)=0,∫10f(x)d x=-2.(1)求f(x)的表达式;(2)求f(x)在[-1,1]上的最大值与最小值.解 (1)设f(x)=ax 2+bx +c(a ≠0),则f ′(x)=2ax +b.由f(-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2,b =0,即⎩⎪⎨⎪⎧c =2-a ,b =0.∴f(x)=ax 2+2-a.又∵⎠⎛01f(x)d x =⎠⎛01(ax 2+2-a)d x =⎣⎢⎡⎦⎥⎤13ax 3+(2-a )x ⎪⎪⎪10=13a +2-a =-2,∴a =6.从而c =-4.故f(x)=6x 2-4.(2)∵f(x)=6x 2-4,x ∈[-1,1],∴f(x)min =-4.f(x)max =f(-1)=f(1)=2.故f(x)在[-1,1]上的最大值为2,最小值为-4.19.(12分)已知函数f(x)=ax 3+bx 2+cx 在点x 0处取得极小值-7,其导函数y =f ′(x)的图象经过点(-1,0),(2,0),如图所示,试求x 0,a ,b ,c 的值.解 由y =f ′(x)的图象可知,在(-∞,-1)上f ′(x)<0,在(-1,2)上f ′(x)>0,在(2,+∞)上f ′(x)<0,故f(x)在(-∞,-1)上递减,在(-1,2)上递增,在(2,+∞)上递减.因此,f(x)在x =-1处取得极小值, 所以x 0=-1.∵f(x)=ax 3+bx 2+cx , ∴f ′(x)=3ax 2+2bx +c.故由f ′(-1)=0,f ′(2)=0,f(-1)=-7, 得⎩⎪⎨⎪⎧3a -2b +c =0,12a +4b +c =0,-a +b -c =-7,解得a =-2,b =3,c =12.20.(12分)设f(x)=a(x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解 (1)∵f (x )=a (x -5)2+6ln x =ax 2-10ax +25a +6ln x , ∴f ′(x )=2ax -10a +6x =2a (x -5)+6x . 令x =1,得f (1)=16a ,f ′(1)=-8a +6.故曲线在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1). 又点(0,6)在切线上,得6-16a =8a -6,∴a =12. (2)由(1)知,f (x )=12(x -5)2+6ln x ,(x >0), f ′(x )=x -5+6x =(x -2)(x -3)x . 令f ′(x )=0,得x 1=2,x 2=3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )的增区间为(0,2),(3,+∞); 当2<x <3时,f ′(x )<0, 故f (x )的减区间为(2,3).由此可知,当x =2时,f (x )取得极大值f (2)=92+6ln2. 当x =3时,f (x )取得极小值f (3)=2+6ln3.21.(12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).(1)写出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)用数学归纳法证明你的猜想,并求出a n 的表达式.解 (1)易求得S 1=1=22,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.(2)①当n =1时,S 1=2×11+1=1,猜想成立.②假设n =k (k ∈N *)时,S k =2kk +1,则当n =k +1时, S k +1=(k +1)2a k +1 =(k +1)2(S k +1-S k ),∴S k +1=(k +1)2k 2+2k ·2k k +1=2(k +1)(k +1)+1,这表明当n =k +1时,猜想也成立. 根据①,②可知,对n ∈N *, S n =2n n +1,从而a n =S n n 2=2n (n +1).22.(12分)已知函数f (x )=ln(1+x )-x +k 2x 2(k ≥0). (1)当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求f (x )的单调区间.解 (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x -1+2x .由于f (1)=ln2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln2=32(x -1), 即3x -2y +2ln2-3=0.(2)f ′(x )=x (kx +k -1)1+x ,x ∈(-1,+∞),当k =0时,f ′(x )=-x1+x,所以在区间(-1,0)上f ′(x )>0;在区间(0,+∞)上f ′(x )<0, 故f (x )的单调增区间为(-1,0),单调减区间为(0,+∞). 当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk >0.匠心文档,专属精品。

人教a版(数学选修2-2)测试题及参考答案(优选.)

人教a版(数学选修2-2)测试题及参考答案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;5.函数5523--+=x x x y 的单调递增区间是___________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中新课标数学选修(2-2)综合测试题一、选择题(每题小题5分)1.设y=2x -x ,则x ∈[0,1]上的最大值是( ) A 0 B -41 C 21 D 41 2.若质点P 的运动方程为S(t)=2t 2+t (S 的单位为米,t 的单位为秒),则当t=1时的瞬时速度为( )A 2米/秒B 3米/秒C 4米/秒D 5米/秒 3.曲线y=-313x -2在点(-1,35-)处切线的倾斜角为( ) A 30º B 45º C 135º D 150º 4.函数y=-2x + 3x 的单调递减区间是( )A (-∞,-36) B (-36,36) C(-∞,-36)∪(36,+∞) D (36,+∞)5.过曲线y=3x +1上一点(-1,0),且与曲线在该点处的切线垂直的直线方程是( ) A y=3x+3 B y=3x +3 C y=-3x -31D y=-3x-3 6.曲线y=313x 在点(1,31)处的切线与直线x+y-3=0的夹角为 A 30º B 45º C 60º D 90º7.已知函数)(x f =3x +a 2x +b 的图象在点P (1,0)处的切线与直线3x+y=0平行.则a 、b 的值分别为( ).A -3, 2B -3, 0C 3, 2D 3, -4 8.已知)(x f =a 3x +32x +2,若)1(/-f =4,则a 的值等于( ) A319 B 310 C 316 D 313 9.函数y = 3x -12x +16在 [-3,3]上的最大值、最小值分别是( ) A 6,0 B 32, 0 C 2 5, 6 D 32, 1610.已知a>0,函数y=3x -a x在[1,+∞)上是单调增函数,则a 的最大值为( ) A 0 B 1 C 2 D 311.已知)(x f =23x -62x +m (m 为常数),在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值为( )A -37B -29C -5D -1112.已知)(x f =x +3x , 且x 1+x 2<0, x 2+x 3<0, x 3+x 1<0则( )A f(x 1)+f(x 2)+f(x 3)>0B f(x 1)+f(x 2)+f(x 3)<0C f(x 1)+f(x 2)+f(x 3)=0D f(x 1)+f(x 2)+f(x 3)符号不能确定. 二、填空题(每小题4分)13.过抛物线y=)(x f 上一点A (1,0)的切线的倾斜角为45°则)1(/f =__________. 14.函数)(x f =3x -3x 的递减区间是__________15.过点P(-1,2)且与曲线y=32x -4x +2在点M(1,1)处的切线平行的直线方程是__________.16.函数)(x f =x (1-2x )在[0,1]上的最大值为__________. 三、解答题17.已知函数)(x f =a 4x +b 2x +c 的图像经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f 的解析式;12分18.证明:过抛物线y=a(x -x 1)(x -x 2)(a ≠0, x 1< x 2)上两点A(x 1,0),B(x 2,0)的切线与x 轴所成的锐角相等。

12分19.已知)(x f =a 3x +b 2x +cx (a ≠0)在x=±1时取得极值且f (1)= -1 试求常数a 、b 、c 的值并求极值。

12分 20.已知函数)(x f =1323++-x ax x a . (1)若)(x f 在(-∞,+∞)上是增函数,求a 的取值范围.(2) 若)(x f 在x=x 1及x=x 2 (x 1, x 2>0)处有极值,且1<21x x ≤5,求a 的取值范围。

12分 21.已知函数)(x f =ax 3+cx+d(a ≠0)在R 上满足 )(x f -=-)(x f , 当x=1时)(x f 取得极值-2. (1)求)(x f 的单调区间和极大值;(2)证明:对任意x 1,x 2∈(-1,1),不等式│)()(21x f x f -│<4恒成立. 14分22.如图在边长为4的正方形铁皮的四角切去相等的正方形,在把它的边沿虚线折起,做成一个无盖的方底盒子.xx(1)问切去的小正方形边长为多少时,盒子容积最大?最大容积1V 是多少?(2)上述做法,材料有所浪费,如果可以对材料进行切割、焊接,请你重新设计一个方案,使材料浪费最少,且所得无盖的盒子的容积2V >1V 14分答案:1.A2.D3.C4.B5.C6.D7.A8.B9.B10.D11.A12B13. 1 14.[-1,1] 15.2x -y+4=0 16.932 提示:1.A f(1)=f(0)=0最大2. D ∵S '=4t+1∴当t=1时的瞬时速度为5米/秒3. 选C∵)(/x f =-2x ∴)1(/-f =-1即tan α=-1∴α=135º 4. 选B ∵y '=-2+32x <0,∴-36<x <36 5. C ∵23x y ='∴该点处的切线斜率为3,∴所求直线方程为y=-31(x+1)即C答案 6. 选D∵y ' =2x , y '│x=1=1,∴切线斜率为1,又直线斜率为-1∴两直线垂直∴夹角为90º7. A ∵)(/x f =32x +2ax ,切线的斜率k=3+2a ,3+2a= -3 ∴a=-3又∵f (1)=a+b+1=0 ∴b=2,故选A8. 选B ∵)(/x f =3a 2x +6x ∴)1(/-f =3a -6∴a=310 9. 选B ∵y '=32x -12, 由y '=0得x =±2当x =±2,x =±3时求得最大值32,最小值010. D ∵)(/x f =32x -a ,∴若)(x f 为增函数,则)(/x f >0即a<32x 要使a<32x , x ∈[1,+∞),上恒成立,∴a ≤3故选D11. A 令)(/x f =0得x =0或x =2,而f(0)=m,f(2)=-8+m,f(-2)=-40+m 显然f(0)>f(2)>f(-2)∴m=3最小值为f(-2)=-37故选A12. B ∵)(/x f =32x +1,∴)(/x f >0∴)(x f 在上是增函数,且)(x f 是奇函数,∴f(x 1)<f(-x 2), f(x 2)<f(-x 3), f(x 3)<f(-x 1)∴f(x 1)+f(x 2)+f(x 3)<-[f(x 1)+f(x 2)+f(x 3)]即f(x 1)+f(x 2)+f(x 3)<0故选B13.由题意可知切线斜率为1,由导数定义知)1(/f =1 14. ∵)(/x f =32x -3∴令32x -3≤0解得-1≤x ≤115. ∵y '=6x -4∴k=y '│x=1=2∴直线方程为y -2=2(x +1)即2x -y+4=016. ∵)(x f =x -3x ∴)(/x f =1-32x =0得x =33可知当x =33时函数值为最大值,最大值是932 17. 解:由题意可知f(0)=1,f(1)=-1,)1(f '=1,.…………..6分∴⎪⎩⎪⎨⎧-=++=+=11241c b a b a c 解之得⎪⎪⎪⎩⎪⎪⎪⎨⎧-===29251b ac .………….11分∴)(x f =1292524+-x x .…………..12分 18. 证明:∵y= a(x -x 1)(x -x 2)=ax 2-a(x 1+ x 2)x+a x 1 x 2.…………..3分 ∴y '=2ax -a(x 1+x 2) .………….6分∴k 1=y '│x=x 1=a(x 1-x 2) k 2=y '│x=x 2=a(x 2-x 1) .…………..9分设两切线与x 轴所成锐角为θ1和θ2则tan θ1=│a(x 1-x 2)│=│a │(x 2-x 1)>0, tan θ2=│a(x 2-x 1)│=│a │(x 2-x 1)>0………11分∴tan θ1= tan θ2.…………..12分19. 解:)(/x f =3a 2x +2bx+c ,.…………3分∵)(x f 在x=±1时取得极值∴x=±1是)(/x f =0即3a 2x +2bx+c=0的两根………6分∴⎩⎨⎧=+-=++)2(023)1(023c b a c b a ∵f (1)= -1 ∴ a+b+c=-1(3)由(1),(2),(3)得a=21, b=0,c=23-………9分 ∴)(x f = 213x 23-x ,∴)(/x f =23(x –1)(x+1)当x<-1或x>1时,)(/x f >0,当-1<x<1时,)(/x f <0∴)(x f 在(-∞,-1)及(1,+∞)上是增函数,在(-1,1)是减函数………11分 ∴当x= -1时函数取得极大值f (-1)=1当x=1时函数取得极小值f (1)= -1………12分20. 解:(1)∵)(x f '=ax 2-2ax+1……………………………...….1分∴当a=0时,,)(x f '=1>0,故结论成立………………………………2分 当a>0时,[ )(x f ']min =)1(f '=1-a ≥0,∴a ≤1即0<a ≤1.…………..4分 当a<0时, )(x f '在(0,+∞)上不恒大于或等于0,故舍去.…………..5分 综上得a 的取值范围是0≤a ≤1.(2) 令)(x f '=ax 2-2ax+1=0,由题知其二根为x 1,x 2且x 1+x 2=2,x 1x 2=a1…………..7分 ∵1<21x x ≤5 ∴x 1≤2-x 2≤5x 1 ∴31≤x 1<1 …………..9分 ∴x 1(2-x 2)=a 1 ∴a1=-(x 1-1)2+1…………..11分 ∴95≤a 1<1 ∴1<a ≤59…………..12分 21. 解:(1)由)(x f -=-)(x f (x ∈R)得.d=0∴)(x f = ax 3+cx , )(x f '=ax 2+c. (2)分由题设f(1)=-2为)(x f 的极值,必有)1(f '=0∴⎩⎨⎧=+=+030c a c a 解得a=1,c=-3∴)(x f ' =3x 2-3=3(x -1)(x+1) 从而)1(f '=)1(-'f =0. …………4分当x ∈(-∞,-1)时, )(x f '>0则)(x f 在(-∞,-1)上是增函数; …………5分 在x ∈(-1,1)时, )(x f '<0则)(x f 在(-1,1)上是减函数…………6分 当x ∈(1,+∞)时, )(x f '>0则)(x f 在(1,+∞)上是增函数…………7分 ∴)1(-f =2为极大值. …………9分(2)由(1)知, )(x f =x x 33-在[-1,1]上是减函数,且)(x f 在[-1,1]上的最大值M=)1(-f =2,在[-1,1]上的最小值m= f(2)=-2. …………12分对任意的x 1,x 2∈(-1,1),恒有│)()(21x f x f -│<M -m=2-(-2)=4…………14分. 22. 解:(1)设切去的正方形边长为x ,则焊接成的盒子的底面边长为4-2x ,高为x .所以1V =(4-2x )2·x =4(3x -42x +4x ),(0<x <2) ………5分∴1V '=4(32x -8x +4). ………6分令1V '=0得x 1=32 ,x 2=2(舍去)而1V '=12(x -32)(x -2)又当x <32时,1V '>0, 当32<x <2时,1V '<0∴当x =32时盒子容积最大,最大容积1V 是27128………9分 方案:如下图a ,在正方形的两个角处各切下一个边长为1的小正方形;如图b ,将切下的小正方形焊接成长方形再焊在原正方形一边;如图c 再焊成盒子123411212321图a 图b 图c新焊成的盒子的容积2V 为:3×2×1=6,显然2V >1V 故此方案符合要求。

相关文档
最新文档