《精品》差动保护技术原理.ppt
合集下载
变压器继电保护差动优秀课件
2020/10/24
11
保护装置外部转换
2020/10/24
12
保护装置内部转换
I
Y A
1
Y
侧
I
Y C
1
I
Y B
1
I
A
1
△
侧
不同 相
I
B
1
I
C
1
一次电流
I A ( I A I B ) / 3
I B ( I B I C ) / 3
I C ( I C I A ) / 3
主变Y侧 主变△侧不变换
若取 KTA IT.n 5
IY T.n
,
I T.n
则:变压器Y侧,电流为 35 A
变压器 侧,电流为 5A
2020/10/24
32
一、变压器差动保护的原理
1.内部故障时 设变压器两侧额定电流分别为
2020/10/24
IrI2 - I2 K 1TA I1- I1 Iunb
33
1.3相位补偿后,电流互感器变比的选择
特点:1、含有大量非周期分量,曲线偏向 时间轴一侧 。波形不对称
2、大量高次谐波。二次谐波为主 3、具有间断角
2020/10/24
6
采用速饱和变流器
电磁式差动继电器 变流器:差动电流不直接流入继电器线圈, 经变流器滤除电流中非周期分量
2020/10/24
K
Wd
W2
KD
7
波形不对称原理
微机保护可以识别差动电流的正负半周是否对称,当电流波形严重不 对称时判为励磁涌流情况,闭锁差动保护。
2020/10/24
Y侧
UY T.n
115KV,
差动保护PPT (1).
假定: CT- ratio: 1/1 IP1 = I1F IP2 = I2F
假定: CT- ratio: 1/1 IP1 = IF IP2 = -IF IDiff = │IP1 + IP2 │ = IF - IF = 0 不跳闸
IDiff = │IP1 + IP2 │ = │I1F + I2F │ 跳闸
Block
with IDiff> = setting
IDiff> 2 10 IRest =│IS1│+│IS2│
Principles Transf. Diff 5
基本原理: 3相系统的测量回路
西门子能源自动化 ----让您永争第一
3相系统的基本回路: 发电机 /电动机/ 电抗
L1 L2 L3
差流
制动电流
定值设定,考虑磁化 电流或充电电流影响
由于CT变比不同产 生的线性误差 综合特性
IDiff=
│IS1+IS2│ IN
Trip
在如下假定条件下: │ε 1 │ = │ε 2 │ and I1 = I2 传统的差动保护特性应该是: IDiff = IDiff> + ε1· I1 + ε2· I2 = IDiff> + 2·ε1 · I1
3000/1A 2887A
容量: 100MVA ,矢量组: YNd5 低压侧: 20kV 高压侧: 110kV
750/1A
ILoad= 525A
L1 L2 L3
0.96A
0.7A
差流
29 Wdg.
IR
23 Wdg.
制动电流
传统差动保护
匹配变压器 -向量组自适应 -电流值自适应 -零序电流处理 IR = 0.555· √3 = 0.96A
母线差动保护培训课件
1. 由于电流互感器存在角度误差,因此即使一、二次电流有效值的差不大于 10%,它所引起的差电流也往往会大于一次电流的10%。
2. 即使一次电流达到100多倍额定电流,其二次电流也不会为零。 3. 当一次电流含有很大的非周期分量且衰减时间常数较长时,在暂态过程中,尤
其是在起始的2~3个周波之内,二次电流会出现严重的缺损,从而引起的 很大的差电流。 4. 短路初始阶段电流互感器并不会马上饱和,一、二次总有一段正确传变时间, 一般情况下该时间大于2ms。
1
.
I1
TA1
2
.
I2
TA2
.I3
TA3
3
.I4
TA4
4
母线差动保护遇到的主要问题
负荷电流产生的制动电流将影响重负荷下母线上发生高阻接地时,差动 保护的灵敏度。希望差动保护的动作应尽量不受负荷电流、短路点的过 渡电阻的影响。
当母线运行方式发生变化时不必进行二次回路的切换,仍然能只切故障 母线。
I
m
I
j
DIT
DI cdzd
j 1
K
DIcdzd
m
I
j
m
K I j
j 1
j 1
I
大差 可整定,小差 K
K 0.75
该继电器在母线内部短路时可快速、灵敏地动作;母线外短路
TA不饱和时能可靠不动。
•工频变化量阻抗继电器( ) Z
ZS1 ZS2 ZS3
Rg
ES1 ES 2 ES3
工频变化量阻抗继电器( )Z
无论是母线内、母线外故障, 元件都会自U适应地开放。
自适应加权算法 S S
0
加权算法
t
0
t
等权算法Βιβλιοθήκη • 以 U元件动作为基准时间,U元件动作后 BLCD 和 Z
2. 即使一次电流达到100多倍额定电流,其二次电流也不会为零。 3. 当一次电流含有很大的非周期分量且衰减时间常数较长时,在暂态过程中,尤
其是在起始的2~3个周波之内,二次电流会出现严重的缺损,从而引起的 很大的差电流。 4. 短路初始阶段电流互感器并不会马上饱和,一、二次总有一段正确传变时间, 一般情况下该时间大于2ms。
1
.
I1
TA1
2
.
I2
TA2
.I3
TA3
3
.I4
TA4
4
母线差动保护遇到的主要问题
负荷电流产生的制动电流将影响重负荷下母线上发生高阻接地时,差动 保护的灵敏度。希望差动保护的动作应尽量不受负荷电流、短路点的过 渡电阻的影响。
当母线运行方式发生变化时不必进行二次回路的切换,仍然能只切故障 母线。
I
m
I
j
DIT
DI cdzd
j 1
K
DIcdzd
m
I
j
m
K I j
j 1
j 1
I
大差 可整定,小差 K
K 0.75
该继电器在母线内部短路时可快速、灵敏地动作;母线外短路
TA不饱和时能可靠不动。
•工频变化量阻抗继电器( ) Z
ZS1 ZS2 ZS3
Rg
ES1 ES 2 ES3
工频变化量阻抗继电器( )Z
无论是母线内、母线外故障, 元件都会自U适应地开放。
自适应加权算法 S S
0
加权算法
t
0
t
等权算法Βιβλιοθήκη • 以 U元件动作为基准时间,U元件动作后 BLCD 和 Z
光纤差动保护原理介绍66页PPT
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
光纤差动保护原理介绍
•
46、寓形宇内复几时,曷不委心任去 留。•ຫໍສະໝຸດ 47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
光纤差动保护原理介绍
•
46、寓形宇内复几时,曷不委心任去 留。•ຫໍສະໝຸດ 47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
线路的差动保护课件
根据保护对象的不同,差动保护可以分为变压器差动保护、 发电机差动保护、母线差动保护等。
பைடு நூலகம்
差动保护的应用场景
差动保护广泛应用于电力系统的变压器、发电机、母线等 关键设备的保护。
在变压器中,差动保护用于检测和隔离变压器绕组和引线 的短路故障。在发电机中,差动保护用于检测和隔离定子 绕组和转子绕组的短路故障。在母线中,差动保护用于检 测和隔离母线及其连接设备的短路故障。
模拟线路故障情况,测试线路差动保护装置 的故障检测和隔离能力。
现场测试
在电力系统中,对实际运行的线路差动保护 装置进行测试,验证其功能和性能。
耐压测试
对线路差动保护装置进行高电压测试,验证 其在高电压下的性能和稳定性。
线路差动保护的验证过程
功能验证
验证线路差动保护装置的基本功能,如故障 检测、隔离等是否正常。
某500kV超高压输电线路的差动保护测试
经过严格的功能和性能验证,该线路差动保护装置在超高压输电线路中表现出良好的性能和稳定性。
05
线路差动保护的发展趋 势与展望
线路差动保护技术的未来发展方向
数字化发展
利用数字信号处理技术提 高差动保护的可靠性和灵 敏度。
智能化发展
结合人工智能和大数据技 术,实现差动保护的智能 诊断和预警。
缺点
差动保护装置也存在一些缺点。例如,它容易受到电流互感器饱和和涌流的影响,导致误动作或拒动作。此外, 对于小电流接地系统,差动保护装置的应用也受到限制。
线路差动保护的关键技术
01
电流互感器选择
选择合适的电流互感器是差动保护的关键之一。电流互感器应具有高精
度、低饱和、低误差等特点,以保证差动保护的可靠性和准确性。
பைடு நூலகம்
差动保护的应用场景
差动保护广泛应用于电力系统的变压器、发电机、母线等 关键设备的保护。
在变压器中,差动保护用于检测和隔离变压器绕组和引线 的短路故障。在发电机中,差动保护用于检测和隔离定子 绕组和转子绕组的短路故障。在母线中,差动保护用于检 测和隔离母线及其连接设备的短路故障。
模拟线路故障情况,测试线路差动保护装置 的故障检测和隔离能力。
现场测试
在电力系统中,对实际运行的线路差动保护 装置进行测试,验证其功能和性能。
耐压测试
对线路差动保护装置进行高电压测试,验证 其在高电压下的性能和稳定性。
线路差动保护的验证过程
功能验证
验证线路差动保护装置的基本功能,如故障 检测、隔离等是否正常。
某500kV超高压输电线路的差动保护测试
经过严格的功能和性能验证,该线路差动保护装置在超高压输电线路中表现出良好的性能和稳定性。
05
线路差动保护的发展趋 势与展望
线路差动保护技术的未来发展方向
数字化发展
利用数字信号处理技术提 高差动保护的可靠性和灵 敏度。
智能化发展
结合人工智能和大数据技 术,实现差动保护的智能 诊断和预警。
缺点
差动保护装置也存在一些缺点。例如,它容易受到电流互感器饱和和涌流的影响,导致误动作或拒动作。此外, 对于小电流接地系统,差动保护装置的应用也受到限制。
线路差动保护的关键技术
01
电流互感器选择
选择合适的电流互感器是差动保护的关键之一。电流互感器应具有高精
度、低饱和、低误差等特点,以保证差动保护的可靠性和准确性。
电流差动保护原理及应用,变压器纵联差动保护,发电机纵联差动保护,母线纵联差动保护(精品课件)
—— 电流互感器的10%误差系数;
—— 同型系数,在两侧电流互感器同型号时取0.5, 不
同型号时取0.5。相同型号时取1。
—— 外部短路时流过电流互感器的最大短路电流。
输电线路纵联差动保护
躲过最大负荷电流
考虑正常运行时一次侧电流互感器二次断线时差 动继电器在流过线路的最大负荷电流时保护不动作, 即
Iset K K rel L.max
式中 Krel ——可靠系数,取1.2~1.3;
KL.max ——线路正常运行时的最大负荷电流的二次值。
输电线路纵联差动保护
取以上两个整定值中较大的一个作为差动 继电器的整定值。保护应满足线路在单侧电源 运行发生内部短路时有足够的灵敏度,即
K sen
Ir I set
I k . min I set
2
式中 Ik.min ——单侧最小电源作用且被保护线路末端短路时,流过保
护的最小短路电流。
若纵差保护不满足灵敏度要求,可采用带制动 特性的纵差保护。
输电线路纵联差动保护
带有制动线圈的差动继电器特性
这种原理的差动保护继电器有两组线圈,制动 线圈流过两侧互感器的循环电流 Im In ,在正常运 行和外部短路时制动作用增强,在动作线圈中流过 两侧互感器的和电流 Im In ,在内部短路时制动 作用减弱(相当于无制动作用),而动作的作用极 强。
电流差动保护原理及应用
研究背景
• 建立在基尔霍夫电流定律的基础之上
• 广泛应用于电力系统诸多重要电气设备之中, 而且都是主保护。
• 具有灵敏度高,简单可靠和动作速度快等诸 多优点。
研究框架
电流差动保护原理及应用 差动保护
输电线路
变压器
发电机
母线
—— 同型系数,在两侧电流互感器同型号时取0.5, 不
同型号时取0.5。相同型号时取1。
—— 外部短路时流过电流互感器的最大短路电流。
输电线路纵联差动保护
躲过最大负荷电流
考虑正常运行时一次侧电流互感器二次断线时差 动继电器在流过线路的最大负荷电流时保护不动作, 即
Iset K K rel L.max
式中 Krel ——可靠系数,取1.2~1.3;
KL.max ——线路正常运行时的最大负荷电流的二次值。
输电线路纵联差动保护
取以上两个整定值中较大的一个作为差动 继电器的整定值。保护应满足线路在单侧电源 运行发生内部短路时有足够的灵敏度,即
K sen
Ir I set
I k . min I set
2
式中 Ik.min ——单侧最小电源作用且被保护线路末端短路时,流过保
护的最小短路电流。
若纵差保护不满足灵敏度要求,可采用带制动 特性的纵差保护。
输电线路纵联差动保护
带有制动线圈的差动继电器特性
这种原理的差动保护继电器有两组线圈,制动 线圈流过两侧互感器的循环电流 Im In ,在正常运 行和外部短路时制动作用增强,在动作线圈中流过 两侧互感器的和电流 Im In ,在内部短路时制动 作用减弱(相当于无制动作用),而动作的作用极 强。
电流差动保护原理及应用
研究背景
• 建立在基尔霍夫电流定律的基础之上
• 广泛应用于电力系统诸多重要电气设备之中, 而且都是主保护。
• 具有灵敏度高,简单可靠和动作速度快等诸 多优点。
研究框架
电流差动保护原理及应用 差动保护
输电线路
变压器
发电机
母线
主变差动保护(共7张PPT)
主变差动保护
变压器保护
500kV主变差动保护定义(5.1.1.1条):
2)由变压器各侧电流构成,能反映变压器内部各种故障的差动保护有纵差保护和分相 差动保护。纵差保护是指由变压器各侧外附CT构成的差动保护,该保护能反映变压 器各侧的各类故障。分相差动保护是指将变压器的各相绕组分别作为被保护对象, 由每相绕组的各侧CT构成的差动保护,该保护能反映变压器某一相各侧全部故障;低压侧
高本中规压 范侧中外高附中故压C障T和和公分公共共量绕绕组差组分C动侧T 差:动零保护序指分由量自耦、变负压器序高分、中量压和侧外变附化CT量和公差共动绕组(CT可构成配的置差,动保不护需。 整定)。 21、 、低低压压侧侧审有无定总总会断断:路路器器CT: :断线闭锁差动为有条件闭锁,即当“CT断线闭锁差动保护”控制字置“1”时,
小区差动保护是由低压侧三角形两相绕组内部CT和一个反映两相绕组差电流的外附CT 构成的差动保护。本规范中分相差动保护是指由变压器高、中压侧外附CT和低压侧三角 内部套管(绕组)CT构成的差动保护。 3)分侧差动保护是指将变压器的各侧绕组分别作为被保护对象,由各侧绕组的首末端CT按
相构成的差动保护,该保护不能反映变压器各侧绕组的全部故障。本规范中高中压和公共绕组
选配
各厂家自定
高压侧
1、高中压侧分相差动保护
高中压侧分相差动保护无
涌流,不反应匝间故障。
1
2、纵差保护
2
纵差保护有Y/△转换、反 应匝间故障,涌流采用按 相闭锁或一相闭锁三相。
变压器保护
中压侧
低压侧
传统变压器保护配置图
高压侧
1、分侧差动保护
分侧差动保护无涌流,不
反应匝间故障。
1
2、分相差动保护
变压器保护
500kV主变差动保护定义(5.1.1.1条):
2)由变压器各侧电流构成,能反映变压器内部各种故障的差动保护有纵差保护和分相 差动保护。纵差保护是指由变压器各侧外附CT构成的差动保护,该保护能反映变压 器各侧的各类故障。分相差动保护是指将变压器的各相绕组分别作为被保护对象, 由每相绕组的各侧CT构成的差动保护,该保护能反映变压器某一相各侧全部故障;低压侧
高本中规压 范侧中外高附中故压C障T和和公分公共共量绕绕组差组分C动侧T 差:动零保护序指分由量自耦、变负压器序高分、中量压和侧外变附化CT量和公差共动绕组(CT可构成配的置差,动保不护需。 整定)。 21、 、低低压压侧侧审有无定总总会断断:路路器器CT: :断线闭锁差动为有条件闭锁,即当“CT断线闭锁差动保护”控制字置“1”时,
小区差动保护是由低压侧三角形两相绕组内部CT和一个反映两相绕组差电流的外附CT 构成的差动保护。本规范中分相差动保护是指由变压器高、中压侧外附CT和低压侧三角 内部套管(绕组)CT构成的差动保护。 3)分侧差动保护是指将变压器的各侧绕组分别作为被保护对象,由各侧绕组的首末端CT按
相构成的差动保护,该保护不能反映变压器各侧绕组的全部故障。本规范中高中压和公共绕组
选配
各厂家自定
高压侧
1、高中压侧分相差动保护
高中压侧分相差动保护无
涌流,不反应匝间故障。
1
2、纵差保护
2
纵差保护有Y/△转换、反 应匝间故障,涌流采用按 相闭锁或一相闭锁三相。
变压器保护
中压侧
低压侧
传统变压器保护配置图
高压侧
1、分侧差动保护
分侧差动保护无涌流,不
反应匝间故障。
1
2、分相差动保护
线路的差动保护-PPT课件
相继动作区:对侧保护动作后,由于短路电流重新分布使本侧保护再动 作,叫相继动作。可能发生相继动作的区域叫相继动作区。
电流平衡保护的基本工作原理
电流平衡保护的基本工作原理,KAB是一个双动作的电平衡继电器,当平 行线路正常运行或外部故障时,通过KAB两线圈N1和N2的电流幅值相等, “天平”处在平衡状态,保护不动作。当线路L1故障时(如 k1点故障), , 则I1 > I1 ,KAB的右侧触点闭合,跳开QF1切除L1的故障;当线路L2故障 时,KAB的左侧触点闭合,跳开QF2切除L2的故障。
);判别是哪条
二、名词解释 1、纵联差动保护 2、相继动作 3、相继动作区 三、判断题 1、方向横差保护不仅应用于平行线路上。( ) 2、纵差保护的动作时限与相邻下一线路按阶梯时限原则配合。 ( ) 3、由于纵差动保护必须敷设与被保护线路一样长的辅助导线,所 以纵差动保护应受到一定的限制。( )
4、由于纵差动保护能够尽可能快动作,所以不需后备保护。 ( )
纵差动保护测量线路两侧的电流并进行比较,它的 保护范围是两侧电流互感器之间线路的全长。 在整定值上它不需要与相邻线路的保护配合,这是 比单端测量的电流保护及距离保护优越之点。
IⅠ
× 。 。 IⅠ2
区 外 故 障
IⅠ
× 。 。 IⅠ2
区 内 故 障
IⅡ 。IⅡ2 。 × ×
IⅡ
IⅡ2 。 。 × ×
在线路纵差动保护中可采用速饱和变流器或带制动特性 的差动继电器,减小不平衡电流及其影响。 对纵联差动保护的评价 优点:纵联差动保护是测量两端电气量的保护,能快速切 除被保护线路全线范围内故障,不受过负荷及系统振荡的影 响,灵敏度较高。 缺点:需要装设同被保护线路一样长的辅助导线,增加了 投资。同时为了增强保护装置的可靠性,要装设专门的监视 辅助导线是否完好的装置,以防当辅助导线发生断线或短路 时使纵差动保护误动或拒动。 在输电线路上只有当其他保护不能满足要求,且在长度小 于10km 的线路上才考虑采用纵联差动保护。 纵差动保护在元件(如发电机、变压器等)保护中得到广 泛应用。
发电机差动保护介绍培训课件
四、发电机差动保护一般问题
1)比率差动保护原理
比率制动特性的差动保护接线图, 如图所示,Wr1 、Wr2为制动线圈, Ww 为工作线圈,当外部发生短路故 障时,两个制动线圈中电流大小相等, 方向相同,制动回路有电流输出,而 工作线圈中电流为零,差动回路无输 出,差动保护不动作。
图4-1 比率差动保护原理图
b) 速动性:因具有天然的选择性,所以不需与相邻元件的保护在定值和 时间上配合,动作快速。
c) 灵敏性:区外故障时,差动电流仅为不平衡电流,区内故障时差动电 流远大于制动电流。
d) 可靠性:采用比率制动特性,并采取必要的闭锁条件(如三次谐波、 五次谐波闭锁)。
二、发电机差动保护特点及分类
(二)发电机差动保护分类
应
应
电
ɑ电
势
势
大
小
图3-7 同相同分支匝间短路
三、发电机差动保护配置及原理
Ø 不同分支的匝间短路
• 两个不同绕组间发生匝间短路,当ɑ1≠ɑ2 时,由于两支路的电势差,将分别产生 两个环流,差流流过继电器,保护动作。
• 但是当ɑ1-ɑ2之差时很小时,保护将出 现保护死区。例如当ɑ1=ɑ2时,即表示 在电动势等电位上短路,此时没有环 流,保护不动作。
发电机差动保护介绍 培训课件
日期:2020.10.20
目录
一
差动保护概念
二 发电机差动保护特点及分类
三 发电机差动保护配置方案及原理
四 发电机差动保护的一般问题
差动保护概念
一、差动保护概念
(一)差动保护理论基础-基尔霍夫电流定律(KCL) 电路中任一个节点上,在任一时刻,流入节点的
电流之和等于流出该节点的电流之和。也就是在任一 瞬间,流经该节点的所有电流的代数和恒为零,即 :
《差动保护》PPT课件
精选课件ppt
16
内部故障时,流如差动继电器的电流为:Ir II2III2
该电流大于KD的动作电流时,KD动作。
由此可见,按照该原理构成的差动保护,对故障有极高的 灵敏度,保护范围为“构成差动保护的两侧电流互感器之间的 所有元件”,可以灵活运用,但需将被保护对象纵向两侧的TA 二次侧连接成闭合环流回路 。
工程实践中,由于输电线路距离长,采用该保护方式不现
精选课件ppt
11
DCD—2 差动继电器
精选课件ppt
12
5.4 用DCD—2差动继电器构成的纵差保护
精选课件ppt
13
变压器纵差保护展开接线图
精选课件ppt
信号回路 14
不考虑相位补偿时纵差保护展开图
精选课件ppt
信号回路 15
发电机纵差保护原理接线示意图
至延时信号 信 号
跳QF 跳灭磁开关
• 变压器星形侧变比:
nTA1
3I1N 5
• 变压器三角形侧变比:
nTA 2
I2N 5
精选课件ppt
7
五、励磁涌流的影响
所谓励磁涌流,就是变压器空载合闸时的暂态励磁电流。
由于变压器的励磁电流只流经它的电源侧,故造成变压器两侧电流不 平衡,从而在差动回路内产生不平衡电流。
当变压器空载投入和外部故障切除后电压恢复时,可能出现很大的励 磁涌流,其值可达变压器额定电流的6~8倍。可能造成保护误动作.
知识与能力要求:
掌握差动继电器的构成与使用;理解差 动保护的基本原理与组成。
精选课件ppt
1
5.1 纵差保护的基本原理
纵联差动保护是通过比较 被保护对象纵向两侧电流的大 小和相位的原理实现的。
03差动保护
差动保护
变压器差动保护原理
变压器差动保护原理与接线
变压器差动保护是防止变压器内部故 障的主保护。
差动保护
变压器差动保护接线
变压器差动保护组成与接线
如果内部故障,如图ZD点短路,流入 继电器的电流等于短路点的总电流。 即:iJ=ibp=iI2+iII2。
总结
一、线路纵向差动保护原理 二、线路纵向差动保护的接线 三、变压器差动保护原理 四、变压器差动保护接线
差动保护
中性点运行方式与零序电流保护
1 线路纵向差动保护原理
线路纵向差动保护原理与接线
2 线路纵向差动保护的接线
线路纵向差动保护组成与接线 线路纵向差动保护整定 线路纵向差动保护传动
3 变压器差动保护原理
变压器差动保护原理与接线
4 变压器差动保护接线
变压器差动保护组成与接线
差动保护
线路纵向差动保护原理
线路纵向差动保护原理与接线
根据基尔霍夫第一定律,
0I;式中I 表示变压器各侧电流的向量
和,其物理意义是:变压器正常运行 或外部故障时,若忽略励磁电流损耗 及其他损耗,则流入变压器的电流等 于流出变压器的电流。因此,纵差保 护不应动作。
差动保护
线路纵向差动保护的接线
线路纵向差动保护组成与接线
差动保护是一种依据被保护电气设备 进出线两端电流差值的变化构成的对 电气设备的保护装置,一般分为纵联 差动保护和横联差动保护。
差动保护
线定
差动保护原理简单、使用电气量单纯、 保护范围明确、动作不需延时,一直 用于变压器做主保护。另外变压器保 护还有线路差动保护、母线差动保护 等等。
差动保护
线路纵向差动保护的接线
线路纵向差动保护传动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差动保护原理
1. 差动保护基本原理 2. 稳态差动Ⅰ段 3. 稳态差动Ⅱ段 4. 变化量差动 5. 零序差动 6. 远跳、远传1、远传2 7. 差动保护特点
优选文档
1
1. 差动保护基本原理
IM
IN
• 不考虑线路电容电流
• 不考虑两侧TA的采样误差
根据基尔霍夫定律: 线路正常运行或区外故障 IM IN 0
满足差动方程
差动压板投入
CT断线
发送差动允许标志
TWJ I0qd dIqd
Up<65%Un
PTDX
Ir>4IL
优选文档
20
30ms
电容电流补偿条件
“容抗整定和实际系统不相符合”判据:
0.75* 且
U Xc1
U
Xc1
I
或
CD
0.75
*
I
CD
0.1I N或ICD
U Xc1
0.1I N
优选文档
21
线路区内故障:
优选文档
IM IN 0
2
影响满足基尔霍夫定律的因素
IM
IN
• 正常运行时的不平衡电流、包括线路电容电 流
• 线路区外故障时,TA饱和引起两侧采样电 流的不一致
• TA断线
优选文档
3
继电保护的四项基本要求
• 可靠性 • 快速性 • 灵敏性 • 选择性
优选文档
4
2. 稳态差动Ⅰ段
优选文档
25
6. 远跳、远传1、远传2
保护装置采样得到远跳开入为高电平时,经过
专门的互补校验处理,作为开关量,连同电流采
样数据及CRC校验码等,打包为完整的一帧信息,
通过数字通道,传送给对侧保护装置。对侧装置
每收到一帧信息,都要进行CRC校验,经过CRC
校验后再单独对开关量进行互补校验。只有通过
上述校验后,并且经过连续三次确认后,才认为
远传2(628)
光2 YC2-1 YC2-2
914
910
远传1
(开出) 916
918
913 909 915
远传2 (开出)
稳态差动>0.75稳态制动 稳态差动>差流高门槛 分相差动投入标志
稳态差动Ⅰ段 5ms/0
优选文档
5
保护动作区域
ICD
0.75
IH
IR
IH
max
差动电流高定值,4IC
,4
UN XC
优选文档
6
分相差动投入条件
对侧差动允许标志 满足差流方程 差动压板投入 TA断线
启动
分相差动投入标志
优选文档
7
分相差动投入条件
2 Xc1
• 增加单相电流,使得零序电流>零序启动 电流
• 零序差动动作,动作时间为120ms左右
优选文档
24
零序差动特点
• 由于采用了以下技术,因此具有极高的灵 敏度:
– 零序电压开放 – 电容电流补偿
– 零序分量不受负荷电流的影响
• 采用零序电流差动元件和低比率制动系数 的分相差动元件相结合的技术,有效地结 合了可靠性和灵敏度,并能实现分相跳闸
收到的远跳信号是可靠的。收到经校验确认的远
跳信号后,若整定控制字“远跳受起动控制”整
定为“0”,则无条件置三跳出口,起动A、B、C
三相出口跳闸继电器,同时闭锁重合闸;若整定
为“1”,则需本装置起优选动文档才出口。
26
6. 远跳、远传1、远传2
开入 开入
+24V(104)
光
光
远传1(627)
发
光纤
收
电容电流补偿条件
其中Icd为正常情况下的实测差流,即实际
的电容电流;
•实测电容电流和经XC1计算得到的电容电流
具有可比性(至少有一个>0.1In),并且较
大的0.75倍>较小值,可认为“容抗整定和
实际系统不相符合”。
•当实测电容电流和经XC1计算得到的电容电
流都小于0.1In时,认为两者不具备可比性,
分相差动>K0*分相制动
作为选相元件
分相差动>1.5Ic或0.6Ic
零序差动投入标志
零序差动 100ms/0
优选文档
18
零序差动投入条件
对侧差动允许标志
满足差流方程
差动压板投入 CT断线
启动 电压开放标志
分相差动投入标志 零序差动投入标志
优选文档
19
零序差动投入条件
增加电压(零序)开放条件目的:解决超 长线路出口处高阻接地,一旦对侧保护装 置无法启动时保护的灵敏度问题。
• PT断线时,Ir>4IL经30ms延时发送差动 允许标志是Up<65%Un的有效补充。
优选文档
11
稳态Ⅰ段特点
• 能可靠躲过线路正常运行时的不平衡电流, 包括线路电容电流;但经大过渡电阻的故 障时保护灵敏度较差;
• 能可靠躲过线路区外故障引起的TA饱和电 流;线路重负荷时灵敏度较差;
• TA断线时能可靠不误动; • 兼顾了可靠性、快速性和选择性。
发送差动允许标志
30ms
优选文档
9
差动允许标志
• I0qd+dIqd:线路正常运行时能保证两侧 差动保护可靠开放;
• TWJ:能保证线路合闸于故障时差动保护 可靠开放;
• Up<65%Un:能保证线路三相故障时弱馈 侧装置可靠启动,并发送允许差动信号, 确保两侧保护可靠动作;
优选文档
10
差动允许标志
优选文档
15
4. 变化量差动
变化量差动>0.75变化量制动 稳态差动>K1×稳态制动 稳态差动>差流高门槛 分相差动投入标志
变化量差动 5ms/0
优选文档
16
变化量差动特点
同稳态Ⅰ段相比,在重负荷情况下具有较 高的灵敏度。
优选文档
17
5. 零序差动
零序差动>0.75零序制动 零序差动>零序启动电流
不再判别容抗整定是否同实际系统相符。
优选文档
22
电容电流补偿条件
投入电容电流补偿的必要条件为:
“容抗整定和实际系统相符合”
U Xc1
0.1I N或ICD
0.1I N
优选文档
23
零序差动试验
• 通道自环
• 抬高差动电流高定值、差动电流低定值
• 整定Xc1,使得U/Xc1>0.1In • 加三相 U , I U,满90足o 补偿条件
• TA断线瞬间,本侧装置判断不出TA断线, 本侧即使满足所有差动动作条件,由于需 要收到对侧的差动允许标志分相差动才能 动作,因此,断线瞬间保护装置能可靠不 动作;
• 本侧装置判定TA断线后,能可靠闭锁差动 保护
优选文档
8
满足差动方程 差动压板投入 CT断线 TWJ
I0qd dIqd Up<65%Un PTDX Ir>4IL
优选文档
12
3. 稳态差动Ⅱ段
稳态差动>0.75稳态制动 稳态差动>差流低门槛 分相差动投入标志
稳态差动Ⅱ段 40ms/0
优选文档
13
保护动作区域
ICD
0.75
IH
IM
IR
IM
max
差动电流低定值,1.5IC
,1.
5U X
N C
优选文档
14
稳态Ⅱ段特点
同稳态Ⅰ段相比: • 增加了保护灵敏度 • 降低了保护动作速度
1. 差动保护基本原理 2. 稳态差动Ⅰ段 3. 稳态差动Ⅱ段 4. 变化量差动 5. 零序差动 6. 远跳、远传1、远传2 7. 差动保护特点
优选文档
1
1. 差动保护基本原理
IM
IN
• 不考虑线路电容电流
• 不考虑两侧TA的采样误差
根据基尔霍夫定律: 线路正常运行或区外故障 IM IN 0
满足差动方程
差动压板投入
CT断线
发送差动允许标志
TWJ I0qd dIqd
Up<65%Un
PTDX
Ir>4IL
优选文档
20
30ms
电容电流补偿条件
“容抗整定和实际系统不相符合”判据:
0.75* 且
U Xc1
U
Xc1
I
或
CD
0.75
*
I
CD
0.1I N或ICD
U Xc1
0.1I N
优选文档
21
线路区内故障:
优选文档
IM IN 0
2
影响满足基尔霍夫定律的因素
IM
IN
• 正常运行时的不平衡电流、包括线路电容电 流
• 线路区外故障时,TA饱和引起两侧采样电 流的不一致
• TA断线
优选文档
3
继电保护的四项基本要求
• 可靠性 • 快速性 • 灵敏性 • 选择性
优选文档
4
2. 稳态差动Ⅰ段
优选文档
25
6. 远跳、远传1、远传2
保护装置采样得到远跳开入为高电平时,经过
专门的互补校验处理,作为开关量,连同电流采
样数据及CRC校验码等,打包为完整的一帧信息,
通过数字通道,传送给对侧保护装置。对侧装置
每收到一帧信息,都要进行CRC校验,经过CRC
校验后再单独对开关量进行互补校验。只有通过
上述校验后,并且经过连续三次确认后,才认为
远传2(628)
光2 YC2-1 YC2-2
914
910
远传1
(开出) 916
918
913 909 915
远传2 (开出)
稳态差动>0.75稳态制动 稳态差动>差流高门槛 分相差动投入标志
稳态差动Ⅰ段 5ms/0
优选文档
5
保护动作区域
ICD
0.75
IH
IR
IH
max
差动电流高定值,4IC
,4
UN XC
优选文档
6
分相差动投入条件
对侧差动允许标志 满足差流方程 差动压板投入 TA断线
启动
分相差动投入标志
优选文档
7
分相差动投入条件
2 Xc1
• 增加单相电流,使得零序电流>零序启动 电流
• 零序差动动作,动作时间为120ms左右
优选文档
24
零序差动特点
• 由于采用了以下技术,因此具有极高的灵 敏度:
– 零序电压开放 – 电容电流补偿
– 零序分量不受负荷电流的影响
• 采用零序电流差动元件和低比率制动系数 的分相差动元件相结合的技术,有效地结 合了可靠性和灵敏度,并能实现分相跳闸
收到的远跳信号是可靠的。收到经校验确认的远
跳信号后,若整定控制字“远跳受起动控制”整
定为“0”,则无条件置三跳出口,起动A、B、C
三相出口跳闸继电器,同时闭锁重合闸;若整定
为“1”,则需本装置起优选动文档才出口。
26
6. 远跳、远传1、远传2
开入 开入
+24V(104)
光
光
远传1(627)
发
光纤
收
电容电流补偿条件
其中Icd为正常情况下的实测差流,即实际
的电容电流;
•实测电容电流和经XC1计算得到的电容电流
具有可比性(至少有一个>0.1In),并且较
大的0.75倍>较小值,可认为“容抗整定和
实际系统不相符合”。
•当实测电容电流和经XC1计算得到的电容电
流都小于0.1In时,认为两者不具备可比性,
分相差动>K0*分相制动
作为选相元件
分相差动>1.5Ic或0.6Ic
零序差动投入标志
零序差动 100ms/0
优选文档
18
零序差动投入条件
对侧差动允许标志
满足差流方程
差动压板投入 CT断线
启动 电压开放标志
分相差动投入标志 零序差动投入标志
优选文档
19
零序差动投入条件
增加电压(零序)开放条件目的:解决超 长线路出口处高阻接地,一旦对侧保护装 置无法启动时保护的灵敏度问题。
• PT断线时,Ir>4IL经30ms延时发送差动 允许标志是Up<65%Un的有效补充。
优选文档
11
稳态Ⅰ段特点
• 能可靠躲过线路正常运行时的不平衡电流, 包括线路电容电流;但经大过渡电阻的故 障时保护灵敏度较差;
• 能可靠躲过线路区外故障引起的TA饱和电 流;线路重负荷时灵敏度较差;
• TA断线时能可靠不误动; • 兼顾了可靠性、快速性和选择性。
发送差动允许标志
30ms
优选文档
9
差动允许标志
• I0qd+dIqd:线路正常运行时能保证两侧 差动保护可靠开放;
• TWJ:能保证线路合闸于故障时差动保护 可靠开放;
• Up<65%Un:能保证线路三相故障时弱馈 侧装置可靠启动,并发送允许差动信号, 确保两侧保护可靠动作;
优选文档
10
差动允许标志
优选文档
15
4. 变化量差动
变化量差动>0.75变化量制动 稳态差动>K1×稳态制动 稳态差动>差流高门槛 分相差动投入标志
变化量差动 5ms/0
优选文档
16
变化量差动特点
同稳态Ⅰ段相比,在重负荷情况下具有较 高的灵敏度。
优选文档
17
5. 零序差动
零序差动>0.75零序制动 零序差动>零序启动电流
不再判别容抗整定是否同实际系统相符。
优选文档
22
电容电流补偿条件
投入电容电流补偿的必要条件为:
“容抗整定和实际系统相符合”
U Xc1
0.1I N或ICD
0.1I N
优选文档
23
零序差动试验
• 通道自环
• 抬高差动电流高定值、差动电流低定值
• 整定Xc1,使得U/Xc1>0.1In • 加三相 U , I U,满90足o 补偿条件
• TA断线瞬间,本侧装置判断不出TA断线, 本侧即使满足所有差动动作条件,由于需 要收到对侧的差动允许标志分相差动才能 动作,因此,断线瞬间保护装置能可靠不 动作;
• 本侧装置判定TA断线后,能可靠闭锁差动 保护
优选文档
8
满足差动方程 差动压板投入 CT断线 TWJ
I0qd dIqd Up<65%Un PTDX Ir>4IL
优选文档
12
3. 稳态差动Ⅱ段
稳态差动>0.75稳态制动 稳态差动>差流低门槛 分相差动投入标志
稳态差动Ⅱ段 40ms/0
优选文档
13
保护动作区域
ICD
0.75
IH
IM
IR
IM
max
差动电流低定值,1.5IC
,1.
5U X
N C
优选文档
14
稳态Ⅱ段特点
同稳态Ⅰ段相比: • 增加了保护灵敏度 • 降低了保护动作速度