浙江省高考数学试卷(理科)答案与解析
2019年浙江省高考数学试卷(理科)答案与解析
浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•浙江)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}【考点】交、并、补集的混合运算.【专题】集合.【分析】欲求两个集合的交集,先得求集合C U B,再求它与A的交集即可.【解答】解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.【点评】这是一个集合的常见题,属于基础题之列.2.(5分)(2009•浙江)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】考虑“a>0且b>0”与“a+b>0且ab>0”的互推性.【解答】解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”的充分必要条件,故选C【点评】本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.3.(5分)(2009•浙江)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】把复数z代入表达式化简整理即可.【解答】解:对于,故选D.【点评】本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.4.(5分)(2009•浙江)在二项式的展开式中,含x4的项的系数是()A.﹣10 B.10 C.﹣5 D.5【考点】二项式定理.【专题】二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【解答】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.5.(5分)(2009•浙江)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】本题考查的知识点是线面夹角,由已知中侧棱垂直于底面,我们过D点做BC的垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C【点评】求直线和平面所成的角时,应注意的问题是:(1)先判断直线和平面的位置关系.(2)当直线和平面斜交时,常用以下步骤:①构造﹣﹣作出或找到斜线与射影所成的角;②设定﹣﹣论证所作或找到的角为所求的角;③计算﹣﹣常用解三角形的方法求角;④结论﹣﹣点明斜线和平面所成的角的值.6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是计算满足S=≥100的最小项数【解答】解:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环S K循环前/0 0第一圈是 1 1第二圈是 3 2第三圈是11 3第四圈是2059 4第五圈否∴最终输出结果k=4故答案为A【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.7.(5分)(2009•浙江)设向量,满足:||=3,||=4,•=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.6【考点】直线与圆相交的性质;向量的模;平面向量数量积的运算.【专题】平面向量及应用.【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆的半径,进而看半径为1的圆内切于三角形时有三个公共点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,进而可得出答案.【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.8.(5分)(2009•浙江)已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】函数f(x)=1+asinax的图象是一个正弦曲线型的图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数的周期为:,∵|a|>1,∴T<2π,而D不符合要求,它的振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象的对应关系,故选D.【点评】由于函数的解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题的关键.9.(5分)(2009•浙江)过双曲线﹣=1(a>0,b>0)的右顶点A作斜率为﹣1的直线,该直线与双曲线的两条渐近线的交点分别为B、C.若=,则双曲线的离心率是()A.B.C.D.【考点】直线与圆锥曲线的综合问题;双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】分别表示出直线l和两个渐近线的交点,进而表示出和,进而根据=求得a和b的关系,进而根据c2﹣a2=b2,求得a和c的关系,则离心率可得.【解答】解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.【点评】本题主要考查了直线与圆锥曲线的综合问题.要求学生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.10.(5分)(2009•浙江)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q﹣P=()A.P B.{5} C.{1,3,4} D.Q【考点】集合的包含关系判断及应用.【专题】集合.【分析】理解新的运算,根据新定义A﹣B知道,新的集合A﹣B是由所有属于A但不属于B的元素组成.【解答】解:Q﹣P是由所有属于Q但不属于P的元素组成,所以Q﹣P={5}.故选B.【点评】本题主要考查了集合的运算,是一道创新题,具有一定的新意.要求学生对新定义的A﹣B有充分的理解才能正确答.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2009•浙江)设等比数列{a n}的公比,前n项和为S n,则=15.【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】先通过等比数列的求和公式,表示出S4,得知a4=a1q3,进而把a1和q代入约分化简可得到答案.【解答】解:对于,∴【点评】本题主要考查了等比数列中通项公式和求和公式的应用.属基础题.12.(4分)(2009•浙江)若某个几何体的三视图(单位:cm)如图所示,则该几何体的体积是18cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由图可知,图形由两个体积相同的长方体组成,求出其中一个体积即可.【解答】解:由图可知,底下的长方体底面长为3,宽为1,底面积为3×1=3,高为3,因此体积为3×3=9;上面的长方体底面是个正方形,边长为3,高为1,易知与下面的长方体体积相等,因此易得该几何体的体积为9×2=18.【点评】本题考查学生的空间想象能力,是基础题.13.(4分)(2009•浙江)若实数x,y满足不等式组,则2x+3y的最小值是4.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足不等式组的可行域,由图易得:当x=2,y=0时,2x+3y=4;当x=1,y=1时,2x+3y=5;当x=4,y=4时,2x+3y=20,因此,当x=2,y=0时,2x+3y有最小值4.故答案为4【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14.(4分)(2009•浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.568 50及以下的部分0.288超过50至200的部分0.598 超过50至200的部分0.318超过200的部分0.668 超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为148.4元(用数字作答)【考点】分段函数的解析式求法及其图象的作法.【专题】函数的性质及应用.【分析】先计算出高峰时间段用电的电费,和低谷时间段用电的电费,然后把这两个电费相加.【解答】解:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月的总电费为118.1+30.3=148.4 (元),故答案为:148.4.【点评】本题考查分段函数的函数值的求法,体现了分类讨论的数学思想,属于中档题.15.(4分)(2009•浙江)观察下列等式:观察下列等式:C+C=23﹣2,C+C+C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=24n﹣1+(﹣1)n22n﹣1.【考点】二项式定理的应用.【专题】二项式定理.【分析】通过观察类比推理方法结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1【解答】解:结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1,因此对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=24n﹣1+(﹣1)n22n﹣1.故答案为24n﹣1+(﹣1)n22n﹣1【点评】本题考查观察、类比、归纳的能力.16.(4分)(2009•浙江)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是336.【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故答案为:336.【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.17.(4分)(2009•浙江)如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是(,1).【考点】平面与平面垂直的性质;棱锥的结构特征.【专题】空间位置关系与距离;空间角;立体几何.【分析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时与随着F点到C 点时,分别求出此两个位置的t值即可得到所求的答案【解答】解:此题的破解可采用二个极端位置法,即对于F位于DC的中点时,可得t=1,随着F点到C点时,当C与F无限接近,不妨令二者重合,此时有CD=2因CB⊥AB,CB⊥DK,∴CB⊥平面ADB,即有CB⊥BD,对于CD=2,BC=1,在直角三角形CBD中,得BD=,又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,因此t的取值的范围是(,1)故答案为(,1)【点评】考查空间图形的想象能力,及根据相关的定理对图形中的位置关系进行精准判断的能力.三、解答题(共5小题,满分72分)18.(14分)(2009•浙江)在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.【考点】二倍角的余弦;平面向量数量积的运算;余弦定理.【专题】解三角形.(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA,进而根据【分析】求得bc的值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+c的值求得b和c,进而根据余弦定理求得a的值.【解答】解:(Ⅰ)因为,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴【点评】本题主要考查了解三角形的问题.涉及了三角函数中的倍角公式、余弦定理和三角形面积公式等,综合性很强.19.(14分)(2009•浙江)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数的概率;(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【考点】等可能事件的概率;离散型随机变量及其分布列;离散型随机变量的期望与方差;组合及组合数公式.【专题】概率与统计.【分析】(I)由题意知本题是一个古典概型,试验发生包含的所有事件是从9个数字中选3个,而满足条件的事件是3个数恰有一个是偶数,即有一个偶数和两个奇数.根据概率公式得到结果.(2)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数,结合变量对应的事件写出概率和分布列,算出期望.【解答】解:(I)由题意知本题是一个古典概型,试验发生包含的所有事件是C93,而满足条件的事件是3个数恰有一个是偶数共有C41C52记“这3个数恰有一个是偶数”为事件A,∴;(II)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数P(ξ=0)=,P(ξ=1)=,P(ξ=2)=∴ξ的分布列为ξ0 1 2p∴ξ的数学期望为.【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.20.(14分)(2009•浙江)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.(Ⅰ)设G是OC的中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.【考点】直线与平面平行的判定;点、线、面间的距离计算.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】由于PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,O为AC的中点,AC=16,PA=PC=10,所以PO、OB、OC是两两垂直的三条直线,因此可以考虑用空间向量解决:连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,对于(I),只需证明向量FG与平面BOE的一个法向量垂直即可,而根据坐标,平面的一个法向量可求,从而得证;对于(II),在第一问的基础上,课设点M的坐标,利用FM⊥平面BOE求出M的坐标,而其道OA、OB的距离就是点M 横纵坐标的绝对值.【解答】证明:(I)如图,连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x 轴,y轴,z轴,建立空间直角坐标系O﹣xyz,则O(0,0,0),A(0,﹣8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,﹣4,3),F(4,0,3),(3分)由题意得,G(0,4,0),因,因此平面BOE的法向量为,)得,又直线FG不在平面BOE内,因此有FG∥平面BOE.(6分)(II)设点M的坐标为(x0,y0,0),则,因为FM⊥平面BOE,所以有,因此有,即点M的坐标为(8分)在平面直角坐标系xoy中,△AOB的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在△ABO内存在一点M,使FM⊥平面BOE,由点M的坐标得点M到OA,OB的距离为.(12分)【点评】本题考查直线与平面的平行的判定以及距离问题,建立了空间坐标系,所有问题就转化为向量的运算,使得问题简单,解决此类问题时要注意空间向量的使用.21.(15分)(2009•浙江)已知椭圆C1:(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆C1的方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.【考点】圆锥曲线的综合;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(I)根据题意,求出a,b的值,然后得出椭圆的方程.(II)设出M,N,P的坐标,将直线代入椭圆,联立方程组,根据△判断最值即可.【解答】解:(I)由题意得,∴,所求的椭圆方程为,(II)不妨设M(x1,y1),N(x2,y2),P(t,t2+h),则抛物线C2在点P处的切线斜率为y'|x=t=2t,直线MN的方程为y=2tx﹣t2+h,将上式代入椭圆C1的方程中,得4x2+(2tx﹣t2+h)2﹣4=0,即4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,因为直线MN与椭圆C1有两个不同的交点,所以有△1=16[﹣t4+2(h+2)t2﹣h2+4]>0,设线段MN的中点的横坐标是x3,则,设线段PA的中点的横坐标是x4,则,由题意得x3=x4,即有t2+(1+h)t+1=0,其中的△2=(1+h)2﹣4≥0,∴h≥1或h≤﹣3;当h≤﹣3时有h+2<0,4﹣h2<0,因此不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0不成立;因此h≥1,当h=1时代入方程t2+(1+h)t+1=0得t=﹣1,将h=1,t=﹣1代入不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0成立,因此h的最小值为1.【点评】本题考查圆锥图象的综合利用,椭圆方程的应用,通过构造一元二次方程,利用根的判别式计算,属于中档题.22.(15分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(Ⅱ)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;函数的单调性与导数的关系.【专题】导数的综合应用.【分析】(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.【解答】解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于中档题.。
2022浙江高考理数试卷及答案
2022浙江高考理数试卷及答案【一】:2022年高考浙江卷理数试题及答案2022年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合P=,Q=,则P=,则A。
[2,3]B。
(-2,3]C。
[1,2)D。
2、已知互相垂直的平面A。
B。
C。
交于直线l,若直线m,n满足D。
3、在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线+y-2=0上的投影构成的线段记为AB,则,AB,=A。
B。
4C。
D。
6使得”的否定形式是B。
D。
则的最小正周期使得使得4、命题“A。
C。
5、设函数使得使得A。
与b有关,且与c有关B。
与b有关,但与c无关C。
与b无关,且与c无关D。
与b无关,但与c有关6。
如图,点列分别在锐角的两边上,且,(若A。
表示点P与Q不重合),为的面积,则是等差数列,。
是等差数列B。
C。
是等差数列D。
是等差数列7。
已知椭圆与双曲线的焦点重合,则A。
C。
且且B。
D。
则则则则且且分别为的离心率,8。
已知实数A。
若B。
若C。
若D。
若二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9。
若抛物线10。
已知上的点M到焦点的距离为10,则M到y轴的距离是。
,则A=,b=。
11、几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm,体积是cm。
12、已知,若,则a=,b=。
13、设数列的前n项和为,若,则=,=。
14、如图,在中,AB=BC=2,。
若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是。
15、已知向量a,b,a,=1,b,=2,若对任意单位向量e,均有,a·e,+,b·e,的最大值是。
三、解答题:本大题共5小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
16。
2024年浙江高考数学真题及答案
2024年浙江高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞【答案】B 【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1a a -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C 【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC.10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数()f x 在()1,3上的值域即可判断C;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A:设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C:由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D:当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而2sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则5352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【答案】(1)证明见解析【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即42sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.31/31而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2022年理数高考试题答案及解析-浙江
绝密★考试结束前2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕本试题卷分选择题和非选择题两局部.全卷共5页,选择题局部1至3页,非选择题局部4至5页.总分值150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题局部〔共50分〕本卷须知:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n kk kn n P k C p p k n -=-=球的外表积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式其中12,S S 分别表示台体的上底、下底面积, 34π3V R =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},那么A ∩(C R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 【解析】A =(1,4),B =(-3,1),那么A ∩(C R B )=(1,4). 【答案】A 2.i 是虚数单位,那么3+i1i-= A .1-2i B .2-i C .2+i D .1+2i 【解析】3+i 1i -=()()3+i 1+i 2=2+4i2=1+2i .【答案】D3.设a ∈R ,那么“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行〞的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;假设直线l 1与直线l 2平行,那么有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件. 【答案】A4.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案. 【答案】B5.设a ,b 是两个非零向量.A .假设|a +b |=|a |-|b |,那么a ⊥bB .假设a ⊥b ,那么|a +b |=|a |-|b |C .假设|a +b |=|a |-|b |,那么存在实数λ,使得a =λbD .假设存在实数λ,使得a =λb ,那么|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,那么a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :假设a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :假设存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.假设从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,那么不同的取法共有A .60种B .63种C .65种D .66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,那么取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种; 4个都是奇数:455C =种.∴不同的取法共有66种. 【答案】D7.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,那么以下命题错误的选项是......A .假设d <0,那么数列{S n }有最大项B .假设数列{S n }有最大项,那么d <0C .假设数列{S n }是递增数列,那么对任意的n ∈N*,均有S n >0D .假设对任意的n ∈N*,均有S n >0,那么数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .假设|MF 2|=|F 1F 2|,那么C 的离心率是 A 23 B 6C 2D 3【解析】如图:|OB |=b ,|OF 1|=c .∴k PQ =b c,k MN =﹣b c.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c cb y xa ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c(x -acc a -+), 令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e 6.【答案】B9.设a >0,b >0A .假设2223a b a b +=+,那么a >bB .假设2223a b a b +=+,那么a <bC .假设2223a b a b -=-,那么a >bD .假设2223a b a b -=-,那么a <b【解析】假设2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,那么()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.矩形ABCD ,AB =1,BC 2∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD 〞,“AB 与CD 〞,“AD 与BC 〞均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的. 【答案】C2022年普通高等学校招生全国同一考试〔浙江卷〕数 学〔理科〕非选择题局部〔共100分〕本卷须知:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每题4分,共28分. 11.某三棱锥的三视图(单位:cm)如下列图,那么该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 11312123⨯⨯⨯⨯=. 形,右侧面也是一直角三角形.故体积等于【答案】112.假设程序框图如下列图,那么该程序运行后输出的值是______________.【解析】T ,i 关系如以下列图: T 1 12 16 124 1120i 23 4 5 6【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.假设2232S a =+,4432S a =+,那么q =______________.q 表示的式子.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.假设将函数()5f x x =表示为其中0a ,1a ,2a ,…,5a 为实数,那么3a =______________. 【解析】法一:由等式两边对应项系数相等.即:545543315544310100a C a a a C a C a a =⎧⎪+=⇒=⎨⎪++=⎩. 法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,那么AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =AC 34 cos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】2916.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离, 那么实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x 的距离为:0(4)222d --==C 2到直线l :y =x 的距离为22d d r d '=-== 另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),111()72442422a ad a -++'==⇒=. 【答案】7417.设a ∈R ,假设x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,那么a =______________. 【解析】此题按照一般思路,那么可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为此题可能是错题或者解不出此题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:2a =,舍去2a =,得答案:2a = 【答案】2a =三、解答题:本大题共5小题,共72分,解容许写出文字说明、证明过程或演算步骤. 18.(本小题总分值14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .cos A =23,sin B 5C . (Ⅰ)求tan C 的值;(Ⅱ)假设a 2∆ABC 的面积.【解析】此题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。
(完整版)浙江高考理科数学试题和解析
WORD 完满格式2017 年一般高等学校招生全国一致考试(浙江卷)数学(理科)选择题部分(共50 分)1.(2017年浙江)已知会合P={x|-1 < x< 1} , Q={0< x< 2} ,那么 P∪Q=()A.( 1, 2)B.( 0, 1)C.( -1 , 0)D.( 1, 2)【分析】利用数轴,取P, Q全部元素,得P∪Q=( -1 , 2) .2. (2017年浙江 ) 椭圆x2y2)+=1 的离心率是(9413525A.3B.3C.3D.99-452.B 【分析】 e= 3=3.应选 B.3. (2017 年浙江 ) 某几何体的三视图如下图(单位:cm),则该几何体的体积(单位:cm3)是()(第 3 题图)A.1B.3C.31 D .3322223. A 【分析】依据所给三视图可复原几何体为半个圆锥和半个棱锥拼接而成的组合体,所1π×12 1π以,几何体的体积为V=3×3×(2+2×2×1) = 2 +1. 应选 A.x≥0,4. (2017年浙江)若x,y知足拘束条件x+y- 3≥0,则 z=x+2y 的取值范围是()x- 2y≤0,WORD 完满格式A. [0 , 6]B. [0 , 4]C. [6 ,+∞)D.[4,+∞)4. D【分析】如图,可行域为一开放地区,所以直线过点(2,1) 时取最小值4,无最大值,选 D.5. (2017 年浙江 ) 若函数f2M,最小值是m,则 M–( x)= x + ax+b在区间 [0 , 1] 上的最大值是()mA.与a相关,且与b相关B.与a相关,但与b没关C.与a没关,且与b没关D.与a没关,但与b相关a a25. B【分析】由于最值 f ( 0)=b, f ( 1) =1+a+b,f ( - 2) =b- 4中取,所以最值之差必定与 b 没关 . 应选 B.6.(2017 年浙江 ) 已知等差数列 { a n} 的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的()A.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件6. C【分析】由S4+ S6-2 S5=10a1+21d-2(5a1+10d)=d,可知当d>0时,有S4+S6-2S5>0,即 S4+ S6>2S5,反之,若S4+ S6>2S5,则d>0,所以“ d>0”是“ S4+ S6>2S5”的充要条件,选 C.7. (2017年浙江)函数y=f(x)的导函数y=f ′( x)的图象如下图,则函数y=f ( x)的图象可能是()(第 7 题图)7. D【分析】原函数先减再增,再减再增,且x=0 位于增区间内 . 应选 D.1 8.(2017 年浙江 ) 已知随机变量ξi知足P(ξi =1)=p i,P(ξi =0)=1–p i,i =1,2.若 0<p1<p2<2,则()E ξ E ξ D ξ D ξ2)B E ξ E ξ D ξ D ξ2)A. (1)<(2),(1)<(. (1)<(2),(1)>(E ξ E ξ D ξ D ξ2)D E ξ E ξ D ξ D ξ2)C. (1)>(2),(1)<(. (1)>(2),(1)>(8. A 【分析】∵E( ξ1)= p1,E( ξ2)= p2,∴E( ξ1) <E( ξ2) ,∵D( ξ1 )= p1(1- p1) ,D( ξ2)= p2(1- p2) ,∴D(ξ1)- D(ξ2)=( p1- p2)(1- p1- p2)<0.应选A.9.(2017 年浙江 ) 如图,已知正四周体D–ABC(全部棱长均相等的三棱锥),P,Q,R分别BQ CR为 AB, BC, CA 上的点, AP=PB,= =2,分别记二面角D–PR–Q,D–PQ–R,D–QR–PQC RA的平面角为α,β,γ,则()(第 9 题图)A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α9.B 【分析】设 O为三角形 ABC中心,则 O 到 PQ距离最小, O到 PR距离最大, O到 RQ10.(2017 年浙江 ) 如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD= 2,CD= 3,AC与BD→→→→→→)交于点 O,记I1=OA·OB,I2=OB·OC,I3=OC·OD,则((第 10 题图)A.I 1<I 2<I 3 B .I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 310. C 【分析】由于∠ AOB=∠COD>90°, OA< OC,OB< OD,所以→·→> 0>→·→>OB OC OA OB→→OC ·OD . 应选 C.非选择题部分(共100 分)11. (2017年浙江 ) 我国古代数学家刘徽创办的“割圆术”能够估量圆周率π,理论上能把π 的值计算到随意精度.祖冲之继承并发展了“割圆术”,将π 的值精准到小数点后七位,其结果当先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S ,6 S6=.33【分析】将正六边形切割为 6 个等边三角形,则S =6×(111.22×1×1×sin 60 °)63 3=.212. (2017年浙江 ) 已知a,b∈R,( a+bi )2=3+4i (i是虚数单位)则a2+b2=___________,=___________.ab22=3,2,a -b a =412.5 2【分析】由题意可得a2-b 2+2abi=3+4i ,则ab=2,解得b2=1,则 a2+b2=5,ab=2.13.325432,,则 a =________,(2017 年浙江 ) 已知多项式( x+1)( x+2)=x +a x +a x +a x +a x+a123454a5=________.13.16 4 【分析】由二项式睁开式可得通项公式为Cr 3x r2-m2-mr+m Cm2·2= Cr 3·Cm2·2 ·x,2分别取 r=0 , m=1和 r=1 , m=0可得 a4=4+12=16,取 r=m,可得 a5=1×2=4.14.(2017 年浙江 ) 已知△ABC,AB=AC=4,BC=2.点D为AB延伸线上一点,BD=2,连结CD,则△ BDC的面积是___________,cos∠ BDC=___________.1510BE 114. 24【分析】取 BC中点 E,由题意, AE⊥BC,△ABE中,cos∠ABE=AB=4,∴cos1115115∠DBC=- 4,sin ∠DBC=1- 16= 4,∴S△BCD=2×BD×BC×sin∠DBC=2 . ∵∠ ABC=2∠BDC,211010∠BDC-1= 4,解得 cos∠BDC= 4或 cos∠B DC=- 4(舍去) .∴cos∠ABC=cos 2∠BDC=2cos1510综上可得,△ BCD 面积为2,cos∠BDC= 4 .15. (2017 年浙江 ) 已知向量a,b知足 | a|=1,| b|=2,则 | a+b|+| a- b| 的最小值是 ________,最大值是 _______.15.4,2 5 【分析】设向量a,b的夹角为θ,由余弦定理有 | a- b|=12+22- 2×1×2×cos θ=5-4 cos θ, | a+b|=12 +22- 2×1×2×cos( π- θ ) =5+4cos θ,则| a+b|+|a- b|=5+4cos θ +5-4co sθ ,令y=5+4cos θ+ 5-4cosθ ,则2=10+22∈[16,20],据此可得 (|a+b|+| a- b|)max20y25-16cos θ==25,(|a+b|+|a- b|)min=16=4,即 | a+b|+|a- b|的最小值是4,最大值是 2 5.16. (2017年浙江)从6男2女共8名学生中选出队长 1 人,副队长 1 人,一般队员 2 人组成 4 人服务队,要求服务队中起码有1 名女生,共有 ______种不一样的选法.(用数字作答)16. 660【分析】由题意可得,“从8 名学生中选出队长 1 人,副队长1 人,一般队员 2人构成 4 人服务队”中的选择方法为C4 8×C1 4×C1 3(种)方法,此中“服务队中没有女生”的选法有 C4 6×C1 4×C1 3(种)方法,则知足题意的选法有C4 8×C1 4×C1 3- C46×C1 4×C1 3=660(种) .417. (2017 年浙江 ) 已知 a R ,函数 f ( x )=|x+ x -a|+a 在区间 [1 , 4] 上的最大值是 5,则 a的取值范围是 ___________ .94417. ( - ∞, 2]【分析】 x ∈[1,4],x+x ∈[4,5] ,分类议论:①当 a ≥5时, f ( x )=a-x- x4944+a=2a-x- x ,函数的最大值2a-4=5 ,∴ a=2,舍去;②当 a ≤4时, f ( x ) =x+x -a+a=x+ x ≤5,此时命题建立; ③当 4< a < 5 时,[f(x)] max =max{|4-a|+a,|5-a|+a}|4- a|+a ≥ |5 -a|+a ,,则|4-a|+a=5 9 9a 的取值范围是( - ∞, 9 或 |4-a|+a < |5-a|+a ,解得 a= 或 a < . 综上可得,实数 ] . |4-a|+a=5 2 22 18. (2017 年浙江 ) 已知函数 f ( x ) =sin 2x – cos 2x –23sin x cos x (x ∈ R ).( 1)求 f ( 2π)的值.3( 2)求 f ( x )的最小正周期及单一递加区间.2π 3 2π 118. 解:( 1)由 sin 3 = 2 , cos 3 =- 2,f ( 2π 3 2 - (- 1 2 3 1 ).)=( ) ) -2 3× ×(-3 2 2 2 22π 得 f ( 3 ) =2.(2)由 cos 2x=cos2x-sin 2x 与 sin 2x=2sin xcos x,π得 f(x)=-cos 2x- 3sin 2x=-2sin(2x+6 ) .所以 f(x) 的最小正周期是π.ππ 3π由正弦函数的性质得2 +2k π≤ 2x+ 6 ≤ 2 +2k π, k ∈ Z ,解得π+k π≤ x ≤ 3π+2k π, k ∈Z ,62π3π所以, f ( x )的单一递加区间是[+k π,+2k π] ,k ∈Z .6219. (2017 年浙江 ) 如图,已知四棱锥 P – ABCD ,△ PAD 是以 AD 为斜边的等腰直角三角形, BC ∥AD , CD ⊥ AD , PC =AD =2DC =2CB , E 为 PD 的中点.PEA DB C(第 19 题图)(1)证明: CE∥平面PAB;(2)求直线CE与平面PBC所成角的正弦值.19.解:( 1)如图,设PA中点为F,连结EF,FB.由于 E, F分别为 PD, PA中点,1所以 EF∥AD 且 EF=2AD,1又由于 BC∥AD, BC= AD,2所以 EF∥BC 且 EF=BC,即四边形 BCEF为平行四边形,所以 CE∥BF,所以 CE∥平面PAB.(2)分别取BC, AD的中点为M, N,连结 PN交 EF 于点 Q,连结 MQ.由于 E, F, N 分别是 PD, PA,AD的中点,所以Q为 EF 中点,在平行四边形BCEF中, MQ∥CE.由△ PAD为等腰直角三角形得PN⊥AD.由 DC⊥ AD, N是 AD的中点得 BN⊥ AD.所以 AD⊥平面 PBN,由 BC// AD得 BC⊥平面 PBN,那么平面 PBC⊥平面 PBN.过点 Q作 PB的垂线,垂足为 H,连结 MH.MH是 MQ在平面 PBC上的射影,所以∠QMH是直线 CE与平面 PBC所成的角.设 CD=1.在△ PCD中,由 PC=2, CD=1,PD= 2得 CE=2,1在△ PBN中,由 PN=BN=1, PB=3得QH= ,41在 Rt△MQH中,QH=,MQ=2,4所以 sin ∠=2,QMH8所以直线 CE与平面 PBC所成角的正弦值是2 8 .20. (2017年浙江 ) 已知函数f (x)=(–-x12x-1 ) e(x≥).x2(1)求f ( x) 的导函数;(2)求f ( x) 在区间 [ 1,+∞) 上的取值范围.220. 解:( 1)由于(x–2x-1 )′ =1-1,( e-x)′=-e -x,2x-11-x-x (1-x)(2x-1-2)e-x1所以 f ( x) =( 1-2x-1 )e- (x– 2x-1 ) e =2x-1(x >2).(1-x)(-x2x-1-2)e(2)由f′( x)=2x-1=05解得 x=1 或 x=2.由于x 115552(2,1)1(1,2)2(2,+∞)f ′( x)–0+0–f ( x)1 -11-5 e2↘↗e2↘221 2 -x11 - 1所以 f ( x )在区间 [ 2,+∞) 上的取值范围是 [0 ,2e 2] .21. (2017 年浙江 ) 如图,已知抛物线 x 2=y ,点 A ( - 1,1),B (3,9),抛物线上的点 p(x,y)(- 12 4 2 4 23< x < ) .过点 B 作直线 AP 的垂线,垂足为 Q . 2(第 19 题图)( 1)求直线 AP 斜率的取值范围;( 2)求 |PA| ·|PQ| 的最大值. 21. 解:( 1)设直线 AP 的斜率为 k ,x 2- 141k=1 =x- 2,x+2由于 -1 3-1 , 1).2 < x < ,所以直线 AP 斜率的取值范围是(2kx-y+1 1k+ =0,(2)联立直线 AP 与 BQ 的方程2 49 3x+ky- 4k- 2=0,-k 2+4k+3解得点 Q 的横坐标是 x Q = 2(k 2+1) . 由于 ||= 1+k 2(x+ 1 )= 1+k 2(k+1) ,PA 2(k-1)(k+1) 2| PQ |=2 Q ,1+k (x -x)=- k 2+1所以 |PA| ·|PQ|= -(k-1)(k+1)3.令 f(k)=-(k-1)(k+1)3,由于 f ′(k)= -(4k-2)(k+1) 2,所以 f ( k ) 在区间 (-1,1 1) 上单一递加,( ,1) 上单一递减,22所以当k 1, |PA| ·|PQ| 获得最大27 =.21622. (2017年浙江)已知数列{x n}足x1=1,x n=x n+1+ln(1+x n+1)(n∈ N*).*明:当n∈ N ,(1) 0<x n+1<x n;x n x n+1(2) 2x n+1-x n≤2;1 1(3)2n-1≤x n≤2n-2.22.解:( 1)用数学法明x n> 0.当 n=1, x1=1>0.假 n=k , x k>0,那么 =+1 ,若 x k+1≤0, 0<k=x k+1 +ln(1+xk+1)≤0,矛盾,故xk +1>0.n k x所以 x n> 0(n∈ N*).所以 x n=x n+1+ln ( 1+x n+1)> x n+1,所以 0< x n+1< x n(n∈ N*).(2)由 x n=x n+1+ln ( 1+x n+1),得 x n x n+1-4x n+1+2x n=x n+12-2x n+1+( x n+1+2) ln ( 1+x n+1) .函数 f (x) =x2-2x+ ( x+2)ln ( 1+x)(x≥0),2x 2+x+ln ( 1+x)> 0(x> 0),f ′( x) =x+1函数 f ( x)在 [0 ,+∞] 上增,所以 f ( x)≥ f ( 0) =0,2-2x n+1+( x n+1+2) ln (1+x n+1) =f ( x n+1)≥ 0,所以 x n+1x n x n+1*故 2x n+1-x n≤( n∈ N).2(3)因 x n=x n+1+ln ( 1+x n+1)≤ x n+1+x n+1=2x n+1,1所以 x n≥2n-1,x n x n+1由2≥2x n+1-x n,1 111得 - ≥2( - )>0,x n+1 2x n 21 1 1 1n-1(1 1n-2,所以 -≥ 2(- )≥⋯≥ 2- )=2 x n2x n-1 2x1 2(完整版)浙江高考理科数学试题和解析 11 / 11 WORD 完满格式故 x n ≤ 1n-2 .21 1 *).综上, n-1 ≤ x n ≤ n-2 (n ∈ N 2 2..整理分享 ..。
高考真题——理科数学(浙江卷)解析版(1) Word版含答案
数学理试题(浙江卷)一.选择题1、已知i 是虚数单位,则=-+-)2)(1(i iA. i +-3B. i 31+-C. i 33+-D.i +-12、设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )( A. ]1,2(- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 答案:C 解析:如图1所示,由已知得到考点定位:此题考查集合的使用之补集和并集体,考查一元二次不等式的解法,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题; 3、已知y x ,为正实数,则 A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222•=+ C.y x yx lg lg lg lg 222+=• D.y x xy lg lg )lg(222•=答案:D解析:此题中,由考点定位:此题考查对数的运算法则和同底数幂的乘法的运算法则;4、已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件 答案:B 解析:考点定位:充分条件的判断和三角函数的奇偶性性质知识点;5、某程序框图如图所示,若该程序运行后输出的值是59,则 A.4=a B.5=a C. 6=a D.7=a 答案:A解析:由图可知考点定位:此题考查算法及数列的列项相消求和的方法;6、已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34- 答案:C解析:由已知得到:考点定位:此题考查同角三角函数商数关系和平方关系的灵活应用,考查二倍角正切公式的应用,考查学生的运算求解水平;7、设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00•≥•。
【高三】浙江2021年高考数学理科试卷(附答案和解释)
【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。
年高考浙江卷理科数学试题及详细解答
普通高等学校招生全国统一考试数学(理科)浙江卷本试题卷第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1至2页,第Ⅱ卷3至4页 满分150分,考试时间120钟请考生按规定用笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共 50 分)注意事项:1. 答第 1 卷前,考生务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2. 每小题选出正确答案后,用2B 铅笔把答题纸上对应题目的答案标号填黑.叁考正式:如果事件 A , B 互斥,那么P ( A+ B ) = P( A)+ P( B) S=24R πP( A+ B)= P( A). P( B) 其中 R 表示球的半径 如果事件A 在一次试验中发生的概念是p 球的体积公式V=234R π 那么n 次独立重复试验中恰好发生 其中R 表示球的半径 k 次的概率:k n kn n p p C k P +-=)1()(4一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4] (2) 已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 (A)1+2i (B) 1-2i (C)2+i (D)2-I (3)已知0<a <1,log 1m <log 1n <0,则(A)1<n <m (B) 1<m <n (C)m <n <1 (D) n <m <1(4)在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表示的平面区域的面积是(A) (B)4(C) (D)2(5)双曲线122=-y m x 上的点到左准线的距离是到左焦点距离的31,则m=( ) (A)21 (B)23 (C)81 (D)89(6)函数y=21sin2x+sin 2x,x R ∈的值域是 (A)[-21,23] (B)[-23,21] (C)[2122,2122++-] (D)[2122,2122---] (7)“a >b >c ”是“ab <222b a +”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件(8)若多项式=+-+++++=+911102910012a ,)1(a )1(a )1(则x x x a a x x(A)9 (B)10 (C)-9 (D)-10(9)如图,O 是半径为l 的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与AC 的中点,则点E 、F 在该球面上的球面距离是(A)4π (B)3π (C)2π(D)42π(10)函数f:{1,2,3}→{1,2,3}满足f(f(x))= f(x),则这样的函数个数共有(A)1个 (B)4个 (C)8个 (D)10个第Ⅱ卷(共100分)注意事项:1. 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2019年浙江省高考理科数学试卷及答案解析【word版】
2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出 的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A , 则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的 表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数 x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球 ()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入个球后,从甲盒中取1个球是红球的概率记为 ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的 结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时, 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 . 若{}na 为 等比数列,且.6,2231b ba +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
最新浙江省高考理科数学试卷及答案解析【word版】资料
2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出 的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A , 则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的 表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数 x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球 ()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入个球后,从甲盒中取1个球是红球的概率记为 ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的 结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时, 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 . 若{}na 为 等比数列,且.6,2231b ba +==(1)(2)求n a 与n b ; (3) (4)设()*∈-=N n b a c nn n 11。
2019年浙江省高考理科数学试卷及答案解析
2019年浙江省高考理科数学试卷及答案解析(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{ 【答案】B 【解析】.},2{},4,,3{},4,3,2{B A C A U u 选=∴==(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A 【解析】 ..∴.1-,1∴,2),2),1.1-,1.22,0-∴22-)2222222A b a b a i bi a i bi a b a b a b a ab b a i abi b a bi a 选件综上,是充分不必要条不是必要条件,或(是充分条件,(或(=====+=+∴======∴===+=+(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm【答案】D 【解析】.138.93*3.186*3.363*4*3.935*34*6363*4*3D S S S S S S S S S S S 。
选几何体表面面积左面面积右面面积前后面面积,上底面面积几何体下底面面积右右前后上下左右前后上下=++++=∴=======+===4.为了得到函数()).∈(33R a a x x x f +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位C.向右平移12π个单位D.向左平移12π个单位【答案】D 【解析】.12π3sin 2∴)12π(3sin 2)4π3sin(23cos 3sin D x y x x x x y 可以得到。
2021年浙江省高考数学试卷(理科)解析
2021年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每题5分,共40分2021年一般高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2021•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},那么(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2021•浙江)某几何体的三视图如下图(单位:cm),那么该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2021•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,假设a3,a4,a8成等比数列,那么()A .a1d>0,dS4>B.a1d<0,dS4<C.a1d>0,dS4<D.a1d<0,dS4>4.(5分)(2021•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2021•浙江)如图,设抛物线y2=4x的核心为F,不通过核心的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,那么△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2021•浙江)设A,B是有限集,概念:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2021•浙江)存在函数f(x)知足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2021•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,那么()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2021•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2021•浙江)已知函数f(x)=,那么f(f(﹣3))=,f(x)的最小值是.11.(6分)(2021•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2021•浙江)假设a=log43,那么2a+2﹣a=.13.(4分)(2021•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N别离是AD,BC的中点,那么异面直线AN,CM所成的角的余弦值是.14.(4分)(2021•浙江)假设实数x,y知足x2+y2≤1,那么|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2021•浙江)已知是空间单位向量,,假设空间向量知足,且关于任意x,y∈R,,那么x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解许诺写出文字说明、证明进程或演算步骤.16.(14分)(2021•浙江)在△ABC中,内角A,B,C所对的边别离为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)假设△ABC的面积为3,求b的值.17.(15分)(2021•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2021•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b知足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2021•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2021•浙江)已知数列{a n}知足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2021年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每题5分,共40分2021年一般高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card (A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)考函数的值.点:专题:计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析:由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考对数的运算性质.点:函数的性质及应用.专题:分直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.析:解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)考点:空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解许诺写出文字说明、证明进程或演算步骤.16.(14分)余弦定理.考点:专解三角形.题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,析:a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
2019年浙江省高考理科数学试卷及答案解析
2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{ 【答案】B 【解析】.},2{},4,,3{},4,3,2{B A C A U u 选=∴==ΛΛΛΛΘ(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A 【解析】..∴.1-,1∴,2),2),1.1-,1.22,0-∴22-)2222222A b a b a i bi a i bi a b a b a b a ab b a i abi b a bi a 选件综上,是充分不必要条不是必要条件,或(是充分条件,(或(=====+=+∴======∴===+=+ΘΘΘ(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm【答案】D 【解析】.138.93*3.186*3.363*4*3.935*34*6363*4*3D S S S S S S S S S S S 。
选几何体表面面积左面面积右面面积前后面面积,上底面面积几何体下底面面积右右前后上下左右前后上下=++++=∴=======+===4.为了得到函数()).∈(33R a a xx x f +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】D【解析】.12π3sin 2∴)12π(3sin 2)4π3sin(23cos 3sin D x y x x x x y 可以得到。
2019年浙江省高考理科数学试卷及答案解析(word版)
2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出 的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A , 则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的 表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数 x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球 ()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入个球后,从甲盒中取1个球是红球的概率记为 ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的 结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时, 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 . 若{}na 为 等比数列,且.6,2231b b a +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
最新整理高考浙江数理科试卷含答案全word.doc
普通高等学校招生全国统一考试浙江卷数学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·(B ) 如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生k 次的概率: k n k k n n p p C k P --=)1()(球的表面积公式 S=42R π其中R 表示球的半径求的体积公式V=334R π其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,iia +-1是春虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则(A ()()=A C B B C A u u (A )∅ (B ){}0|≤χχ(C ){}1|->χχ (D ){}10|-≤>χχχ或 (3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274(5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a = (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21) (7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (8)若,5sin 2cos -=+a a 则a tan = (A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22(10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是(A )圆 (B )椭圆(C )一条直线 (D )两条平行直线普通高等学校招生全国统一考试浙江卷数学(理科)第Ⅱ卷(共100分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
(word版)浙江高考理科数学试题和解析
WORD完美格式2021年普通高等学校招生全国统一考试〔浙江卷〕数学〔理科〕选择题局部〔共50分〕1.(2021年浙江)集合P={x|-1<x<1},Q={0<x<2},那么P∪Q=〔〕A.〔1,2〕 B.〔0,1〕 C.〔-1,0〕D.〔1,2〕【解析】利用数轴,取P,Q所有元素,得P∪Q=〔-1,2〕.22x y2.(2021年浙江)椭圆+=1的离心率是〔〕9413525 A.B.C.9 333D.9-45【解析】e=3= 3.应选B.3.4.5.6.7.(2021年浙江)某几何体的三视图如下图〔单位:cm〕,那么该几何体的体积〔单位:cm3〕是〔〕〔第3题图〕A.1B.3C.3D.33 12222 3.A【解析】根据所给三视图可复原几何体为半个圆锥和半个棱锥拼接而的成合组体,所12π×11以,几何体的体积为V=33××〔π2 +2×2×1〕=2+1故.选A.x≥0,4.(2021年浙江)假设x,y满足约束条件x+y-≥30,那么z=x+2y的取值范围是〔〕x-2y≤0,..整理分享..WORD完美格式A.[0,6] B.[0,4] C.[6,+∞〕 D .[4,+∞〕4.D 【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值 4,无最大值,选D.25.(2021年浙江)假设函数f(x)=x+ax+b在区间[0,1]上的最大值是 M,最小值是 m,那么M–m〔〕A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关2a a5.B 【解析】因为最值f〔0〕=b,f〔1〕=1+a+b,f〔- 2〕=b-4中取,所以最值之差一定与b无关.应选B.(2021年浙江)等差数列{an}的公差为d,前n项和为Sn,那么“d>0〞是“S4+S6>2S5〞的〔〕A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.C 【解析】由S4+S6-2S51d>0时,有465>0,=10a+21d-〔25a+10d〕=d,可知当S+S-2S 即S4+S6>2S5,反之,假设S4+S6>2S5,那么d>0,所以“d>0〞是“S4+S6>2S5〞的充要条件,选C.7.(2021年浙江)函数y=f(x)的导函数y=f′〔x〕的图象如下图,那么函数y=f(x)的图象可能是〔〕..整理分享..WORD完美格式〔第7题图〕7.D 【解析】原函数先减再增,再减再增,且x=0位于增区间内.应选 D. 18.(2021年浙江)随机变量ξi满足〔i=1〕=i,〔ξi=0〕=1–i,=1,2.假设0<1<2< PξpP pipp,2那么〔〕E ξEξDξDξ)EξEξDξDξA.()<(),()<(B.()<(),()>( 1212121E ξEξDξDξ)EξEξDξDξC.()>(),()<(D.()>(),()>( 12121218.A【解析】∵E(ξ1)=p1,E(ξ2)=p2,∴E(ξ1)<E(ξ2),∵D(ξ1)=p1(1-p1),D(ξ2)=p2(1-p2),∴D(ξ1)-D(ξ2)=(p1-p2)(1-p1-p2)<0.应选A.9.(2021年浙江)如图,正四面体–〔所有棱长均相等的三棱锥〕,,,分别DABC PQR为AB,BC,CA上的点,AP=PB,BQCR==2,分别记二面角D–PR–Q,D–PQ–R,D–QR–PQCRA的平面角为α,β,γ,那么〔〕〔第9题图〕A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α9.B【解析】设O为三角形ABC中心,那么O到PQ距离最小,O到PR距离最大,O到RQ距离居中,而高相等,因此αγβ<<.应选B...整理分享..WORD完美格式(2021年浙江)如图,平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点→→→→→→〕O,记I=OA·OB,I=OB·OC,I=OD,那么〔123OC·〔第10题图〕A.I1<I2<I3C.I3<I1<I210.C【解析】因为∠B.I1<I3<I2D .I2<I1<I3AOB=∠COD>90,°OA <OC ,OB <OD ,所以→OB·O→C>0>→OA·→OB>→ →O C·OD 故.选C.非选择题局部〔共100分〕11.(2021年浙江)我国古代数学家刘徽创立的 “割圆术〞可以估算圆周率 π,理论上能把π的值计算到任意精度. 祖冲之继承并开展了 “割圆术〞, 将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术〞的第一步是计算单位圆内接正六边形的面积S6,S =.6336个等边三角形,那么S6 ×〔111.【解析】将正六边形分割为2=62×1×1×sin60°〕 3 . 222 2,12.(2021年浙江),∈R,〔a+bi 〕=3+4i 〔i 是虚数单位〕那么a+b=a b=___________.ab2-b2=3,2=4,2【解析】由题意可得a2+2abi=3+4i,那么a a2-bab=2,解得22-b+b=5,ab=2.b2=1,那么a2=1,那么a..整理分享..WORD 完美格式3 254 3 213.(2021年浙江)多项式〔 12345,,那么a4,x+1〕〔x+2〕=x+ax+ax+ax+ax+a=5 .a=13.164【解析】由二项式展开式可得通项公式为Cr3x2-m2-mr+m=Cr3Cm2··2·x ,rCm2·2rCm2·22=4.分别取r=0,m=1和r=1,m=0可得45a=4+12=16,取r=m ,可得a=1×214.(2021年浙江 )△ABC ,AB=AC=4,BC=2. 点D 为AB 延长线上一点, BD=2,连结CD ,那么△BDC 的面积是 ,cos∠BDC=___________.1510BE114.24【解析】取BC中点E,由题意,AE⊥BC,△ABE中,cos∠ABE=AB=4,∴cos1∠115115∵∠∠,∠DBC=-,DBC=1-16=4,∴S △BCD×××∠2.4sin=2BDBCsinDBC=ABC=2BDC2110104,解得cos∠BDC=4或cos∠BDC=-4〔舍去〕.∴cos∠ABC=cos∠2BDC=2cos∠BDC-1=1510综上可得,△BCD面积为2,cos∠BDC= 4.15.(2021年浙江)向量a,b满足|a|=1,|b|=2,那么|a+b|+|a-b|的最小值是,最大值是.15.4,2 5【解析】设向量 a,b的夹角为θ,由余弦定理有|a-b|= 12+2-21×2×cosθ= 5-4cosθ,|a+b|= 12+2-2×1×2×cos(π-θ)= 5+4cosθ,那么|+|+|-|=5+4cosθ+5-4cosθ,令y=5+4cosθ+5-4cosθ,那么ababy2=10+225-16cos 2θ∈[16,20],据此可得(|+|+|-|)max=202=10+225-16cosabab =25,(|a+b|+|a-b|)min=16=4,即|a+b|+|a-b|的最小值是4,最大值是25.16.(2021年浙江)从6男2女共8名学生中选出长队1人,副队长1人,普通队员2人组..整理分享..WORD完美格式成4人效劳队,要求效劳队中至有少1名女生,共有种不同的选法.〔用数字作答〕660【解析】由题意可得,“从8名学生中选出队长1人,副队长1人,普通队员2人组成4人效劳队〞中的选择方法为C48C1×4C1×3〔种〕方法,其中“效劳队中没有女生〞的选法有C46C1×4C1×3〔种〕方法,那么满足题意的选法有C48C1×4C1×3-C4 6×C14C1×3=660〔种〕.17.(2021年浙江)aR,函数f〔x〕=|x+-a|+a在区间[1,4]上的最大值是5,那么 a 的取值范围是.17.〔-∞,92【解析】∈a≥5时,f〔x〕=a-x-][1,4],x+∈[4,5],分类讨论:①当4x44+a=2a-x-,函数的最大值2a-4=5,∴a=,舍去;②当a≤4时,f〔x〕=x+-a+a=x+xx x≤5,此时命题成立;③当4<a<5时,[f(x)]max|4-a|+a≥|5-a|+a,=max{|4-a|+a,|5-a|+a},那么|4-a|+a=5或|4-a|+a<,9 9-∞,9|5-a|+a解得a=或a <.综上可得,实数a 的取值范围是〔 2|4-a|+a=52 2].23sinxc os〔∈R〕.–cos –218.(2021年浙江)函数〔〕=sinxxxx1〕求f 〔2π〕的值.32〕求f 〔x 〕的最小正周期及单调递增区间.18.解:〔1〕由sin2π=32π13,cos=-2π 323,1122-23×f 〔〕=〔〕-2×〔-23 〔-2〕 〕.22-〔-2π〕=2.得f 〔32x-sin 2x 与sin2x=2sinxcosx ,〔2〕由cos2x=cos得f(x)=-cos2x-3sin2x=-2sin(2x+π).6所以f(x)的最小正周期是π.由正弦函数的性质得ππ3π+2kπ,k∈Z,+2kπ≤2x+≤226π3π+2kπ,k∈Z,解得+kπ≤x≤2 6所以,f〔x〕的单调递增区是间[π3π,∈.+kπ,π+2k]kZ 62(2021年浙江)如图,四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点...整理分享..WORD完美格式PEDAB C〔第19题图〕1〕证明:CE∥平面PAB;2〕求直线CE与平面PBC所成角的正弦值.19.解:〔1〕如图,设PA中点为F,连接 EF,FB.因为E,F分别为 PD,PA中点,1所以EF∥AD且EF=AD,21又因为BC∥AD,BC=AD,2所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面PAB.〔2〕分别取BC,AD的中点为M,N,连接PN交EF于点Q,连接 MQ. 因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△PAD为等腰直角三角形得PN⊥AD...整理分享..WORD完美格式由DC⊥AD,N是AD的中点得BN⊥AD.所以AD⊥平面PBN,由BC//AD得BC⊥平面PBN,那么平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=2得CE=2,1在△PBN中,由PN=BN=1,PB=3得QH=,41在Rt△MQH中,QH=,MQ=2,4所以sin∠QMH=,82所以直线CE与平面PBC所成角的正弦值是.820.(2021年浙江)函数()=〔–2x-1〕e1fxx〕.-x〔x≥2-x〔x≥〔1〕求f(x)的导函数;12〕求f(x)在区间[,+∞)上的取值范围.220.解:〔1〕因为〔1,〔e--x,–2x-1〕′=1-x2x-1x〕′=-e-x〕′=-e-x所以f〔x〕=〔1-1(1-x)(2x-1-2)e1 2x-12x-1(x>).-x-〔–2x-1〕e-x=2〕ex-x-〔–2x-1〕e-x=x-x〔2〕由f′(x)=(1-x)(2x-1-2)e=02x-15解得x=1或x=.2因为1155x〔,1〕1〔1,〕2222f′(x)–0+0〔〕11x25〔2,+∞〕–5-2-1e↘e2↘0↗21又f〔x〕=〔2x-1-1〕2e-x≥0,2..整理分享..WORD 完美格式所以f 〔x 〕在区间[1[0,1,+∞)上的取值范围是 221e].21.(2021年浙江)如图,抛物线x113 91,,22=y ,点A 〔-〕,〔Bp(x,y)(-2=y ,点A 〔-〕,抛物线上的点24243<x <2).过点 B 作直线 AP 的垂线,垂足为 Q .〔第 19题图〕1〕求直线AP 斜率的取值范围;2〕求|PA|·|PQ|的最大值.解:〔1〕设直线AP的斜率为k,11422-,2-k ==x-1x+23 1因为-22斜率的取值范围是〔,〕.<x<,所以直线AP-1111kx-y+k+=0,〔2〕联立直线AP与BQ的方程243x+ky-42k-=0,-kQ的横坐标是2+4k+3解得点xQ=2(k2+1).因为|PA|=1+k122(x+21+k )=(x+2(k+1),2(k+1),|PQ |=2,1+k Q(k-1)(k+1)2(x-x)=-k2+1 2(x2+1所以|PA|·|PQ|=-(k-1)(k+1)3.3令f(k)=-(k-1)(k+1) ,因为f′(k)=-(4k-2)(k+1)2,所以11f(k)在区间(-1,,1)上单调递减,2)上单调递增,(2 ..整理分享..WORD完美格式1 27因此当k=时,|PA||PQ|·取得最大值.2 1622.(2021年浙江)数列{xn}满足x1=1,xn=xn+1+ln(1+xn+1)〔n∈N *〕.*证明:当n∈N时,〔1〕0<xn+1<xn;xnxn+1〔2〕2xn+1- xn≤2;1 1〔3〕n-1≤xn≤n-2.2 222.解:〔1〕用数学归纳法证明xn>0.当n=1时,x1=1>0.假设n=k时,xk>0,那么n=k+1时,假设x≤0,那么0<x=x +ln〔1+〕≤0,矛盾,故x>0.k+1k k+1k+1k+1因此xn>0〔n∈N*〕.所以xn=xn+1+ln〔1+xn+1〕>xn+1,因此0<xn+1<xn〔n∈N*〕.2〕由xn=xn+1+ln 〔1+xn+1〕,得xx-4x+2x=x+〔x+2〕ln 〔1+x 〕.nn+1n+1nn+1n+1 n+1n+12-2x2-2x记函数 f 〔x 〕=x2-2x+〔x+2〕ln 〔1+x 〕〔x≥0〕,2x2+xf′〔x 〕= +ln 〔1+x 〕>0〔x >0〕,x+1函数f 〔x 〕在[0,+∞]上单调递增,所以 f 〔x 〕≥f〔0〕=0,因此xn+1n+1〔 n+1〕ln〔n+1〕〔n+1〕≥ , 2-2x+x+2 1+x=fx2-2x故2xn+1nxnxn+1〔n∈N-x≤*〕.*〕.23〕因为xn=xn+1+ln 〔1+xn+1〕≤x n+1+xn+1=2xn+1,1所以xn ≥ n-1, 2 xnxn+1 由≥2x n+1-xn ,123 241得-≥x n+121所以-xn12〔-2xn〕>0,11111≥2〔-2x-2n-2,2x〕≥?≥2〕=2n-11n-1〔n-2,n-1〔..整理分享..(word版)浙江高考理科数学试题和解析WORD完美格式1故xn≤n-2.211综上,≤xn≤〔n∈Nn-1n-22*〕.*〕.2..整理分享..31 / 3131。
2019年浙江省高考理科数学试卷及答案解析(可编辑修改word版)
⇒ f(3,0)+f(2,1)+f(1,2)+f(0,3) = 20+15* 4+6*6+1* 4 =120.选C.
6.已知函数 f (x) x3 ax2 bx c,且0 f (1) f (2) f (3) 3,则( )
A. c 3
B. 3 c 6
【答案】D
【解析】
y = sin 3x+cos 3x = 2 sin(3x+ π ) = 4
C. {5}
D. {2,5}
【答案】B 【解析】
U ={2,3,4}, A ={3,,4},∴ Cu A ={2},选B.
(2)已知 i 是虚数单位, a, b R ,则“ a b 1 ”是“ (a bi)2 2i ”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
(3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是
A. 90 cm2
B. 129 cm2
C. 132 cm2
D. 138 cm2
【答案】D
【解析】
几何体下底面面积S下 = 3* 4*3= 36,上底面面积S上 = 6* 4+3*5 = 39. 前后面面积S前后 = 3* 4*3= 36.右面面积S右 = 3*6 =18.左面面积S左 = 3*3= 9. ∴ 几何体表面面积S = S下 + S上 + S前后 + S右 + S右 =138。选D.
4
12
12
5.在 (1 x)6 (1 y)4 的展开式中,记 xm yn 项的系数为 f (m, n) ,则 f (3,0) f (2,1) f (1,2) f (0,3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•浙江)设P={x|x <4},Q={x|x 2<4},则( )A .P ⊆QB .Q ⊆PC .P ⊆C R QD .Q ⊆C R P【考点】集合的包含关系判断及应用.【专题】集合.【分析】此题只要求出x 2<4的解集{x|﹣2<x <2},画数轴即可求出【解答】解:P={x|x <4},Q={x|x 2<4}={x|﹣2<x <2},如图所示,可知Q ⊆P ,故B 正确.【点评】此题需要学生熟练掌握子集、真子集和补集的概念,主要考查了集合的基本运算,属容易题.2.(5分)(2010•浙江)某程序框图如图所示,若输出的S=57,则判断框内为( )A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.3.(5分)(2010•浙江)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则=( )A .﹣11B .﹣8C .5D .11 【考点】等比数列的前n 项和.【专题】等差数列与等比数列.【分析】先由等比数列的通项公式求得公比q ,再利用等比数列的前n 项和公式求之即可.【解答】解:设公比为q ,由8a 2+a 5=0,得8a 2+a 2q 3=0,解得q=﹣2,所以==﹣11.故选A .【点评】本题主要考查等比数列的通项公式与前n 项和公式.4.(5分)(2010•浙江)设0<x<,则“xsin2x<1”是“x sinx<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】不等关系与不等式;必要条件、充分条件与充要条件的判断;正弦函数的单调性.【专题】三角函数的图像与性质;简易逻辑.【分析】由x的范围得到sinx的范围,则由xsinx<1能得到xsin2x <1,反之不成立.答案可求.【解答】解:∵0<x<,∴0<sinx<1,故xsin2x<xsinx,若“xsinx<1”,则“xsin2x<1”若“xsin2x<1”,则xsinx<,>1.此时xsinx<1可能不成立.例如x→,sinx→1,xsinx>1.由此可知,“xsin2x<1”是“xsinx<1”的必要而不充分条故选B.【点评】本题考查了充分条件、必要条件的判定方法,判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.是基础题.5.(5分)(2010•浙江)对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.B.z 2=x2﹣y2C.D.|z|≤|x|+|y|【考点】复数的基本概念.【专题】数系的扩充和复数.【分析】求出复数的共轭复数,求它们和的模判断①的正误;求z2=x2﹣y 2+2xyi,显然B错误;,不是2x,故C错;|z|=≤|x|+|y|,正确.【解答】解:可对选项逐个检查,A选项,,故A错,B选项,z2=x2﹣y2+2xyi,故B错,C选项,,故C错,故选D.【点评】本题主要考查了复数的四则运算、共轭复数及其几何意义,属中档题6.(5分)(2010•浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【考点】直线与平面平行的判定.【专题】空间位置关系与距离.【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B【点评】本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题7.(5分)(2010•浙江)若实数x,y满足不等式组且x+y的最大值为9,则实数m=()A.﹣2 B.﹣1 C.1 D.2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先根据约束条件画出可行域,设z=x+y,再利用z的几何意义求最值,只需求出直线x+y=9过可行域内的点A时,从而得到m 值即可.【解答】解:先根据约束条件画出可行域,设z=x+y,将最大值转化为y轴上的截距,当直线z=x+y经过直线x+y=9与直线2x﹣y﹣3=0的交点A(4,5)时,z最大,将m等价为斜率的倒数,数形结合,将点A的坐标代入x﹣my+1=0得m=1,故选C.【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.8.(5分)(2010•浙江)设F 1、F 2分别为双曲线的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .3x±4y=0B .3x±5y=0C .4x±3y=0D .5x±4y=0【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用题设条件和双曲线性质在三角形中寻找等量关系,得出a 与b 之间的等量关系,可知答案选C ,【解答】解:依题意|PF 2|=|F 1F 2|,可知三角形PF 2F 1是一个等腰三角形,F 2在直线PF 1的投影是其中点,由勾股定理知可知|PF 1|=2=4b根据双曲定义可知4b﹣2c=2a,整理得c=2b﹣a,代入c2=a2+b2整理得3b2﹣4ab=0,求得=∴双曲线渐近线方程为y=±x,即4x±3y=0故选C【点评】本题主要考查三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考查,属中档题9.(5分)(2010•浙江)设函数f(x)=4sin(2x+1)﹣x,则在下列区间中函数f(x)不存在零点的是()A.[﹣4,﹣2]B.[﹣2,0]C.[0,2]D.[2,4]【考点】函数的零点.【专题】函数的性质及应用.【分析】将函数f(x)的零点转化为函数g(x)=4sin(2x+1)与h (x)=x的交点,在同一坐标系中画出g(x)=4sin(2x+1)与h(x)=x的图象,数形结合对各个区间进行讨论,即可得到答案【解答】解:在同一坐标系中画出g(x)=4sin(2x+1)与h(x)=x的图象如下图示:由图可知g(x)=4sin(2x+1)与h(x)=x的图象在区间[﹣4,﹣2]上无交点,由图可知函数f(x)=4sin(2x+1)﹣x在区间[﹣4,﹣2]上没有零点故选A.【点评】本题主要考查了三角函数图象的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考查,对能力要求较高,属较难题.函数F(x)=f(x)﹣g(x)有两个零点,即函数f(x)的图象与函数g(x)的图形有两个交点.10.(5分)(2010•浙江)设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数f(x)的图象恰好经过Q中两个点的函数的个数是()A.4 B.6 C.8 D.10【考点】对数函数的图像与性质.【专题】函数的性质及应用.【分析】把P中a和b的值代入f(x)=log(x+a)+b中,所得2函数f(x)的图象恰好经过Q中两个点的函数的个数,即可得到选项.【解答】解:将数据代入验证知当a=,b=0;a=,b=1;a=1,b=1a=0,b=0a=0,b=1a=1,b=﹣1时满足题意,故选B.【点评】本题主要考查了函数的概念、定义域、值域、图象和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考查,属中档题二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2010•浙江)函数的最小正周期是π.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】本题考查的知识点是正(余)弦型函数的最小正周期的求法,由函数化简函数的解析式后可得到:f(x)=,然后可利用T=求出函数的最小正周期.【解答】解:===∵ω=2故最小正周期为T=π,故答案为:π.【点评】函数y=Asin(ωx+φ)(A>0,ω>0)中,最大值或最小值由A确定,由周期由ω决定,即要求三角函数的周期与最值一般是要将其函数的解析式化为正弦型函数,再根据最大值为|A|,最小值为﹣|A|,周期T=进行求解.、12.(4分)(2010•浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是144 cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由三视图可知几何体是一个四棱台和一个长方体,求解其体积相加即可.【解答】解:图为一四棱台和长方体的组合体的三视图,由公式计算得体积为=144.故答案为:144.【点评】本题主要考查了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题13.(4分)(2010•浙江)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为.【考点】抛物线的定义;抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】根据抛物线方程可表示出焦点F 的坐标,进而求得B 点的坐标代入抛物线方程求得p ,则B 点坐标和抛物线准线方程可求,进而求得B 到该抛物线准线的距离.【解答】解:依题意可知F 坐标为(,0) ∴B 的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣所以点B 到抛物线准线的距离为+=,故答案为【点评】本题主要考查抛物线的定义及几何性质,属容易题14.(4分)(2010•浙江)设n≥2,n ∈N ,(2x+)n ﹣(3x+)n=a 0+a 1x+a 2x 2+…+a n x n ,将|a k |(0≤k≤n)的最小值记为T n ,则T 2=0,T 3=﹣,T 4=0,T 5=﹣,…,T n …,其中T n =.【考点】归纳推理;进行简单的合情推理. 【专题】函数的性质及应用.【分析】本题主要考查了合情推理,利用归纳和类比进行简单的推理,属容易题.根据已知中T 2=0,T 3=﹣,T 4=0,T 5=﹣,及,(2x+)n﹣(3x+)n =a 0+a 1x+a 2x 2+…+a n x n ,将|a k |(0≤k≤n)的最小值记为T n ,我们易得,当n 的取值为偶数时的规律,再进一步分析,n 为奇数时,Tn 的值与n 的关系,综合便可给出Tn 的表达式.【解答】解:根据Tn 的定义,列出Tn 的前几项: T 0=0 T 1==T 2=0 T 3=﹣T 4=0 T 5=﹣T 6=0 …由此规律,我们可以推断:T n =故答案:【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).15.(4分)(2010•浙江)设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0,则d 的取值范围是.【考点】等差数列的性质;等差数列的前n 项和. 【专题】等差数列与等比数列.【分析】由题设知(5a 1+10d )(6a 1+15d )+15=0,即2a 12+9a 1d+10d 2+1=0,由此导出d 2≥8,从而能够得到d 的取值范围.【解答】解:因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,整理得2a 12+9a 1d+10d 2+1=0, 此方程可看作关于a 1的一元二次方程,它一定有根,故有△=(9d )2﹣4×2×(10d 2+1)=d 2﹣8≥0,整理得d 2≥8,解得d≥2,或d≤﹣2则d 的取值范围是. 故答案案为:.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细解答,注意通项公式的合理运用.16.(4分)(2010•浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是 (0,].【考点】平面向量数量积的运算. 【专题】平面向量及应用.【分析】画出满足条件的图形,分别用、表示向量与,由与的夹角为120°,易得B=60°,再于,利用正弦定理,易得||的取值范围.【解答】解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值范围是(0,]故答案:(0,]【点评】本题主要考查了平面向量的四则运算及其几何意义,突出考查了对问题的转化能力和数形结合的能力,属中档题.17.(4分)(2010•浙江)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有264 种(用数字作答).【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】法一:先安排上午的测试方法,有A4种,再安排下午的测4试方式,由于上午的测试结果对下午有影响,故需要选定一位同学进行分类讨论,得出下午的测试种数,再利用分步原理计算出结果法二:假定没有限制条件,无论是上午或者下午5个项目都可以选.组合总数为:4×5×4×4=320.再考虑限制条件:上午不测“握力”项目,下午不测“台阶”项目.在总组合为320种的组合中,上午为握力的种类有32种;同样下午为台阶的组合有32种.最后还要考虑那去掉的64种中重复去掉的,如A同学的一种组合,上午握力,下午台阶(这种是被去掉了2次),A同学上午台阶,下午握力(也被去掉了2次),这样的情况还要考虑B.C.D三位,所以要回加2×4=8.进而可得答案.【解答】解:解法一:先安排4位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、“台阶”测试,共有A4种不同安排方4式;接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A、B、C同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D同学选择“握力”测试,安排A、B、C同学分别交叉测试,有2种;若D同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的1种,有A1种方式,安3排A、B、C同学进行测试有3种;根据计数原理共有安排方式的种数为A4(2+A31×3)=264,4故答案为264解法二:假定没有这个限制条件:上午不测“握力”项目,下午不测“台阶”项目.无论是上午或者下午5个项目都可以选.上午每人有五种选法,下午每人仅有四种选法,上午的测试种数是4×5=20,下午的测试种数是4×4=16故我们可以很轻松的得出组合的总数:4×5×4×4=320.再考虑这个限制条件:上午不测“握力”项目,下午不测“台阶”项目.在总组合为320种的组合中,上午为握力的种类有多少种,很好算的,总数的,32种;同样下午为台阶的组合为多少的,也是总数的,32种.所以320﹣32﹣32=256种.但是最后还要考虑那去掉的64种中重复去掉的,好像A同学的一种组合,上午握力,下午台阶(这种是被去掉了2次),A同学上午台阶,下午握力(也被去掉了2次),这样的情况还要B.C.D三位,所以要回加2×4=8.所以最后的计算结果是4×5×4×4﹣32﹣32+8=264.答案:264.【点评】本题主要考查了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考查,属较难题.三、解答题(共5小题,满分72分)18.(14分)(2010•浙江)在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=.(Ⅰ)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.【考点】正弦定理;三角函数中的恒等变换应用;余弦定理.【专题】解三角形.【分析】(1)注意角的范围,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出边长c,由二倍角公式求cosC,用余弦定理解方程求边长b.【解答】解:(Ⅰ)解:因为cos2C=1﹣2sin2C=,及0<C<π所以sinC=.(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理=,解得c=4.由cos2C=2cos2C﹣1=,及0<C<π 得cosC=±.由余弦定理c2=a2+b2﹣2abcosC,得b2±b﹣12=0,解得b=或b=2.所以b=或b=2,c=4.【点评】本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力,属于中档题.19.(14分)(2010•浙江)如图,一个小球从M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Εξ;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.【专题】概率与统计.【分析】(Ⅰ)解:由题意知随变量ξ为获得k等奖的折扣,则ξ的可能取值是50%,70%,90%,结合变量对应的事件和等可能事件的概率公式写出变量的分布列,做出期望.(2)根据第一问可以得到获得一等奖或二等奖的概率,根据小球从每个叉口落入左右两个管道的可能性是相等的.可以把获得一等奖或二等奖的人次看做符合二项分布,根据二项分布的概率公式得到结果.【解答】解:(Ⅰ)解:随变量量ξ为获得k(k=1,2,3)等奖的折扣,则ξ的可能取值是50%,70%,90%P(ξ=50%)=,P(ξ=70%)=,P(ξ=90%)=∴ξ的分布列为ξ50% 70% 90%P∴Εξ=×50%+×70%+90%=.(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为+=.由题意得η~(3,)则P(η=2)=C2()2(1﹣)=.3【点评】本题主要考查随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识,是一个综合题.20.(15分)(2010•浙江)如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=FD=4.沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF.(Ⅰ)求二面角A′﹣FD﹣C的余弦值;(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD 向上翻折,使C与A′重合,求线段FM的长.【考点】与二面角有关的立体几何综合题.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力.(1)取线段EF的中点H,连接A′H,因为A′E=A′F及H是EF 的中点,所以A′H⊥EF,又因为平面A′EF⊥平面BEF.则我们可以以A的原点,以AE,AF,及平面ABCD的法向量为坐标轴,建立空间直角坐标系A﹣xyz,则锐二面角A′﹣FD﹣C的余弦值等于平面A′FD的法向量,与平面BEF的一个法向量夹角余弦值的绝对值.(2)设FM=x,则M(4+x,0,0),因为翻折后,C与A重合,所以CM=A′M,根据空间两点之间距离公式,构造关于x的方程,解方程即可得到FM的长.【解答】解:(Ⅰ)取线段EF的中点H,连接A′H,因为A′E=A′F 及H是EF的中点,所以A′H⊥EF,又因为平面A′EF⊥平面BEF.如图建立空间直角坐标系A﹣xyz则A′(2,2,),C(10,8,0),F(4,0,0),D(10,0,0).故=(﹣2,2,2),=(6,0,0).设=(x,y,z)为平面A′FD的一个法向量,﹣2x+2y+2z=0所以6x=0.取,则.又平面BEF的一个法向量,故.所以二面角的余弦值为(Ⅱ)设FM=x,则M(4+x,0,0),因为翻折后,C与A重合,所以CM=A′M,故,,得,经检验,此时点N在线段BC上,所以.方法二:(Ⅰ)解:取线段EF的中点H,AF的中点G,连接A′G,A′H,GH.因为A′E=A′F及H是EF的中点,所以A′H⊥EF又因为平面A′EF⊥平面BEF,所以A′H⊥平面BEF,又AF⊂平面BEF,故A′H⊥AF,又因为G、H是AF、EF的中点,易知GH∥AB,所以GH⊥AF,于是AF⊥面A′GH,所以∠A′GH为二面角A′﹣DH﹣C的平面角,在Rt△A′GH中,A′H=,GH=2,A'G=所以.故二面角A′﹣DF﹣C的余弦值为.(Ⅱ)解:设FM=x,因为翻折后,C与A′重合,所以CM=A′M,而CM2=DC2+DM2=82+(6﹣x)2,A′M 2=A′H2+MH2=A′H2+MG2+GH2=+(2+x)2+22,故得,经检验,此时点N在线段BC上,所以.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;21.(15分)(2010•浙江)已知m >1,直线l :x ﹣my ﹣=0,椭圆C :+y 2=1,F 1、F 2分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点F 2时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,△AF 1F 2,△BF 1F 2的重心分别为G 、H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的应用;直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(1)把F 2代入直线方程求得m ,则直线的方程可得.(2)设A (x 1,y 1),B (x 2,y 2).直线与椭圆方程联立消去x ,根据判别式大于0求得m 的范围,且根据韦达定理表示出y 1+y 2和y 1y 2,根据,=2,可知G (,),h (,),表示出|GH|2,设M 是GH 的中点,则可表示出M 的坐标,进而根据2|MO|<|GH|整理可得x 1x 2+y 1y 2<0把x 1x 2和y 1y 2的表达式代入求得m 的范围,最后综合可得答案.【解答】解:(Ⅰ)解:因为直线l :x ﹣my ﹣=0,经过F 2(,0),所以=,得m 2=2,又因为m >1,所以m=, 故直线l 的方程为x ﹣y ﹣1=0.(Ⅱ)解:设A (x 1,y 1),B (x 2,y 2).由,消去x 得2y 2+my+﹣1=0 则由△=m 2﹣8(﹣1)=﹣m 2+8>0,知m 2<8,且有y 1+y 2=﹣,y 1y 2=﹣. 由于F 1(﹣c ,0),F 2(c ,0),故O 为F 1F 2的中点,由,=2,可知G (,),H (,)|GH|2=+设M 是GH 的中点,则M (,),由题意可知2|MO|<|GH|即4[()2+()2]<+即x 1x 2+y 1y 2<0而x 1x 2+y 1y 2=(my 1+)(my 2+)+y 1y 2=(m 2+1)() 所以()<0,即m 2<4又因为m >1且△>0所以1<m <2.所以m 的取值范围是(1,2).【点评】本题主要考查椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.22.(14分)(2010•浙江)已知a 是给定的实常数,设函数f (x )=(x ﹣a )2(x+b )e x ,b ∈R ,x=a 是f (x )的一个极大值点,(Ⅰ)求b 的取值范围;(Ⅱ)设x 1,x 2,x 3是f (x )的3个极值点,问是否存在实数b ,可找到x 4∈R ,使得x 1,x 2,x 3,x 4的某种排列x i1,x i2,x i3,x i4(其中{i 1,i 2,i 3,i 4}={1,2,3,4})依次成等差数列?若存在,求所有的b 及相应的x 4;若不存在,说明理由.【考点】利用导数研究函数的极值.【专题】导数的综合应用.【分析】先求出函数f (x )的导函数f′(x )=e x (x ﹣a )[x 2+(3﹣a+b )x+2b ﹣ab ﹣a ],令g (x )=x 2+(3﹣a+b )x+2b ﹣ab ﹣a ,讨论g (x )=0的两个实根x 1,x 2是否为a ,从而确定x=a 是否是f(x )的一个极大值点,建立不等关系即可求出b 的范围.【解答】解:(1)f′(x )=e x (x ﹣a )[x 2+(3﹣a+b )x+2b ﹣ab ﹣a ],令g (x )=x 2+(3﹣a+b )x+2b ﹣ab ﹣a ,则△=(3﹣a+b )2﹣4(2b ﹣ab ﹣a )=(a+b ﹣1)2+8>0,于是,假设x 1,x 2是g (x )=0的两个实根,且x 1<x 2.①当x 1=a 或x 2=a 时,则x=a 不是f (x )的极值点,此时不合题意.②当x 1≠a 且x 2≠a 时,由于x=a 是f (x )的极大值点,故x 1<a <x 2.即g (a )<0,即a 2+(3﹣a+b )a+2b ﹣ab ﹣a <0,所以b <﹣a ,所以b 的取值范围是:(﹣∞,﹣a ).(2)由(1)可知,假设存在b 及x 4满足题意,则①当x 2﹣a=a ﹣x 1时,则x 4=2x 2﹣a 或x 4=2x 1﹣a ,于是2a=x 1+x 2=a﹣b ﹣3,即b=﹣a ﹣3.此时x 4=2x 2﹣a=a ﹣b ﹣3+﹣a=a+2, 或x 4=2x 1﹣a=a ﹣b ﹣3﹣﹣a=a ﹣2,②当x 2﹣a≠a﹣x 1时,则x 2﹣a=2(a ﹣x 1)或a ﹣x 1=2(x 2﹣a ),(ⅰ)若x 2﹣a=2(a ﹣x 4),则x 4=,于是3a=2x 1+x 2=, 即=﹣3(a+b+3),于是a+b ﹣1=, 此时x 4===﹣b ﹣3=a+. (ⅱ)若a ﹣x 1=2(x 2﹣a ),则x 4=,于是3a=2x 2+x 1=, 即=3(a+b+3),于是a+b ﹣1=. 此时x 2===﹣b ﹣3=a+.综上所述,存在b 满足题意.当b=﹣a ﹣3时,x 4=a±2; 当b=﹣a ﹣时,x 4=a+; 当b=﹣a ﹣时,x 4=a+.【点评】本题主要考查函数极值的概念、导数运算法则、导数应用等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识.。