非线性控制系统分析
非线性系统的分析与控制

非线性系统的分析与控制一、引言非线性系统是指系统的输入与输出之间存在着非线性关系的一类系统。
非线性系统由于其复杂性和多样性,已经成为了现代自动控制与系统工程中的一个热门研究领域。
非线性系统的分析与控制是目前自动控制领域研究的重点之一。
本文主要介绍非线性系统的分析和控制方法。
二、非线性系统的描述非线性系统是指系统输入和输出之间存在非线性关系的系统。
非线性系统可以用数学模型来描述。
常见的一些非线性数学模型有:常微分方程、偏微分方程、差分方程、递推方程等。
非线性系统的特性可以归纳为以下几个方面:1.非线性系统的输入和输出之间存在非线性关系,即输出不是输入的线性函数。
2.非线性系统的行为不稳定,其输出随时间而变化。
3.非线性系统的行为是确定的,但是通常不能被解析地表示。
4.一些非线性系统可能会表现出周期性或者混沌现象。
三、非线性系统的分析方法对非线性系统进行分析是了解和掌握其行为的前提。
主要的分析方法有线性化法和相平面法。
1.线性化法线性化法是将非线性系统在某一特定点附近展开成一系列的一阶或者二阶泰勒级数,然后用线性系统来代替非线性系统,进而对非线性系统进行分析。
线性化法的优点是简单易行,但是必须要求非线性系统在特定点附近的行为与线性系统相似,否则线性化法就失效了。
2.相平面法相平面法通过画出非线性系统的相图来表示系统的行为,较常用的是相轨线和极点分析法。
相轨线是用非线性系统的相图来描述其行为。
相图是将系统的状态表示为一个点,它的坐标轴与系统的每个状态变量相关。
极点分析法则是在相平面上找出使系统输出输出的状态点,然后找出与这些状态点相关的所有极点,以确定出系统的稳定性。
四、非线性系统的控制方法目前,非线性系统的控制方法主要包括反馈线性化控制、自适应控制、滑动模式控制和模糊控制等。
1.反馈线性化控制反馈线性化控制方法以线性控制理论为基础,将非线性系统通过反馈线性化方法转化为等效的线性控制系统,以便使用线性控制理论进行控制。
自动控制原理第七章非线性控制系统的分析

这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
线性与非线性控制系统的性能比较与分析

线性与非线性控制系统的性能比较与分析引言:控制系统是指通过一系列的输入和输出信号间的相互关系来实现对被控对象的控制。
其中,线性控制系统和非线性控制系统是两种常见的控制系统类型。
本文将对线性控制系统和非线性控制系统的性能进行比较与分析,以帮助读者更好地了解两者的优劣之处。
一、线性控制系统的性能:1. 频率响应特性:线性控制系统的频率响应特性较为简单,可以使用传统的频率域分析方法进行系统的设计和分析。
例如,可以使用Bode图和Nyquist图等工具评估系统的幅频和相频特性,进一步优化系统的性能。
2. 稳定性分析:线性控制系统的稳定性分析相对较为简单,可以通过分析系统传递函数的根位置来判断系统的稳定性。
常见的稳定性准则包括Routh-Hurwitz准则和Nyquist稳定性判据等。
这使得线性控制系统的设计与分析更加便捷。
3. 控制性能指标:线性控制系统可以使用传统的性能指标来评估其控制性能。
常用的性能指标有超调量、调节时间和稳态误差等。
这些指标可以帮助工程师在系统设计过程中更好地优化系统的性能。
二、非线性控制系统的性能:1. 非线性特性:与线性控制系统相比,非线性控制系统具有更为复杂的特性。
由于非线性元件的存在,系统的频率响应不再是简单的幅频和相频特性。
因此,频域分析方法在非线性系统的设计和分析中会遇到困难。
2. 稳定性分析:非线性控制系统的稳定性分析比线性控制系统更为复杂,常常需要使用数值方法进行分析。
例如,可以使用Lyapunov稳定性准则来评估非线性系统的稳定性。
此外,也需要考虑系统的局部和全局稳定性。
3. 控制性能指标:非线性控制系统的性能评估相对复杂。
由于系统的非线性特性,传统的性能指标可能不再适用。
因此,需要根据实际情况选择相应的性能指标来评估非线性控制系统的性能。
三、线性与非线性控制系统性能比较与分析:1. 频率响应:线性控制系统的频率响应特性较为直观,可以使用传统的频域分析方法进行判断和优化。
非线性系统分析方法

解:1. 死去继电特性的描述函数
4M N(X)
1 ( )2
X
X
2. 绘制描述函数的负倒数特性
1
X
N(X ) 4M 1 ( )2
X
3. 绘制线性部分的极坐标图
4. 判断稳定性,分析两曲线相交点的性质
1 N(X)
X
-1.56 300 400 B -1 -0.5
X 130 A 140
120 G(j)
趋于奇点 远离奇点 包围奇点
例:二阶线性定常系统
••
•
x 2n x n2 x 0
试分析其奇点运动性质。
dx/dt x
稳定节点
••
•
x 2n x n2 x 0
dx/dt x
1
稳定节点
相轨迹趋于原点,该奇点称为 稳定节点
••
•
x 2n xn2 x 0
dx/dt x
1
不稳定节点
相轨迹远离原点,该奇点为 不稳定节点
者是自持振荡的
自持振荡点 a 振荡幅值=Xa
振荡频率=a
Im Re
X a
0
1 G(j) N ( X )
例:已知死区继电非线性系统如图
R(s)
+M
460
C(s)
+-
- -M
( j)(0.01 j 1)(0.005 j 1)
继电参数: M 1.7 死区参数:Δ 0.7 应用描述函数法作系统分析。
•
x
-1 -5/4
-3/2
-5/3
=
-2
-3/7
-3
-5 - x
3
1 1/3
0 -3/4 -1/2 -1/3
《自动控制原理》第八章非线性控制系统分析

K G jw = ( ) S 0.1S+1)( 0.2S+1) ( K −0.3w− j(1−0.02w2 )] [ = 4 2 w 0.0004w + 0.05w +1) (
S= jw
令 ImG(jw) = 0 即 1 – 0.02w2 = 0 ,可得 G(jw) 曲线与负实轴交点的频率为:
1 wx = = 50 = 7.07rad / s 0.02
C(t)
∆2 ∆3 ∆ = ∆1 + + k k k2 1 1
K1 ,k2 ,k3 为传递函数各自的增益
处于系统前向通路最前边的元件,其死区所 造成的影响最大,而放大元件和执行元件的影响 可以通过提高这些元件前几项的传递函数来减小。 死区对系统的直接影响是造成稳态误差,降 低了定位精度。
≤ 时,输出量 y 与 x 是线 饱和:当输入量 x≤ a x> a > 时,输出量不再 性关系 y = kx ,当 随着输入量线性增长,而保持为某一常值。
两条曲线在交点处的幅值相等,即: −π
1 1 1 2 [arcsin + 4 1−( ) ] A A A = −1
得:A = 0.5 应用奈氏判据可以判断交点对应的周期运动 2.5sin7.07t 是稳定的,故当 k = 15 时,非线性系统 工作在自振状态,自振振幅 A = 2.5 ,频率 w = 7.07rad/s (2)欲使系统稳定地工作,不出现自振荡,由于 G(s) 的极点均在右半平面,故根据奈氏判据
相对负倒描述函数为:
A A2 ( ) 1 π π h h − =− =− NA ( ) 4 4 A2 h2 1−( ) ( ) −1 h A
采用相对描述函数后,系统的特征方程改写为:
非线性控制系统的分析课件.ppt

法求解有困难时,可用图解法绘制。
▪ 对于式(9.2-1)xf(x,x),令 x1x、 x2x ,
▪
有 x 2f(x1、 x2),所以 可得 dx2 f (x1、x2)
d d x t2d dx x1 2d d x t1x2d dx x1 2f(x1、 x2)
(9.2-5)
▪
dx1
x2
式(9.2-5)是关于
y
-b 0
k
x
b
a.
b.
图9.1-4 齿轮传动及其间隙特性
y(x)k[xs g x)n b](|y/kx|b y (x)0、 y(x)C |y/kx|b
▪ 系统中若有间隙特性元件,不仅会使系统的输出产生相位滞后,导致 系统稳定裕量的减小,使动态性能恶化,容易产生自振;而且间隙区 会降低定位精度、增大非系线统性控静制差系统。的分析课件
▪ 由于相平面只能表示 x(t ) 和 x(t ) 两个独立变量,所以相 平面法只能用来研究一、二阶线性或非线性系统。
▪ 2)相轨迹的绘制方法
▪ (1)二阶线性系统的相轨迹 ▪ (2)相轨迹的绘制
非线性控制系统的分析课件
j
[s]
2 1
0
a.
j 1 [s]
0
2
d.
x2
j
x2
1
[s]
x1
0
0
0
稳定 节点
x
(
t
)
和 x (t ) 的一阶微分方程,即二阶非线性
系统的相轨迹方程。
▪
由式(9.2-5),令
dx2 f (x1,x2)
dx1
x2
,即有
▪
f (x1, x2 )
(9.2-6)
非线性控制系统分析

实验八非线性控制系统分析实验目的1.掌握二阶系统的奇点在不同平衡点的性质。
2.运用Simulink构造非线性系统结构图。
3.利用Matlab绘制负倒描述函数曲线,运用非线性系统稳定判据进行稳定性分析,同时分析交点处系统的运动状态,确定自振点。
实验原理1.相平面分析法相平面法是用图解法求解一般二阶非线性系统的精确方法。
它不仅能给出系统稳定性信息和时间特性信息,还能给出系统运动轨迹的清晰图像。
设描述二阶系统自由运动的线性微分方程为片+ 2冲+承=0分别取和为相平面的横坐标与纵坐标,并将上列方程改写成dx _24/ +曲H上式代表描述二阶系统自由运动的相轨迹各点处的斜率。
从式中看出在’「及—,即坐标原点(0,0)处的斜率灯‘以_门。
这说明,相轨迹的斜率不能由该点的坐标值单值的确定,相平面上的这类点成为奇点。
无阻尼运动形式(二--)对应的奇点是中心点;欠阻尼运动形式(「上」)对应的奇点是稳定焦点;过阻尼运动形式(―-)对应的奇点是稳定节点;负阻尼运动形式(:=二)对应的奇点是不稳定焦点;负阻尼运动形式-)对应的奇点是不稳定节点;■-描述的二阶系统的奇点(0,0)称为鞍点,代表不稳定的平衡状态。
2.描述函数法设非线性系统经过变换和归化,可表示为非线性部分「与线性部分,相串联的典型反馈结构如图所示。
从图中可写出非线性系统经谐波线性化处理线性化系统的闭环频率响应为ROM由上式求得图中所示非线性系统特征方程为■-,还可写成呛曲)=- ….或4丁 丁,对应着一个正弦周期运动。
若系统扰动后,上述周期运 动经过一段时间,振幅仍能恢复为 A 二:,则具有这种性质的周期运动,称为自激振荡。
可见自激振荡就是一种振幅能自动恢复的周期运动。
周期运动解A 二:可由特征方程式求得,亦可通过图解法获得。
由等式 宀小在复数平面上分别绘制|」 曲线和;, 曲线。
两曲线的 交点对应的参数即为周期运动解。
有几个交点就有几个周期运动解。
至于该解是 否对应着自激振荡状态,取决于非线性系统稳定性分析。
第八章_非线性控制系统分析

偏移下的自由运动
2011 秋
许燕斌
自动控制理论A
Lo o
4、线性系统在没有外作用时,周期运动只发生在临界情况,
而这一周期运动是物理上不可能实现的; 非线性系统,在没有外作用时,系统中完全有可能发生一 定频率和振幅的稳定的周期运动,如图所示,这个周期运 动在物理上是可以实现的,通常把它称为自激振荡,简称 自振。
自动控制理论A
Lo o
x
k [e(t ) e0 ], x(t ) 0 x (t ) k [e(t ) e0 ], x(t ) 0 bsigne(t ), x(t ) 0
b k
k
e0 -b
-e0
e
2011 秋
许燕斌
自动控制理论A
4、继电特性
2011 秋
许燕斌
自动控制理论A
8.1 非线性系统及其特点
一.实际系统中的非线性因素
Lo o
一些常见的非线性特性
2011 秋
许燕斌
自动控制理论A
Lo o
除上述实际系统中部件的不可避免的非线性因素 外,有时为了改善系统的性能或者简化系统的结 构,人们还常常在系统中引入非线性部件或者更 复杂的非线性控制器。 通常,在自动控制系统中采用的非线性部件,最 简单和最普遍的就是继电器。
2011 秋
许燕斌
自动控制理论A
Lo o
二、非线性系统的特点(与线性系统的区别)
1、线性系统满足叠加原理,而非线性控制 系统不满足叠加原理。
2011 秋
许燕斌
自动控制理论A
Lo o
2、在线性系统中,系统的稳定性只取决于系统的 结构和参数,对常参量线性系统,只取决于系统 特征方程根的分布,而和初始条件、外加作用没 有关系; 对于非线性系统,不存在系统是否稳定的笼统概 念。必须具体讨论某一运动的稳定性问题。非线 性系统运动的稳定性,除了和系统的结构形式及 参数大小有关以外,还和初始条件有密切的关系。
第八章 非线性控制系统分析

8.2 常见非线性特性及其对系统运动的影响
一、饱和特性 y 斜率k 斜率 -a 0 a x
x>a ka y = kx x ≤a − ka x < −a
对系统的影响: 对系统的影响: 1.使系统开环增益下降,对动态响应的平稳性有利; 使系统开环增益下降,对动态响应的平稳性有利; 使系统开环增益下降 2.使系统的快速性和稳态跟踪精度下降。 使系统的快速性和稳态跟踪精度下降。 使系统的快速性和稳态跟踪精度下降
3.逆系统法 逆系统法 运用内环非线性反馈控制,构成伪线性系统,并以 运用内环非线性反馈控制,构成伪线性系统, 此为基础,设计外环控制网络。该方法应用数学工具直 此为基础,设计外环控制网络。 接研究非线性控制问题,不必求解非线性系统的运动方 接研究非线性控制问题, 程,是非线性系统控制研究的发展方向。 是非线性系统控制研究的发展方向。
二、死区特性 y 斜率k 斜率 -△ 0
△
x
0 x ≤∆ y= k[ x − ∆sign( x)] x > ∆
对系统的影响: 对系统的影响: 1.使系统产生稳态误差; 使系统产生稳态误差; 使系统产生稳态误差 2.当系统输入端存在小扰动信号时,在系统动态过程的 当系统输入端存在小扰动信号时, 当系统输入端存在小扰动信号时 稳态值附近,死区的作用可减小扰动信号的影响。 稳态值附近,死区的作用可减小扰动信号的影响。
三、间隙特性 y c 斜率k 斜率 -h 0 h -c 对系统的影响: 对系统的影响:
k ( x − h) y = k ( x + h) x c sign ( x)
ɺ y>0 ɺ y<0 ɺ y=0
增大系统的稳态误差,降低系统的稳态精度, 增大系统的稳态误差,降低系统的稳态精度,使过 渡过程振荡加剧,甚至造成系统的不稳定。 渡过程振荡加剧,甚至造成系统的不稳定。 一般来说,间隙特性对系统总是有害的, 一般来说,间隙特性对系统总是有害的,应该消除 或消弱它的影响。 或消弱它的影响。
非线性系统的分析与控制方法

非线性系统的分析与控制方法现今,非线性现象随处可见,涉及到的领域包括工程学、物理学、化学、生物学、经济学等。
与此同时,为了满足人类日益增长的需求,我们需要分析与控制这些非线性系统,使其达到我们所希望的状态。
本文将探讨分析与控制非线性系统的常见方法,涵盖了数学模型、稳定性分析、反馈控制等方面的内容。
1. 数学模型一个非线性系统通常可以利用微分方程表达。
微分方程可以是常微分方程或者偏微分方程,这取决于物理系统的特性。
使用数学模型可以对非线性系统进行分析与控制,比如进行数值计算,对系统进行仿真或者进行数值优化。
数学建模可以使用不同的方法,比如解析法、数值法和近似法等。
在实际应用中,通常使用形式化方法来描述系统的行为。
形式化方法涉及到一些形式的逻辑体系来描述现实问题。
它们通常适用于非线性系统的分析、验证和控制,其中一些常见的方法有:模型检验、定理证明和模型检查等。
2. 稳定性分析稳定性分析是对非线性系统的一个重要分析方法,它涉及到系统是否能够维持其稳定性。
稳定性分析包括局部稳定性分析和全局稳定性分析。
局部稳定性分析关注系统是否能够询问某种程度的扰动,而全局稳定性分析关注系统在无论多大的扰动下是否能保持稳定。
通常情况下,对于一个非线性系统,可以通过对其相应线性化系统的特征值进行分析来评估系统是否稳定。
如果相应线性化系统的特征值的实部都为负,则该非线性系统是局部稳定的。
如果相应线性化系统的特征值的实部都为负,并且没有虚部,则非线性系统是全局稳定的。
相反,如果相应线性化系统的特征值具有正实部,那么原始的非线性系统是不稳定的。
3. 反馈控制反馈控制是对非线性系统的适当信息反馈的一种方法,用于实现所需的稳态或动态目标。
在这种方法中,系统的输出信号与输入信号之间存在一定的误差。
通过将该误差反馈到控制器中,可以对系统进行优化,使其达到所需要的目标。
反馈控制方法最常见的类型是Proportional-Integral-Derivative (PID)控制器,它涉及到根据系统的误差信号进行比例反馈(P 项)、积分反馈(I项)和微分反馈(D项)。
131209第8章非线性控制系统分析

非线性系统的数学模型是非线性微分方程;但至今为止 非线性微分方程没有成熟的解法;
8.2 几种典型的非线性特性
饱和特性 死区特性 间隙特性 继电器特性 变增益特性
(1)饱和特性(如运算放大器,学习效率等)
1. 对系统而言,饱和特性往往促使系统稳 定,但会减小放大系数,从而导致稳定 精度降低。 2. 饱和特性的例子是放大器,许多执行元 件也具有饱和特性。例如伺服电机。 3. 实际上,执行元件一般兼有死区和饱和 特性。
y1 ( t )
4M
sin t
理想继电特性的描述函数:
4M N ( A) 0 A
一般继电特性的描述函数:
2M mh 2 h 2 2M h N ( A) 1 ( ) 1 ( ) j ( m 1) 2 A A A A ( A h)
可能不稳定—发散、衰减等
3. 自振运动— 非线性系统特有的运动形式,产生自持振荡 4. 发生频率畸变—频率响应的复杂性 — 跳频响应,倍/分频 响应,组合振荡
非线性控制系统的分析方法
小扰动线性化
非线性系统研究方法 仿真方法
全数字仿真 半实物仿真 相平面法 描述函数法 波波夫法 反馈线性化法 微分几何方法
h 0 理想继电特性: m 1 死区继电特性: m 1 纯滞环继电特性:
4M N ( A) A
4M h N ( A) 1 A A
2
2
4M 4 Mh h N ( A) 1 j A A2 A
一般而言,描述函数 N(A)是A的函数,与频率无关 非线性环节为单/非单值函数时,N(A)是实/复数,虚部为/不为0
在小误差信号时具有较小的增益,从而提高系统的相对稳定性。 同时抑制高频低振幅噪声,提高系统响应控制信号的准确度。
非线性控制系统分析

第一张
上一张 下一张 最后一张
结束授课
非线性系统响应还有其他与线性 系统不同的现象,无法用线性系统的 理论来解释。在一些情况下,引入某 些非线性环节,使系统获得比线性系 统更为优异的性能。实际上大多数智 能控制都属于非线性控制范畴。
应当明确指出的是:非线性系统 分析中不能使用叠加原理,也不能使用 线性系统分析中传递函数、频率特性 数学模型。
上一张 下一张 最后一张
结束授课
三、自持振荡
线性二阶系统只在阻尼比=0时给予阶跃作用,将产生周期性响应过程, 这时系统处于临界稳定状态。
实际上,一旦该系统参数发生微小变化,该周期性状态就无法维持,要么 发散至无穷大,要么衰减至零。
而非线性系统在没有外作用时,有可能产生频率和振幅一定的稳定周期 性响应。该周期响应过程物理上可实现并可保持,通常将其称为自持振荡或 自振荡,如下图所示。
但当系统的非线性特征明显且不能进行线性化处理时,就必须采用非 线性系统理论来分析。这类非线性称为本质非线性。
第一节 非线性系统的基本概念
如果一个控制系统包含一个或一个以上具有非线性特性的元件或环节, 则此系统即为非线性系统。
如系统不能进行线性化处理,或其时域响应不能用线性微分方程(一 般只能用非线性微分方程来描述,具有非线性数学模型)来描述,则称为非 线性系统,或称为本质非线性系统。这样的系统有以下特点:
如果自振荡的幅值在允许范围内, 按照李雅普诺夫关于稳定性的定义,系 统是稳定的。
自振荡是人们特别感兴趣的一个问 题,对它的研究有很大的实际意义。在 多数情况下,正常工作时不希望有振荡 存在,必须设法消除它。但在某些情况 下,特意引入自振荡,使系统有良好的稳 态、暂态性能。
第一张
上一张 下一张 最后一张
非线性控制系统分析教学课件

航天器控制系统
航天器控制系统是一个高度复杂的非线性控制系统,它涉及到轨道控制、姿态控制和推进系 统控制等多个方面。
航天器控制系统需要处理各种动态特性和非线性特性,如气动力、引力扰动和热效应等,以 确保航天器能够精确地完成预定任务。
航天器控制系统的设计需要运用非线性控制理论和方法,如自适应控制、鲁棒控制等,以提 高航天器的稳定性和精度。
非线性控制系统分析 教学课件
contents
目录
• 非线性控制系统概述 • 非线性控制系统的基本理论 • 非线性控制系统的分析与设计 • 非线性控制系统的应用实例 • 非线性控制系统的发展趋势与挑战
CHAPTER 01
非线性控制系统概述ห้องสมุดไป่ตู้
非线性控制系统的定义与特点
总结词
非线性、动态、输入与输出关系复杂
详细描述
反馈线性化方法是一种通过引入适当的反馈控制律,将非线性系统转化为线性系统的设 计方法。它通过调整系统的输入和输出,使得系统的动态行为变得线性化,从而可以利
用线性控制理论进行设计和分析。
滑模控制方法
总结词
一种用于处理非线性控制系统不确定性 的方法
VS
详细描述
滑模控制方法是一种通过设计滑模面和滑 模控制器,使得系统状态在滑模面上滑动 并达到期望目标的方法。它利用滑模面的 设计,使得系统对不确定性具有鲁棒性, 能够有效地处理非线性系统中的不确定性 和干扰。
非线性控制系统的基本理论
状态空间模型
状态空间模型是描述非线性控制系统动态特性的数学模型,由状态方程和输出方程 组成。
状态变量是描述系统内部状态的变量,输出变量是描述系统外部输出的变量。
建立状态空间模型需要考虑系统的非线性特性,包括死区、饱和、非线性函数等。
非线性控制系统的分析

第8章 非线性控制系统的分析重点与难点一、基本概念1. 线性与非线性系统的联系与区别控制系统在不同程度上都存在着非线性。
有些系统可以在工作点附近把它线性化,然后按线性系统来处理(如三级管放大器电路),但当系统含有本征非线性特性(如死区特性、继电器特性等)时,就不能用线性化的方法处理。
死区特性将使系统出现较大的稳态误差。
饱和特性将降低系统的超调量,有时还会引起稳定振荡。
间隙特性可使系统的振荡加剧,静差也会增大,有时会使系统不稳定。
继电器特性会出现低速爬行、蠕动及响应不平滑等现象。
与线性系统相比,非线性系统与线性系统的本质差别可以概括为以下三点: (1)线性系统可以使用叠加原理,而非线性系统不能使用叠加原理;(2)线性系统的稳定性与初值、输入无关,而非线性系统的稳定性与初值、输入有关; (3)线性系统可以写出通解形式,而非线性系统无法写出通解形式。
2. 相平面分析法以x ,x为坐标的平面就叫相平面,系统的某一状态对应于相平面上的一点。
相平面上的点随时间变化的轨迹叫相轨迹。
对应于二阶线性定常系统的相轨迹,可以对非线性系统进行分析,这种分析方法称为相平面分析法。
二阶线性定常系统的相轨迹如表8-1所示。
3. 极限环非线性系统存在着稳定的振荡状态,在相平面图上可表示为一个孤立的封闭相轨迹。
所有附近的相轨迹都渐近地趋向这个封闭的相轨迹,或离开该封闭的相轨迹,该相轨迹称为极限环。
极限环分为稳定和不稳定等四种形式,如表8-2所示。
非线性系统可能没有极限环,也可能存在多个极限环。
在相平面图形上,一个稳定的极限环就对应于一个自振状态。
4. 相平面做图法I —等倾线法令dx xd a / =,即),(x x f a =。
对于a 的不同取值,由),(x x f a =可得到x 与x 的不同关系式,而且在曲线),(xx f a =上,均具有相同的斜率a 。
给出一组a ,就可近似描绘出相平面图形。
表8-1 二阶线性系统022的相轨迹表8-2 极限环基本形式5. 相平面做图法II —δ方法给),(x x f x=两边同加x 2ω,得令 x x x f x x22),(ωω+=+ 22),(),(ωωδx x xf xx +=得 22),(ωδωx x x x=+ 因此 21212)(d x x=-+⎪⎭⎫ ⎝⎛δω式中 21122121111)( ),(δωδδ-+==x x d xx 利用上式就可得点],[11xx 邻域内的相平面图形。
非线性控制系统的稳定性分析

非线性控制系统的稳定性分析非线性控制系统是指系统的行为不遵循线性定律的控制系统,包括非线性模型、非线性运动规律和非线性控制器等。
非线性控制系统具有复杂性和不确定性,其稳定性分析是非常重要的。
本文将探讨非线性控制系统的稳定性分析方法。
一、非线性控制系统的稳定性概述稳定性是指控制系统在外部扰动下,保持原有的运动轨迹或恢复到平衡状态的能力。
在非线性控制系统中,稳定性是保证系统优异性的必要条件。
根据理论研究和应用开发的需要,目前控制系统稳定性分析的研究可以分为两种方法:一是稳定性的直接分析法;二是利用控制系统的强稳定性和半稳定性的方法。
二、基于Lyapunov函数的稳定性分析方法Lyapunov函数法是非线性控制系统稳定性分析的一个经典方法,其思想是利用李亚普诺夫(Alexandre Mikhailovich Lyapunov)稳定性定理得到系统的稳定解。
在Lyapunov函数法中,最基本的思想是构造一个函数V(x)来描述系统状态x的稳定程度,如果对函数V(x)的一些约束满足,就可以证明系统是稳定的。
三、基于小区域稳定性的分析方法基于小区域稳定性的方法是通过对于非线性系统进行局部分析,得到系统小区域内的稳定性条件。
相对于全局的非线性稳定性问题,小区域稳定性问题更容易分析。
因为非线性系统具有复杂性,要从全局角度分析系统的稳定性,对系统的求解难度很大。
而小区域稳定性方法则可以利用系统的线性化等方法得到系统的小区域稳定性信息,使得分析更为简便。
四、基于鲁棒稳定性的分析方法对于非线性控制系统中的不确定性问题,鲁棒稳定性分析方法是最有效的一种方法。
鲁棒稳定性是指系统在外部扰动下保持稳定的能力,在存在不确定性的情况下,系统的鲁棒稳定性分析方法需要采用不确定性模型来分析系统的稳定性。
五、基于奇异扰动理论的分析方法奇异扰动理论源于力学中的雷瓦里耶-贝尔特拉米问题,它在控制论研究中应用较为广泛。
奇异扰动理论主要是把奇异扰动分为弱奇异和强奇异两种情况,并通过相关的分析技巧解决了这种情况下的系统稳定性问题。
自动控制原理第八章非线性控制系统分析

第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。
本质非线性和非本质非线性。
典型非线性特性。
非线性系统的特点。
两种分析非线性系统的方法——描述函数法和相平面法。
(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。
谐波线性化的概念。
描述函数定义和求取方法。
描述函数法的适用条件。
(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。
借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。
(5)相平面法的基本概念非线性系统的数学模型。
相平面法的概念和内容。
相轨迹的定义。
(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。
(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。
(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。
用相平面法分析非线性系统,非线性系统相轨迹的组成。
改变非线性特性的参量及线性部分的参量对系统稳定性的影响。
2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。
8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。
应用线性系统控制理论,能够方便地分析和设计线性控制系统。
如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。
线性系统控制理论不能很好地分析非线性系统。
因非线性特性千差万别,无统一普遍使用的处理方法。
非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。
非线性系统:含有非线性环节的系统。
非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.
所谓自持振荡是指没有外界周期变化信号的作用时,系统内部产生的具有固 定振幅和频率的稳定周期运动。线性系统的运动状态只有收敛和发散,只有在临 界稳定的情况下才能产生周期运动,但由于环境或装置老化等不可避免的因素存 在,使这种临界振荡只可能是暂时的。而非线性系统则不同,即使无外加信号, 系统也可能产生一定幅度和频率的持续性振荡,这是非线性系统所特有的。
按非线性环节的物理性能及非线性特性的形状划分,非线性特性有死区 特性、饱和特性、间隙特性和继电器特性等。
典型非线性特性
yபைடு நூலகம்
-a
0a
x
(a) y
-a
0a
x
(c)
y
-a
0
a
x
(b ) y
M
-a -ma 0 ma a x
-M (d )
1. 死区特性
死区又称不灵敏区,通常以阈值、分辨 率等指标衡量。
常见于测量、放大元件中,一般的机械系统、电机等,都不同程度地存在 死区。其特点是当输入信号在零值附近的某一小范围之内时,没有输出。只有 当输入信号大于此范围时,才有输出。 执行机构中的静摩擦影响也可以用死区 特性表示。控制系统中存在死区特性,将导致系统产生稳态误差,其中测量元 件的死区特性尤为明显。摩擦死区特性可能造成系统的低速不均匀,甚至使随 动系统不能准确跟踪目标。
k y f (x) xx
输出和输入呈非线性关系,其比值不是一个常数,可将其视为变增益比例环
节,常见非线性特性的等效增益曲线如图8-6(P390)。
二、常见非线性因素对系统运动的影响
非线性特性种类很多,且对非线性系统尚不存在统一的分析方法,所以 将非线性特性分类,然后根据各个非线性的类型进行分析得到具体的结论,才 能用于实际。
3. 频率响应发生畸变
稳定的线性系统的频率响应,即正弦信号作用下的稳态输出量是与输入同 频率的正弦信号,其幅值A和相位φ为输入正弦信号频率ω的函数。而非线性系 统的频率响应除了含有与输入同频率的正弦信号分量(基波分量)外,还含有关于 ω的高次谐波分量,使输出波形发生非线性畸变。若系统含有多值非线性环节, 输出的各次谐波分量的幅值还可能发生跃变。
8.1 非线性系统概述
一、研究非线性控制理论的意义
在构成系统的环节中有一个或一个以上的非线性特性时, 即称此系统 为非线性系统。用线性方程组来描述系统,只不过是在一定的范围内和 一定的近似程度上对系统的性质所作的一种理想化的抽象。用线性方法 研究控制系统,所得的结论往往是近似的,当控制系统中非线性因素较 强时(称为本质非线性), 用线性方法得到的结论,必然误差很大, 甚至完 全错误。非线性对象的运动规律要用非线性代数方程和(或)非线性微分方 程描述,而不能用线性方程组描述。一般地,非线性系统的数学模型可 以表示为:
相平面法是非线性系统的图解法,由于平面在几何上是二维的,因此只 适用于阶数最高为二阶的系统。
4. 描述函数法是非线性系统的频域法,适用于具有低通滤波特性的各种阶次的
非线性系统。
5. 李雅普诺夫法是根据广义能量概念确定非线性系统稳定性的方法,原则上适
用于所有非线性系统,但对于很多系统,寻找李雅普诺夫函数相当困难。
1、小范围线性近似法 这是一种在平衡点的近似线性化方法,通过在平衡点附近泰勒展开,可
将一个非线性微分方程化为线性微分方程,然后按线性系统的理论进行处理。 该方法局限于小区域研究。 2、 逐段线性近似法
将非线性系统近似为几个线性区域,每个区域用相应的线性微分方程描 述,将各段的解合在一起即可得到系统的全解。 3、 相平面法
2. 饱和特性
饱和也是一种常见的非线性,在 铁磁元件及各种放大器中都存在,其特点是当输入信号超过某一范围后,输 出信号不再随输入信号变化而保持某一常值。饱和特性将使系统在大信号作 用之下的等效增益降低,深度饱和情况下,甚至使系统丧失闭环控制作用。 还有些系统中有意地利用饱和特性作信号限幅,限制某些物理参量,保证系 统安全合理地工作。
f
t,
dny dtn
,,
dy dt
,
y
g
t,
d mr dtm
,,
dr dt
,
r
其中, f(·)和g(·)为非线性函数。
二、非线性系统的特征
1. 按照平衡状态的定义,在无外作用且系统输出的各阶导数等于零时,系统
处于平衡状态。 显然,对于线性系统只有一个平衡状态c=0,线性系统的稳定 性即为该平衡状态的稳定性,而且取决于系统本身的结构和参数,与外作用和 初始条件无关。而非线性系统可能存在多个平衡状态, 各平衡状态可能是稳定 的也可能是不稳定的。非线性系统的稳定性不仅与系统的结构和参数有关,也 与初始条件以及系统的输入信号的类型和幅值有关。
三、非线性系统的分析与设计方法
系统分析和设计的目的是通过求取系统的运动形式,以解决稳定性问题 为中心,对系统实施有效的控制。由于非线性系统形式多样,受数学工具限制, 一般情况下难以求得非线性方程的解析解,只能采用工程上适用的近似方法。 在实际工程问题中,如果不需精确求解输出函数,往往把分析的重点放在以下 三个方面:某一平衡点是否稳定,如果不稳定应如何校正;系统中是否会产生 自持振荡,如何确定其周期和振幅;如何利用或消除自持振荡以获得需要的性 能指标。比较基本的非线性系统的研究方法有如下几种:
3. 间隙特性
间隙又称回环。传动机构的间隙 是一种常见的回环非线性特性。在齿轮传动中, 由于间隙存在, 当主动齿轮方向 改变时, 从动轮保持原位不动, 直到间隙消除后才改变转动方向。铁磁元件中的 磁滞现象也是一种回环特性。 间隙特性对系统影响较为复杂, 一般来说, 它将使 系统稳态误差增大,频率响应的相位迟后也增大, 从而使系统动态性能恶化。 采用双片弹性齿轮(无隙齿轮)可消除间隙对系统的不利影响。
必须指出,长时间大幅度的振荡会造成机械磨损,增加控制误差,因此许多 情况下不希望自持振荡发生。但在控制中通过引入高频小幅度的颤振,可克服间 歇、死区等非线性因素的不良影响。而在振动试验中,还必须使系统产生稳定的 周期运动。因此研究自持振荡的产生条件与抑制,确定其频率与幅度,是非线性 系统分析的重要内容。
6. 利用计算机模拟,可以满意地解决实际工程中相当多的非线性系统问题。这
是研究非线性系统的一种非常有效的方法,但它只能给出数值解,无法得到解析 解,因此缺乏对一般非线性系统的指导意义。
8.2 常见非线性特性及其对系统运动的影响
一、非线性特性的等效增益 设非线性特性可以表示为:
y f (x)
将非线性特性视为一个环节,环节的输入为x,输出为y,按照线性系统中比 例环节的描述,定义非线性环节输出y和输入x的比值为等效增益: