生物化学 学霸总结知识点笔记
生物化学笔记
生物化学笔记生物化学是研究生物体内化学反应及其调控的科学,以及生物分子的组成、结构、功能和相互作用的学科。
在本篇笔记中,我们将介绍一些关键概念和重要知识点。
一、生物大分子1. 蛋白质:蛋白质是生物体内功能最为多样的分子,由氨基酸残基组成。
蛋白质的结构分为一级至四级结构,不同结构决定了蛋白质的功能。
2. 碳水化合物:碳水化合物是生物体内最主要的能源来源,由碳、氢、氧三种元素组成。
简单的碳水化合物有单糖、双糖,而复杂的碳水化合物包括多糖和淀粉。
3. 脂类:脂类是生物体内的重要能源储备物质和结构组分,包括甘油三酯、磷脂和类固醇等。
脂类在细胞膜的结构和功能以及信号传导中起重要作用。
二、酶的基本概念和功能1. 酶是生物体内催化化学反应的蛋白质,可以加速反应速率,但不参与反应本身。
酶的活性受到温度、pH值和底物浓度的影响。
2. 酶的命名方式遵循国际酶学会(IUB)的命名规则,一般以底物名称后加“酶”的后缀命名。
3. 酶的功能多种多样,包括促进化学反应、调节代谢途径、合成新的化学物质等。
三、代谢途径1. 糖代谢:糖是生物体内的主要能源来源,糖代谢分为糖原的合成和降解过程。
糖原合成通过糖原合成酶来完成,而糖原降解则由糖原磷酸化酶和糖原酶协同完成。
2. 脂代谢:脂类代谢包括脂类的合成和降解过程。
脂类的合成需要通过酰基辅酶A(Acetyl-CoA)参与的反应来完成。
3. 氨基酸代谢:氨基酸代谢包括氨基酸的合成和降解过程。
氨基酸的合成可以通过氨基酸转氨酶催化来实现。
4. 核酸代谢:核酸代谢包括DNA和RNA的合成和降解过程。
DNA的合成需要以脱氧核苷酸为单体,RNA的合成则需要以核苷酸为单体。
四、酶动力学1. 酶动力学是研究酶催化的速率和影响因素的科学。
酶动力学常用的参数包括最大催化速率(Vmax)和米氏常数(Km)。
2. 米氏方程是描述酶催化速率和底物浓度之间关系的常用方程。
3. 酶抑制剂是能够抑制酶活性的分子,分为可逆抑制剂和不可逆抑制剂。
生物化学知识点整理汇总
生物化学知识点整理汇总(总39页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除生物化学知识点整理注:1.此材料根据老师的PPT及课堂上强调需掌握的内容整理而成,个人主观性较强,仅供参考。
(如有错误,请以课本为主)2.颜色注明:红色:多为名解、简答(或较重要的内容)蓝色:多为选择、填空第八章脂类代谢第一节脂类化学脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。
脂肪:三脂肪酸甘油酯或甘油三酯。
类脂:胆固醇、胆固醇酯、磷脂、糖脂。
第二节脂类的消化与吸收脂类消化的主要场所:小肠上段脂类吸收的部位:主要在十二指肠下段及空肠上段第三节三酰甘油(甘油三酯)代谢一、三酰甘油的分解代谢1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。
2)关键酶:三酰甘油脂肪酶(又称“激素敏感性三酰甘油脂肪酶”,HSL)3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾上腺素、肾上腺素等。
4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、雌二醇等。
2.甘油的氧化甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。
3.脂肪酸的分解代谢饱和脂肪酸氧化的方式主要是β氧化。
1)部位:组织:脑组织及红细胞除外。
心、肝、肌肉最活跃;亚细胞:细胞质、线粒体。
2)过程:①脂酸的活化——脂酰CoA的生成(细胞质)脂肪酸脂酰消耗了2②脂酰CoA进入线粒体酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶)b.肉碱酰基转移酶Ⅱc.脂酰肉碱——肉碱转位酶(转运体)③脂酸的β氧化a.脱氢:脂酰α,β-烯脂酰CoA + FADH2b.加水c.再脱氢:β-羟脂酰CoA + NAD+β-酮脂酰CoA + NADH +H+④硫解3)脂酸氧化的能量生成活化:消耗2个高能磷酸键以软脂酸(16C)β氧化为例:7 次β氧化,生成8分子乙酰CoA、7分子NADH+H+、7分子FADH2。
生物化学学习笔记(整理总结)
第1章蛋白质的结构与功能1.等电点:氨基酸分子所带正、负电荷相等,呈电中性时,溶液的pH值称为该氨基酸的等电点(isoelectric point, pI)当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
结构域:分子量大的蛋白质三级结构常由几个在功能上相对独立的,结构较为紧凑的区域组成,称为结构域(domain)。
亚基:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基(subunit)。
别构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。
蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。
2.蛋白质的组成单位、连接方式及氨基酸的分类,酸碱性氨基酸的名称。
组成单位:氨基酸. 连接方式:肽键氨基酸可根据侧链结构和理化性质进行分类:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸、非极性侧链氨基酸、极性中性/非电离氨基酸、酸性氨基酸、碱性氨基酸酸性氨基酸:天冬氨酸,谷氨酸碱性氨基酸:精氨酸,组氨酸3.蛋白质一-四级结构的概念的稳定的化学键。
一级结构:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。
主要的化学键:肽键,有些蛋白质还包括二硫键。
二级结构:蛋白质分子中多肽主链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
主要的化学键:氢键三级结构:整条肽链中全部氨基酸残基的相对空间位置。
即肽链中所有原子在三维空间的排布位置。
主要的化学键:疏水键、离子键、氢键和范德华力等。
四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
主要的化学键:氢键和离子键。
4.蛋白质的构象与功能的关系。
一、蛋白质一级结构是高级结构与功能的基础二、蛋白质的功能依赖特定空间结构5.蛋白质变形的概念的本质。
生物化学重点笔记(基本知识)
生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
生物化学重点笔记(整理版)
教学目标:1.掌握蛋白质的概念、重要性和分子组成。
2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。
3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。
4.了解蛋白质结构与功能间的关系。
5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。
德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。
英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。
佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。
1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。
蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。
蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。
单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。
生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。
新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。
生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。
生物的运动、生物体的防御体系离不开蛋白质。
蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。
随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。
生物化学知识点总整理
生物化学知识点总整理一、蛋白质1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。
2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。
3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。
4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点:在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。
5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。
6.半胱氨酸连接用二硫键(—S—S—)7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。
8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的α羧基,称为羧基端或C端。
9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键,其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。
10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要 3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。
(完整版)生物化学知识点重点整理
(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。
它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。
生物化学的研究对于理解生命的机理和病理过程具有重要意义。
2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。
蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。
蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。
3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。
RNA是单链结构,由磷酸二酯键连接的核苷酸组成。
核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。
4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。
合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。
能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。
生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。
5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。
酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。
酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。
6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。
信号传导包括外部信号的接受、内部信号的传递和效应的产生。
细胞间的信号传导有兴奋性传导和化学信号传导两种方式。
7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。
生物化学考试重点笔记(完整版)
第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。
2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。
3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数× 6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2): 天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg)组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点 :在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。
(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。
3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。
由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。
2、肽是由氨基酸通过肽键缩合而形成的化合物。
生物化学总结复习笔记
11章.蛋白质的降解和氨基酸的代谢1.蛋白质的酶促降解1.1.细胞内蛋白质的降解一般认为真核细胞对蛋白质的降解有两个体系。
其一是溶酶体降解。
其二是依赖ATP,在细胞溶胶中以泛素标记的选择性蛋白质的降解。
1.2外源蛋白质的酶促降解外源蛋白质进入体内,必须先经过水解作用变为小分子的氨基酸,然后才能被吸收。
就高等动物来说,外界食物蛋白质经消化吸收的氨基酸和体内合成及组织蛋白质经降解的氨基酸,共同组成体内氨基酸代谢库。
所谓氨基酸代谢库即指体内氨基酸的总量。
氨基酸代谢库中的氨基酸大部分用于合成蛋白质,一部分可以作为能源,体内有一些非蛋白质的含氮化合物也是以某些氨基酸作为合成的原料。
2.氨基酸的分解代谢氨基酸的共同分解代谢途径包括脱氨基作用和脱羧基作用两个方面。
氨基酸经脱氨基作用生成氨及α-酮酸。
氨基酸经脱羧基作用产生二氧化碳及胺。
胺可随尿直接排出,也可在酶的作用下,转化为可被排出的物质和合成体内有用的物质。
氨基酸脱氨基的方式有氧化脱氨基作用、转氨基作用、联合脱氨基作用、非氧化脱氨基作用和脱酰胺基作用。
3.氨的排泄方式水生动物排氨鸟类及爬行动物排尿酸哺乳动物排尿素尿素是哺乳动物蛋白质代谢的最终产物10章.脂质代谢1脂质的酶促水解1.1三酰甘油的酶促水解三酰甘油是重要的储能物质。
在脂肪酶的作用下水解为甘油和脂肪酸。
甘油可氧化供能也可糖酵解途径生成糖。
脂肪酸可彻底氧化供能。
1.2磷脂的酶促水解磷脂酶A1和A2分别专一的出去Sn-1位或sn-2位上的脂肪酸,生成的仅含有一个脂肪酸的产物称溶血磷脂。
溶血磷脂是一种很强的表面活性剂,能使细胞膜和红细胞膜溶解。
2.脂肪酸的β-氧化作用2.1脂肪酸的β-氧化作用是指:脂肪酸在氧化分解时,碳链的断裂发生在脂肪酸的β位,即脂肪酸的碳链的断裂方式是每次切除2个碳原子。
细胞溶胶中的长链脂肪酸首先被活化为脂酰辅酶A,然后长链脂酰辅酶A在肉碱的携带下进入线粒体。
(需要肉碱脂酰转移酶)脂肪酸的β-氧化作用四步:脱氢、加水、再脱氢、硫解。
生物化学重点知识归纳
生物化学重点知识归纳第一章绪论1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。
2.生物化学研究的内容大体分为三部分:①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控第二章糖类化学1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖。
2.单糖的分类:①按所含C原子的数目分为:丙糖、丁糖......②按所含羰基的特点分为:醛糖和酮糖。
3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分。
4.甘油醛是最简单的单糖。
5.两种环式结构的葡萄糖:6.核糖和脱氧核糖的环式结构:(见下图)7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应。
8.蔗糖是自然界分布最广的二糖。
9.多糖根据成分为:同多糖和杂多糖。
同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等;杂多糖以糖胺聚糖最为重要。
10.淀粉包括直链淀粉和支链淀粉。
糖原分为肝糖原和肌糖原。
11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素。
第三章脂类化学1. 亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸。
2. 类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯。
3. 脂肪又称甘油三酯。
下图是甘油三酯、甘油和脂肪酸的结构式:1. 皂化值:水解1克脂肪所消耗KOH的毫克数。
皂化值越大,表示脂肪中脂肪酸的平均分子量越小。
6.磷脂根据所含醇的不同分为甘油磷脂和鞘磷脂。
7.糖脂包括甘油糖脂和鞘糖脂。
8.类固醇是胆固醇及其衍生物,包括胆固醇、胆固醇脂、维生素D、胆汁酸和类固醇激素等。
9.胆汁酸有游离胆汁酸和结合胆汁酸两种形式。
10.类固醇激素包括肾上腺皮质激素(如醛固酮、皮质酮和皮质醇)和性激素(雄激素、雌激素和孕激素)。
11.肾上腺皮质激素具有升高血糖浓度和促进肾脏保钠排钾的作用。
其中皮质醇对血糖的调节作用较强,而对肾脏保钠排钾的作用很弱,所以称为糖皮质激素;醛固酮对水盐平衡的调节作用较强,所以称为盐皮质激素。
学霸整理复习资料笔记:高中生物知识点总结!
学霸整理复习资料笔记:高中生物知识点总结!必修一《分子与细胞》1.生命系统的结构层次:细胞→组织→器官→系统→个体→种群→群落→生态系统→生物圈2.显微镜的使用:先低后高,不动粗焦(调到高倍镜后再不能转动粗准焦螺旋)3.真核细胞与原核细胞的根源区别:有无核膜包被的细胞核4.细菌、蓝藻的结构模式图(略)5.大量元素:C、H、O、N、P、S、Ka、Ca、Mg等。
微量元素:Fe、Mn、Zn、Cu、B、Mo等。
基本元素:C、H、O、N。
最基本元素:C6.水在细胞中以两种形态存有:解放水(约95.5%)和结合水(约4.5%),二者能够相互转化。
水是生物体内含量最多的化合物。
7.生命活动的直接能源物质为ATP、主要能源物质为葡萄糖、生物体的储能物质是脂肪8.糖类由C、H、O组成,包括单糖(葡萄糖、果糖、半乳糖、核糖、脱氧核糖)、二糖(蔗糖、麦芽糖、乳糖)、多糖(淀粉、纤维素、糖原(动物))。
9.酶的特点:专一性、高效性。
激素作用的特点是:特异性、高效性10.鉴定下列有机物的试剂及现象:淀粉:碘液——变蓝还原性糖(如葡萄糖):斐林试剂(加热)——砖红色沉淀蛋白质:双缩脲试剂——紫色脂肪:苏丹Ⅲ染液——橘黄色;苏丹Ⅳ染液——红色11.蛋白质基本组成单位:氨基酸。
元素组成:C、H、O、N,绝大部分蛋白质还含有S氨基酸结构通式:必须有一个氨基和一个羧基,且连接在同一个C上形成:氨基酸分子间通过脱水缩合形成肽键(—CO—NH—或—NH—CO—,不能省略“—”)相连而成。
二肽:由2个氨基酸分子组成的肽链。
三肽:由三个氨基酸组成。
多肽:n≥3公式:脱水缩合时脱去的水分子数=肽键数=氨基酸数-肽链数蛋白质结构的多样性的原因:氨基酸的种类、数目、排列顺序例外12.核酸:由C、H、O、N、P组成,包括DNA和RNADNA:脱氧核糖核酸,基本单位:脱氧核苷酸,碱基类型:A-T,C-G,DNA 可被甲基绿染成绿色RNA:核糖核酸,基本单位:核糖核苷酸,碱基类型:A-U,C-G,RNA可被吡罗红染成红色13.细胞膜的化学成分是:脂质、蛋白质、多糖,其中基本骨架是磷脂双分子层14.细胞膜的结构特点:流动性。
生物化学笔记
生物化学笔记(汇总)(总15页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章蛋白质的结构与功能蛋白质的分子组成构成人体的20种氨基酸均属于L-α-氨基酸(除甘氨酸)【氨基酸的分类、结构式、中文名和英文缩写】含硫氨基酸:半胱氨酸、胱氨酸、甲硫氨酸(蛋氨酸)脯氨酸和赖氨酸可被羟化为羟脯氨酸、羟赖氨酸20种氨基酸的理化性质:等电点、紫外吸收(Tyr、Trp含共轭双键,A280)、茚三酮反应【谷胱甘肽的组成、结构特点、主要活性基团、作用】蛋白质的分子结构一级结构:氨基酸从N端到C端的排列顺序肽键、二硫键二级结构:局部主链骨架原子(Cα、N、Co)构象氢键{α−螺旋(3.6个残基上升一圈,螺距0.54nm),β−折叠(平行和反平行,5~8个残基)β−转角(转角处常有Pro),无规卷曲超二级结构(αα、βαβ、ββ)模体三级结构:全部氨基酸残基相对空间位置次级键四级结构:亚基相对空间位置和连接处布局次级键肽单元(Cα1、C、O、N、H、Cα2)蛋白质结构与功能的关系尿素、β-巯基乙醇分别可以破坏肽链中的次级键、二硫键【肌红蛋白与血红蛋白】肌红蛋白(Mb)为单一肽链蛋白质,含有一个血红素辅基;血红蛋白(Hb)四个亚基(2α、2β),每个亚基都有一个血红素辅基;肌红蛋白与血红蛋白亚基的三级结构相似;肌红蛋白的氧解离曲线为直角双曲线、血红蛋白为S形曲线;血红蛋白有紧张态(T)和松弛态(R),R态为结合氧的状态。
蛋白质构想改变引起疾病:疯牛病、阿尔兹海默症、亨廷顿舞蹈病蛋白质的理化性质两性电离、胶体性质(水化膜和电荷效应维持稳定)、双缩脲反应(检测蛋白质水解程度)蛋白质的分离、纯化与结构分析透析、超滤法可去除蛋白质溶液中的小分子化合物。
丙酮沉淀、盐析、免疫沉淀是常用的蛋白质浓缩方法既可以分离蛋白质又可以测定其分子量的方法是超速离心*简答题或论述题:1、简述α-螺旋结构的主要特征要点:右手螺旋、螺距和上升一圈的残基数、侧链位于外侧、氢键维持稳定2、简述谷胱甘肽的结构特点和生物学功能?要点:非α肽键、巯基、体内重要还原剂3、蛋白质变性后有什么改变?(1)生物活性丧失(2)空间结构被破坏、肽键完好(3)溶解度降低(4)黏度增加(5)不易结晶、易沉淀(6)易被蛋白酶水解第二章核酸的结构与功能核算的化学组成和一级结构糖苷键:核糖的C-1’原子和嘌呤的N-9原子或嘧啶的N-1原子形成的共价键。
生物化学重点笔记(基本知识)
生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
生物化学笔记总结
绪论1.生命有机体的特征:①化学成分复杂但条理性很强;②新陈代谢;③能自我繁殖。
2.细胞是生物体基本的结构和功能单位。
3.生化研究内容:①生物体的化学组成及生物分子的结构与功能;②代谢及其调节;③遗传信息的表达及调控;4.自然界化合物:①有机物:糖、脂、蛋白质、核酸;②无机物:水、无机盐5.生物分子:①有机小分子:维生素、辅酶、激素、有机酸、色素;②生物大分子:糖、脂、蛋白质、核酸生物复杂多样,但在分子水平具有简单同一性6.生物大分子的基本特征:①由结构简单的小分子聚合而成②都有非常复杂的结构③作为信息分子的基础④生物分子之间相互作用和识别特性7.代谢及其调节特点:①细胞内发生②包括物质和能量代谢③需要精细的相互协调8.发展简史:①叙述生物化学;②动态生物化学;③分子生物化学。
生物活动的化学基础1.化学键:相邻原子或离子之间强烈的相互作用,分离子键和共价键。
2.次级键:氢键和范德华力等较弱化学键的总称。
3.官能团:决定性质的原子或基团。
4.基本化学反应类型:氧化、还原、中和、置换、合成等。
5.氧化反应:有机物反应时加氧或脱氢的作用。
6.还原反应:有机物反应时加氢或脱氧的作用。
7.正常血液PH:7.35~7.45糖化学1.糖:化学本质为多羟基醛或多羟基酮类及其衍生物、缩聚物。
2.单糖:不能在水解的糖。
3.寡糖:能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。
4.多糖:能水解生成多个分子单糖的糖,包括同多糖、杂多糖。
5.手性原子:结构具有不对称性、不能与其镜像重合的原子。
6.手性碳原子:所连接的四个化学基团完全不同的碳原子。
7.旋光性:使平面偏振光发生旋转的性质。
只有手性分子才有旋光性8.旋光度:平面偏振光旋转的角度。
9.比旋光度:手性分子的特征常数。
10.D、L构型:距离羰基最远的手性碳上-OH的位置,在左为L,在右为D。
自然界存在的单糖大多使D型11.变旋光现象:几种构型之间相互转换,动态平衡的现象。
生物化学知识点整理
生物化学知识点整理生物化学是研究生物体内化学成分、化学反应以及其与生命活动的关系的学科。
它是生物科学和化学两个学科的交叉领域,对于揭示生命现象的本质和生物体内的各种反应机制具有重要意义。
下面整理了一些生物化学的知识点,以便更好地理解这一学科。
1.生物大分子:生物体内的大分子主要包括蛋白质、核酸、多糖和脂类。
它们是生物体内的重要组成部分,参与调节生物体内的各种功能和反应。
2.蛋白质结构:蛋白质是由氨基酸残基通过肽键连接而成的长链状分子。
它们的结构分为四级:一级结构为氨基酸序列,二级结构包括α螺旋和β折叠,三级结构为空间构象,四级结构为多个蛋白质链的组合。
3.酶:酶是生物体内调节化学反应速度的催化剂。
它们可以加速化学反应的速率,但不改变反应的平衡常数。
酶的活性受到温度、pH、底物浓度等因素的影响。
4.核酸:核酸是生物体内负责遗传信息传递的分子。
DNA(脱氧核糖核酸)和RNA(核糖核酸)是两种重要的核酸。
DNA负责存储和传递遗传信息,而RNA在蛋白质合成过程中起到携带信息的作用。
5.代谢途径:代谢途径是生物体内完成各种生化反应的序列。
常见的代谢途径包括糖酵解、脂肪酸氧化、氧化磷酸化等。
通过这些途径,生物体可以从食物中获取能量和合成所需的物质。
6.糖酵解:糖酵解是生物体内将葡萄糖分解为能够产生能量的小分子的过程。
它分为糖原磷酸解和乳酸发酵两个阶段,分别产生ATP和乳酸。
7.脂肪酸氧化:脂肪酸氧化是将脂肪酸分解为能够产生能量的化合物的过程。
它在线粒体内进行,产生ATP和二氧化碳。
8.氧化磷酸化:氧化磷酸化是生物体内通过氧化反应转化化学能量产生ATP的过程。
它发生在线粒体内,是细胞呼吸的最终阶段。
9.生物体内的信号传导:生物体内的信号传导是通过化学信号分子传递信息的过程。
常见的信号分子包括激素、神经递质等。
信号传导过程中常涉及到受体、信号转导分子和下游效应分子。
10.蛋白质合成:蛋白质合成是生物体内通过核酸模板将氨基酸连接成蛋白质的过程。
生物化学知识点总结
生物化学知识点总结生物化学是研究生物体化学组成和生命过程中化学变化规律的科学,它是生命科学领域的重要基础学科。
以下是对生物化学一些重要知识点的总结。
一、生物大分子(一)蛋白质1、组成元素:主要由碳、氢、氧、氮,有些还含有硫、磷等元素。
2、基本组成单位:氨基酸。
氨基酸通过脱水缩合形成肽链,肽链经过盘曲折叠形成具有一定空间结构的蛋白质。
3、蛋白质的结构层次:一级结构是指氨基酸的排列顺序;二级结构有α螺旋、β折叠等;三级结构是指整条肽链的空间构象;四级结构是指由多个亚基组成的蛋白质中各个亚基的空间排布及相互作用。
4、蛋白质的性质:具有两性电离、胶体性质、变性与复性、沉淀等。
(二)核酸1、分类:包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
2、组成元素:碳、氢、氧、氮、磷。
3、基本组成单位:核苷酸。
核苷酸由含氮碱基、戊糖和磷酸组成。
4、 DNA 的结构:双螺旋结构,两条反向平行的多核苷酸链围绕同一中心轴相互缠绕。
5、 RNA 的种类及功能:信使 RNA(mRNA)指导蛋白质合成;转运 RNA(tRNA)转运氨基酸;核糖体 RNA(rRNA)参与核糖体的组成。
(三)糖类1、分类:单糖(如葡萄糖、果糖、半乳糖)、二糖(如蔗糖、麦芽糖、乳糖)和多糖(如淀粉、糖原、纤维素)。
2、功能:主要的能源物质,也参与细胞结构的组成。
(四)脂质1、分类:脂肪、磷脂、固醇(如胆固醇、性激素、维生素 D)。
2、功能:脂肪是良好的储能物质;磷脂是生物膜的重要成分;固醇在调节生命活动中发挥重要作用。
二、酶1、本质:大多数是蛋白质,少数是 RNA。
2、特性:高效性、专一性、作用条件温和。
3、影响酶活性的因素:温度、pH、抑制剂、激活剂等。
4、酶的作用机制:降低化学反应的活化能。
三、生物氧化1、概念:物质在生物体内氧化分解并释放能量的过程。
2、呼吸链:由一系列递氢体和递电子体组成,其功能是传递电子和氢,生成水并释放能量。
3、 ATP 的生成:主要通过氧化磷酸化和底物水平磷酸化两种方式生成。
生物化学重点笔记
生物化学重点笔记生物化学是研究生物体的化学组成、结构、性质、功能以及生命过程中化学变化规律的一门科学。
它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等都具有重要意义。
以下是为您整理的生物化学重点笔记。
一、蛋白质化学1、蛋白质的组成与结构组成:蛋白质主要由碳、氢、氧、氮、硫等元素组成,其基本组成单位是氨基酸。
结构:蛋白质具有一级结构(氨基酸的排列顺序)、二级结构(如α螺旋、β折叠等)、三级结构(整条肽链的空间构象)和四级结构(多条肽链形成的复合物)。
2、蛋白质的性质两性解离:在一定的 pH 条件下,蛋白质可以解离成带正电荷或负电荷的离子。
胶体性质:蛋白质溶液是一种胶体溶液,具有丁达尔现象、布朗运动等特性。
变性与复性:在某些物理或化学因素作用下,蛋白质的空间结构被破坏,导致其理化性质和生物活性改变,称为变性;变性后的蛋白质在适当条件下可以恢复其原有的空间结构和生物活性,称为复性。
3、蛋白质的分离与纯化沉淀法:如盐析、有机溶剂沉淀等。
层析法:包括凝胶过滤层析、离子交换层析、亲和层析等。
电泳法:如聚丙烯酰胺凝胶电泳、等电聚焦电泳等。
二、核酸化学1、核酸的组成与结构组成:核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA),它们由核苷酸组成,核苷酸包括碱基、戊糖和磷酸。
结构:DNA 是双螺旋结构,RNA 有单链、双链等多种结构形式。
2、 DNA 的复制与转录DNA 复制:以亲代 DNA 为模板,按照碱基互补配对原则合成子代DNA 的过程。
转录:以 DNA 为模板合成 RNA 的过程。
3、 RNA 的种类与功能mRNA(信使 RNA):携带遗传信息,指导蛋白质合成。
tRNA(转运 RNA):在蛋白质合成中转运氨基酸。
rRNA(核糖体 RNA):参与核糖体的组成。
三、酶1、酶的本质与特性本质:酶是具有催化活性的蛋白质或 RNA。
特性:高效性、专一性、可调节性、不稳定性。
2、酶的催化机制降低反应的活化能:通过形成酶底物复合物,使反应更容易进行。
生物化学专业的知识总结
生物化学专业的知识总结生物化学是研究生物体内化学成分和生命过程的学科,涉及到生物分子的结构、功能和相互作用等方面。
本文将对生物化学专业的知识进行总结,包括基本概念、重要分子和反应、研究方法等内容。
一、基本概念1. 生物分子:生物体内的化学物质,包括蛋白质、核酸、碳水化合物和脂质等。
2. 蛋白质:生物体内最重要的大分子,由氨基酸组成,具有结构和功能多样性。
3. 核酸:DNA和RNA是生物体内的两种核酸,负责遗传信息的传递和蛋白质合成。
4. 碳水化合物:生物体内的主要能量来源,包括单糖、双糖和多糖等。
5. 脂质:构成生物膜的主要成分,同时也是能量储存和信号传递的重要分子。
二、重要分子和反应1. 氨基酸:构成蛋白质的基本单位,通过肽键连接成多肽链。
2. 酶:催化生物体内化学反应的蛋白质,具有高度的选择性和效率。
3. 代谢途径:生物体内物质的合成和降解过程,包括糖酵解、脂肪酸合成等。
4. 光合作用:植物利用光能将二氧化碳和水转化为有机物质和氧气。
5. 呼吸作用:生物体内将有机物质氧化释放能量的过程,包括有氧呼吸和无氧呼吸。
三、研究方法1. 分离和纯化:通过技术手段将生物体内的分子分离和提纯,如电泳和层析。
2. 光谱学:利用不同波长的光与分子相互作用,如紫外-可见吸收光谱和红外光谱。
3. 核磁共振:通过核磁共振现象研究分子的结构和相互作用。
4. 质谱:通过对分子的质量和电荷比进行测定,确定分子的结构和组成。
5. 生物化学实验:通过设计和进行实验验证生物化学理论和假设。
综上所述,生物化学专业的知识总结包括基本概念、重要分子和反应、研究方法等内容。
生物化学作为一门交叉学科,对于深入理解生命的本质和生物体内的化学过程具有重要意义。
通过掌握这些知识,我们可以更好地理解生物体内的化学变化和相互作用,为生物医学研究和药物开发提供基础。
希望本文的总结能够对生物化学专业的学习和研究有所帮助。
(完整版)生物化学知识点总结
(完整版)生物化学知识点总结生物化学知识点总结一、蛋白质蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。
6.25称作蛋白质系数。
样品中蛋白质含量=样品中含氮量×6.25蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。
脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。
氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。
肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。
生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。
1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。
由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。
寡肽:10个以下氨基酸脱水缩合形成的肽多肽:10个以上氨基酸脱水缩合形成的肽蛋白质与多肽的区别:蛋白质:空间构象相对稳定,氨基酸残基数较多多肽:空间构象不稳定,氨基酸残基数较少蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。
-螺旋的结构特点:1)以肽键平面为单位,以α-碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。
2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。
3)每一个氨基酸残基中的NH 和前面相隔三个残基的C=O之间形成氢键,氢键的方向与中心轴大致平行,是稳定螺旋的主要作用力4)肽链中的氨基酸R基侧链分布在螺旋的外侧,R基团的大小、性状及带电荷情况都对螺旋的形成与稳定起作用。