最新第二节非线性光学极化率
非线性光学极化率的经典描述
2.光与物质相互作用关系 当一个光电场入射到介质体系中时,由于介质体系是由大 量的多种荷电粒子,如电子、原子实及离子等构成,它们 在外光电场的作用下会发生位移,这就会在介质中产生感 应的电极化强度。
P(r, t ) 0 (1) E(r, t )
配合电磁波在介质中传播的波动方程
E (r , t ) 2 E (r , t ) 2 P(r , t ) 2 E (r , t ) 0 0 0 0 0 2 t t t 2
• 相干辐射产生的另一个效应即是受激布里渊散射(SB S),当激光束射入晶体材料后,利用高分辨率光学干涉仪 器观察到在入射激光线的近旁存在着几条亮度很高的辐射线, 频差在1cm-1以下,这是与晶体等材料中声学波相联系的 SBS效应。
• 与SHG效应有联系的一些效应如和频(SFG)、差频 及光学参量振荡(OPO)也陆续地被发现。利用晶体材料 的双折射效应以补偿折射率的色散,人们在许多晶体中,如 KDP, ADP,LiNbO3及LiIO3 ,实现了有效 的相位匹配并得到有很高转换效率的相干辐射。利用和频, 可以对相干辐射频率进行蓝移,而利用差频及光学参量振荡 可以将可见激光转换至红外波段。这就为人们扩展相干辐射 的波段范围又提供了几种新的方法。
•非线性光学效应的定义如下:凡物质对于外加电磁场 的响应,并不是外加电磁场振幅的线性函数的光学现 象,均属于非线性光学效应的范畴。
1.非线性光学的早期10年(1961—1970) 非线性光学的一个重要发展时期是早期的10年。
1961年,Franken将红宝石激光束入射到石英片上,确证 了新的SHG效应。SHG效应的发现极大地促进了无机 晶体材料在相干辐射产生中的应用,具有重要的意义。 1962年Woodbury在使用硝基苯材料研究调Q红宝 石激光器时发现,从激光器出射的谱线中,除了红宝石的 激光线外,还有另一条处于红区的766nm谱线。而且 这条出射光束具有与红宝石激光束同样的传播方向和小的 发散角。随之人们即分析出,这是与硝基苯的分子振动密 切有关的一种新的相干辐射,即受激拉曼散射SRS。
非线性光学(NonlinearOptics)非线性极化率张量(Nonlinear
• 为了找出 中C3和 为ω的AC电场驱动下电子运动方程的近似解。
acceleration 驱动电场:
电子位移: 且满足:
damping
restoring force
尝试解
二、光学非线性的物理起源
• 此时单位时间内减少的光子数目为
,即净吸收速率。
• 随着光束在介质中的传播,其强度逐渐减小:定义z处的光强为I(z),dz内光强的变化 为dI ,此时有 。 • 由于光束强度定义为单位时间在单位面积上通过的能量(W m-2),有 ,即 。
• 进一步得到
。
二、光学非线性的物理起源
Resonant nonlinearities 共振非线性
Non-resonant nonlinearities 非共振非线性
• 进一步得到
。 • 此时在频率2ω处的偏振为 • 另外在频率2ω处的偏振由频率为ω的驱动电场转换而来,可得到 。
。
• 由上面三式,最终得到
的非简谐项C3成正比。 Miller’s Rule
,即二阶非线性极化率与运动方程中
•当ω趋近于ω0时,
三、二阶非线性
晶体对称性效应 • 比如,中心对称晶体 (centrosymmetric)具有反转对称性,在施加单一电场 时,非线 性偏振 况不变。 的分量可表示为 ,即电场方向反转时情
• 另外,由晶体的反转对称性,在场方向不变而反转晶体时,所有的物理过程相同。
在晶体的坐标轴变化下,所有的 和 的分量变化符号,从而得到
• 在光波的AC电场驱动下,电子在正周期的位移要小于负周期的位移。
(非线性光学课件)第二章 非线性光学极化强度和极化率的经典
因果关系
因果关系: 任意时刻t1的光场E(t1)都会对其后时刻t的极 化强度产生贡献。
dP(1) (t) 0R(1) (t, t1) E(t1)dt1
线性响应函数
时刻t介质的极化强度P(t)是所有t时刻之前介质对光场
响应的积累
t
P(1) (t)
R(1)
0
(t
,
t1
)
E(t1
)dt1
线性响应函数的特性:
t3)
E(t1)E(t2 )E(t3)dt1
极化强度与极化率张量
t
P(1) (t) 0R(1) (t t1) E(t1)dt1
P(1) (t) 0R(1) ( ) E(t )d
t t
0
P(2) (t)
R(2)
0
(t
t1,
t
t2
)
:
E(t1
)E(t2
)dt1dt2
P(n) (t) d
P(1) (t)
R(1)
0
(t
t1)
E(t1)dt1
因果关系
类似地,t1、t2时刻的电场对t时刻媒质的极化强 度也有贡献,这种贡献可以写成:
dP(2) (t) 0R(2) (t t1, t t2 ) : E(t1)E(t2 )dt1dt2
P(2) (t)
dt2
R(2)
0
(t
t1
,
电极化率可以理解为耦合系数。
在非线性光学中, 由于极化强度P与电场强度E之间是非线性关系,
或者说与光电场的强度有关, 因此,电极化率就与光电场强度或者说与光电场的强度有关。
2
介质分为光学上各向同性介质和各向异性介质。
第1章 非线性光学极化率的经典描述n
第1章 非线性光学极化率的经典描述
1.1 极化率的色散特性
1.1.1 介质中的麦克斯韦方程
由光的电磁理论已知, 光波是光频电磁波, 它在介
质中的传播规律遵从麦克斯韦方程组:
B E t D H J t D H 0
(r)
1 1 2 2 r r
第1章 非线性光学极化率的经典描述
如果组成光波的各个频率分量是不连续的,则极化强 度表示式中的积分由求和代替,表示为
P(1) (t ) 0 (1) (n ) E(n )eint
n
(1.1 - 39)
P(2) (t ) 0 (2) (m , n ) : E(m ) E(n )ei (m n )t
P (t ) 0 d1 d2 ( 2) (1, 2 ) : E (1 ) E (2 )ei (1 2 )t
(1.1 - 35)
第1章 非线性光学极化率的经典描述
并与(1.1 - 34)式进行比较, 可以得到二阶极化率张量 表示式为
(1,2 ) d1 d 2 R( 2) (1, 2 )ei (
参考书:
1、《非线性光学》
2、《量子电子学》 3、《非线性光学》
石顺祥 等著
A. 亚里夫 著 沈元壤 著 刘颂豪 等译
光与物质相互作用的半经典理论:
非线性光学现象的理论描述涉及到激光辐射场与物
质相互作用的问题,通常采用半经典理论处理。
第1章 非线性光学极化率的经典描述
第1章 非线性光学极化率的经典描述
以, 下面给出(r)和(r)mic在c.g.s./e.s.u.单位制中的单位:
第1章非线性光学极化率的经典描述2
(1.2 - 14) (1.2 - 15) (1.2 - 16)
第1章 非线性光学极化率的经典描述 章
e r1 = − E (ω ) exp(−ιωt ) F (ω ) + C.C. m
(1.2-17)
e2 r2 = 2 AE 2 (ω ) exp( −2ιω t ) F ( 2ω ) F (ω ) F (ω ) m e2 (1.2-18) + 2 AE (ω ) E * (ω ) exp( −2ιω t ) F (ω ) F ( −ω ) F (0) + C .C . m
第1章 非线性光学极化率的经典描述 章
P (t ) =
∑
∞
P ( k ) (t )
(1.2-20) (1.2-21)
k =1
P
(k )
(t ) = − nerk (t )
P ( 2) (t ) = −ner2 (t ) ne 3 = − 2 AE 2 (ω ) exp(−2ιωt ) F (ω ) F (ω ) F (2ω ) m (1.2-22) ne 3 − 2 AE (ω ) E * (ω ) F (ω ) F (−ω ) F (0) + C.C. m
则
1
ω − ω − 2ihω
2 0 2
(1.2 - 8)
ne2 (1) F (ω ) = χ ′(ω ) + iχ ′′(ω ) χ (ω ) = ε 0m
式中
(1.2 - 9)
ω02 − ω 2 ne 2 χ ′(ω ) = ε 0m (ω02 − ω 2 ) 2 + 4h 2ω 2 2 ne 2 hω χ ′′(ω ) = ε 0m (ω02 − ω 2 ) 2 + 4h 2ω 2
非线性光学-第二章
(
)
(
v v 1 3 2 3 (2) (1 ) (3) P = ε 0 x E 0 + (ε 0 x E 0 + ε 0 x E 0 ) cos ω t − k ⋅ r 4 2
(
) )
v v 1 v v 1 2 3 (2) ( 3) + ε 0 x E 0 cos 2ω t − 2 k ⋅ r + ε 0 x E 0 cos 3ω t − 3 k ⋅ r + L 2 4 = P ( 0 ) + P (1) + P ( 2 ) + P ( 3 ) + L
(
)
(
)
(
Hale Waihona Puke ) ()和频
差频
举例三:若光场 由一系列频率为 由一系列频率为ω 举例三:若光场E由一系列频率为ω1, ω2, …ωN的单色光组成,同 ω 的单色光组成, 方向入射到电介质中,电极化强度P又如何表示呢? 方向入射到电介质中,电极化强度 又如何表示呢?
v v 第i个光场表示为 Ei = E0i cos(ωi t − ki ⋅ r ) 个光场表示为
为简单起见,上式先假定 为简单起见,上式先假定E, P及各阶极化率χ(i)均为标量 及各阶极化率 ) v v 举例一: 举例一:假设入射光场为单频余弦波 E = E0 cos ωt − k ⋅ r
(
)
将入射光场代入极化强度表达式中
v v v v v v 2 3 ( 2) 2 (3) 3 P = ε0 x E0 cos ωt − k ⋅ r + ε0 x E0 cos ωt − k ⋅ r + ε0 x E0 cos ωt − k ⋅ r +L
(1)
非线性光物理第二章
02
1
2
2ih
如果引入符号:
F ( )
02
1
2 2ih
(1)() ne2 F() () i() 0m
( )
ne2
0m
(02
02 2 2 )2 4h2 2
(
)
ne2
0m
(02
当电场强度 E 很大时(强光)
P 0 (1)E (2)E2 (3)E3
—— E 和 P 呈非线性关系
(1)—— 线性极化率
( 2) —— 二次(阶)非线性极化率
( 3) —— 三次(阶)非线性极化率
可以证明,各次极化率间有如下关系:
(2) (1)
2
2
(2)
3 1 2
1
1
两个入射光场:
2
1
3
光参量振荡(Optical Parametric Oscillation) 一个入射光场
三次谐波(Third-harmonic Generate)
一个入射光场
非线性折射(Nonlinear Refraction)
The total polarization can be written as
1111
1.2×10-17
Response time
CO2
GaAs (bulk room temperature) CdSxSe1-x doped glass
GaAs/GaAlAs (MQW)
1.9×10-12 6.5×10-4
10-8 0.04
2 Ps 20 ns 30 ps 20 ns
非线性光学极化率的描述n.pptx
(2)
i (112 2 )
1 2
12
• 同理, 若将r阶非线性极化强度表示为
(1.1 - 36)
r
P(r) (t) 0
d1
d
2
dr
(
r
)
(1,2
,,
r
)
|
E
(1
)
E
(2
)
E
(r
i
)e
mt
m 1
(1.1 - 37)
式中, (r)(ω1,ω2,…,ωr)与E(ω1)之间的竖线表示 r 个点, 则第r阶极化率张量表示式为
有关, 这种 与波矢 k 的依赖关系, 叫做介质极化率的空间色散, 其空间色散关系
可以通过空间域的傅里叶变换得到。
•
因为在光学波段,光波波长比原子内电子轨道半径大的多通常,空间色
散可以忽略 。
第17页/共37页
• 极化率的单位
•
上面引入了宏观介质的极化率(r), 实际上在文献中还经常用到单个
原子极化率这个参量, 我们用符号(r)mic表示。 宏观极化率与单个原子极化率
(1.2 - 6)
(1) ()
P( ) 0 E ( )
ne2
0m
02
1
2
2ih
(1.2 - 7)
第22页/共37页
如果引入符号
则
F
(
)
02
1 2
2ih
(1)() ne2 F() () i() 0m
(1.2 - 8) (1.2 - 9)
• 式中
( )
ne2
0m
(02
02 2 2 )2 4h2 2
/0
第2章 非线性光学极化率的量子力学描述n
(3.16-5a)
i [ , H ] t
通常用此密度矩阵运动方程来描述原子系统与辐射场的相互作用。
(3.16-5)
第2章 非线性光学极化率的量子力学描述
2.9 二能级原子系统的极化率
参见亚里夫的《量子电子学》
采用半经典的密度矩阵理论研究原子系统与光辐射场相互作用。
8.1 原子极化率的密度矩阵推导
Re 21
T2 ( 11 22 ) 0 1 ( 0 ) 2 T22 4 2T2
(8.1-15)
(0 )T22 ( 11 22 ) 0 1 ( 0 ) 2 T22 4 2T2
(8.1-15)
1 (0 ) 2 T22 11 22 ( 11 22 ) 0 1 ( 0 ) 2 T22 4 2T2
nm1 N s * 来自 c c (c m ) c n N s1
* m n
密度矩阵用于描述系综状态的几率特性。对角项 nn 描述系综中一个系统处于
un
* 态的几率;非对角项 nm 等于 cm cn 的系综平均。在讨论光与物质相互作用时,
光场诱导分子(原子 )极化与密度矩阵 nm 有关,而不需要知道精确的波函数。
* it ( 21 e 21e it )
[(Re 21 i Im 21 )(cost i sin t ) (Re 21 i Im 21 )(cost i sin t )] 2[Re( 21 (t ) cost Im 21 (t ) sin t )
第2章 非线性光学极化率的量子力学描述
第2章 非线性光学极化率的量子力学描述
2.1 密度算符及其运动方程 2.2 非线性极化率的微扰理论 2.3 近独立分子体系的极化率张量及性质 2.4 分子间有弱相互作用介质的极化率张量 2.5 共振增强的极化率 2.6 准单色波的非线性极化
非线性光学 非线性光学极化率与性质
Kramers-Kronig色散关系 极化率 是一个复函, 1 ' i '' ,其 实部和虚部之间的关系称为Kramers-Kronig色散关 系。 '' 1 ' P.V . d ' 1 '' P.V . d
假设波的振幅随空间和时间缓慢变化,即满足以下慢 变近似条件:
2 A( z, t ) A( z, t ) k z 2 z
和
2 A( z, t ) A( z, t ) t 2 t
可以在波动方程中略去场振幅的二阶时间导数和 二阶空间导数,从而得到以下一阶的波方程:
2 A( z, t ) 1 A( z, t ) ik0 PNL ( z, t )e i ( kzt ) z v t 2 0 k
波动方程变为
2 k0 d2 d ( 2 i 2k )E( z ) P NL ( z)ei ( k 'k ) z dz dz 0
假设:在波长量级的距离内光波振幅的变化非常慢,即
则
d 2 E( z ) dE ( z ) k dz 2 dz
2 ik dE( z ) ik02 NL i i ( k 'k ) NL ikz 0 P ( z )e P ( z )e P NL ( z )eikz dz 2 0 k 2 0 k 2 0 nc
极化率的实部和虚部分别对应于介质的色散和吸收,分别 描述介质中光波的位相和振幅的变化,色散关系表明,我 们可以通过介质的色散或吸收而得到另外一个物理量。
1
13/35
非线性极化率张量
P
2
t 0 d1 d 2 R 1 , 2 : E t 1 E t 2
非线性光学第二章第5-6节(打印PDF版)
第二 章
§2.5 非线性极化率张量元的基本特性(二阶为例)
§2.6 二阶非线性极化率张量的简化形式
§2.5 非线性极化率张量元的基本特性(以二阶为例) 一, 研究极化率张量元基本特性的必要性
非线性极化率是一个张量。一个 n 阶非线性极化率张量具有3(n+1)。研究张量元基本特性,如
对称特性,便可以大大简化张元数目。 完整地描述物质的非线性特性,必须了解不同频率的各外场通过介质所发生的相互作用对极化场
(ω1
+ω2
,
ω1
,
ω2
)E2
(ω1
)E1
(ω2
)
---(2.5-12)
+
χ (2) 122
(ω1
+ω2
,
ω1
,
ω2
)E2
(ω1
)E2
(ω2
)
+
χ (2) 123
(ω1
+ω2
,
ω1
,
ω2
)E2
(ω1
)E3
(ω2
)
+
χ (2) 131
第2讲 非线性极化率理论和非线性极化率性质
同理,三阶非线性极化率:
4 Ne b 1 (2) (3; , , ) 0 m3 F 3 F 3
非线性极化率的正式定义
0
’/ ”max
-0.5 -3 -2 -1 0 1 2 3
-0
非简谐振子模型(Anharmonic Oscillator model)
对于非中心反演对称材料:
非简谐势能函数 V (u ) 恢复力
Non-centrosymmetric Potential
1 1 2 2 m0 u mDu 3 2 3 V 2 2 F (u ) m0 u mDu u
P(2) (2) 0 (2) E2 ()
3 Ne D 1 (2) 2; , 0 m2 F 2 F 2
二阶非线性极化率与线性极化率之间的关系
2 3 Ne 1 Ne D 1 (1) (2) ( ) (2; , ) 0 m F 0 m2 F 2 F 2 2 m 0 D (2) (2; , ) (2)
-
简谐阵子势 能曲线
简谐振子模型(Harmonic model)
阻尼系数
d u du e 2 2 u= E 0 2 dt dt m
eE 1 解出 u1 2 m 0 2 2i
2 Ne E 1 1 P () Neu1 () 2 m 0 2 2i
m 1, 2; n 1, 2 ; 一般的,
m 角频率和电场:
* m ; E m E m E m
二阶非线性极化强度重写为:
张毅 第三章 二阶非线性光学效应1资料讲解
☆
dE3(z) dz
2ic3n3 Deˆ3
χ(2)(3;1,2):eˆ1eˆ2E1E2exp(ikz)
dEd1z(z) dEd2z(z)
i2Dcn11 (2)(1;2,3)E2*(z)E3(z)expi(kz)
i
D2
2cn2
(2)(2;3,1)E3(z)E1*(z)expi( kz)
(E1E1*E2E2*)
可以用一个简单公式来概括, 即将二阶极化强度在频域内进行傅里叶展开
P (2)(t) P (n)ex i pnt)(
n
9
P (2)(t) P (n)ex i pnt)(
☆
n
这些频率成分以及它们对应的二阶非线性效应如下
PPP(((221 21))2)002((22)) EE01222(2)E1E2 P(1 2) 20(2)E1E2* P(0) 20(2)(E1E1* E2E2*)
4
本章将推导此方程组,
☆
并应用此方程组研究几种典型的二阶非线性光学效应:
光学倍频、和频、差频、参量过程,
推导出这些过程的光功率效率公式。
相位匹配和相位失配是非线性光学的重要概念, 相位匹配实质上是指光电场与介质没有动量交换, 即所谓的“动量守恒”;
相位失配就是光与介质之间有动量交换。
本章以二阶效应为例, 给出相位匹配的概念,相位匹配的条件, 以及实现相位匹配的方法。
eˆ3
χ(2)(3;1,2):eˆ1eˆ2
极化率的三个分量写成如下标量形式
( 2 ) (1 ; 2 ,3 ) e ˆ 1 χ ( 2 ) (1 ; 2 ,3 ) :e ˆ 2 e ˆ 3
( 2 ) (2 ;3 , 1 ) e ˆ 2 χ ( 2 ) (2 ;3 , 1 ) :e ˆ 3 e ˆ 1
非线性光学非线性极化率的微观表示
H0i Eii
(i 1,2,n)
(3.2)
Ei为定态Φi的能量
将 向这组基函数展开 : cii (3.3) i
密度矩阵:
ρ cicj
i 1,2,,n j 1,2,,n
(3.4)
密度算符: ρ | |
(3.5)
▲因为 ij i | ρ | j i | | j cicj (3.6)
t
1 i
{[H
0
,
ρ
(1)
]
[Hint
,
ρ
(0)
]}
ρ (1)
t
T
(3.22)
ρ (2)
t
1 i
{[H0
,
ρ
(
2)
]
[Hint
,
ρ
(1)
]}
ρ (
t
2)
T
(3.23)
······
ρ (n)
t
1 i
{[H
0
,
ρ
(n)
]
[Hint
,
ρ
( n 1)
]}
ρ (
t
n)
T
(3.24)
······
(n) (i )
]}
ρ (2)
t
T
(3.22) (3.23)
ρ (n)
t
1 i
{[
H0
,
ρ
(
n)
]
[Hint
,
ρ
(
n1)
]}
ρ (n
t
)
T
······
逐级求出 (1) , (2) , (n) ,
P P(1) P(2) P(n)
二阶非线性光学极化率
晶体光学基础:张量、晶系、点群
电光效应:电致双折射
声光效应:声波→应变→弹光效应→折射率光栅→声光衍射
热光效应:晶体折射率随温度改变而变化
磁光效应:晶体在磁场作用下的旋光现象
非线性光学效应:二阶、三阶,原理及应用
浙江大学光电信息系
集成光电子器件及设计 第三章
7
浙江大学光电信息系
集成光电子器件及设计 第三章
3.2 电光效应 (Electro-Optic Effect)
电光效应指的是晶体在受到低频电场的作用下所产生的光学效应 (介质折射率变化),也称人工双折射。
1 线性电光效应(Pockels效应): 2 E n
1 2 E2 二次电光效应(Kerr效应): n ,各向同性介质中也可 以存在存在,而在各向异性介质中Kerr效应比Pockels效应小好几 个数量级。
集成光电子器件及设计 第三章
6
张量的定义
一种描述各向异性性质的数学方 法就是张量方法。 ζij称为晶体中的电导率张量,是 一个二阶张量,共有9个分量, 由于对称性,其中6个是独立的, 且根据其对称性的增加,独立的 个数会进一步减少。 其它的一些二阶张量有:介电常 数 εij ,热导率 kij ,电极化率 χij 。 压电系数,电光系数为三阶张量, 弹性模量为四阶张量。
J1 11 E1 12 E2 13 E3 J 2 21 E1 22 E2 23 E3 J E E E 31 1 32 2 33 3 3
J i ij E j
j 1
3
11 12 13 ij 22 23 21 31 32 33
第2章非线性光学极化率的量子力学描述
因为力学量o是任意的, 所以, 如果令o=1, 则上式也应成 立。 这样就有
1 1 tr{ˆ}
即密度算符的迹等于1,
tr{ˆ} 1
第2章 非线性光学极化率的量子力学描述
2) 热平衡状态的密度算符 对于所讨论的实际问题, 总是认为系统开始处于热 平衡状态, 然后才受到外加光波作用。 由于密度算符的迹等于1, 所以热平衡状态下的密 度算符的迹也应等于1, 即
)
Rˆ
}
(2.2 - 38)
第2章 非线性光学极化率的量子力学描述
按(2.2 - 25)式, 有
H1I (t) Uˆ0(t)Hˆ1(t)Uˆ0(t) Uˆ0(t)[Rˆ E(t)]Uˆ0(t)
式中 Rˆ I (t) Uˆ0(t)RˆUˆ0(t)
(2.2 - 39)
(2.2 - 40)
是电偶极矩在光电场E(t)中的附加能量。 如果引入符号
ψ1, ψ2, …, ψn, … 相应的几率为
p1, p2, …, pn, …
第2章 非线性光学极化率的量子力学描述
在这种情况下, 就要从量子力学范围过渡到量子统 计的范围去讨论问题。 按(2.1 - 29)式, 系统处在各 可能状态上的力学量o的平均值分别是
tr{Pˆ(1)oˆ},tr{Pˆ(2)oˆ},,tr{Pˆ(n )oˆ},
第2章 非线性光学极化率的量子力学描述
第2章 非线性光学极化率的量子力学描述
2.1 密度算符及其运动方程 2.2 非线性极化率的微扰理论 2.3 近独立分子体系的极化率张量及性质 2.4 分子间有弱相互作用介质的极化率张量 2.5 共振增强的极化率 2.6 准单色波的非线性极化 2.7 带电粒子可自由移动介质的极化率 2.8 有效场极化率 2.9 二能级原子系统的极化率 习题
第二章 非线性光学极化率(2)
2.2非线性极化率的经典非简谐振子模型1.物理模型采用Lorentz 模型来研究介质的非线性极化率。
设介质中含有振荡频率为0ω的振子集合,单位体积内共有N 个振子。
如图所示,在外加电场)(t E 作用下,原子中的电子做强迫振动。
恢复力和外加光电场为3220mBr mAr r m F ++ω-= (2.17)..)exp()()(21C C t i E t E +ω-ω= (2.18)图2.15 Lorentz 振子模型电子运动方程为eE mBr mAr r m dt dr m dtr d m -=--ω+Γ+3220222 (2.19)这里r 是电子偏离平衡位置的位移,左边第二项为弛豫力。
Lorentz 模型的不足之处是只用一个共振频率0ω来描述每一个原子。
事实上,每一个原子有许多本征能级,因而应有许多共振频率。
它不能描述非线性极化率的完全共振特性。
但它也能体现非线性极化率的一些特性。
2.数学技巧:微扰迭代法(2.19)式没有解析解,可采用微扰迭代方法来求解。
其思想是,我们总可以将r 展开成E 的幂级数+++=)()()(33221E r E r E r r (2.20)因此就能得到关于1r 、2r 和3r 的迭代微分方程组。
将(2.20)式代入(2.19)式,得到一系列方程中最低阶次的三个方程为()..)exp()(221201212C C t i E m e r dt dr dt r d +ω-ω-=ω+Γ+ (2.21a) 2122022222Ar r dt dr dtr d =ω+Γ+(2.21b)3121320323222Br r Ar r dt dr dtr d +=ω+Γ+ (2.21c) 先看(2.21a)式,它是关于t 的线性方程。
令..)exp(211C C t i q r +ω-= (2.22) 解得)()(ωω-=F E meq (2.23) 其中ωΓ-ω-ω=ωi F 21)(220(2.24)于是⎥⎦⎤⎢⎣⎡+ωω-=ω-..)()(211C C e F E m e r ti (2.25) 再看(2.21b)式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 非线性光学极化率一 密度矩阵表述法(一)刘维方程: 非线性光学极化率是介质的特征性质――与介质的电子和分子结构的细节有关――量子力学计算――密度矩阵表述法――最方便的方法,特别当必须处理激发的弛豫时. 令ϕ是在电磁场影响下物质系统的波函数.密度矩阵算符:ϕϕρ= (2.1.1) 物理量P 的系综平均由下式给出:()P Tr P Pρϕϕ== (2.1.2)[]ρρ,1H =∂∂i t (2.1.3) 该方程称作刘维方程(Liouville ’s equation ).哈密顿算符H 是由三部分组成: H HH H ++=随机int(2.1.4)1)0H 是未受扰动的物质系统的哈密顿算符,其本征态是n ,而本征能量是nE,nn E Hn =0;2)nt H 是描述光与物质相互作用的相互作用哈密顿算符;3)而随机H 是描述系统周围的热库施于该系统随机的扰动的哈密顿算符.H int 在电偶极矩近似下,相互作用哈密顿算符由下式给定:ntH E r e⋅= (2.1.5)在这里将只考察电子对极化率的贡献. 对于离子的贡献,就必须用—E R q i ii⋅∑代替E r e⋅,其中q i 和i R 分别是第i 个离子的电荷和位置.H 随机 哈密顿算符随机H 是造成物质激发的弛豫的原因,或者换言之,它是造成被扰动了的ρ弛豫回到热平衡的原因. 于是我们可以把式(2.1.3)表示成iht 1=∂∂ρ[]ρ,int 0,H H +弛豫⎪⎭⎫ ⎝⎛∂∂+t ρ(2.1.6)其中 []ρρ,随机弛豫Hiht 1=⎪⎭⎫⎝⎛∂∂ρ的矩阵元的物理意义:将本征态n 作为基矢,并把ϕ写成n 的线性组合: ∑=nn na ϕ,那么,ρ的矩阵元的物理意义就十分清楚了. 矩阵元2annnn n =≡ρρ表示系统在n 态中的布居,而非对角矩阵元*'''a a n n nn n n =≡ρρ表明系统的态具有n和'n 的相干混合.在n 和'n 有混合的情况下,如果a n 与a n '的相对相位是随机的(或不相干的),那么,通过系综平均后就有0'=ρnn 。
寻找(t ∂∂/ρ)弛豫表达式.布居的弛豫是系统与热库的相互作用引起的态之间的跃迁的结果.令W n-n ’是由热引起的丛态n到态'n 的跃迁的速率.于是,n中的过剩布居的弛豫速率应是()tnn∂∂/ρ弛豫=]'''''_[ρρnnn n n n n nn w w→→∑ (2.1.8)在热平衡时,就有 0]_[/)0(')0('''')0(==⎪⎭⎫ ⎝⎛∂∂→→∑ρρρnn n n n n n n n nnw w t (2.1.9)因此,也可以把式(2.1.8)写成()]___[]_[)0(')0('''''')0(⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=∂∂→→∑ρρρρρρnn nn n n n n n n n n n nn w w nn t弛豫 (2.1.10) 非对角元的弛豫更复杂. 然而,在一些简单的情况中,预期相位相干性指数的衰减到零.这样,对于n ≠n ’,我们有ρρ'''nn nn nn t Γ-=⎪⎪⎭⎫⎝⎛∂∂弛豫(2.1.11) 这里'21'1')(nn n n nn T ==ΓΓ--是态n与'n 之间的特征弛豫时间.在磁共振中,布居的弛豫称作纵向弛豫,而非对角矩阵元的弛豫称作横向弛豫. 在某些情况下,态的纵向弛豫能用下式来近似:⎪⎭⎫ ⎝⎛--=∂∂-ρρρρ)0(1)0()(1]_[nn nn n nn nn T t弛豫 (2.1.12) 这样,T 1叫做纵向弛豫时间. 相应的T 2叫做横向弛豫时间.(二)微扰法解刘维方程在计算中采用微扰展开. 令()()()⋅⋅⋅+++=210ρρρρ()()()⋅⋅⋅+++=321P P P P(2.1.13)其中)()()P Tr n n Pρ=( (2.1.14)式中ρ)0(是热平衡的系统的密度矩阵算符,而且我们假设在介质中没有固有极化,因而00=P)(.把ρ的级数展开式代入式(2.1.6),再把nt H 视为一级微扰,相同级的相收集在一起,就得到弛豫⎪⎪⎪⎭⎫ ⎝⎛∂∂++=∂∂H H t i tρρρρ)1()0(int )1(0)1(]),[],([1 弛豫⎪⎪⎪⎭⎫ ⎝⎛∂∂++=∂∂H H t i tρρρρ)2()1(int )2(0)2(]),[],([1 (2.1.15)我们在这里感兴趣的是对能分解成傅立叶分量的场 ∑=E iℰi )exp(t i r i i i ω-⋅K的响应. 于是,由于 )(int int ωi i∑H H =和)exp()(int t i i i i ωεω-∝H算符ρ)(n 也能展开成傅立叶级数 )()()(ωρρi in n ∑=当)(/)()()(ωρωωρi n i i n i t -=∂∂时,就能从式(2.1.15)具体的逐级解出)()ωρi n (.第一级解是)()(')]([)()0()0(''''int )1('ρρωωωωρnnn n nn nn inn i inn i -+-=ΓH (2.1.16)这里我们采用了记号''n A n A nn =. 可以很容易得到更高级的解,尽管这种推倒是冗长乏味的,每当在推导中出现对角元)0()(ρn mm 时,为了得到一个封闭的解,常常必须对式(2.1.8)中的()弛豫t mm ∂∂/ρ作进一步的近似. 我们还需提及,只要0≠+ωωk j 式(2.1.16)中)()2('ωωρk j nn +的表达式即使在n=n ’时也是适用的,因为那时可在计算机中略去弛豫⎪⎭⎫ ⎝⎛∂∂t nn/)2(ρ这一项.二. 非线性极化率的微观表达式非线性极化强度()n p 和非线性极化率()n χ 的完全的微观表达式得到的. 在式(2.1.14)和(2.1.16)中,当H int =e E r ⋅和r Ne P-=时,很容易得到由电子贡献引起的一阶和二阶极化率. 用明显的笛卡儿张量标记,这些极化率就由下列各式给出:一阶: χij(1)=pi1(1)(ω)/E j (ω)=,)()()()()0(2g gn ng ng gn i ng j ng ng gn j ng i i r r i r r e Nρωωωω∑⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧Γ+--Γ++注意:ij =1,2,3 共有9个分量。
二阶:=+=)(21)2(ωωωijkX [])()(/)(21)2(ωωωk J i E E P∑⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛Γ+++Γ+-⨯Γ+--⎪⎪⎭⎫ ⎝⎛Γ+-+Γ++⨯Γ+--Γ++Γ+++Γ++Γ+++Γ+-Γ+-+Γ+-Γ+--=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)0(122121,223.11)()()(11)()()()())(()()()())(()()()())(()()()())(()()()(n n g g g n g n ng ng nn nn gn j n n i ng k ng ng g n g n nn nn gn k n n i ng j g n g n ng ng ng i n n k gn j g n g n ng ng ng i n n j gn k g n g n ng ng g n j nn k gn i gn ng g n k nn j gn i i i i r r r i i i r r r i i r r r i i r r r i i r r r g n i ng i r r r eN ρωωωωωωωωωωωωωωωωωωωωωωωωωωωω (2.2.)在χ)1(ij 中有两项,而在χ)2(ijk中有8项. 注意:χ)2( 有27个分量三阶:χ)3(ijkL (31ωωωω++=),它总共48项. 在文献(5)中给出了χ)3(ijkL的完全表达式,这里就不在重述了. χ)3(ijkL的共振结构以后要在第十四章里讨论.在非共振的情况下,可以忽略式(2.1.17)的分母中的衰减常数. 注意到这时χ)2(ijk的表达式中最后两项变成-+--))(()()()('21''g n ng gn k n n i ng j r r r ωωωω))(()()()(2'1''ng g n gn g n n i ng k r r r ωωωω-+二阶极化率就能被简化成只有6项的形式.当N 表示每单位体积内的原子或分子数时,表达式(2.2.1)实际上对于气体或分子液体或分子固体是比较合适的,而)0(gρ由玻尔兹曼分布所给定. 对于电子性质由能带结构来描述的固体,其本征态是布洛赫态,而)0(g ρ对应于费米分布. 这时χ)1(ij和χ)2(ijk的表达式应作适当的修改. 由于能带的态基本上是连续的,故可忽略去分母中的衰减常数. 在忽略了光子的波矢关系的电偶极矩近似中,对于这样的固体,χ)2(ijk具有形式χ)2(ijk()2ωωω+==-[][]⎰∑⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--⨯',,'223)()(,,',,,,c c v v c cv k j i q q qv r q c q c r q c q c r q v q d eωωωω+[][])()(,,',',,,'1q q qv r q c q c r q c q c r q v v c cv j k iωωωω--+[][])()(,,',',,,2'q q qv r q c q c r q c q c r q v cv v c i j k ωωωω++ +[][])()(,,',',,,1'q q q v r q c q c r q c q c r q v cv v c i k j ωωωω+++[][])()(,,',',,,'21q q qv r q c q c r q c q c r q v v c cv k i jωωωω+-+[][])()(,,',',,,2'1q q qv r q c q c r q c q c r q v cv v c j i kωωωω-+(2.2.2)式中q 表示电子波矢,v,c,和c ’是带的指标,而)(qf v 是态q v,的费密分布因子. 对于凝聚态物质,应存在一个由感生的偶极矩-偶极矩相互作用产生的局域场. 于是一个局域场修正因子()n L 要作为一个乘数因子出现在()n χ中. 我们将在第四节中较仔细的讨论这种局域场修正. 对于固体中其波函数扩展到许多个晶胞上的布洛赫(带态)电子来说,这种局域场会有被平均掉的趋势,因而()n L 也许接近于1.讨论:1大致估计极化率的数量级2 考察何时可作为微扰比较χ)1(+n与χ)(n1<<时才可用级数展开3 结构对称性对极化率有简化4 极化率的共振增强特性记住:1。