(完整版)集合测试题及答案,推荐文档
集合测试题及答案
集合测试题及答案一、选择题1. 集合A={1,2,3},集合B={2,3,4},求A∩B。
A. {1}B. {2,3}C. {4}D. {1,2,3}2. 集合A={1,2,3},集合B={2,3,4},求A∪B。
A. {1,2,3}B. {2,3,4}C. {1,2,3,4}D. {2,3}二、填空题1. 集合A={x|x是小于10的正整数},那么A的元素个数是_________。
2. 集合A={x|x是偶数},集合B={x|x是奇数},那么A∪B表示的数集是_________。
三、简答题1. 解释什么是子集,并给出一个例子。
2. 描述如何使用韦恩图表示两个集合的并集和交集。
四、计算题1. 给定集合A={1,2,3,4,5},集合B={3,4,5,6,7},求A∩B和A∪B。
2. 给定集合A={x|x是小于20的质数},集合B={x|x是小于20的合数},求A∪B。
五、证明题1. 证明:对于任意集合A和B,(A∪B)∩C = (A∩C)∪(B∩C)。
2. 证明:对于任意集合A,A∩A = A。
六、应用题1. 如果一个班级有30名学生,其中15名学生学习数学,12名学生学习物理,8名学生同时学习数学和物理。
求只学习数学的学生数量。
2. 如果一个图书馆有100本书籍,其中50本是小说,30本是科幻小说,15本同时属于小说和科幻小说。
求只属于科幻小说的书籍数量。
答案:一、选择题1. B2. C二、填空题1. 92. 所有整数三、简答题1. 子集是指一个集合中的所有元素都是另一个集合的元素。
例如,集合{1,2}是集合{1,2,3}的子集。
2. 韦恩图是一个用来表示集合的图形工具,其中两个圆圈重叠的部分表示交集,两个圆圈的总面积表示并集。
四、计算题1. A∩B={3,4,5},A∪B={1,2,3,4,5,6,7}。
2. A∪B={2,3,5,7,11,13,17,19}。
五、证明题1. 证明略。
2. 证明略。
集合测试题及答案
集合测试题及答案一、选择题(每题2分,共10分)1. 集合A={1, 2, 3},B={2, 3, 4},那么A∩B(A与B的交集)是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}2. 如果集合C={x | x是偶数},那么5属于C吗?A. 是B. 否3. 集合D={x | x是小于10的自然数},D的元素个数是多少?A. 5B. 9C. 10D. 无穷多4. 集合E={x | x^2 - 5x + 6 = 0},E中元素的个数是?A. 0B. 1C. 2D. 35. 对于集合F={1, 2, 3},其幂集P(F)包含多少个元素?A. 3B. 4C. 7D. 8二、填空题(每题3分,共15分)6. 集合A={x | x是小于5的正整数},用描述法表示A为________。
7. 集合G={1, 2, 3},那么G的补集(相对于自然数集N)是________。
8. 若集合H={x | x是大于1且小于10的整数},H的并集(与集合G={2, 3, 4, 5})是________。
三、解答题(每题5分,共20分)9. 给定集合I={1, 2, 3, 4, 5},J={4, 5, 6, 7},求I∪J(I与J的并集)。
10. 集合K={x | x是偶数且x<10},L={x | x是3的倍数且x<10},求K∩L(K与L的交集)。
11. 如果集合M={x | x是大于0且小于10的整数},求M的子集个数。
12. 集合N={x | x是2的幂次方},求N的前5个元素。
答案一、选择题1. B. {2, 3}2. B. 否3. C. 104. C. 25. D. 8二、填空题6. A={1, 2, 3, 4}7. G的补集是{x | x属于自然数集N且x≠1, 2, 3}8. H∪G={1, 2, 3, 4, 5}三、解答题9. I∪J={1, 2, 3, 4, 5, 6, 7}10. K∩L={6}11. M的子集个数是2^5=3212. N的前5个元素是{1, 2, 4, 8, 16}这份测试题覆盖了集合的基本操作,包括交集、并集、补集、子集和幂集等概念,适合作为集合理论的复习材料。
高一数学必修一集合练习题及单元测试(含答案及解析)
题习集合练1.设集合A={x|2 ≤x<4} ,B={x|3x -7≥8-2x} ,则A∪B 等于( )A.{x|x ≥3} B.{x|x ≥2} C .{x|2 ≤x<3} D .{x|x ≥4}2.已知集合A={1,3,5,7,9} ,B={0,3,6,9,12} ,则A∩B=( )A.{3,5} B .{3,6} C .{3,7} D .{3,9}3. 已知集合A={x|x>0} ,B={x| -1≤x≤2} ,则A∪B=( )A.{x|x ≥-1} B .{x|x ≤2 } C .{x|0<x ≤2} D .{x| -1≤x≤2} 4. 满足M?{ ,,,} ,且M∩{ ,,} ={ ,} 的集合M的个数是( ) A.1 B .2 C .3 D .45.集合A={0,2 ,a} ,B={1 ,} .若A∪B={0,1,2,4,16} ,则 a 的值为()A.0 B .1 C .2 D .46.设S={x|2x +1>0} ,T={x|3x -5<0} ,则S∩T=( )A.? B .{x|x< -1/2} C .{x|x>5/3} D .{x| -1/2<x<5/3}7.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,则仅参加了一项活动的学生人数为________.8.满足{1,3} ∪A={1,3,5} 的所有集合 A 的个数是________.9.已知集合A={x|x ≤1} ,B={x|x ≥a} ,且A∪B=R,则实数 a 的取值范围是________.10. 已知集合A={ -4,2a -1,} ,B={a -5,1 -a,9} ,若A∩B={9} ,求a 的值.11.已知集合A={1,3,5} ,B={1,2 ,-1} ,若A∪B={1,2,3,5} ,求x 及A∩B. 12.已知A={x|2a ≤x≤a+3} ,B={x|x< -1 或x>5} ,若A∩B=? ,求 a 的取值范围.13.(10 分) 某班有36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组人?的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少试集合测大题共10 小题,每小题 5 分,共50 分。
高中数学集合测试题(附答案和解析)
高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x > 3.已知全集{}2,1,1,4U =--,{}2,1A =-,{}1,4B =,则()U A B ⋃=( ). A .{}2-B .{}2,1-C .{}1,1,4-D .{}2,1,1--4.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( ) A .{}1B .{}0,1C .{}0,1,2D .{}1,3,55.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则A B =( ) A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2-- 6.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C =7.已知集合{}35A x x =-≤<,{B x y ==,则()R A B ⋂=( )A .13,2⎡⎫--⎪⎢⎣⎭B .1,52⎛⎫- ⎪⎝⎭C .[)3,2--D .()2,5-8.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1}B .{1,2}C .{0,2}D .{0,1,2}9.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( ) A .[)1,1- B .(1,1)- C .(,1)-∞ D .(0,1)10.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,311.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3] 12.设集合{|12}A x x =-<<,{|2}B x a x a =-<<,若{|10}A B x x =-<<,则A B ⋃=( )A .(2,1)-B .(2,2)-C .(1,2)-D .(0,2)13.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<14.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2 15.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.22.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.23.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.27.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.28.设r 为正实数,若集合(){}22,4M x y x y =+≤,()()(){}222,11N x y x y r =-+-≤.当M N N =时,求r 的取值范围.29.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ;(2)设全集为R ,求()R A B ⋂.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】由集合的补集运算求U B ,再利用集合的并集运算求()U A B 即可. 【详解】由题意得,{}U 2,1B =--,又{}2,1A =-,(){}{}{}U 2,12,12,1,1AB ==---=--,故答案为:D.4.A【解析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤, 所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭, 又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=;故选:A5.C【解析】【分析】 根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解.【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C.6.C【解析】【分析】 由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C7.A【解析】【分析】先求出集合B ,得出其补集,再由交集运算得出答案.【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭, 所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2A B ⎡⎫=--⎪⎢⎣⎭. 故选:A8.C【分析】 先求{}2,B k k n n Z ==∈,再求交集即可.【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =.故选:C .9.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A10.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D11.D【解析】【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R ,再根据交集运算即可求出结果.【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R ,所以()[]1,3R A B =.故选:D.12.B【解析】由{}10A B x x ⋂=-<<,求出0a =,{}20B x x =-<<,由此能求出A B .【详解】 集合{}12A x x =-<<,{}2B x a x a =-<<,{}10A B x x ⋂=-<<,0a ∴=,{}20B x x ∴=-<<,满足题意则(2,2)=-A B .故选:B .13.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B14.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.19.3或-1##-1或3【解析】【分析】根据集合相等得到223m m -=,解出m 即可得到答案.【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1.20.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃21.{}0,1【解析】【分析】先求出集合A ,然后根据交集的定义求得答案.【详解】 由题意,{}22A x x =-<<,所以{}0,1A B =.故答案为:{}0,1.22.(){}0,0【解析】【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果. 【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩ 则(){}0,0M N =.故答案为:(){}0,0.23.②③⑤【解析】【分析】根据集合与集合的关系,元素与集合的关系确定正确答案.【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误.④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤24.{}3【解析】【分析】由交集、补集的定义计算.【详解】 由题意{4,3}M =,所以M N ⋂={3}.故答案为:{3}.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<; (2)()3,+∞.【解析】【分析】(1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<.(2) 解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.27.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.28.02r <≤-【解析】【分析】 确定集合的元素,由两位置关系可得.【详解】M N N =,则N M ⊆,集合M 表示以原点O 为圆心,2为半径的圆及圆内部分,集合N 表示以点C (1,1)为圆心,r 为半径的圆及内部,OC =2r OC -≥=02r <≤29.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.30.(1){}5A x x =>,{0B y y =<或}2y >(2)(){}R 5A B x x ⋂=≤【解析】【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ;(2)求出A B ,利用补集的定义可求得集合()R A B ⋂. (1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >. (2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R 5A B x x ⋂=≤.。
集合章节测试题(含答案)
一、选择题1.下列四个集合中,是空集的是()A.{x|x+3=3} B.{(x,y)|y=-x2,x,y∈R} C.{x|x2≤0} D.{x|x2-x+1=0,x∈R}2.已知集合A={x∈N|x<6},则下列关系式错误的是()A.0∈A B.1.5∉A C.-1∉A D.6∈A3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}4.设集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=() A.{1,2,3} B.{1,2,4} C.{2,3,4} D.{1,2,3,4}5.满足条件{1,2}∪A={1,2}的所有非空集合A的个数是()A.1个B.2个C.3个D.4个6.若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个7.已知集合M={y|x+y=2},N={(x,y)|x-y=4},那么集合M∩N 为()A.{x=3,y=-1} B.{(x,y)|x=3或y=-1}C.∅D.{(3,-1)}8.已知集合A={0,1,2,3},B={1,3,4},则A∩B的子集个数为() A.2 B.3 C.4 D.169.设全集U是实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1}都是U的子集,则图中阴影部分所表示的集合是()A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}10.如果集合A ={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( )A .0B .0或1C .1D .不能确定11.集合⎩⎨⎧⎭⎬⎫x ∈N *⎪⎪⎪12x ∈Z 中含有的元素个数为( )A .4B .6C .8D .1212.设a ,b 都是非零实数,则y =a |a |+b |b |+ab|ab |可能取的值组成的集合为( )A .{3}B .{3,2,1}C .{3,-2,1}D .{3,-1}二、填空题13.若集合A ={x |-1≤x <2},B ={x |x ≤a },若A ∩B ≠∅,则实数a 的取值范围是________.14.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =a +16,a ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =b 2-13,b ∈Z ,C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =c 2+16,c ∈Z ,则A ,B ,C 之间的关系是________.15.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B ⊆A ,则m 的取值集合为________.16.若三个非零且互不相等的实数a ,b ,c ,满足1a +1b =2c ,则称a,b,c是调和的;若满足a+c=2b,则称a,b,c是等差的.若集合P中元素a,b,c既是调和的,又是等差的,则称集合P为“好集”.若集合M={x||x|≤2014,x∈Z},集合P={a,b,c}⊆M,则“好集”P 的个数为________.三、解答题17.设全集为R,A={x|3≤x<7},B={x|2<x<10}.求:A∪B,∁R(A∩B),(∁R A)∩B.18.(1)已知全集U=R,集合M={x|x+3≤0},N={x|x2=x+12},求(∁U M)∩N;(2)已知全集U=R,集合A={x|x<-1或x>1},B={x|-1≤x<0},求A∪(∁U B).19.已知集合A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A∩B={x|1<x<3},求实数a,b的值.20.已知集合A ={x |x ≤a +3},B ={x |x <-1或x >5}. (1)若a =-2,求A ∩∁R B ; (2)若A ⊆B ,求a 的取值范围.21.设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,判断集合A 与B 的关系;(2)若A∩B=B,求实数a组成的集合C.22.已知集合A={x|(a-1)x2+3x-2=0},B={x|x2-3x+2=0}.(1)若A≠∅,求实数a的取值范围;(2)若A∩B=A,求实数a的取值范围.答案解析1.D解析:选项D中Δ=(-1)2-4×1×1=-3<0,所以方程x2-x+1=0无实数根.2.D解析:∵集合A={x∈N|x<6}={0,1,2,3,4,5},∴6∉A.故选D.3.D解析:∵U={1,3,5,7,9},A={1,5,7},∴∁U A={3,9}.故选D.4.D解析:∵A∩B={1,2},C={2,3,4},∴(A∩B)∪C={1,2,3,4}.5.C解析:∵{1,2}∪A={1,2}∴集合A可取集合{1,2}的非空子集.∴集合A有3个.故选C.6.C解析:∵A∪B={1,4,x},∴x2=4或x2=x.解得x=±2或x=1或x=0.检验当x=1时,A={1,4,1}不符合集合的性质,∴x=2或x=-2或x=0.故选C.7.C解析:∵集合M的代表元素是实数,集合N的代表元素是点,∴M∩N=∅.故选C.8.C解析:∵A∩B={1,3},∴A∩B的子集分别是∅,{1},{3},{1,3}.故选C.解题技巧:本题主要考查了列举法表示两个集合的交集,考查了子集的求法,解决本题的关键是确定出A∩B所含元素的个数n,因此所有子集的个数为2n个.9.A解析:∵图中阴影部分表示:x∈N且x∉M,∴x∈N∩∁U M.∴∁U M={x|-2≤x≤2},∴N∩∁U M={x|-2≤x<1}.故选A.10.B解析:∵集合A={x|ax2+2x+1=0}中只有一个元素,∴①当a=0时,集合A={x|2x+1=0}只有一个元素,符合题意;②当a≠0时,一元二次方程ax2+2x+1=0只有一解,∴Δ=0,即4-4a=0,∴a=1.故选B.11.B解析:∵x∈N*,12x∈Z,∴x=1时,12x=12∈Z;x=2时,12x =6∈Z ;x =3时,12x =4∈Z ;x =4时,12x =3∈Z ;x =6时,12x =2∈Z ;x =12时,12x =1∈Z .12.D 解析:①当a >0,b >0时,y =3;②当a >0,b <0时,y =-1;③当a <0,b >0时,y =-1;④当a <0,b <0时,y =-1.13.a ≥-1 解析:如图:∵A ∩B ≠∅,且A ={x |-1≤x <2},B ={x |x ≤a },∴a ≥-1. 14.AB =C 解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =a +16,a ∈Z=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(6a +1),a ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =b 2-13,b ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(3b -2),b ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16[3(b +1)-2],b ∈Z ,C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =c 2+16,c ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =16(3c +1),c ∈Z .∴A B =C .15.m =⎩⎨⎧⎭⎬⎫0,-12,13 解析:集合A ={2,-3},又∵B ⊆A ,∴B =∅,{-3},{2}.∴m =0或m =-12或m =13.16.1 006 解析:因为若集合P 中元素a ,b ,c 既是调和的,又是等差的,则1a +1b =2c 且a +c =2b ,则a =-2b ,c =4b ,因此满足条件的“好集”为形如{-2b ,b,4b }(b ≠0)的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503,且b ≠0,符合条件的b 的值可取1 006个,故“好集”P 的个数为1 006个.解题技巧:本题主要考查了以集合为背景的新概念题,解决本题的关键是弄清楚新概念、新运算、新方法的含义,转化为集合问题求解.17.解:∵全集为R,A={x|3≤x<7},B={x|2<x<10},∴A∪B={x|2<x<10},A∩B={x|3≤x<7},∴∁R(A∩B)={x|x≥7或x<3}.∵∁R A={x|x≥7或x<3},∴(∁R A)∩B={x|2<x<3或7≤x<10}.18.解:(1)M={x|x+3=0}={-3},N={x|x2=x+12}={-3,4},∴(∁U M)∩N={4}.(2)∵A={x|x<-1或x>1},B={x|-1≤x<0},∴∁U B={x|x<-1或x≥0}.∴A∪(∁U B)={x|x<-1或x≥0}.19.解:∵A∩B={x|1<x<3},∴b=3,又A∪B={x|x>-2},∴-2<a≤-1,又A∩B={x|1<x<3},∴-1≤a<1,∴a=-1.20.解:(1)当a=-2时,集合A={x|x≤1},∁R B={x|-1≤x≤5},∴A∩∁R B={x|-1≤x≤1}.(2)∵A={x|x≤a+3},B={x|x<-1或x>5},A⊆B,∴a+3<-1,∴a<-4.解题技巧:本题主要考查了描述法表示的集合的运算,集合间的关系,解决本题的关键是借助于数轴求出符合题意的值.在解决(2)时,特别注意参数a 是否取到不等式的端点值.21.解:A ={x |x 2-8x +15=0}={3,5}. (1)若a =15,则B ={5},所以B A . (2)若A ∩B =B ,则B ⊆A . 当a =0时,B =∅,满足B ⊆A ;当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ,因为B ⊆A ,所以1a =3或1a =5, 即a =13或a =15;综上所述,实数a 组成的集合C 为⎩⎨⎧⎭⎬⎫0,13,15. 22.解:(1)①当a =1时,A =⎩⎨⎧⎭⎬⎫23≠∅;②当a ≠1时,Δ≥0,即a ≥-18且a ≠1, 综上,a ≥-18;(2)∵B ={1,2},A ∩B =A ,∴A =∅或{1}或{2}或{1,2}. ①A =∅,Δ<0,即a <-18;②当A ={1}或{2}时,Δ=0,即a =0且a =-18,不存在这样的实数;③当A ={1,2},Δ>0,即a >-18且a ≠1,解得a =0. 综上,a <-18或a =0.。
集合单元测试题及详细答案
集合单元测试题及详细答案一、选择题(每题2分,共10分)1. 集合中的元素具有什么特性?A. 唯一性B. 有序性C. 可重复性D. 可变性答案:A2. 下列哪个不是集合的基本运算?A. 并集B. 交集C. 对称差D. 排序答案:D3. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是什么?A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {4}答案:C5. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的差集是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:A二、填空题(每空1分,共10分)6. 集合的三种基本关系是:________、________、子集。
答案:相等,真子集7. 集合A={x|x<5}表示的是所有小于5的实数的集合,那么集合B={x|x>5}表示的是所有________的实数的集合。
答案:大于58. 集合的幂集是指一个集合所有子集的集合,如果集合A有n个元素,那么它的幂集有2^n个子集。
答案:正确9. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的并集是________。
答案:{1, 2, 3, 4, 5}10. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的差集是________。
答案:{1}三、简答题(每题5分,共10分)11. 简述集合的并集和交集的区别。
答案:并集是指两个集合中所有元素的集合,不去除重复元素;交集是指两个集合中共有的元素组成的集合。
12. 举例说明什么是集合的补集。
答案:假设全集U={1, 2, 3, 4, 5},集合A={1, 2, 3},那么A的补集是U中不属于A的所有元素组成的集合,即{4, 5}。
高中数学集合测试题(附答案和解析)
高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
完整版)集合与常用逻辑用语测试题及详解
完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。
A。
A⊆BB。
A∩B={2}C。
A∪B={1,2,3,4,5}D。
A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。
显然,A不是B的子集,排除A选项。
XXX表示A和B的交集,即A和B中都出现的元素构成的集合。
根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。
A∪B表示A和B的并集,即A和B中所有元素构成的集合。
根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。
A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。
根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。
2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。
A。
M=NB。
MNC。
NMD。
M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。
因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。
3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。
A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
集合测试题一及答案
集合测试题一及答案XXX高一集合单元测试题一本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间90分钟。
一、选择题:本大题共12小题,每小题5分,共60分。
1.已知集合M={x∈N|4-x∈N},则集合M中元素个数是()A。
3B。
4C。
5D。
62.下列集合中,能表示由1、2、3组成的集合是()A。
{6的质因数}B。
{x|x<4,x∈N*}C。
{y||y|<4,y∈N}D。
{连续三个自然数}3.已知集合A={-1,1},则如下关系式正确的是A∈AXXXC{}∈AD∅⊆A4.集合A={x-2<x<2},B={x-1≤x<3},那么A∪B=()A。
{x-2<x<3}B。
{x1≤x<2}C。
{x-2<x≤1}D。
{x2<x<3}5.已知集合A={x|x^2-1=0},则下列式子表示正确的有()①1∈A②{-1}∈A③∅⊆A④{1,-1}⊆AA。
1个B。
2个C。
3个D。
4个6.已知U={1,2,a^2+2a-3},A={|a-2|,2},C∩U={0},则a的值为()A。
-3或1B。
2C。
3或1D。
17.若集合A={6,7,8},则满足A∪B=A的集合B的个数是()A。
1B。
2C。
7D。
88.定义A—B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A—B等于()A。
{1,7,9}B。
{2}C。
AD。
B9.设I为全集,S₁,S₂,S₃是I的三个非空子集,且S₁∪S₂∪S₃=I,则下面论断正确的是()A。
(CiS₁)∩(S₂∪S₃)=∅B。
S₁⊆[(CiS₂)∩(CiS₃)]C。
(CiS₁)∩(CiS₂)∩(CiS₃)=∅D。
S₁⊆[(CiS₂)∪(CiS₃)]10.如图所示,I是全集,M,P,S是I的三个子集,则阴影部分所表示的集合是()A。
(M∩P)∩SB。
(M∩P)∪S'C。
(M∩P)∩(CiS)D。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2log 4A x x =<,{}22B x x =-<<,则()R A B ⋂=( ) A .(]2,0- B .[)0,2 C .()0,2D .[)2,0-2.已知集合{}22A x x =-≥,集合{2,3,4,5}B =,那么集合A B =( ) A .[2,5] B .(3,5] C .{4,5}D .{2,3,4,5}3.已知集合{}03A x x =<<,2|43B x x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .233x x ⎧⎫≤<⎨⎬⎩⎭B .2|43x x ⎧⎫<≤⎨⎬⎩⎭C .{}04x x <≤D .{}03x x <<4.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,45.已知集合{}14,Z A x x x =-<<∈,{}110B x x =<<,则集合A B 中元素的个数为( ) A .2B .3C .4D .5 6.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}3,4B =,则集合{}4=( ) A .()UA BB .()()U UA BC .()U A B ⋂D .()U A B7.已知集合{}1,0,1,2A =-,{}03B x x =≤≤,则A B =( ) A .{}1 B .{}2 C .{}1,2D .{}0,1,28.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅9.设集合{}A x x a =>,()(){}120B x x x =-->,若A B ⊆,则实数a 的取值范围是( ). A .(),1-∞ B .(],1-∞ C .()2,+∞D .[)2,+∞10.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()UA B =( ) A .{}1B .{}3C .{}2,4D .{}1,2,4,511.已知集合{}1,0,1,2M =-,{}21xN x =>,则()R M N ⋂=( )A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合[)2,4A =,[]3,5B =,则()R A B =( ) A .(]4,5B .[]4,5C .()[),23,-∞⋃+∞D .(][),23,-∞⋃+∞14.已知集合{|2}x A y y ==,集合{}3B x x =≥,则RA B =( )A .(),3-∞B .()0,3C .[]1,3D .[)1,315.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,3二、填空题16.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.17.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.18.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.19.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______20.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0}; ④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.21.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.22.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.23.若非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,则M P =________.24.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q ⋂=,则实数a 的取值范围是___________.25.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+.(1)若2a =,求()RA B ⋃;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.28.已知函数()f x =A ,{|}B x x a =<. (1)求集合A ;(2)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.29.设M 为100个连续正整数的集合,已知其中2的倍数有50个,3的倍数有33个,6的倍数有16个,如何利用这些数据求出M 中不能被3整除的奇数的个数?30.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.【参考答案】一、单选题 1.A 【解析】 【分析】求解对数不等式得到集合A ,进而结合补集和交集的概念即可求出结果. 【详解】因为{}016A x x =<<,所以(){}R 20A B x x ⋂=-<≤, 故选:A. 2.C 【解析】 【分析】解出不等式22x -≥,然后根据集合的交集运算可得答案. 【详解】因为{}{}224A x x x x =-≥=≥,{2,3,4,5}B =, 所以{4,5}A B =, 故选:C 3.A 【解析】 【分析】在数轴上分别作出集合A ,集合B ,再由交集的概念取相交部分. 【详解】因为{}03A x x =<<,2|43B x x ⎧⎫=≤≤⎨⎬⎩⎭,所以2|33A B x x ⎧⎫=≤<⎨⎬⎩⎭.故答案为:A. 4.C 【解析】 【分析】化简集合A ,根据集合B 中元素的性质求出集合B. 【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且,{1,2,3}B ∴=, 故选:C 5.A 【解析】 【分析】利用集合交运算求A B ,即可确定元素个数. 【详解】由题设,{0,1,2,3}A =,又{|110}B x x =<<, 所以{2,3}A B =,共有2个元素. 故选:A 6.C 【解析】 【分析】利用交集,并集和补集运算法则进行计算,选出正确答案. 【详解】{}1,2,3,4A B =,(){}5UA B ⋃=,A 错误;()(){}{}{}4,51,2,51,2,4,5UUA B ==,B 错误;(){}{}{}4,53,44U A B ⋂==,C 正确; (){}{}{}1,2,51,2,31,2UA B ==,D 错误.故选:C 7.D 【解析】 【分析】依题意需要找到集合A 和集合B 中的公共元素, 即是集合A 中在03x ≤≤范围内的元素. 【详解】由题意知,对于集合B :03x ≤≤, ∴在集合A 中只有0、1、2满足条件,{}012A B ∴=,,故选:D . 8.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解. 【详解】由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D 9.D 【解析】 【分析】求解一元二次不等式解得集合B ,根据集合的包含关系,列出a 的不等关系,即可求得结果. 【详解】()(){}120{2B x x x x x =-->=或1}x <,因为A B ⊆,故可得2a ≥,即实数a 的取值范围是[)2,+∞. 故选:D. 10.D 【解析】 【分析】利用交集和补集的定义可求得结果. 【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5UA B ⋂=.故选:D. 11.D 【解析】 【分析】 先求出RN ,再结合交集定义即可求解.【详解】 由{}{}R210x N x x x =≤=≤,得()R M N ⋂={}1,0-故选:D 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.B 【解析】 【分析】先求出集合A 的补集,再由交集运算可得答案. 【详解】集合[)2,4A =,[]3,5B =,则()()[),24,R A =-∞⋃+∞ 所以()[]4,5R A B ⋂=, 故选:B. 14.D 【解析】 【分析】根据指数函数的性质,求得集合{|1}A x x =≥,再结合集合的运算法则,即可求解. 【详解】由题意,可得集合{|2}{|1}xA y y y y ===≥,即集合{|1}A x x =≥,又由集合{}3B x x =≥,可得{}R 3B x x =<, 所以{}R 13[1,3)A B x x ⋂=≤<=. 故选:D. 15.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A .二、填空题 16.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.19.{}0,1-【解析】 【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可. 【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意; 当0a ≠时,若集合A 中只有一个元素, 则一元二次方程2210ax x 有二重根, 即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.- 故答案为:{}0,1.- 20.①③⑥ 【解析】 【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解. 【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确; 对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确; 对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确. 故答案为:①③⑥.21.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8.22.1472【解析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147223.P【解析】 【分析】推导出M N ⊆,N P ⊆,由此能求出M P P =.【详解】解:非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,M N ∴⊆,N P ⊆,MP P ∴=.故答案为:P .24.()4,+∞【解析】 【分析】求出集合P ,根据P Q Q ⋂=,得Q P ⊆,列出不等式即可得解. 【详解】解:{}{22804P x x x x x =-->=>或}2x <-,因为P Q Q ⋂=,所以Q P ⊆, 所以4a >. 故答案为:()4,+∞. 25.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可.∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3}三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=. (2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-. 27.(1){1x x ≤-或}4x ≥ (2)01a <≤ 【解析】 【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()RA B ⋃;(2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. (1) 解:{}{}223013A x x x x x =--<=-<<,当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<, 因此,(){R1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅,所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤.28.(1)A ={x |-2<x ≤3};(2)3a >.【解析】【分析】(1)由算术平方根的被开方数大于等于0,分式的分母不等于0可求得集合A ; (2)由已知得A ⊆B ,由此可得a 的取值范围.(1)解:函数()f x =3020x x -≥⎧⎨+>⎩, 解得23x -<≤,即A ={x |-2<x ≤3}.(2)解:因为A ={x |-2<x ≤3},B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以3a >.29.33【解析】【分析】分析集合之间的关系,由()()()()card A B card A card B card A B ⋃=+-⋂可得.【详解】记{|2,,}A x x n x M n N ==∈∈,{|3,,}B x x n x M n N ==∈∈,则{|21,,}M A x x n x M n N ==-∈∈,{|3,,}M B x x n x M n N =≠∈∈, {|A B x x ⋂=是能被3整除的偶数,}x M ∈, ()(){|M M A B x x =是不能被3整除的奇数,}x M ∈由题知()50,()33,()16card A card B card A B ===, 因为()()()M M MA B A B =,()()()()50331667card A B card A card B card A B =+-=+-=所以M 中不能被3整除的奇数有100-67=33个.30.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-.。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,2A =,{}2,3,4B =,则A B =( )A .{}2B .{}3C .{}1,3D .{}1,22.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( ) A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-3.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N 4.已知集合{|04,}P x x x Z =<<∈,且M P ⊆,则M 可以是( ) A .{1,2} B .{2,4} C .{0,2} D .{3,4} 5.设集合{}1A x x =>,{}2B x x =≤,则A B =( )A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R6.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1-- C .{}1,2 D .{}1,1,2- 7.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8} B .{2,3,6,8} C .{2} D .{2,6,8} 8.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 9.设集合{}2,3,4,5A =,{}3,4,6B =,则A B =( ).A .{}2B .{}2,3C .{}3,4D .{}2,3,410.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1-11.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z ∣∣,则S T ( )A .{23}x x -<<∣B .{1,0,1,2}-C .{52}xx -<<∣ D .{2,1,0,1,2}-- 12.已知集合{}1,0,1,2M =-,{}21x N x =>,则()R M N ⋂=( ) A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-13.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( )A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--14.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,315.给出下列关系:①13∈R ;Q ;③-3∉Z ;④∉N ,其中正确的个数为( )A .1B .2C .3D .4二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.18.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.19.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.20.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 21.已知全集为R ,集合()1,A =+∞,则A =__________.22.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.23.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.24.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,a M N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.25.若集合{}3A x x =>,集合{}B x x a =≥,且B A ,则实数a 的取值范围是______. 三、解答题26.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+< (1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.已知集合{}17U x x =≤≤,{}25A x x =≤<,{}37B x x =<≤.(1)求A B ;(2)求()U A B .29.设全集{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求U A ,()U A B ⋂,A B ,()U A B30.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】根据集合的交集运算,即可求得答案.【详解】集合{}1,2A =,{}2,3,4B =,则{2}A B =,故选:A2.C【解析】【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<,故选:C.3.D【解析】【分析】利用()()()U U u M N M N ⋂=⋃,判断相互之间的关系.【详解】 ()()()U U u M N M N ⋂=⋃,M N N ⋃=,()u u M N N ⋃=.故选D.4.A【解析】【分析】化简集合P ,根据集合的包含关系确定M .【详解】因为{|04,}={1,2,3}P x x x Z =<<∈,又M P ⊆,所以任取x M ∈,则{1,2,3}x ∈, 所以M 可能为{2,3},A 对,又 0M ∉,4M ∉,∴ M 不可能为{2,4},{0,2},{3,4},B ,C ,D 错,故选:A.5.B【解析】【分析】根据交集的定义计算可得;【详解】 解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤;故选:B6.C【解析】【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解.【详解】 因为2cos 3y x π=的最小正周期263T ππ==且1cos 32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos 13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,, 所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<, 所以{}1,2A B =,故选:C7.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.8.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.9.C【解析】【分析】依据交集定义即可求得A B【详解】{}{}{}2,3,4,53,4,63,4A B ⋂=⋂=故选:C10.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A11.B【解析】【分析】求解一元二次不等式解得集合T ,再求S T 即可.【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-.故选:B.12.D【解析】【分析】先求出R N ,再结合交集定义即可求解.【详解】 由{}{}R 210x N x x x =≤=≤,得()R M N ⋂={}1,0- 故选:D13.D【解析】 【分析】利用补集定义求出A R ,利用交集定义能求出()AB R . 【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则R {|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--.故选:D14.A【解析】【分析】依据交集定义去求A B 即可.【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=,故选:A .15.B【解析】【分析】根据数集的定义,即可得答案;【详解】13是实数,①②错误;-3是整数,③④正确.所以正确的个数为2.故选:B.二、填空题16.4【解析】【分析】根据并集的定义,列举集合A .【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个.故答案为:417.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,618.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.19.{}1,3【解析】【分析】由交集定义直接得到结果.【详解】由交集定义知:{}1,3A B =.故答案为:{}1,320.±1【解析】【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可.【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集, 所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意; 当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1.故答案为:±1.21.(],1-∞【解析】【分析】直接利用补集的定义求解即可【详解】因为全集为R ,集合()1,A =+∞, 所以A =(],1-∞,故答案为:(],1-∞22.{}|23x x <<##()2,3【解析】【分析】由交集运算可直接求解.【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<.故答案为:{}|23x x <<23.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.24.232##11.5 【解析】【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 25.3a >【解析】【分析】解不等式求得结合A ,根据B A 列不等式来求得a 的取值范围.【详解】3x >⇔3x <-或3x >,所以{|3A x x =<-或}3x >.由于B A ,所以3a >.故答案为:3a >三、解答题26.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-.故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){}35x x << (2){12x x ≤<或}37x <≤【解析】【分析】根据集合间的运算直接得解.(1) 由{}25A x x =≤<,{}37B x x =<≤,得{}35A B x x ⋂=<<;(2) 由{}17U x x =≤≤,{}25A x x =≤<,得{12U A x x =≤<或}57x ≤≤, 故(){12U A B x x ⋃=≤<或}37x <≤.29.{22U A x x =-≤≤∣或10}x ≥,(){2}U A B =,{28}A B x x ⋂=<≤∣,(){22U A B x x ⋂=-≤≤∣或8}x >【解析】【分析】依据补集定义求得U A ,再依据交集定义求得()U A B ⋂;依据交集定义求得A B ,再依据补集定义求得()U A B . 【详解】{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣,则{22U A x x =-≤≤∣或10}x ≥,则(){2}U A B = {28}A B x x ⋂=<≤∣,则(){22U A B x x ⋂=-≤≤∣或8}x > 30.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦.。
(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)
集合练习题1.设集合 A= {x|2 ≤<x4},B={x|3x -7≥8-2x} ,则 A∪B等于 ( )A.{x|x ≥ 3} B. {x|x ≥ 2} C.{x|2 ≤<x3} D .{x|x ≥ 4}2 .已知集合 A={1,3,5,7,9} ,B={0,3,6,9,12} ,则 A∩B=( )A.{3,5} B. {3,6} C. {3,7} D . {3,9}3.已知集合 A={x|x>0} , B={x| -1≤ x≤ 2,}则 A∪B=( )A.{x|x ≥-1} B.{x|x ≤ 2 } C. {x|0<x ≤ 2} D.{x|-1≤ x≤ 2} 4. 满足 M?{ ,,, },且 M∩{ ,, }= { , }的集合 M 的个数是 ( ) A.1 B.2 C.3 D. 45.集合 A={0,2 ,a},B={1,}.若 A∪B={0,1,2,4,16} ,则 a 的值为 ( ) A.0 B.1 C.2 D .46.设 S={x|2x +1>0} ,T ={x|3x -5<0} ,则 S∩T=( )A.? B.{x|x< -1/2} C. {x|x>5/3} D.{x| - 1/2<x<5/3}7.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有 25 名,则仅参加了一项活动的学生人数为__ .8.满足{1,3} ∪=A{1,3,5} 的所有集合 A的个数是.9.已知集合 A={x|x ≤ ,1} B={x|x ≥,a}且 A∪B=R,则实数 a 的取值范围是____________________________________________________________________ .10. 已知集合 A={-4,2a -1, },B={a-5,1 -a,9} ,若 A∩B= {9} ,求 a 的值.11 .已知集合 A={1,3,5} , B={1,2 ,-1},若A∪B={1,2,3,5} ,求 x 及A∩ B.12 .已知 A ={x|2a ≤ x ≤+a3} , B= {x|x< -1 或 x>5} ,若 A∩B=? ,求 a 的取值范围.13 .(10 分)某班有 36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为 26,15,13 ,同时参加数学和物理小组的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少人?11 .已知集合 A={1,3,5} , B={1,2 ,-1},若A∪B={1,2,3,5} ,求 x 及A∩ B.集合测试、选择题:本大题共 10小题,每小题 5 分,共 50分。
必修一第一单元《集合》测试(含答案解析)
一、选择题1.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或22.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .0 3.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉4.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{1}P x x Q x y x =-≤-≤==-∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 5.已知集合2{|120}A x x x =--≤, {|211}B x m x m =-<<+.且AB B =,则实数m 的取值范围为 ( ) A .[-1,2)B .[-1,3]C .[-2,+∞)D .[-1,+∞)6.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭7.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .18.已知全集为R ,集合A ={﹣2,﹣1,0,1,2},102x B xx -⎧⎫=<⎨⎬+⎩⎭∣,则A ∩(∁R B )的子集个数为( ) A .2B .3C .4D .89.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,110.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( ) A .(1,3) B .(-∞,-1) C .(-1,1)D .(-3,1)11.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .212.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________ 14.我们将b a -称为集合{|}M x a x b =≤≤的“长度”,若集合2{|}3M x m x m =≤≤+,{|0.5}N x n x n =-≤≤,且集合M 和集合N 都是集合{|01}x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是________15.设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________.16.若{}2230P x x x =--<,{}Q x x a =>,且P Q P =,则实数a 的取值范围是______.17.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 18.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________. 19.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.20.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.三、解答题21.已知全集U =R ,集合{4A x x =<-或1}x >,{|312}B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{|211}M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 22.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.23.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).24.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.25.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围. 26.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求UB A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.2.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题3.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.4.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.5.D解析:D 【分析】 先求出集合A ,由A B B =,即B A ⊆,再分B φ=和B φ≠两种情况进行求解.【详解】由2120x x --≤,得34x -≤≤. 即[3,4]A =-. 由AB B =,即B A ⊆.当B φ=时,满足条件,则211m m -≥+解得2m ≥.当B φ≠时,要使得B A ⊆,则12121314m m m m +>-⎧⎪-≥-⎨⎪+≤⎩.解得:12m -≤<.综上满足条件的m 的范围是:1m ≥-. 故选:D. 【点睛】本题主要考查集合的包含关系的判断及应用,以及集合关系中的参数范围问题,考查分类讨论思想,属于中档题.6.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.7.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.8.D解析:D 【分析】解不等式得集合B ,由集合的运算求出()R A B ,根据集合中的元素可得子集个数.【详解】10{|21}2x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭∣,{|2R B x x =≤-或1}x ≥,所以()R A B {2,1,2}=-,其子集个数为328=.故选:D . 【点睛】本题考查集合的综合运算,考查子集的个数问题,属于基础题.9.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.10.C解析:C 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A∩B =(-1,1). 【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.11.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】由题,因为A B 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想14.【分析】当集合的长度的最小值时与应分别在区间的左右两端由此能求出的长度的最小值【详解】由题的长度为的长度为当集合的长度的最小值时与应分别在区间的左右两端故的长度的最小值是故答案为:【点睛】本题考查交解析:16【分析】当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端,由此能求出M N ⋂的“长度”的最小值 【详解】由题,M 的“长度”为23,N 的“长度”为12, 当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端, 故M N ⋂的“长度”的最小值是2111326+-=, 故答案为:16【点睛】本题考查交集的“长度”的最小值的求法,考查新定义的合理运用15.【分析】根据与可知再根据集合相等求解即可【详解】由可知即故当时当时即故不满足故故答案为:【点睛】本题主要考查了根据集合的基本关系求解参数的问题需要根据题意分情况讨论同时注意集合的互异性属于中档题【分析】根据{}2U C A =与{}22,3,3U a a =+-可知{}23,3A a a =+-,再根据集合相等求解即可.【详解】由{}2U C A =,{}22,3,3U a a =+-可知{}23,3A a a =+-,即{}{}23,3,3a a a +-=.故232,3a a aa ⎧+-=⎪⎨≠⎪⎩ .当0a ≥时,23a a a a +-=⇒=当0a <时,23a a a +-=-即 ()()2230130a a a a +-=⇒-+=,故3a =-.不满足2,3a ≠.故a =【点睛】本题主要考查了根据集合的基本关系求解参数的问题,需要根据题意分情况讨论,同时注意集合的互异性,属于中档题.16.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中P Q P =,即可求出实数a 的取值范围.【详解】由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且PQ P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞- 【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.17.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞.故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.18.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论. 【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点, HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M , 故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心; 若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心. 故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.19.【分析】分5种情况讨论的范围计算函数值并求元素的和【详解】①当时;②当时;③当时;④时;⑤当时则中所有元素的和为故答案为12【点睛】本题考查新定义的题型需读懂题意并能理解应用分类讨论解决问题本题的难 解析:12【分析】分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,并求元素的和. 【详解】①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭,[)30,1x ∈,∴ [][][]230x x x ===,[][][]230x x x ++= ;②当1132x ≤<时,22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ , [][]20,x x ∴==[]31x =,[][][]231x x x ∴++=;③当1223x ≤<时,[)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = ,[][][]232x x x ∴++=; ④213x ≤<时,42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈ []0x ∴=,[]21x =,[]32x =,[][][]233x x x ∴++=;⑤当1x =时[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++={}0,1,2,3,6A ∴=,则A 中所有元素的和为0123612++++=.故答案为12【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况20.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 三、解答题21.(1){|13}A B x x =<≤∩;()(){|13}U U A B x x x ⋃=≤>或;(2)5k <-或1k >.【分析】(1)首先求集合B ,再求U A 和U B ,再求集合的运算;(2)首先讨论集合M 是空集和非空集两种情况,再分别列不等式求解. 【详解】解:(1)因为全集U =R ,集合{4A x x =<-或1}x >,,{|312}B x x =-≤-≤, 所以23{|}B x x =-≤≤{|41}U x x A =-≤≤{2U B x x =<-或3}x >所以{|13}A B x x =<≤∩ ()()(){|1U U U A B A B x x ⋃=⋂=≤或3}x >,(2)因为集合{|211}M x k x k =-≤≤+是集合A 的子集,所以①当M =∅时,211k k ->+,解得2k >;②当M 时,21114k k k -≤+⎧⎨+<-⎩或211211k k k -≤+⎧⎨->⎩解得:5k <-或12k <≤综上所述:实数k 的取值范围是5k <-或1k >.【点睛】易错点睛:(1)已知子集关系求参数时,要记得讨论空集的情况,这是本题的易错点. (2)集合的交并补运算,需审题清楚,注意端点值的开闭,涉及复杂运算时可以参考补集运算的经典结论:()()()U U v A B A B ⋃=⋂,()()()U U v A B A B ⋂=⋃;22.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a .【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B ,(2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案.【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈,当0a =时,{|10}A x x =-<<,276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆,分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立;②,当12a a -<时,即1a >-时,A ≠∅,若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a .【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题.23.(1){a|a≤7};(2){a|a <6或a >152} 【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围【详解】(1)若A =∅,则A∩B =∅成立.此时2a +1>3a -5,即a <6. 若A≠∅,则2135{2113516a a a a +≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B =∅的实数a 的取值范围是{a|a≤7}.(2)因为A ⊆(A∩B ),且(A∩B )⊆A , 所以A∩B =A ,即A ⊆B . 显然A =∅满足条件,此时a <6.若A≠∅,则2135{351a a a +≤--<-或2135{2116a a a +≤-+> 由2135{351a a a +≤--<-解得a ∈∅;由2135{2116a a a +≤-+>解得a >152.综上,满足条件A ⊆(A∩B )的实数a 的取值范围是{a|a <6或a >152}. 考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用 24.(1)R (2)106m <≤或413m ≤≤ 【分析】(1)求出集合A ,B ,根据集合的并集运算即可;(2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围.【详解】由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞,所以{|04}B x x =<,所以A B R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C A B ⊆, 所以0132m m <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤, 故实数m 的取值范围106m <≤或413m ≤≤. 【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 25.(1)()[)4,1U AB =--(2)[)3,-+∞ 【分析】(1)先化简集合A ,再求()U A B ∩;(2)先求出[)4,A B =-+∞,得14a -≥-,解不等式即得解.【详解】(1)由题得[]4,2A =-,[)1,B =-+∞,(,1)U B =-∞-, 所以()[)4,1U A B =--;(2)由题得[)4,A B =-+∞,若C A B ⊆⋃,则14a -≥-,所以3a ≥-. 所以a 的取值范围是[)3,-+∞.【点睛】本题主要考查集合的运算和关系,意在考查学生对这些知识的理解掌握水平.26.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}0,1,2,3,4A =,集合{}R 326xB x =∈<,则A B =( )A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,33.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,36.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤10.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,211.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________.20.设全集{}0,1,2U =,集合{}0,1A =,在UA______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.已知函数()()4log 526f x x x =--()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求:(1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.A 【解析】 【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可. 【详解】由333262log 26log 273xx <⇒<<<=,因此A B ={}0,1,2, 故选:A 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤; 故选:B 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=.8.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D9.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.A 【解析】 【分析】由交集运算直接求出两集合的交集即可.由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得22a =± 故答案为:22± 19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1a A ∈, 当2a =-1a 无意义,不满足题意;当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃23.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭24. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 25.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得;(2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2},∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >. 28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .29.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解;(2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案; (2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂. (1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。
集合测试题及答案
集合测试题及答案一、选择题1. 集合A={1, 2, 3, 4, 5},集合B={4, 5, 6, 7, 8},则A与B的交集A∩B是:A. {1, 2, 3}B. {4, 5}C. {6, 7, 8}D. ∅2. 设集合C={x | x是质数},集合D={x | x是偶数},则C与D的并集C∪D是:A. {2, 3, 5, 7}B. {1, 2, 3, 4, 5}C. {2, 3, 5, 7, 9}D. ∅3. 若集合E={x | x是小于8的正整数},集合F={x | x是3的倍数},则E与F的补集∁_{U}(E∩F)在全集U={1, 2, 3, 4, 5, 6, 7, 8, 9}中表示为:A. {1, 2, 4, 5, 6, 7}B. {3, 6, 9}C. {1, 2, 4, 5, 6, 7, 8}D. {2, 4, 6, 8}二、填空题4. 设集合G={0, 1, 2},集合H={1, 3, 4},求G与H的对称差,即G△H = ______。
5. 集合K={x | x是小于10的正整数},集合L={x | x是2的整数幂},则K与L的交集不包括的元素是 ______。
6. 给定集合M={x | x是4的倍数},集合N={x | x是5的倍数},求M与N的差集,即M\N = ______。
三、简答题7. 描述集合的运算性质,并给出两个例子说明。
答:集合的运算性质包括交换律、结合律、分配律和德摩根律。
例如,交换律指的是集合的并集和交集不依赖于集合的顺序,如A∪B = B∪A,A∩B = B∩A。
结合律意味着并集和交集的运算可以分步进行,如(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
德摩根律指的是补集的补集是原集合,如∁_{U}(∁_{U}(A)) = A。
8. 解释什么是集合的幂集,并给出一个例子。
答:集合的幂集是指原集合所有子集构成的集合。
例如,集合P={a, b}的幂集是{{a}, {b}, {a, b}, ∅},它包含了P的所有可能子集。
高中数学新教材必修第一册第一章《集合》综合测试题(附答案)
新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。
其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。
(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)
集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2} C.{x|2≤x<3} D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6} C.{3,7} D.{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2 } C.{x|0<x≤2}D.{x|-1≤x≤2} 4. 满足M⊆{,,,},且M∩{,,}={,}的集合M的个数是() A.1 B.2 C.3 D.45.集合A={0,2,a},B={1,}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.46.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A.ØB.{x|x<-1/2} C.{x|x>5/3} D.{x|-1/2<x<5/3} 7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1,},B={a-5,1-a,9},若A∩B={9},求a的值.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},求x及A∩B. 12.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.35. B.25 C.28. D.15.
9.集合 A={a²,a+1,-3},B={a-3,2a-1,a²+1},若 A∩B={-3},则 a 的值是( )
A.0
B. -1
C.1
D.2
10. 若集 A {x | kx2 4x 4 0} 合中有且仅有一个元素,则实数 k 的值为(
A. {x|x<0} B.{x|-2≤x<0} C.{x|x>3}
D.{x|-2≤x<3}
5.若集合 M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则 M∩N=( )
A.{-1}
B.{0} C. {-1,0}
D. {-1,0,1}
6.设 U={n|n 是小于 9 的正整数},A={n∈U|n 是奇数},B={n∈U|n 是 3 的倍数},则∁U(A∪B)
15.(8 分)已知集合 M={-2,3x2+3x-4,x2+x-4},若 2∈M,求 x.
16. (8 分)已知全集 U=R,集合 A={x|3≤x<7},B={x|2<x<10},求∁U (A∪B)、∁U (A∩B)
17.(7 分)某班有学生 55 人,其中体育爱好者 43 人,音乐爱好者 34 人,还有 4 人既不爱
17.解:设该班既爱好体育又爱好音乐的有人数为 x 人,则(43—x)+x+(34—x)=55,
X=26. 答:该班既爱好体育又爱好音乐的有人数为 26 人。
18. 解:∵B⊆A,∴m2=2m-1, m2-2m+1=0, m=1.
3
13. {1,2,3,4}
1
14. 3 、—
2
三、解答题
15.解:∵2∈M,∴3x2+3x-4=2 或 x2+x-4=2,即 x2+x-2=0 或 x2+x-6=0.
⑴.若 x2+x-2=0 x=-2 或 x=1。x=-2 时,M={-2,2,-2},与集合元素的互异性矛盾;
x=1 时,M={-2,2,-2},M={-2,2,-2},与集合元素的互异性矛盾。
)
A. k {0}
B. k {1} C. k {1, 0}
D. k {1,1}
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
11.用“∈”或“ ”填空.
1
1
(1)3.14 ______Q; (2)3 ______Z; (3)-2 ______R;
(4)1 ______N*; (5)0 _______N. 12.由下列对象组成的集体属于集合的是________(填序号). ①不超过 3 的正整数;②高一数学课本中所有的难题; ③中国的大城市;④平方后等于自身的数;
1
⑤某校高一(2)班中考数学成绩在 90 分以上的学生.
13.设集合 A 1, 2, B 1, 2,3,C 2,3, 4, (A) B C
.
14.A={2, -1,x²-x+1},B={2y, -4,x+4},C={-1,7},A∩B=C,则 x,y 的值分别是__ 、_ 。 三、解答题(本大题共 4 小题,共 30 分)
A.{ —2,-1,0,1}B.{ —3,—2,-1,0} C. {—2,-1,0} D.{ —3,—2,-1}
3.已知全集 U={-1,0,1,2}, 集合 A={-1,2},B={0,2},则(∁UA)∩B=( )
A.{0} B.{2}
C. {0,1}
D.{-1,1}
4.若全集 U=R,集合 M={x|-2≤x≤2},N={x|0≤x≤3},则 M∩(∁UN)=( )
=( )
A. {2,4}
B. {2,4,8}
C. {3,8}
D. {1,3,5,7}
7.若{1,2} A {1,2,3,4,5},则这样的集合 A 有( )
A.6 个
B.7 个
C.8 个
D.9 个
8.高一(3)班 50 名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格 40 人和 31 人,
高一上学期数学测试一(集合)
(时间:45 分钟,满分 100 分)
班级
姓名
得分
一、选择题(本大题共 10 小题,每小题 5 分,共 50 分)
1.下列几组对象可以构成集合的是( )
A.充分接近 π 的实数的全体 B.善良的人 C.某校高一所有聪明的同学
D.某单位所有身高在 1.7 m 以上的人
2.已知集合 M={ x|-3<x<1}, N={—3,—2,-1,0,1},则 M∩N=( )
好体育也不爱好音乐,求该班既爱好体育又爱好音乐的有人数。.
18.(7 分)已知集合 A={-1,3,2m-1},集合 B={3,m2} ,若 B⊆A,则实数 m 的值。
2
高一上学期数学测试一(集合)参考答案
一、选择题
题号 1
2
3
4
5
6
7
8
9
10
答案 D
C
A
B
C
B
C
B
B
C
二、填空题
11. ∈ ; ; ∈ ; ∈ ; ∈ . 12. ①④⑤
⑵.若 x2+x-6=0 x=-3 或 x=2。x=-3 时,M={-2,14,2},符合题意;x=2 时,
M={-2,14,2},符合题意。
∴要求的 x=-3 或 x=2。
16.解:A∪B={x|2<x<10},A∩B={x|3≤x<7}, ∁U (A∪B)= {x|x≤2 或 x≥10},∁U (A∩B)= {x|x<3 或 x≥7}.