2017届衡水点睛大联考高三第三次联考理科数学试题 及答案

合集下载

2017年5月2017届高三第三次全国大联考(新课标Ⅲ卷)理数卷(参考答案及评分标准)

2017年5月2017届高三第三次全国大联考(新课标Ⅲ卷)理数卷(参考答案及评分标准)

12017年第三次全国大联考【新课标III 卷】理科数学·参考答案13.3 14.590490 15.12 16.2sin 26x ⎛⎫- ⎪⎝⎭17.【解析】(Ⅰ)由cos cos 2a B b A +=,根据余弦定理,得222222222a c b b c a a b ac bc+-+-⋅+⋅=,整理,得2c =.………………2分由()cos 1cos cA b C =-,根据正弦定理,得()sin cos sin 1cos C A B C =-,即sin sin cos sin cos B C A B C =+,又sin B =()sin sin cos cos sin A C A C A C +=+,………4分sin cos sin cos B C A C =,故cos 0C =或sin sin A B =.………………5分当cos 0C =时,2C π=,故ABC △为直角三角形; 当sin sin A B =时,A B =,故ABC △为等腰三角形.………………7分(Ⅱ)因为13sin cos 226x x x x x ⎫π⎛⎫-=-=-⎪ ⎪⎪⎝⎭⎭,所以6C π=.………………8分 由(Ⅰ)知2c =,A B =,则a b =,………………9分 所以由余弦定理,得22242cos 6a a a π=+-,解得28a =+,………………10分 所以ABC ∆的面积21sin 226S a π==………………12分18.【解析】(Ⅰ)由题意,得参加跑步类的有778042013⨯=人,………………1分 所以420180240m =-=,78042018012060n =---=.………………3分 根据分层抽样法知,抽取的13人中参加200米的学生人数有180133780⨯=人.………………5分2(Ⅱ)由题意,得抽取的13人中参加400米的学生人数有240134780⨯=,参加跳绳的学生人数有3人,所以X 的所有可能取值为1、2、3、4,………………6分()134347C C 41C 35P X ===,()224347C C 182C 35P X ===,()314347C C 123C 35P X ===,()4447C 14C 35P X ===,………………9分所以离散型随机变量X 的分布列为:X 1 2 3 4P435 1835 1235 135所以41812116()1234353535357E X =⨯+⨯+⨯+⨯=.………………12分 19.【解析】(Ⅰ)如图,连接AC 交BD 于点M ,连接MH .∵AFBG DE ,BG DE =,AF ⊥平面ABCD ,∴四边形BDEG 为矩形,………………1分又∵H 为EG 中点,∴MHBGAF ,MH BG =,………………2分又∵AF ⊥平面ABCD ,∴MH ⊥平面ABCD ,∴MH ⊥BD .………………3分 在正方形ABCD 中,BD AC ⊥,且ACMH M =,∴BD ⊥平面CMH ,………………4分又CH ⊂平面CMH ,∴BD CH ⊥.………………5分(Ⅱ)由题意,以D 为坐标原点,以,,DA DC DE 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,且设1AB AF BG DE ====,………………6分则()0,0,1E ,()1,0,1F ,()1,1,1G ,()0,1,0C ,()1,0,0EF =,()0,1,1EC =-,()1,1,0EG =. …………………………………………………………………7分 设()1111,,x y z =n 为平面FCE 的一个法向量,则由110EF EC ⎧=⎪⎨=⎪⎩n n ,得11100x y z =⎧⎨-=⎩,取11y =,得()10,1,1=n .………………9分3设()2222,,x y z =n 为平面GCE 的一个法向量,则由2200EG EC ⎧=⎪⎨=⎪⎩n n ,得222200x y y z +=⎧⎨-=⎩,取21y =,得()21,1,1=-n ,………………11分∴1212126cos ,||||323⋅===⋅⨯n n n n n n , ∴二面角F CE G --的余弦值为6.………………12分20.【解析】(Ⅰ)由题意,得63c a = ①,且12||2F F c =,21||b PF a=,则212146||||2b F F PF c a ⋅=⋅= ②.………………2分由①②联立,并结合222a b c =+,解得26a =,22b =,所以椭圆C 的方程为22162x y +=.………………4分 (Ⅱ)当直线m 与x 轴不垂直时,设直线m 的方程为()()20y k x k =-≠,代入椭圆C 的方程22162x y +=,得()222213121260k x k x k +-+-=.………………5分 设()11,A x y 、()22,B x y ,所以21221213k x x k+=+,212212613k x x k -=+.………………6分 根据题意,假设在x 轴上存在一个定点()0,0M x ,使得MA MB ⋅的值为定值, 则()()()()101202102012,,MA MB x x y x x y x x x x y y ⋅=-⋅-=--+()()()()()()222002222120120231210612413x x k x k x x k x x x k x k-++-=+-++++=+.…………7分要使上式为定值,即与k 无关,则()220003121036x x x -+=-,解得073x =,4此时,20569MA MB x ⋅=-=-,………………8分 所以在x 轴上存在定点7,03M ⎛⎫⎪⎝⎭,使得MA MB ⋅为定值,且073x =,定值为59-.……………9分当直线m 与x 轴垂直时,将2x =代入椭圆方程可求得出,A B 的坐标,不妨设,2,A B ⎛⎛ ⎝⎭⎝⎭,则161,,,33MA MB ⎛⎫⎛=-=- ⎪ ⎪ ⎝⎭⎝⎭∴115()()339MA MB ⋅=-⨯--=-.…………11分 综上可知,在x 轴上存在定点7,03M ⎛⎫⎪⎝⎭,使得MA MB ⋅为定值,且073x =,定值为59-.……12分21.【解析】(Ⅰ)函数()f x 的定义域为()1+∞-,,()()()()2331212111x a af x x x x +-'=+++-=,………………2分 当0a ≤时,()0f x '≥,函数()f x 在()1+∞-,上单调递增;……………3分 当0a >时,若1x ≥,则()0f x '≥,函数()f x 在1,)+∞上单调递增;若11x -<<,则()0f x '<,函数()f x 在(1)-上单调递减.……………4分综上所述,当0a ≤时,函数()f x 在()1+∞-,上单调递增;当0a >时,函数()f x 在区间()1-上单调递减,在)1,+∞上单调递增.………………5分(Ⅱ)22()323()3g x x x x x '=-=-,1,23x ⎡⎤∈⎢⎥⎣⎦,可见,当2,23x ⎡⎤∈⎢⎥⎣⎦时,()0g x '≥,()g x 在2,23⎡⎤⎢⎥⎣⎦上单调递增,当12,33x ⎡⎤∈⎢⎥⎣⎦时,()0g x '≤,()g x 在12,33⎡⎤⎢⎥⎣⎦上单调递减,………………7分而()1224327g g ⎛⎫=-<= ⎪⎝⎭,所以,()g x 在1,23⎡⎤⎢⎥⎣⎦上的最大值为4,………………8分 依题意,只需当12,13x ⎡⎤∈-⎢⎥⎣⎦时,()()11134x f x ++≥恒成立, 即()()1111x f x +≥,即()()1ln 111a x x x +++≥+在2,13⎡⎤-⎢⎥⎣⎦上恒成立,5亦即()()()211ln 1a x x x ≥+-++在2,13⎡⎤-⎢⎥⎣⎦上恒成立.………………9分 令()()()2()11ln 1h x x x x =+-++2,13x ⎛⎫⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭,则()()()21ln 1h x x x x '=--++,………9分显然(0)0h '=, 当2,03x ⎡⎫∈-⎪⎢⎣⎭时, 0x ->,()()21ln 10x x ++<,()0h x '>,即()h x 在2,03⎡⎫-⎪⎢⎣⎭上单调递增;………………10分当(]0,1x ∈时,0x -<,()()21ln 10x x ++>,()0h x '<,即()h x 在区间(]0,1上单调递减; 所以,当0x =时,函数()h x 取得最大值(0)1h =,………………112分 故1a ≥,即实数a 的取值范围是[)1,+∞.………………12分请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程【解析】(Ⅰ)消去参数t ,得直线l 的普通方程为10x y -+=,斜率为1, 所以直线l '的斜率为1-.………………1分因为圆C 的极坐标方程可化为24cos 2sin 0m ρρθρθ--+=,所以将222,cos ,sin x y x y ρρθρθ=+==代入上述方程得圆C 的直角坐标方程为22420x y x y m +--+=,则配方,得()()22215x y m -+-=-,其圆心为()2,1C ,半径为)5m <.………………3分由题意,知直线l '经过圆心()2,1C ,所以直线l '的方程为()12y x -=--,即30x y +-=,所以由cos ,sin x y ρθρθ==,得直线l '的极坐标方程为()cos sin 3ρθθ+=.………………5分(Ⅱ)因为||AB =C 到直线l)5m =<.)5m =<,解得1m =.………………7分 (Ⅲ)当所求切线的斜率存在时,设切线方程为4(4)y k x -=-,即440kx y k --+=.2=,解得512k=,所以所求切线的方程为512280x y-+=;当所求切线的斜率不存在时,切线方程为4x=.………………9分综上,所求切线的方程为4x=或512280x y-+=.………………10分23.(本小题满分10分)选修4-5:不等式选讲【解析】(Ⅰ)设()222f x x x=+--,则()4,13,124,2x xf x x xx x--<-⎧⎪=-≤<⎨⎪+≥⎩,………………1分当1x<-时,由42x-->,得6x<-,6x<-∴;………………2分当12x-≤<时,由32x>,得23x>,223x<<∴;………………3分当2x≥时,由42x+>,得2x>-,2x≥∴.………………4分综上所述,集合M为2|63x x x⎧⎫><-⎨⎬⎩⎭或.………………5分(Ⅱ)由(Ⅰ)知1t=,则()()()1111a b c t---==.因为1,1,1a b c>>>,所以10,10,10a b c->->->,………………6分则()110a a=-+≥>,(当且仅当2a=时等号成立)……………7分()110b b=-+≥>,(当且仅当2b=时等号成立)………………8分()110c c=-+≥>,(当且仅当2c=时等号成立)………………9分则8abc≥≥(当且仅当2a b c===时等号成立),即8abc≥.………………10分67。

2017年5月2017届高三第三次全国大联考(新课标Ⅰ卷)理数卷(参考答案)

2017年5月2017届高三第三次全国大联考(新课标Ⅰ卷)理数卷(参考答案)

2017年第三次全国大联考【新课标Ⅰ卷】理科数学·参考答案1 2 3 4 5 6 C D A B C C 7 8 9 10 11 12 BCAAAB13. 1 14. 8 15. 22 16.②③17.【解析】(1)设等差数列{}n a 的公差为d (0d ≠),由2930,,a a a 成等比数列可知()()()2111298a a d a d d +=++,又15a =,解得2d =,∴23n a n =+.………………4分(2)由()111n n n a n b b *+-=∈N ,得()11112,n n n a n n b b *---=≥∈N , 当2n ≥时,11221111111111n n n n n b b b b b b b b ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()121111126322n n a a a n n n n b --=++++=-++=+,………………………8分 对113b =上式也成立,∴()()12n n n n b *=+∈N ,∴()1111222n b n n n n ⎛⎫==- ⎪++⎝⎭, ∴()()21111111311351232422212412n n n T n n n n n n ⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=--=⎪ ⎪ ⎪ ⎪⎢⎥+++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.………12分 18. 【解析】(1)因为ABC △是等边三角形,M 为AB 的中点,所以CM AB ⊥.又因为DB ⊥平面ABC , DB CM ∴⊥,可得CM ⊥平面ABDE ,因为EM ⊂平面ABDE ,所以CM EM ⊥;(4分) (2)如图,以点M 为坐标原点,,MC MB 所在直线分别为,x y 轴,过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系.因为DB ⊥平面ABC ,所以DMB ∠为直线DM 与平面ABC 所成的角.(6分) 由题意得tan 2BDDMB MB∠==,即2BD =,故()0,1,0B ,)3,0,0C ,()()0,1,2,0,1,1D E -,于是()3,1,0BC =-, ()0,0,2BD =, ()3,1,1CE =--, ()3,1,2CD =-,设平面BCD 与平面CDE的法向量分别为()111,,x y z =m ,()222,,x y z =n,则由00BC BD ⎧⋅=⎨⋅=⎩m m 得1113020x y z ⎧-=⎪⎨=⎪⎩,令11x =,得13y =,所以()1,3,0=m .同理求得3231,,33⎛⎫=- ⎪ ⎪⎝⎭n , (10分) 所以cos ,0⋅==m nm n m n,则二面角B CD E --的大小为90︒.(12分) 51015zxyACDE MB(3,3x-2yx+2y=0x+y-4=0y x19.【解析】(1)由已知可得,40岁以下的有3100605⨯=人,使用微信支付的有260403⨯=人,40岁以上使用微信支付的有140104⨯=人.所以22⨯列联表为:40岁以下40岁以上合计 使用微信支付 40 10 50 未使用微信支付 20 30 50 合计6040100由列联表中的数据计算可得2K 的观测值为()21004030201050604050503k ⨯⨯-⨯==⨯⨯⨯,由于5010.8283>,所以有的把握认为“使用微信支付与年龄有关”. .....5分(2)采用分层抽样的方法从100名顾客中抽取10人,则从“40岁以下”的人中抽取6人,从“40岁以上”的人中抽取4人,X 的所有可能取值为0,1,2,又()24210C 20C 15P X ===, ()1164210C C 81C 15P X ===, ()26210C 12C 3P X ===,故分布列如下:X 0 1 2P215 815 13数学期望2816()012151535E X =⨯+⨯+⨯=. .....12分 20.【解析】(1)由120MF MF ⋅=,得12MFMF ⊥,即12MF MF ⊥,由勾股定理,得22212(2)20MF MF c +==,且128MF MF ⋅=,解得124,2MF MF ==,根据椭圆的定义,可得1226MF MF a +==,即3a =,所以2224b a c =-=,所以椭圆的方程为22194x y +=......4分(2)由(1)得()13,0A -,()23,0A ,设()00,P x y ,则直线1PA 的方程为()0033y y x x =++,它与直线352x =的交点的坐标为003535,3232y E x ⎛⎫⎛⎫+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,直线2PA 的方程为()0033y y x x =--,它与直线352x =的交点的坐标为003535,3232y F x ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,再设以EF 为直径的圆交x 轴于点(),0Q m ,则QE QF ⊥,从而1QE QF k k ⋅=-,即000035353332321353522y y x x m m⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭⋅=---,即2202093549y m x ⎫=-⎪⎪-⎝⎭,解得3512m =±.故以EF 为直径的圆交x 轴于定点,该定点的坐标为351,02⎛⎫+ ⎪ ⎪⎝⎭或351,02⎛⎫- ⎪ ⎪⎝⎭. ..........12分 21.【解析】(1)令()()cos e xg x f x kx x =-- sin e x x kx =-,要使()e cos x f x kx x≥+恒成立,只需当2π0,x ⎡⎤∈⎢⎥⎣⎦时, ()min0g x ≥,()()sin s e co x g x x x k =+-',令()()sin c e os xh x x x =+,则()2cos 0e x h x x '=≥对2π0,x ⎡⎤∈⎢⎥⎣⎦恒成立,()h x ∴在2π0,x ⎡⎤∈⎢⎥⎣⎦上是增函数,则()2πe 1,h x ⎡⎤∈⎢⎥⎣⎦,..........2分①当1k ≤时, ()0g x '≥恒成立, ()g x 在π0,2x ⎡⎤∈⎢⎥⎣⎦上为增函数,()()min 00g x g ∴==,1k ∴≤满足题意;②当2π1e k <<时, ()0g x '=在2π0,x ⎡⎤∈⎢⎥⎣⎦上有实根0x , ()h x 在2π0,x ⎡⎤∈⎢⎥⎣⎦上是增函数,则当[)00,x x ∈时,()0g x '<,()()000g x g ∴<=不符合题意;③当π2e k ≥时, ()0g x '≤恒成立, ()g x 在2π0,x ⎡⎤∈⎢⎥⎣⎦上为减函数,()()00g x g ∴<=不符合题意,1k ∴≤,即(],1k ∈-∞. ..........5分 (2)()f x =()sin co e s x x x +,()e '2cos x f x x ∴=,设切点坐标为()()0000,sin cos ex x x x +,则切线斜率为()0002cos 'e x f x x =,从而切线方程为()000sin cos e x y x x -+()0002cos e x x x x =-,()0000001sin cos 2co 2πe s e x x x x x x -⎛⎫∴-+=- ⎪⎝⎭,即00tan 22πx x ⎛⎫=- ⎪⎝⎭,令1tan y x =, 222πy x ⎛⎫=- ⎪⎝⎭,这两个函数的图象关于点π,02⎛⎫⎪⎝⎭对称,则它们交点的横坐标关于π2x =对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于π2x =成对出现,又在20152017,22ππ⎡⎤-⎢⎥⎣⎦内共有1008对,每对和为π,∴数列{}n x 的所有项之和为1008π. .....12分 22.【解析】(1)曲线C 的直角坐标方程为22124x y +=,直线l 的普通方程为33x y +=.……5分(2)点()03P ,在直线l 33x y +=上,将直线l 的参数方程代入曲线C 的直角坐标方程,得221323422t t ⎛⎫⎛⎫-++= ⎪ ⎪ ⎪⎝⎭⎝⎭, 251240t t ∴+-=,设两根为1t ,2t ,12125t t +=-,124·05t t ∴=-<,故1t 与2t 异号,2121212414()45PA PB t t t t t t ∴+=-=+-=,121245PA PB t t t t ⋅=⋅=-⋅=, 1114·PA PB PA PB PA PB+∴+==.………………10分23.【解析】(1)不等式()0f x x +>可化为21x x x -+>+,当1x <-时, ()()21x x x --+>-+,解得3x >-,即31x -<<-;当12x -≤≤时, ()21x x x --+>+,解得1x <,即11x -≤<;当2x >时, 21x x x -+>+,解得3x >,即3x >,综上所述,不等式()0f x x +>的解集为{|31x x -<<或3}x >.……………5分(2)由不等式()22f x a a ≤-可得2212x x a a ≤--+-,21213x x x x -+≤----=,∴223a a -≥,即2230a a --≥,解得1a ≤-或3a ≥,故实数a 的取值范围是1a ≤-或3a ≥.…10分。

2017年5月2017届高三第三次全国大联考(新课标Ⅲ卷)理数卷(正式考试版)

2017年5月2017届高三第三次全国大联考(新课标Ⅲ卷)理数卷(正式考试版)

理科数学试题 第1页(共4页) 理科数学试题 第2页(共4页)绝密★启用前|学科网试题命制中心2017年第三次全国大联考【新课标III 卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2|20M x x x =--<,21{|1,}2Ny y x x ==-+∈R ,则M N = ( ) A .{}|21x x -≤< B .{}|12x x << C .{}|11x x -<≤ D .{}|12x x ≤< 2.已知i 是虚数单位,若复数z 满足211i 122z =-+,则||z =( ) A .1B .2CD3.在长为4的线段PQ 上随机取一点R (R 不取端点值),以PR 为棱长的正方体体积大于27的概率为( )A .12B .14C .3764D .27644.设焦点为F 的抛物线C :22(0)y px p =>的准线与x 轴交于K 点,P 是抛物线C 上纵坐标为点,若PKF S =△p =( )A .12B .2C .4D .85.已知函数()3122xx f x x ⎛⎫=-⋅ ⎪⎝⎭,且()20f x ->,则实数x 的取值范围是( ) A .()(),22,-∞+∞ B .(),2-∞ C .()2,+∞ D.(),-∞+∞6.已知变量 xy ,满足约束条件2204x y x y x -≥-⎧⎪-≤⎨⎪≥-⎩,若2m x y ≥-+恒成立时,则实数m 的取值范围为( )A .[)0,+∞B .[)4,+∞ C .[)2,-+∞ D .[)7,+∞ 7.如图,网格上小正方形的边长为1,粗实线与粗虚线画出的是正方体中挖去了两个半圆锥得到的一个几何体的三视图,则该几何体的体积为( ) A .32643-π B .16643-π C .8643-π D .4643-π 8.函数()22e xx xf x +=的大致图象是()9.执行下列程序框图,如果输出i 的值为3,那么输入的x 取值范围是( )A .16x <B .416x <<C .416x ≤<D .1664x ≤<10.已知过半径为2的球的球心的截面α圆内有一个内接正ABC △,点P 是过AB 且与平面α垂直的球的截面圆上任意一点,则点P 到平面ABC 的最大距离为() A B C .3 D .11.已知双曲线C :22221(0,0)x y a b a b-=>>C 的右顶点A 作倾斜角为34π的直线l 与两条渐近线12,l l 分别相交于,P Q 两点,且满足AP PQ λ=,则实数λ的值是( )A .12 B .13C .2D .312.已知各项均为正数的递增数列{}n a 的前n 项和为n S 满足1n a =+,nn n a b a t=+(*t ∈N ),若12,,m b b b 成等差数列,则t m +=( )A .8B .9C .7或8D .8或9理科数学试题 第3页(共4页) 理科数学试题 第4页(共4页)第Ⅱ卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分)13.已知,AB DC 为梯形ABCD 的两腰,若()1,3AD =- ,()1,2BC x x =-,则x =____________.14.《孙子算经》是中国古代重要的数学专著,其中记载了一道有趣的数学问题:“今有出门,望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色.”问这个数学问题动物有_____只.(数字作答)15.某同学要用红、黄两种颜色给如右图中并排的七个矩形图形涂色,要求每一块矩形只涂一种颜色,要求任意两相邻的两块矩形至多有1块涂红色,且任意相邻三块矩形至少有一块矩形涂红色,则涂色方案有___________种.16.将函数()()2sin 0,||2f x x ωϕωϕπ⎛⎫=+><⎪⎝⎭的图象上所有点的横坐标伸长到原来的4倍,再向右平移3π个单位得到得到函数()g x 的图象,若不等式()1g x ≥的解集为()74,43k k k π⎡⎤π+ππ+∈⎢⎥⎣⎦Z ,则()f x =___________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12)在ABC △中,内角,,A B C 所对的边分别为,,a b c ,满足cos cos 2a B b A +=,且()cos 1cos c A b C =-.(Ⅰ)求c 的值及判断ABC △的形状;(Ⅱ)若()3sin )x x x C x =-∈R ,求ABC △的面积. 18.(本小题满分12分)某初级中学根据运动场地的影响,但为尽大可能让学生都参与到运动会中来,在2016冬季运动会中设置了五个项目,其中属于跑步类的两项,分别是200米和400米,另外三项分别为跳绳、跳远、跳高.学校要求每位学生必须参加,且只参加其中一项,该校780名学生参加各运动项目人数统计如右的条形图: 其中参加跑步类的人数所占频率为713,为了了解学生身体健康与参加运动项目之间的关系,用分层抽样的方法从这780名学生中抽取13人进行分析.(Ⅰ)求条形图中m 和n 的值以及抽取的13人中参加200米的学生人数;(Ⅱ)现从抽取的参加400米和跳绳两个项目中随机抽取4人,记其中参加400米跑的学生人数为X ,求离散型随机变量X 的分布列与数学期望.19.如图,在多面体ABCDEFG 中,ABCD 为正方形,AF⊥平面ABCD ,AF BG DE ,且AB AF BG DE ===,H 为EG 中点.(Ⅰ)求证:BD CH ⊥;(Ⅱ)求二面角F CE G --的余弦值.20.(本小题满分12分)已知左、右焦点分别为12,F F 的椭圆C :22221(0)x y a b a b +=>>直线l 与椭圆C 交于,P Q 两个不同的点,当四边形12PF F Q . (Ⅰ)求椭圆C 的方程;(Ⅱ)若与x 轴不平行且过定点()2,0的直线m 与椭圆C 交于不同的两点,A B ,问:在x 轴上是否存在一个定点()0,0M x ,使得MA MB ⋅的值为定值?若存在,试求出0x 的值及定值;若不存在,请说明理由.21.(本小题满分12分)已知函数()()()()2ln 11af x x a x =++∈+R .(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)已知()32g x x x =-,若对于12,13x ⎡⎤∀∈-⎢⎥⎣⎦,21,23x ⎡⎤∀∈⎢⎥⎣⎦,不等式()()()11213x f x g x ++≥恒成立,求实数a 的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l的参数方程为122x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为()4cos 2sin m ρρθθ--=-,且直线l 与圆C 相交于不同的,A B 两点.(Ⅰ)求线段AB 垂直平分线l '的极坐标方程;(Ⅱ)若||AB =m 的值.(Ⅲ)若1m =,求过点()4,4N 与圆C 相切的切线方程. 23.(本小题满分10分)选修4-5:不等式选讲已知不等式2222x x +-->的解集为M . (Ⅰ)求集合M ;(Ⅱ)已知t 为集合M 中的最小正整数,若1,1,1a b c >>>,且()()()111a b c t ---=,求证:8abc ≥.。

2017届高三第三次联考(理数)(含答案)word版

2017届高三第三次联考(理数)(含答案)word版

2017年六校高三年级第三次联考理 科 数 学(时间:120分钟 满分:150分)第I 卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.下列判断错误..的是( ) A .“22bm am <”是“a<b”的充分不必要条件 B .命题“01,23≤--∈∀x xR x ”的否定是“01,23>--∈∃x x R x ”C .若q p Λ为假命题,则p,q 均为假命题D .若ξ~B (4,0.25)则1=ξE3. 已知为等差数列,以表示的前n 项和,则使得达到最大值的n 是( ) A. 18B. 19C. 20D. 214.已知2a -b =(-1,3),c =(1,3),且a ·c =3,|b |=4,则b 与c 的夹角为 ( ) A. π6 B. π3 C.5π6 D.2π35.若正四棱柱1111ABCD A B C D -的底面边长为1,1AB 与底面ABCD 成060角, 则直线11AC 到底面ABCD 的距离为( )B.1 6. 执行右侧框图所表达的算法后,输出的n 值是( )A.1B.2C.3D.47.已知1F 、2F 分别是双曲线的左、右焦点,以坐标原点O 为圆心,为半径的圆与双曲线在第一象限的交点为P,则当的面积等于时,双曲线的离心率为( )正视图俯视图A.2B.3C.26D.2 8. 2(sin cos )1y x x =+-是( )A.最小正周期为π2的偶函数B.最小正周期为π2的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数 9. 如右图所示是某一容器的三视图,现向容器中匀速注水, 容器中水面的高度h 随时间t 变化的可能图像是( )B .C .D .10. 对于定义域和值域均为[0,1]的函数f (x ),定义1()()f x f x =,21()(())f x f f x =,…,1()(())n n f x f f x -=,n =1,2,3,….满足()n f x x =的点x ∈[0,1]称为f 的n 阶周期点.设12,0,2()122,1,2x x f x x x ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩ 则f 的n 阶周期点的个数是( )A . 2nB . 2(2n-1)C . 2nD .2n2第II 卷二.填空题:本大题共5小题,每小题5分,共25分.请把答案填在答题卡上.11.一离散型随机变量ξ且其数学期望E ξ=1.5, 则b a -=__________. 12. 一空间几何体三视图如图所示,则该几何体的体积为 . 13.dx x ⎰--2|)1|2(= .14.将全体正奇数排成一个三角形数阵: 1 3 57 9 11 13 15 17 19 ……按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .PA BCDQM15.选做题:(考生注意:请在下列两题中任选一题作答,如果两题均做,则按第一题计分)A .(极坐标与参数方程)在平面直角坐标系下,曲线 ⎩⎨⎧-=+=ty at x C 22:1(t 为参数),曲线⎩⎨⎧+==θθsin 22cos 2:2y x C若曲线C l 、C 2有公共点,则实数a 的取值范围 .B. (不等式选讲选做题)如果存在实数x 使不等式k x x <--+21成立,则实数k 的取值范围是_________.三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,向量m =(2sinB ,2-cos2B ),)1),24(sin 2(2-+=Bn π,m ⊥n .(1)求角B 的大小;(2)若a =b=1,求c 的值. 17. (本小题满分12分)某中学经市人民政府批准建分校,工程从2010年底开工到2013年底完工,工程分三期完成。

河北省衡水中学2017届高三下学期第三次摸底考试数学(理)试卷(解析版)

河北省衡水中学2017届高三下学期第三次摸底考试数学(理)试卷(解析版)

河北衡水中学2016-2017学年度高三下学期数学第三次摸底考试(理科)必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则集合等于()A. B. C. D.【答案】D【解析】,选D.2. ,若,则等于()A. B. C. D.【答案】A【解析】设,则,选A.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3. 数列为正项等比数列,若,且,则此数列的前5项和等于()A. B. 41 C. D.【答案】A【解析】因为,所以,选A.4. 已知、分别是双曲线的左、右焦点,以线段为边作正三角形,如果线段的中点在双曲线的渐近线上,则该双曲线的离心率等于()A. B. C. D. 2【答案】D【解析】由题意得渐近线斜率为,即,选D.5. 在中,“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】时,,所以必要性成立;时,,所以充分性不成立,选B.6. 已知二次函数的两个零点分别在区间和内,则的取值范围是()A. B. C. D.【答案】A学|科|网...【解析】由题意得,可行域如图三角形内部(不包括三角形边界,其中三角形三顶点为):,而,所以直线过C取最大值,过B 点取最小值,的取值范围是,选A.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.7. 如图,一个简单几何体的正视图和侧视图都是边长为2的等边三角形,若该简单几何体的体积是,则其底面周长为()A. B. C. D.【答案】C【解析】由题意,几何体为锥体,高为正三角形的高,因此底面积为,即底面为等腰直角三角形,直角边长为2,周长为,选C.8. 20世纪30年代,德国数学家洛萨---科拉茨提出猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“”猜想.如图是验证“”猜想的一个程序框图,若输出的值为8,则输入正整数的所有可能值的个数为()A. 3B. 4C. 6D. 无法确定【答案】B【解析】由题意得;,因此输入正整数的所有可能值的个数为4,选B.9. 的展开式中各项系数的和为16,则展开式中项的系数为()A. B. C. 57 D. 33【答案】A【解析】由题意得,所以展开式中项的系数为,选A.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.10. 数列为非常数列,满足:,且对任何的正整数都成立,则的值为()A. 1475B. 1425C. 1325D. 1275【答案】B【解析】因为,所以,即,所以,叠加得,,,即从第三项起成等差数列,设公差为,因为,所以解得,即,所以,满足,,选B.11. 已知向量满足,若,的最大值和最小值分别为,则等于()A. B. 2 C. D.【答案】C【解析】因为所以;因为,所以学|科|网...的最大值与最小值之和为,选C.12. 已知偶函数满足,且当时,,关于的不等式在上有且只有200个整数解,则实数的取值范围是()A. B. C. D.【答案】C【解析】因为偶函数满足,所以,因为关于的不等式在上有且只有200个整数解,所以关于的不等式在上有且只有2个整数解,因为,所以在上单调递增,且,在上单调递减,且,因此,只需在上有且只有2个整数解,因为,所以,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上13. 为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场商品的售价元和销售量件之间的一组数据如下表所示:由散点图可知,销售量与价格之间有较好的线性相关关系,其线性回归方程是,则__________.【答案】39.4【解析】点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.14. 将函数的图象向右平移个单位(),若所得图象对应的函数为偶函数,则的最小值是__________.【答案】【解析】向右平移个单位得为偶函数,所以,因为,所以学|科|网...点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.15. 已知两平行平面间的距离为,点,点,且,若异面直线与所成角为60°,则四面体的体积为__________.【答案】6【解析】设平面ABC与平面交线为CE,取,则16. 已知是过抛物线焦点的直线与抛物线的交点,是坐标原点,且满足,则的值为__________.【答案】【解析】因为,所以因此,所以因为,所以,因此三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 如图,已知关于边的对称图形为,延长边交于点,且,.(1)求边的长;(2)求的值.【答案】(1)(2)【解析】试题分析:(1)先由同角三角函数关系及二倍角公式求出.再由余弦定理求出,最后根据角平分线性质定理得边的长;(2)先由余弦定理求出,再根据三角形内角关系及两角和余弦公式求的值.试题解析:解:(1)因为,所以,所以.因为,所以,所以,又,所以.(2)由(1)知,所以,所以,因为,所以,所以.学|科|网...18. 如图,已知圆锥和圆柱的组合体(它们的底面重合),圆锥的底面圆半径为,为圆锥的母线,为圆柱的母线,为下底面圆上的两点,且,,.(1)求证:平面平面;(2)求二面角的正弦值.【答案】(1)见解析(2)【解析】试题分析:(1)先根据平几知识计算得,再根据圆柱性质得平面,即有,最后根据线面垂直判定定理得平面,即得平面平面;(2)求二面角,一般利用空间向量进行求解,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与向量夹角之间关系求解试题解析:解:(1)依题易知,圆锥的高为,又圆柱的高为,所以,因为,所以,连接,易知三点共线,,所以,所以,解得,又因为,圆的直径为10,圆心在内,所以易知,所以.因为平面,所以,因为,所以平面.又因为平面,所以平面平面.(2)如图,以为原点,、所在的直线为轴,建立空间直角坐标系.则.所以,设平面的法向理为,所以,令,则.可取平面的一个法向量为,所以,所以二面角的正弦值为.19. 如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为.(1)求游戏结束时小华在第2个台阶的概率;(2)求的分布列和数学期望.【答案】(1)(2)学|科|网...【解析】试题分析:(1)根据等可能性知每次赢、平、输的概率皆为.再分两种情况分别计数:一种是小华在第1个台阶,并且小明在第2个台阶,最后一次划拳小华平;另一种是小华在第2个台阶,并且小明也在第2个台阶,最后一次划拳小华输,逆推确定事件数及对应划拳的次数,最后利用互斥事件概率加法公式求概率,(2)先确定随机变量取法,再分别利用组合求对应概率,列表可得分布列,最后根据数学期望公式求期望.试题解析:解:(1)易知对于每次划拳比赛基本事件共有个,其中小华赢(或输)包含三个基本事件上,他们平局也为三个基本事件,不妨设事件“第次划拳小华赢”为;事件“第次划拳小华平”为;事件“第次划拳小华输”为,所以.因为游戏结束时小华在第2个台阶,所以这包含两种可能的情况:第一种:小华在第1个台阶,并且小明在第2个台阶,最后一次划拳小华平;其概率为,第二种:小华在第2个台阶,并且小明也在第2个台阶,最后一次划拳小华输,其概率为所以游戏结束时小华在第2个台阶的概率为.(2)依题可知的可能取值为2、3、4、5,,,,所以的分布列为:所以的数学期望为:.20. 如图,已知为椭圆上的点,且,过点的动直线与圆相交于两点,过点作直线的垂线与椭圆相交于点.(1)求椭圆的离心率;(2)若,求.【答案】(1)(2)【解析】试题分析:(1)根据题意列方程组:,解方程组可得,,再根据离心率定义求椭圆的离心率;(2)先根据垂径定理求圆心到直线的距离,再根据点到直线距离公式求直线AB的斜率,根据垂直关系可得直线PQ的斜率,最后联立直线PQ与椭圆方程,利用韦达定理及弦长公式求.试题解析:解:(1)依题知,解得,所以椭圆的离心率;(2)依题知圆的圆心为原点,半径为,所以原点到直线的距离为,因为点坐标为,所以直线的斜率存在,设为.所以直线的方程为,即,所以,解得或.①当时,此时直线的方程为,所以的值为点纵坐标的两倍,即;②当时,直线的方程为,将它代入椭圆的方程,消去并整理,得,设点坐标为,所以,解得,所以.点睛:有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及中点弦问题往往利用点差法.21. 已知函数,其中为自然对数的底数.(参考数据:)(1)讨论函数的单调性;(2)若时,函数有三个零点,分别记为,证明:.【答案】(1)见解析(2)见解析【解析】试题分析:(1)先求函数导数,根据参数a讨论:当时,是常数函数,没有单调性.当时,先减后增;当时,先增后减;(2)先化简方程,整体设元转化为一元二次方程:.其中,再利用导数研究函数的图像,根据图像确定根的取值范围,进而可证不等式.试题解析:解:(1)因为的定义域为实数,所以.①当时,是常数函数,没有单调性.②当时,由,得;由,得.所以函数在上单调递减,在上单调递增.③当时,由得,;由,得,学|科|网...所以函数在上单调递减,在上单调递增.(2)因为,所以,即.令,则有,即.设方程的根为,则,所以是方程的根.由(1)知在单调递增,在上单调递减.且当时,,当时,,如图,依据题意,不妨取,所以,因为,易知,要证,即证.所以,又函数在上单调递增,所以,所以.选考部分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中直线的倾斜角为,且经过点,以坐标系的原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点,过点的直线与曲线相交于两点,且.(1)平面直角坐标系中,求直线的一般方程和曲线的标准方程;(2)求证:为定值.【答案】(1),(2)【解析】试题分析:(1)根据点斜式可得直线的一般方程,注意讨论斜率不存在的情形;根据将曲线的极坐标方程化为直角坐标方程,配方化为标准方程.(2)利用直线参数方程几何意义求弦长:先列出直线参数方程,代入圆方程,根据及韦达定理可得,类似可得,相加即得结论.试题解析:解:(1)因为直线的倾斜角为,且经过点,当时,直线垂直于轴,所以其一般方程为,当时,直线的斜率为,所以其方程为,即一般方程为.因为的极坐标方程为,所以,因为,所以.所以曲线的标准方程为.(2)设直线的参数方程为(为参数),学|科|网...代入曲线的标准方程为,可得,即,则,所以,同理,所以.23. 选修4-5:不等式选讲已知实数满足.(1)求的取值范围;(2)若,求证:.【答案】(1)(2)见解析【解析】试题分析:(1)因为,所以,又,即得的取值范围;(2)因为,而,即证.试题解析:解:(1)因为,所以.①当时,,解得,即;②当时,,解得,即,所以,则,而,所以,即;(2)由(1)知,因为当且仅当时取等号,所以.。

河北省衡水中学2017届高三高考押题卷三理数试题+答案解析

河北省衡水中学2017届高三高考押题卷三理数试题+答案解析

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅲ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,则=()A. B. C. D.2. 集合,,则=()A. B.C. D.3. 已知函数的最小正周期为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向左平移个单位而得D. 可由函数的图象向右平移个单位而得4. 已知实数,满足约束条件则的最大值为()A. 2B. 3C. 4D. 55. 一直线与平行四边形中的两边,分别交于、,且交其对角线于,若,,,则=()A. B. 1 C. D. -36. 在如图所示的正方向中随机投掷10000个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为(附:若,则,.()A. 906B. 1359C. 2718D. 34137. 某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是()A. B. C. D.8. 已知数列中,,.若如图所示的程序框图是用来计算该数列的第2018项,则判断框内的条件是()A. B. C. D.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则=()A. 3B.C.D. 4学&科&网...10. 已知抛物线:的焦点为,点是抛物线上一点,圆与线段相交于点,且被直线截得的弦长为,若=2,则=()A. B. 1 C. 2 D. 311. 若定义在上的可导函数满足,且,则当时,不等式的解集为()A. B. C. D.12. 已知是方程的实根,则关于实数的判断正确的是()A. B. C. D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 若的展开式中项的系数为20,则的最小值为_________.14. 已知中,内角,,的对边分别为,,,若,,则的面积为__________.15. 已知双曲线的左、右顶点分别为,两点,点,若线段的垂直平分线过点,则双曲线的离心率为__________.16. 已知下列命题:①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题其中,所有真命题的序号是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 设为数列的前项和,且,,.(1)证明:数列为等比数列;(2)求.18. 如图所示,四棱锥,已知平面平面,,,,.(1)求证:;(2)若二面角为,求直线与平面所成角的正弦值.19. 某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表学&科&网...(1)求该校高一女生的人数;(2)估计该校学生身高在的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设表示身高在学生的人数,求的分布列及数学期望.20. 中,是的中点,,其周长为,若点在线段上,且. (1)建立合适的平面直角坐标系,求点的轨迹的方程;(2)若,是射线上不同的两点,,过点的直线与交于,,直线与交于另一点,证明:是等腰三角形.21. 已知函数,,曲线的图象在点处的切线方程为. (1)求函数的解析式;(2)当时,求证:;(3)若对任意的恒成立,求实数的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线:,曲线:.以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为(为参数).(1)求,的直角坐标方程;(2)与,交于不同四点,这四点在上的排列顺次为,,,,求的值.23. 选修4-5:不等式选讲.已知,为任意实数.(1)求证:;(2)求函数的最小值.2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅲ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,则=()A. B. C. D.【答案】C【解析】由题意可得:,则= .本题选择C选项.2. 集合,,则=()A. B.C. D.【答案】A【解析】由题意可得:,则= .本题选择A选项.3. 已知函数的最小正周期为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向左平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】D【解析】由已知得,则的图象可由函数的图象向右平移个单位而得,故选D.4. 已知实数,满足约束条件则的最大值为()A. 2B. 3C. 4D. 5【答案】B【解析】绘制目标函数表示的可行域,结合目标函数可得,目标函数在点处取得最大值.本题选择B选项.5. 一直线与平行四边形中的两边,分别交于、,且交其对角线于,若,,,则=()学,科,网...A. B. 1 C. D. -3【答案】A【解析】由几何关系可得:,则:,即:,则= .本题选择A选项.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6. 在如图所示的正方向中随机投掷10000个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为(附:若,则,.()A. 906B. 1359C. 2718D. 3413【答案】B【解析】由正态分布的性质可得,图中阴影部分的面积,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为.本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.7. 某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是()A. B. C. D.【答案】B【解析】根据三视图可知几何体是棱长为4的正方体挖掉半个圆柱所得的组合体,且圆柱底面圆的半径是2、母线长是4,∴该几何体的表面积,本题选择B选项.8. 已知数列中,,.若如图所示的程序框图是用来计算该数列的第2018项,则判断框内的条件是()A. B. C. D.【答案】B学,科,网...【解析】阅读流程图结合题意可得,该流程图逐项计算数列各项值,当时推出循环,则判断框内的条件是.本题选择B选项.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则=()A. 3B.C.D. 4【答案】B【解析】由题意知,的可能取值为2,3,4,其概率分别为,,,所以,故选B.10. 已知抛物线:的焦点为,点是抛物线上一点,圆与线段相交于点,且被直线截得的弦长为,若=2,则=()A. B. 1 C. 2 D. 3【答案】B【解析】由题意:M(x0,2√2)在抛物线上,则8=2px0,则px0=4,①由抛物线的性质可知,,,则,∵被直线截得的弦长为√3|MA|,则,由,在Rt△MDE中,丨DE丨2+丨DM丨2=丨ME丨2,即,代入整理得:②,由①②,解得:x0=2,p=2,∴,故选:B.【点睛】本题考查抛物线的简单几何性质,考查了抛物线的定义,考查勾股定理在抛物线的中的应用,考查数形结合思想,转化思想,属于中档题,将点A到焦点的距离转化为点A到其准线的距离是关键.11. 若定义在上的可导函数满足,且,则当时,不等式的解集为()A. B. C. D.【答案】D【解析】不妨令,该函数满足题中的条件,则不等式转化为:,整理可得:,结合函数的定义域可得不等式的解集为.本题选择D选项.12. 已知是方程的实根,则关于实数的判断正确的是()A. B. C. D.【答案】C【解析】令,则,函数在定义域内单调递增,方程即:,即,结合函数的单调性有: .本题选择C选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.学,科,网...二、填空题:本大题共4小题,每小题5分,共20分.13. 若的展开式中项的系数为20,则的最小值为_________.【答案】2【解析】试题分析:展开后第项为,其中项为,即第项,系数为,即,,当且仅当时取得最小值.考点:二项式公式,重要不等式.14. 已知中,内角,,的对边分别为,,,若,,则的面积为__________.【答案】【解析】由题意有:,则的面积为 .【答案】【解析】由题意可得,为正三角形,则,所以双曲线的离心率 .16. 已知下列命题:①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题其中,所有真命题的序号是__________.【答案】②【解析】逐一考查所给的命题:①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的必要不充分条件;④“若,则且”是假命题,则它的逆否命题为假命题其中,所有真命题的序号是②.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 设为数列的前项和,且,,.(1)证明:数列为等比数列;(2)求.【答案】(1)见解析;(2).学,科,网...【解析】试题分析:(1)利用题意结合等比数列的定义可得数列为首先为2,公比为2的等比数列;(2)利用(1)的结论首先求得数列的通项公式,然后错位相减可得. 试题解析:(1)因为,所以,即,则,所以,又,故数列为等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以.点睛:证明数列{a n}是等比数列常用的方法:一是定义法,证明=q(n≥2,q为常数);二是等比中项法,证明=a n-1·a n+1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.18. 如图所示,四棱锥,已知平面平面,,,,.(1)求证:;(2)若二面角为,求直线与平面所成角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)利用题意首先证得平面,结合线面垂直的定义有.(2)结合(1)的结论首先找到二面角的平面角,然后可求得直线与平面所成角的正弦值为.试题解析:(1)中,应用余弦定理得,解得,所以,所以.因为平面平面,平面平面,,所以平面,又因为平面,学,科,网...所以.(2)由(1)平面,平面,所以.又因为,平面平面,所以是平面与平面所成的二面角的平面角,即.因为,,所以平面.所以是与平面所成的角.因为在中,,所以在中,.19. 某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校高一女生的人数;(2)估计该校学生身高在的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设表示身高在学生的人数,求的分布列及数学期望.【答案】(1)300;(2);(3)见解析.【解析】试题分析:(1)利用题意得到关于人数的方程,解方程可得该校高一女生的人数为300;(2)用频率近似概率值可得该校学生身高在的概率为.(3) 由题意可得的可能取值为0,1,2.据此写出分布列,计算可得数学期望为 .试题解析:(1)设高一女学生人数为,由表1和表2可得样本中男、女生人数分别为40,30,则,解得.即高一女学生人数为300.(2)由表1和表2可得样本中男女生身高在的人数为,样本容量为70.所以样本中该校学生身高在的概率为.因此,可估计该校学生身高在的概率为.(3)由题意可得的可能取值为0,1,2.学,科,网...由表格可知,女生身高在的概率为,男生身高在的概率为.所以,,.所以的分布列为:所以.20. 中,是的中点,,其周长为,若点在线段上,且. (1)建立合适的平面直角坐标系,求点的轨迹的方程;(2)若,是射线上不同的两点,,过点的直线与交于,,直线与交于另一点,证明:是等腰三角形.【答案】(1);(2)见解析.【解析】试题分析:(1)由题意得,以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系,得的轨迹方程为,再将相应的点代入即可得到点的轨迹的方程;(2)由(1)中的轨迹方程得到轴,从而得到,即可证明是等腰三角形.试题解析:解法一:(1)以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系.依题意得.由,得,因为故,所以点的轨迹是以为焦点,长轴长为6的椭圆(除去长轴端点),所以的轨迹方程为.设,依题意,所以,即,代入的轨迹方程得,,所以点的轨迹的方程为.(2)设.由题意得直线不与坐标轴平行,因为,所以直线为,与联立得,,由韦达定理,同理,所以或,当时,轴,当时,由,得,学,科,网...同理,轴.因此,故是等腰三角形.解法二:(1)以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系. 依题意得.在轴上取,因为点在线段上,且,所以,则,故的轨迹是以为焦点,长轴长为2的椭圆(除去长轴端点),所以点的轨迹的方程为.(2)设,,由题意得,直线斜率不为0,且,故设直线的方程为:,其中,与椭圆方程联立得,,由韦达定理可知,,其中,因为满足椭圆方程,故有,所以.设直线的方程为:,其中,同理,故,所以,即轴,因此,故是等腰三角形.21. 已知函数,,曲线的图象在点处的切线方程为. (1)求函数的解析式;(2)当时,求证:;(3)若对任意的恒成立,求实数的取值范围.【答案】(1);(2)见解析;(3).学,科,网...【解析】试题分析:(1)利用导函数研究函数切线的方法可得函数的解析式为.(2)构造新函数.结合函数的最值和单调性可得.(3)分离系数,构造新函数,,结合新函数的性质可得实数的取值范围为. 试题解析:(1)根据题意,得,则.由切线方程可得切点坐标为,将其代入,得,故.(2)令.由,得,当,,单调递减;当,,单调递增.所以,所以.(3)对任意的恒成立等价于对任意的恒成立.令,,得.由(2)可知,当时,恒成立,令,得;令,得.所以的单调增区间为,单调减区间为,故,所以.所以实数的取值范围为.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线:,曲线:.以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为(为参数).(1)求,的直角坐标方程;(2)与,交于不同四点,这四点在上的排列顺次为,,,,求的值.【答案】(1);(2).【解析】(1)因为,由,得,所以曲线的直角坐标方程为;由,得,所以曲线的极坐标方程为.(2) 不妨设四点在上的排列顺次至上而下为,它们对应的参数分别为,如图,连接,则为正三角形,所以,,把代入,得:,即,故,所以.【点睛】本题为极坐标与参数方程,是选修内容,把极坐标方程化为直角坐标方程,需要利用公式,第二步利用直线的参数方程的几何意义,联立方程组求出,利用直线的参数方程的几何意义,进而求值.学,科,网...23. 选修4-5:不等式选讲.已知,为任意实数.(1)求证:;(2)求函数的最小值.【答案】(1)见解析;(2).【解析】试题分析:(1)利用不等式的性质两边做差即可证得结论;(2)利用题意结合不等式的性质可得.试题解析:(1),因为,所以.(2).即.点睛:本题难以想到利用绝对值三角不等式进行放缩是失分的主要原因;对于需求最值的情况,可利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项来放缩求解.。

2017届河北省衡水中学高三高考押题卷三卷数学(理)试题(解析版)

2017届河北省衡水中学高三高考押题卷三卷数学(理)试题(解析版)

河北省衡水中学2017届高三高考押题卷三卷理数试题一、选择题1.已知复数12z =-,则z z +=( )A. 12-B. 12-C. 12+D. 12 【答案】C【解析】由题意可得: 1,12z z =-+= ,则z z += 12. 本题选择C 选项.2.集合2{|30}A x x x =-≤, (){|lg 2}B x y x ==-,则A B ⋂=( ) A. {|02}x x ≤< B. {|13}x x ≤< C. {|23}x x <≤ D. {|02}x x <≤ 【答案】A【解析】由题意可得: {|03},{|2}A x x B x x =≤≤=< ,则A B ⋂= {|02}x x ≤<. 本题选择A 选项.3.已知函数的最小正周期为,则函数的图象( )A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向左平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】D【解析】由已知得,则的图象可由函数的图象向右平移个单位而得,故选D.4.已知实数x , y 满足约束条件33,{24,34120,y x y x x y ≥-≤+++≥则2z x y =-的最大值为( )A. 2B. 3C. 4D. 5【答案】B【解析】绘制目标函数表示的可行域,结合目标函数可得,目标函数在点()0,3B - 处取得最大值23z x y =-= . 本题选择B 选项.5.一直线l 与平行四边形ABCD 中的两边AB , AD 分别交于E 、F ,且交其对角线AC 于M ,若2AB AE = , 3AD AF =, (),AM AB AC R λμλμ=-∈ ,则52μλ-=( ) A. 12- B. 1 C. 32D. -3【答案】A【解析】由几何关系可得: 15AM AC = ,则: 15AM AC = ,即: 110,,055AM AB AC μλ⎛⎫=--∴=-= ⎪⎝⎭,则52μλ-= 12-. 本题选择A 选项. 点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6.在如图所示的正方向中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布()1,1N -的密度曲线)的点的个数的估计值为(附:若()2~,X N μσ,则()0.6827P X μσμσ-<≤+=, (22)0.9545P X μσμσ-<≤+=.( )A. 906B. 1359C. 2718D. 3413【答案】B【解析】由正态分布的性质可得,图中阴影部分的面积0.95450.68270.13592S -== ,则落入阴影部分(曲线C 为正态分布()1,1N -的密度曲线)的点的个数的估计值为0.13591000013591N =⨯= . 本题选择B 选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. ②充分利用正态曲线的对称性和曲线与x 轴之间面积为1.7.某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是( )A. 808π+B. 804π+C. 808π-D. 804π- 【答案】B【解析】根据三视图可知几何体是棱长为4的正方体挖掉半个圆柱所得的组合体, 且圆柱底面圆的半径是2、母线长是4, ∴该几何体的表面积212442344248042S πππ⎛⎫=⨯-⨯+⨯⨯+⨯⨯=+ ⎪⎝⎭, 本题选择B 选项.8.已知数列{}n a 中, 11a =, 1n n a a n +=+.若如图所示的程序框图是用来计算该数列的第2018项,则判断框内的条件是( )A. 2016?n ≤B. 2017?n ≤C. 2015?n <D. 2017?n < 【答案】B【解析】阅读流程图结合题意可得,该流程图逐项计算数列各项值,当2018n = 时推出循环,则判断框内的条件是2017?n ≤. 本题选择B 选项.9.已知5件产品中有2件次品,现逐一检测,直至能确定...所有次品为止,记检测的次数为ξ,则E ξ=( )A. 3B. 72C. 185D. 4 【答案】B【解析】由题意知, ξ的可能取值为2,3,4,其概率分别为()22251210A P A ξ===,()2113232335+3310A C C A P A ξ===, ()32131133233245+6410A C C A C C P A ξ===,所以13672+3+4=1010102E ξ=⨯⨯⨯,故选B .10.已知抛物线2:2(0)C y px p =>的焦点为F,点(00,()2pM x x >是抛物线C 上一点,圆M 与线段MF 相交于点A ,且被直线2px =截得的弦长为MA .若2MA AF=,则AF 等于( )A.32B. 1C. 2D. 3 【答案】B【解析】由题意:M (x 0,2√2)在抛物线上,则8=2px 0,则px 0=4,① 由抛物线的性质可知,02pDM x =-, 2MA AF= ,则0222332p MA AF MF x ⎛⎫===+ ⎪⎝⎭, ∵被直线2p x =截得的弦长为√3|MA|,则02p DE MA x ⎫==+⎪⎝⎭,由MA ME r ==,在Rt △MDE 中,丨DE 丨2+丨DM 丨2=丨ME 丨2,即2220001432292p p p x x x ⎛⎫⎛⎫⎛⎫++-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 代入整理得: 220420x p += ②,由①②,解得:x 0=2,p=2, ∴01132p AF x ⎛⎫=+= ⎪⎝⎭, 故选:B .【点睛】本题考查抛物线的简单几何性质,考查了抛物线的定义,考查勾股定理在抛物线的中的应用,考查数形结合思想,转化思想,属于中档题,将点A 到焦点的距离转化为点A 到其准线的距离是关键.11.若定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,则当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式()232cos 2sin 22xf x >-的解集为( ) A. 4,33ππ⎛⎫⎪⎝⎭B. 4,33ππ⎛⎫- ⎪⎝⎭C. 0,3π⎛⎫⎪⎝⎭ D. ,33ππ⎛⎫- ⎪⎝⎭【答案】D【解析】不妨令()f x x = ,该函数满足题中的条件,则不等式转化为:232cos 2sin 22x x >- , 整理可得: 1cos 2x > ,结合函数的定义域可得不等式的解集为,33ππ⎛⎫- ⎪⎝⎭. 本题选择D 选项.12.已知0x 是方程222ln 0xx e x +=的实根,则关于实数0x 的判断正确的是( )A. 0ln2x ≥B. 01x e<C. 002ln 0x x +=D. 002ln 0x e x +=【答案】C【解析】令()(0)xf x xe x => ,则()()'10xf x ex =+> ,函数()f x 在定义域内单调递增, 方程即: ()00022ln 200002ln ,2ln x x x x ex x e e x -=-=- ,即()()002ln f x f x =- ,结合函数的单调性有: 00002ln ,2ln 0x x x x =-∴+= .本题选择C 选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号. (2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.二、填空题13.若26()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为________.【答案】2【解析】试题分析:26()bax x +展开后第k 项为k k k k k k k x b a C xb ax C 315171-61721-6)()(-----=,其中3x 项为4=k ,即第4项,系数为3320b a ,即1202033=⇒=ab b a ,2222=≥+ab b a ,当且仅当1==b a 时22a b +取得最小值2.【考点】二项式公式,重要不等式.14.已知ABC ∆中,内角A , B , C 的对边分别为a , b ,c ,若222a b c b c =+-,16bc =,则ABC ∆的面积为__________.【答案】【解析】由题意有:2222221,cos ,sin 22b c a b c a bc A A bc +-+-=∴====,则ABC ∆的面积为1sin 2S bc A ==15.已知双曲线22221(0,0)x y a b a b-=>>的左、右端点分别为,A B ,点(),C ,若线段AC 的垂直平分线过点B ,则双曲线的离心率为__________.【解析】由题意可得, ABC ∆为正三角形,则=,所以双曲线的离心率=16.已知下列命题:①命题“x R ∀∈, 235x x +<”的否定是“x R ∃∈, 235x x +<”;②已知p , q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝为真命题”; ③“2015a >”是“2017a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是__________. 【答案】②【解析】逐一考查所给的命题:①命题“x R ∀∈, 235x x +<”的否定是“x R ∃∈, 235x x +≥”;②已知p , q 为两个命题,若“p q ∨”为假命题,则“()()()p q p q ⌝∧⌝=⌝∨ 为真命题”;③“2015a >”是“2017a >”的必要不充分条件;④“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题 其中,所有真命题的序号是②.三、解答题17.设n S 为数列{}n a 的前n 项和,且11a =, ()()121n n na n S n n +=+++, *n N ∈.(1)证明:数列1n S n ⎧⎫+⎨⎬⎩⎭为等比数列; (2)求12n n T S S S =+++ .【答案】(1)见解析;(2)()()111222n n n n T n ++=-⋅+-.【解析】试题分析:(1)利用题意结合等比数列的定义可得数列1n S n ⎧⎫+⎨⎬⎩⎭为首先为2,公比为2的等比数列;(2)利用(1)的结论首先求得数列的通项公式,然后错位相减可得()()111222n n n n T n ++=-⋅+-.试题解析:(1)因为11n n n a S S ++=-,所以()()()121n n n n S S n S n n +-=+++, 即()()1211n n nS n S n n +=+++,则1211n n S Sn n+=⨯++, 所以11211n n S S n n +⎛⎫+=+ ⎪+⎝⎭,又1121S +=,故数列1n S n ⎧⎫+⎨⎬⎩⎭为等比数列.(2)由(1)知1111221n n n S S n -⎛⎫+=+⋅= ⎪⎝⎭,所以2n n S n n =⋅-, 故()()21222212nn T n n =⨯+⨯++⋅-+++ .设212222n M n =⨯+⨯++⋅ , 则231212222n M n +=⨯+⨯++⋅ ,所以212222n n M n +-=+++-⋅= 11222n n n ++--⋅, 所以()1122n M n +=-⋅+,所以()()111222n n n n T n ++=-⋅+-.点睛:证明数列{a n }是等比数列常用的方法:一是定义法,证明1nn a a - =q (n ≥2,q 为常数);二是等比中项法,证明2n a =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.18.如图所示,四棱锥A BCDE -,已知平面BCDE ⊥平面ABC , BE EC ⊥,6BC =,AB =30ABC ∠=︒.(1)求证: AC BE ⊥;(2)若二面角B AC E --为45︒,求直线AB 与平面ACE 所成角的正弦值. 【答案】(1)见解析;(2【解析】试题分析:(1)利用题意首先证得AC ⊥平面BCDE ,结合线面垂直的定义有AC BE ⊥. (2)结合(1)的结论首先找到二面角的平面角,然后可求得直线AB 与平面ACE 所成角的. 试题解析:(1)ABC ∆中,应用余弦定理得222cos 2?AB BC AC ABC AB BC +-∠==解得AC = 所以222AC BC AB +=,所以AC BC ⊥.因为平面BCDE ⊥平面ABC ,平面BCDE ⋂平面ABC BC =, BC AC ⊥, 所以AC ⊥平面BCDE ,又因为BE ⊂平面BCDE , 所以AC BE ⊥.(2)由(1)AC ⊥平面BCDE , CE ⊂平面BCDE , 所以AC CE ⊥.又因为BC AC ⊥,平面ACE ⋂平面ABC AC =,所以BCE ∠是平面EAC 与平面BAC 所成的二面角的平面角,即45BCE ∠=︒. 因为BE EC ⊥, AC BE ⊥, 所以BE ⊥平面ACE .所以BAE ∠是AB 与平面ACE 所成的角.因为在Rt ACE ∆中, sin45BE BC =︒=所以在Rt BAE ∆中, sin BE BAE AB ∠==19.某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位: cm )频数分布表如表1、表2. 表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校高一女生的人数;(2)估计该校学生身高在[)165,180的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X 表示身高在[)165,180学生的人数,求X 的分布列及数学期望. 【答案】(1)300;(2)35;(3)见解析. 【解析】试题分析:(1)利用题意得到关于人数的方程,解方程可得该校高一女生的人数为300; (2)用频率近似概率值可得该校学生身高在[)165,180的概率为35. (3) 由题意可得X 的可能取值为0,1,2.据此写出分布列,计算可得数学期望为1715. 试题解析:(1)设高一女学生人数为x ,由表1和表2可得样本中男、女生人数分别为40,30,则7004030x x -=,解得300x =.即高一女学生人数为300.(2)由表1和表2可得样本中男女生身高在[)165,180的人数为5141363142+++++=,样本容量为70.所以样本中该校学生身高在[)165,180的概率为423705=. 因此,可估计该校学生身高在[)165,180的概率为35.(3)由题意可得X 的可能取值为0,1,2.由表格可知,女生身高在[)165,180的概率为13,男生身高在[)165,180的概率为45.所以()4120115315P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭, ()41419111535315P X ⎛⎫⎛⎫==-+-⨯= ⎪ ⎪⎝⎭⎝⎭,()41425315P X ==⨯=. 所以X 的分布列为:所以()9417012151515E X =+⨯+⨯=.20.中,是的中点,,其周长为,若点在线段上,且.(1)建立合适的平面直角坐标系,求点的轨迹的方程; (2)若是射线上不同两点,,过点的直线与交于,直线与交于另一点.证明:是等腰三角形. 【答案】(1);(2)见解析.【解析】试题分析:(1)由题意得,以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系,得的轨迹方程为,再将相应的点代入即可得到点的轨迹的方程;(2)由(1)中的轨迹方程得到轴,从而得到,即可证明是等腰三角形.试题解析:解法一:(1)以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系.依题意得.由,得,因为故,所以点的轨迹是以为焦点,长轴长为6的椭圆(除去长轴端点),所以的轨迹方程为.设,依题意,所以,即,代入的轨迹方程得,,所以点的轨迹的方程为.(2)设.由题意得直线不与坐标轴平行,因为,所以直线为,与联立得,,由韦达定理,同理,所以或,当时,轴,当时,由,得,同理,轴.因此,故是等腰三角形.解法二:(1)以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系.依题意得.在轴上取,因为点在线段上,且,所以,则,故的轨迹是以为焦点,长轴长为2的椭圆(除去长轴端点),所以点的轨迹的方程为.(2)设,,由题意得,直线斜率不为0,且,故设直线的方程为:,其中,与椭圆方程联立得,,由韦达定理可知,,其中,因为满足椭圆方程,故有,所以.设直线的方程为:,其中,同理,故,所以,即轴, 因此,故是等腰三角形.21.已知函数()2x f x e x a =-+, x R ∈,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求函数()y f x =的解析式;(2)当x R ∈时,求证: ()2f x x x ≥-+;(3)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围. 【答案】(1)()21xf x e x =--;(2)见解析;(3)(),2e -∞-.【解析】试题分析:(1)利用导函数研究函数切线的方法可得函数的解析式为()21xf x e x =--.(2)构造新函数()()21xg x f x x x e x =+-=--.结合函数的最值和单调性可得()2f x x x ≥-+.(3)分离系数,构造新函数()()f x x xϕ=, 0x >,结合新函数的性质可得实数k 的取值范围为(),2e -∞-. 试题解析:(1)根据题意,得()'2xf x e x =-,则()'01f b ==.由切线方程可得切点坐标为()0,0,将其代入()y f x =,得1a =-, 故()21xf x e x =--.(2)令()()21xg x f x x x e x =+-=--.由()'10xg x e =-=,得0x =,当(),0x ∈-∞, ()'0g x <, ()y g x =单调递减; 当()0,x ∈+∞, ()'0g x >, ()y g x =单调递增. 所以()()min 00g x g ==,所以()2f x x x ≥-+.(3)()f x kx >对任意的()0,x ∈+∞恒成立等价于()f x k x>对任意的()0,x ∈+∞恒成立. 令()()f x x xϕ=, 0x >,得()()()2''x f x f x x x ϕ-==()()2221x x x e x e x x ----=()()211x x e x x---.由(2)可知,当()0,x ∈+∞时, 10xe x -->恒成立,令()'0x ϕ>,得1x >;令()'0x ϕ<,得01x <<.所以()y x ϕ=的单调增区间为()1,+∞,单调减区间为()0,1,故()()m i n12x e ϕϕ==-,所以()min 2k x e ϕ<=-. 所以实数k 的取值范围为(),2e -∞-. 22.选修4-5:不等式选讲. 已知a , b 为任意实数.(1)求证: ()42242264a a b b ab a b ++≥+;(2)求函数()()()4224332162221f x x a a b bx a b ab=-+--+-+-的最小值.【答案】(1)见解析;(2)()max 1f x =. 【解析】试题分析:(1)利用不等式的性质两边做差即可证得结论; (2)利用题意结合不等式的性质可得()max 1f x =. 试题解析:(1)()42242264a a b b ab a b ++-+=()()222222244abab a b a b +-++⋅=()2222a b ab +-()4a b =-,因为()40a b -≥,所以()42242264a a b b ab a b ++≥+.(2)()()4224216f x x a a b b =-+--()332221x a b ab +-+-= ()4224216x a a b b -+--+()3322221x a b ab -+-≥()33|22221x a b ab ⎡⎤-+--⎣⎦ ()4224216|x a a b b ⎡⎤-+--=⎣⎦()411a b -+≥. 即()max 1f x =.点睛:本题难以想到利用绝对值三角不等式进行放缩是失分的主要原因;对于需求最值的情况,可利用绝对值三角不等式性质定理:||a |-|b ||≤|a ±b |≤|a |+|b |,通过适当的添、拆项来放缩求解.。

2017年5月2017届高三第三次全国大联考(新课标Ⅰ卷)理数卷(原卷版)

2017年5月2017届高三第三次全国大联考(新课标Ⅰ卷)理数卷(原卷版)

2017年第三次全国大联考【新课标Ⅰ卷】理科数学·全解全析第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合 题目要求的).1.设集合}2)1(log |{2<+=x x A ,{}162x B y y ==-,则()A B =R( )A. ()0,3B. []0,4C. [)3,4D. ()1,3-2. 已知复数15i z a =-在复平面上对应的点在直线520x y +=上,复数152iz z +=(i 是虚数单位),则2017z =( )A .1B .1-C .i -D .i3. 若tan 2α=,则22cos 23sin 2sin ααα+-的值为( ) A .25 B .25- C .5 D .5-4. 在[][]4,6,2,4x y ∈∈内随机取出两个数,则这两个数满足30x y -->的概率为( ) A .14 B .18 C .110 D .1165. 若圆2212160x y x +-+=与直线y kx =交于不同的两点,则实数k 的取值范围为( )A .(3,3)B .(5,5)C .55( D .33() 6. 70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩一个数学游戏.这个游戏十分简单:任意写出一个自然数N ,并且按照以下的规律进行变换:如果是个奇数,则下一步变成31N +;如果是个偶数,则下一步变成2N.不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入.为什么这个游戏的魅力经久不衰?因为人们发现,无论N 是怎样一个数字,最终都无法逃脱回到谷底1.准确地说,是无法逃出落入底部的421--循环,永远也逃不出这样的宿命.这就是著名的“冰雹猜想”.按照这种运算,自然数27经过十步运算得到的数为 ( ) A .142B .71C .214D .1077. 在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,且2223323sin a b c bc A =+-,则C 的值为( ) A .3π B .6π C .4π D .32π 8.某几何体的三视图如图所示,若该几何体的体积为203,则图中x 的值为( ) 403836343230282624xFEDCB A22x 俯视图侧视图正视图A .3B .1 C.2 D .529. 运行如下程序框图,如果输入的[]0,5t ∈,则输出S 属于( )A .[)4,10-B .[]5,2-C .[]4,3-D .[]2,5-10.已知向量3OA =,2OB =,OC mOA nOB =+,若OA 与OB 的夹角为60°,且OC AB ⊥,则实数mn 的值为( ) A. 16 B. 14C. 6D. 411.如图,在四边形ABCD 中,2AB BC ==,90ABC ∠=︒,DA DC =.现沿对角线AC 折起,使得平面DAC ⊥平面ABC ,且三棱锥D ABC -的体积为43,此时点A ,B ,C ,D 在同一个球面上,则该球的体积是( ) A .92π B .823π C .272π D .12π2018161412CBDCBDCADBACB12.已知函数()2ln f x ax x x =--存在极值,若这些极值的和大于5ln 2+,则实数a 的取值范围为( )A .(),4-∞B .()4,+∞C .(),2-∞D .()2,+∞ 第Ⅱ卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分) 13. 若()()62701271x a x a a x a x a x +-=+++⋅⋅⋅+,其中()πsin cos d a x x x =-⎰,则0126a a a a +++⋯+的值为 .14. 已知函数()1,022,0x x f x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-≥⎩,若()2f f a -=⎡⎤⎣⎦,实数x y ,满足约束条件0626x a x y x y -≥+≤-≤⎧⎪⎨⎪⎩,则目标函数34102x y z x ++=+的最大值为 .15. 过点()2,0P 的直线交抛物线24y x =于,A B 两点,若抛物线的焦点为F ,则ABF △面积的最小值为 . 16. 以下四个命题: ①已知随机变量()20,X N σ~,若(2)P X a <=,则(2)P X >的值为12a+; ②设,a b ∈R ,则“22log log a b >”是“21a b ->”的充分不必要条件;③函数()1212xf x x ⎛⎫=- ⎪⎝⎭的零点个数为1; ④命题2:,31np n n ∀∈≥+N ,,则p ⌝为2,31nn n ∀∈≤+N .其中真命题的序号为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{}n a 为公差不为0的等差数列,满足625S S =,且2930,,a a a 成等比数列. (1)求{}n a 的通项公式; (2)若数列{}n b 满足()111n n n a n b b *+-=∈N ,且113b =,求数列{}n b 的前n 项和n T . 18. (本小题满分12分)已知在四棱锥C ABDE -中,DB ⊥平面ABC ,//AE DB ,ABC △是边长为2的等边三角形,1AE =,M 为AB 的中点.51015ADE MB(1)求证:CM EM ⊥;(2)若直线DM 与平面ABC 所成角的正切值为2,求二面角B CD E --的大小.19.(本小题满分12分)近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的100名顾客进行统计,其中40岁以下占35,采用微信支付的占23,40岁以上采用微信支付的占14. (1)请完成下面22⨯列联表:40岁以下40岁以上合计 使用微信支付 未使用微信支付 合计并由列联表中所得数据判断有多大的把握认为“使用微信支付与年龄有关”?(2)采用分层抽样的方法从100名顾客中抽取10人参与抽奖活动,一等奖两名,记 “40岁以下”得一等奖的人数为X ,求X 的分布列及数学期望.参考公式: 22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.参考数据:()20P K k ≥ 0.100 0.050 0.010 0.001 0k2.7063.8416.63510.82820.(本小题满分12分)已知椭圆的两个焦点为()15,0F -,()25,0F ,M 是椭圆上一点,若120MF MF ⋅=,128MF MF ⋅=.(1)求椭圆的方程;(2)点P 是椭圆上任意一点,12A A 、分别是椭圆的左、右顶点,直线12PA PA ,与直线352x =分别交于,E F 两点,试证:以EF 为直径的圆交x 轴于定点,并求该定点的坐标.21.(本小题满分12分)已知函数()sin c e (os )xf x x x =+.(1)如果对于任意的2π0,x ⎡⎤∈⎢⎥⎣⎦, ()e cos xf x kx x ≥+恒成立,求实数k 的取值范围; (2)若201520ππ17,22x ⎡⎤∈-⎢⎥⎣⎦,过点1,0π2M -⎛⎫⎪⎝⎭作函数()f x 的图象的所有切线,令各切点的横坐标按从小到大构成数列{}n x ,求数列{}n x 的所有项之和.请考生在第22,23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,点()03P ,,以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2241cos ρθ=+.直线l 的参数方程为12(332x t t y t⎧=-⎪⎪⎨⎪=+⎪⎩为参数). (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 的两个交点分别为,A B ,求11PA PB+的值. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数()21f x x x --=+. (1)解不等式()0f x x +>;(2)若关于x 的不等式()22f x a a ≤-在R 上的解集为R ,求实数a 的取值范围.。

2017年5月2017届高三第三次全国大联考(新课标Ⅰ卷)理数卷(参考答案)

2017年5月2017届高三第三次全国大联考(新课标Ⅰ卷)理数卷(参考答案)

理科数学 第1页(共7页)2017年第三次全国大联考【新课标Ⅰ卷】理科数学·参考答案1 2 3 4 5 6 C D A B C C 7 8 9 10 11 12 BCAAAB13. 1 14. 8 15. 22 16.②③17.【解析】(1)设等差数列{}n a 的公差为d (0d ≠),由2930,,a a a 成等比数列可知()()()2111298a a d a d d +=++,又15a =,解得2d =,∴23n a n =+.………………4分(2)由()111n n n a n b b *+-=∈N ,得()11112,n n n a n n b b *---=≥∈N , 当2n ≥时,11221111111111n n n n n b b b b b b b b ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()()()121111126322n n a a a n n n n b --=++++=-++=+ ,………………………8分 对113b =上式也成立,∴()()12n n n n b *=+∈N ,∴()1111222n b n n n n ⎛⎫==- ⎪++⎝⎭, ∴()()21111111311351232422212412n n n T n n n n n n ⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=--=⎪ ⎪ ⎪ ⎪⎢⎥+++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ .………12分 18. 【解析】(1)因为ABC △是等边三角形,M 为AB 的中点,所以CM AB ⊥.又因为DB ⊥平面ABC ,DB CM ∴⊥,可得CM ⊥平面ABDE ,因为EM ⊂平面ABDE ,所以CM EM ⊥;(4分)(2)如图,以点M 为坐标原点,,MC MB 所在直线分别为,x y 轴,过M且与直线BD 平行的直线为z 轴,建立空间直角坐标系.因为DB ⊥平面ABC ,所以DMB ∠为直线DM 与平面ABC 所成的角.(6分) 由题意得tan 2BDDMB MB∠==,即2BD =,故()0,1,0B ,)C ,()()0,1,2,0,1,1DE -,于是 ()0,0,2BD =,设平面BCD 与平面CDE理科数学 第2页(共7页)的法向量分别为()111,,x y z =m ,()222,,x y z =n ,则由00BC BD ⎧⋅=⎨⋅=⎩m m 得11x =,得13y ,所以()1,3,0=m .同理求得3231,,33⎛⎫=- ⎪ ⎪⎝⎭n , (10分) 所以cos ,0⋅==m nm n m n,则二面角B CD E --的大小为90︒.(12分)51015zxyACDE MB(3,3x-2yx+2y=0x+y-4=0y x19.【解析】(1)由已知可得,40岁以下的有3100605⨯=人,使用微信支付的有260403⨯=人,40岁以上使用微信支付的有14010⨯=人.所以22⨯列联表为:40岁以下40岁以上合计 使用微信支付 40 1050 未使用微信支付 20 3050 合计6040100由列联表中的数据计算可得2K 的观测值为()21004030201050604050503k ⨯⨯-⨯==⨯⨯⨯,由于5010.8283>,所以有的把握认为“使用微信支付与年龄有关”. .....5分(2)采用分层抽样的方法从100名顾客中抽取10人,则从“40岁以下”的人中抽取6人,从“40岁以上”的人中抽取4人,X 的所有可能取值为0,1,2理科数学 第3页(共7页)20.【解析】(1)由120MF MF ⋅=,得12MF MF ⊥ ,即12MF MF ⊥,由勾股定理,得22212(2)20MF MF c +==,且128MF MF ⋅= ,解得124,2MF MF ==,根据椭圆的定义,可得1226MF MF a +== ,即3a =,所以2224b a c =-=,所以椭圆的方程为22194x y +=......4分(2)由(1)得()13,0A -,()23,0A ,设()00,P x y ,则直线1PA的方程为()0033y y x x =++,它与直线352x =的交点的坐标为003535,3232y E x ⎛⎫⎛⎫+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,直线2PA 的方程为()0033y y x x =--,它与直线352x =的交点的坐标为003535,3232y F x ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,再设以EF 为直径的圆交x 轴于点(),0Q m ,则QE QF ⊥,从而1QE QF k k ⋅=-,即000035353332321353522y y x x m m⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭⋅=---,即22020935492y m x ⎛⎫=-- ⎪ ⎪-⎝⎭,解得3512m =±.故以EF 为直径的圆交x 轴于定点,该定点的坐标为351,02⎛⎫+ ⎪ ⎪⎝⎭或351,02⎛⎫- ⎪ ⎪⎝⎭. ..........12分 21.【解析】(1)令()()cos e xg x f x kx x =-- sin e x x kx =-,要使()e cos x f x kx x≥+恒成立,只需()min0g x ≥,()()sin s e co x g x x x k =+-',令()()sin c e os xh x x x =+,则()2cos 0e x h x x '=≥对恒成立,()h x ∴在理科数学 第4页(共7页)..........2分①当1k ≤时, ()0g x '≥恒成立, ()g x 在π0,2x ⎡⎤∈⎢⎥⎣⎦上为增函数,()()min 00g x g ∴==,1k ∴≤满足题意;②当2π1e k <<时, ()0g x '=在2π0,x ⎡⎤∈⎢⎥⎣⎦上有实根0x , ()h x 在2π0,x ⎡⎤∈⎢⎥⎣⎦上是增函数,则当[)00,x x ∈时,()0g x '<,()()000g x g ∴<=不符合题意;③当π2e k ≥时, ()0g x '≤恒成立, ()g x 在2π0,x ⎡⎤∈⎢⎥⎣⎦上为减函数,()()00g x g ∴<=不符合题意,1k ∴≤,即(],1k ∈-∞. ..........5分(2)()f x = ()sin co e s xx x +,()e '2cos xf x x ∴=,设切点坐标为()()0000,sin cos ex x x x +,则切线斜率为()0002cos 'e x f x x =,从而切线方程为()000sin cos e x y x x -+()0002cos e x x x x =-,()0000001sin cos 2co 2πe s e x x x x x x -⎛⎫∴-+=- ⎪⎝⎭,即00tan 22πx x ⎛⎫=- ⎪⎝⎭,令1tan y x =, 222πy x ⎛⎫=- ⎪⎝⎭,这两个函数的图象关于点π,02⎛⎫⎪⎝⎭对称,则它们交点的横坐标关于π2x =对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于π2x =成对出现,又在20152017,22ππ⎡⎤-⎢⎥⎣⎦内共有1008对,每对和为π,∴数列{}n x 的所有项之和为1008π. .....12分 22.【解析】(1)曲线C 的直角坐标方程为22124x y +=,直线l 的普通方程为33x y +=.……5分(2)点()03P ,在直线l 33x y +=上,将直线l的参数方程代入曲线C 的直角坐标方程,得251240t t ∴+-=,设两根为1t,2t ,12125t t +=-理科数学 第5页(共7页)故1t 与2t异号,125PA PB t t ∴+=-==,121245PA PB t t t t ⋅=⋅=-⋅=,1114·PA PB PA PB PA PB+∴+==.………………10分 23.【解析】(1)不等式()0f x x +>可化为21x x x -+>+,当1x <-时, ()()21x x x --+>-+,解得3x >-,即31x -<<-;当12x -≤≤时, ()21x x x --+>+,解得1x <,即11x -≤<;当2x >时, 21x x x -+>+,解得3x >,即3x >,综上所述,不等式()0f x x +>的解集为{|31x x -<<或3}x >.……………5分(2)由不等式()22f x a a ≤-可得2212x x a a ≤--+-,21213x x x x -+≤----= ,∴223a a -≥,即2230a a --≥,解得1a ≤-或3a ≥,故实数a 的取值范围是1a ≤-或3a ≥.…10分理科数学 第6页(共7页)理科数学 第7页(共7页)。

河北省衡水中学2017年高三下学期第三次摸底考试数学(理)试题(解析版)

河北省衡水中学2017年高三下学期第三次摸底考试数学(理)试题(解析版)

河北衡水中学2016-2017学年度高三下学期数学第三次摸底考试(理科)必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合倒=="殳U'.N = {x|x z > 1},则集合啊n N等于()A. (|r+ w)B.(匚 + m)C.(拈)D.【答案】D【解析】{發二H花博■右H■亍A —©1" M n N = (|h l)'选D.2. / I 一,若打】:?i,则厂一,等于()A|7 1. 7 1. 11. ^11.A. f + 孑B.C.D.弋 + 41【答案】A【解析】设z = 3 + bi®b匚R),则扁2+『一日+ bi = L + 2i「・b = 2,也2 +『一自=l^a =孑,.土产體再+ *,选A.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如如m bil匚o- K bUk. ;其次要熟悉复数相关基本概念,如复数住F的实部为叮、虚部为L、模为「| L、对应点为险U:、共轭为:i..3. 数列住』为正项等比数列,若巧=丄,且a n + L= 2a n+ € N,n王2),则此数列的前5项和巳等于()A. B. 41 C. D.'【答案】A【解析】因为= 2a n + 3a n-l|,所以2 r r c r l% 七 2 121 、小q = 2q + 3r -.-q > Q A q = 3p S s=-; + _ + a3+ a3q + a3q =—,选 A.4. 已知F^F2分别是双曲线= l(a > O.b >⑴的左、右焦点,以线段F I B为边作正三角形,护b"如果线段7「的中点在双曲线的渐近线上,则该双曲线的离心率.等于()A. 2\3|B. 2返C.D. 2【答案】D【解析】由题意得渐近线斜率为I 土dl,即P = 2=亡=2 ,选D.5. 在匕f中,“ .1 , 「二 :■ = ”是… 卩”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】八];时,・”.II二’r J F :,所以必要性成立;丄丨F 时,-I-. II二,r ;F :,所以充分性不成立,选 B.6. 已知二次函数彳乂二J . 了,:二的两个零点分别在区间:—\.一'“和,:「一内,则扛.诃的取值范围是()A.「.TB. - - 1 -C. ■: - - -D."【答案】A学科网...f(-2)> 0 4-2b + c > 0【解析】由题意得I •「,可行域如图三角形内部(不包括三角形边界, f(0)> 0 C > 0其中三角形三顶点为:' ■ | R 1 I - ):点取最小值■ ■■-啲取值范围是•亠:,选A.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.7. 如图,一个简单几何体的正视图和侧视图都是边长为2的等边三角形,若该简单几何体的体积是|;「|,则【答案】B【解析】 由题意得:;$二I ■■- ■'I '■ ' 1巧=巧=64^a L = 12B?S1 ;巧工5斗衍工10=町=20?3,因此输入正整数m 的所有可能值的个数为4,选B. 9.<的展开式中各项系数的和为16,则展开式中「项的系数为( )4X JX_「•一 C. .■ ■-D.【解析】由题意, 几何体为锥体,高为正三角形的高V32^2,因此底面积为計带,,即底面为等腰直角三角形, 直角边长为 2,周长为-2 - ,选C.8. 20世纪30年代, 德国数学家洛萨---科拉茨提出猜想:任给一个正整数/ ,如果,是偶数,就将它减半;如果r 是奇 数,则将它乘 3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“一「.丄”猜想.如图是验证“ |1用.咁汀’猜想的一个程序框图,若输出 「的值为8,则输入正整数|的所有【答案】C【答案】A【解析】由题意得伯一春+訓1_3)右=16壬=扌,所以展开式中卫 项的系数为点睛:求二项展开式有关问题的常见类型及解题策略⑴ 求展开式中的特定项•可依据条件写出第项,再由特定项的特点求出I 值即可•(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出I 值,最后求出其参数•10.数列|州}为非常数列,满足:巧+ % = 2屯=右且吋2 +屯巧+…+ a n a n + 1 ="倍+』对任何的正整数 訂都成立,则 右+当*'十占的值为()*50A. 1475B. 1425C. 1325D. 1275 【答案】B【解析】 因为可引+幻屯十…+ a r a n + 1 = na !a n + l引巧 + 幻巧 + …+ % + Wn + 2 = 口 + 1 a l a n + 2,即已知向量|J ;满足;• ; | 「: ■: '■ ',若讨一[,I ;的最大值和最小值分别为 |r i :/, -,则|等于()【答案】C【解析】因为工心一]所以t — 一 — 一] = — 2 17 ?5 — — 5 — _ 一 —a (a-2p) = gc - p =牙(d + p) =1 +孑十 1= y=*|a + p| =寸;因为(口一¥)* (B-¥)= 0,15时1 «1 弘1n + 1 n 1 ■ _______________ =ri * 1引(n + 1} a n+ 2,丄 n + 1a 2(n + L)叫"数列,设公差为d (d 工0} ,因为 + a 9 = d 屯=jj,所以口 J + 土 8 - 2d B + 4右=8 + 5—5) = n + 3(n 芒 3},所以孑一严== 7# = 4注=d a > d ■aoo |o1an + l a n + 2 =T :: 1 ―二,选 B.二:解得d ■ 1|,即5 + 1)"听+ 2 -门业片+ 1,即晋}从第三项起成等差5,满足二=n + 3,n(n + 1) 一 g —丄(n + 1}1 1 1石 +「+咯"0x4 +—C. 57 D. 33,所以,叠加得,所以11. A. B. A 15A.B. 2C.D.—I —fc =f =* =1 2=CM 厂 |d + p|、|Y|cos v (d + p)(y > + |Y | = 0怖|的最大值与最小值之和为 即 + 呼^ =扌,选C.12. 已知偶函数f(x)满足f(4 + x) = f(4-x),且当k W (0.4]时,fg)=号®,关于x 的不等式Fg + af(x) a 0在[-200,200]上有且只有200个整数解,则实数a 的取值范围是( )A. (-jln6jn2]B. (-In2,.-|ln6)C. (-1口2』_詬6]D. (-|ln6Jn2) 【答案】C【解析】因为偶函数丨冥满足〔4丨八 V 「,所以IXH :::一 :,因为关于,的不等式「* 、工 「•:在_ ; m 】.上有且只有200个整数解,所以关于艾的不等式F(K ) + af(x) >。

河北省衡水中学2017届高三上学期第三次调研考理数试题

河北省衡水中学2017届高三上学期第三次调研考理数试题

数学试卷(理科)第Ⅰ卷(选择题共60分)一、选择题:本大题共 12 个小题 ,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项是切合题目要求的 .1.已知会合 A xN |1 x log 2 k ,会合 A 中起码有 3 个元素,则( )A . k 8B . k 8C . k 16D . k 16 2.复数 2 i的共轭复数的虚部是( )12iA .3B .3C .-1D .15 53.以下结论正确的选项是()A .若直线 l 平面 ,直线 l 平面,则 / /B .若直线 l / / 平面,直线 l //平面,则 / /C .若两直线 l 1、 l 2 与平面 所成的角相等,则 l 1 / /l 2D .若直线 l 上两个不一样的点 A 、B 到平面 的距离相等,则 l / /4.等比数列 a n 的前 n 项和为 S n ,已知 a 2 a 5 2a 3 ,且 a 4 与 2a 7 的等差中项为 5,则 S 54()A . 29B .31C .33D .365.已知实数 x, y 知足x2y 1,则 z 2x y 2 的取值范围为()x y 1 0xA . 0,10B .,2 U10,C . 2,10D .,0 U10,3333A. 8B.6C.4D.27.阅读如下图的程序框图,则该算法的功能是()A.计算数列2n 1前5项的和B.计算数列2n1前5项的和.计算数列2n 1 前6项的和D.计算数列2n 1前6项的和C8. ABC中,“角A, B, C成等差数列”是“sin C 3 cos A sin A cos B ”的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不必需条件9.已知a b ,二次三项式ax22x b0 对于一确实数 x 恒成立,又 x0 R ,使22x0 b 0 成立,则a2b2的最小值为()ax0a bA. 1B.2C.2D.2 210.已知等差数列a n,b n的前n项和分别为S n,T n,若对于随意的自然数n,都有S n 2n 3,则a1a15a3()T n4n 3 2 b3b9b2b10A.19B.17C.7D.20 4137154111.已知函数g x ax21x e,e为自然对数的底数与 h x 2ln x 的图象上存在关e于 x 轴对称的点,则实数 a 的取值范围是()12122A .1,e22B . 1,e2C .e 22, e2D . e2,uuuv uuuv uuuv12.如图,在 OMN 中, A, B 分别是 OM , ON 的中点,若 OP xOA yOB x, y R ,且点 P 落在四边形 ABNM 内(含界限),则y 1 的取值范围是( )x y 2A .1,2B . 1 ,33 3 3 4C .1,3D .1,24 44 3第Ⅱ卷(非选择题共 90分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) 13.若实数 a 、b 0,1 ,且知足 1 a b1,则 a 、b 的大小关系是 _____________.4若 tan1 10 , , ,则 sin 22cos cos 2的值为 ___________.14.tan34 24415.一个几何体的三视图如下图,则此几何体的体积是_____________.16.已知函数 f xlg x , x 0,若对于 x 的方程 f 2 x bf x 1 0 有 8 个不一样x 2 6x 4, x根,则实数 b 的取值范围是 ______________.三、解答题(本大题共 6 小题,共 70 分 .解答应写出文字说明、证明过程或演算步骤 .)17.(本小题满分 12 分)已知 f x2sin x,会合M x | f x2, x 0 ,把M中的元素从小到大挨次排2成一列,获得数列a n , n N*.(1)求数列a n的通项公式;(2)记b n12,设数列 b n的前n项和为T n,求证:T n 1 .a n1418.(本小题满分 12 分)已知向量(1)若m 3 sinx,1 , n cosx,cos 2x,记 f x mgn .444f x 1,求cos x的值;3(2)在锐角ABC 中,角A, B, C的对边分别是a, b, c,且知足2a c cosB b cosC ,求 f 2A 的取值范围.19.(本小题满分 12 分)如下图,在直三棱柱ABC A1 B1C1中,平面 A1 BC侧面A1B1BA,且AA1AB2 .(1)求证:AB BC ;(2)若直线AC与平面A1BC所成角的正弦值为1,求锐二面角 A A1C B的大小.220.(本小题满分 12 分)已知函数 f x 2 ax 1 2ln x a R .(1)若曲线 g xf xx 上点 1,g 1处的切线过点 0,2 ,求函数 g x 的单一减区间;(2)若函数 yf x在 0,1上无零点,求 a 的最小值.221.(本小题满分 12 分)已知 px, m , q xa,1 ,二次函数 f x pgq 1 ,对于 x 的不等式f x2m 1 x1 m2 的解集为,m U m 1, ,此中 m 为非零常数,设g x f x .x 1( 1)求 a 的值;(2)若存在一条与 y 轴垂直的直线和函数x g xx ln x 的图象相切, 且切点的横坐标 x 0 知足 x 0 1 x 0 3 ,务实数 m 的取值范围;(3)当实数 k 取何值时,函数x g xk ln x 1 存在极值?并求出相应的极值点.请考生在 22、23、24 三题中任选一题作答,假如多做,则按所做的第一题记分 .22.(本小题满分 10 分)选修 4-1:几何证明选讲已知四边形 ABCD 为圆 O 的内接四边形,且 BC CD ,其对角线 AC 与 BD 订交于点 M ,过点 B 作圆 O 的切线交 DC 的延伸线于点 P .( 1)求证: ABgMD ADgBM ;(2)若 CPgMD CBgBM ,求证: ABBC .23.(本小题满分 10 分)选修 4-4:坐标系与参数方程x m 2 t已知直线 l 的参数方程为2( t 为参数),以坐标原点为极点,x轴的正半2y t2轴为极轴成立极坐标系,曲线 C 的极坐标方程为 2 cos23 2 sin212 ,且曲线C 的左焦点 F 在直线 l 上.(1)若直线l与曲线C交于A, B两点,求FA gFB的值;(2)求曲线C的内接矩形的周长的最大值.24.(本小题满分 10 分)选修 4-5:不等式选讲已知 x0 R 使不等式x1x 2 t 成立.(1)求知足条件的实数t 的会合 T ;(2)若m 1,n 1,对t T ,不等式log2mglog3n t 恒成立,求m n 的最小值.参照答案一、选择题题123456789101112号答C C A B D C D A D A B C案二、填空题13. ab 14.015.80 16. 217 b4三、解答题17.解:(1)∵ f x2 ,∴x kk Z ,∴ x 2k 1,k Z ..................322分又∵ x0 ,∴ a n2n 1 nN * .........................6 分∴ T n b 1 L b n1 1 1 1111 1 141L4 n 1 42 23 n n 1 41∴ T n4.........................12 分uv v3sin x cosxcos 2x 3 sin x 1 cos x1 sin x1 ,18.(1) f x mgn644 42 2 2 22 22由 f x1 ,得 sinx61,所以 cos x31 2sin 2x 6 1.............62 222分( 2)因为 2a c cosB b cosC ,由正弦定理得2sin A sin C cosBsin B cosC ,所以 2sin AcosB sin C cosB sin B cosC ,所以 2sin A cosB sin B C ,因为 A B C,所以 sin BCsin A ,且 sin A 0 ,所以 cos B1,又0B,所以 B,22222 , 3则 A C, A C ,又0C,则A,得3A3326263所以3sin A 1 ,又因为f 2A sin A 1 ,2662故函数 f 2 A 的取值范围是31, 3................12 分2219.(1)证明:如图,取 A1 B 的中点D,连结AD..........................1分因 AA1AB ,则 AD A1B ,............................2分由平面 A1BC侧面A1ABB1,且平面A1BC I侧面A1ABB1A1B ,..............3分得 AD平面A1BC,又BC平面A1BC,所以 AD BC .....................4分因为三棱柱ABC A1B1C1是直三棱柱,则 AA1底面ABC,所以AA1BC .又 AA1 I AD A ,进而BC侧面A1ABB1,又 AB侧面A1ABB1,故AB BC ................6分(2)解法一:连结CD,由( 1)可知AD平面A1BC,则CD是AC在平面A1BC内的射影,∴ACD 即为直线 AC 与平面A1BC所成的角,因为直线AC 与平面A1BC所成的角的正弦值为1,则ACD26,............................8 分在等腰直角A1AB 中, AA1AB 2,且点D是 A1B 中点,∴1 A 1B2且 ADC, ACD,2 2 6AD∴ AG2 2 ..................9 分过点 A 作 AEA 1C 于点 E ,连结 DE ,由( 1)知 AD 平面 A 1BC ,则 ADA 1C ,且 AE I AD A ,∴AED 即为二面角 A A 1C B 的一个平面角....................10 分且直角 A 1AC 中, AEA 1 AgAC22 2 2 6 ,AC2 3 31又 AD2, ADE ,∴ sin AEDAD2 23,且二面角 A A 1C B 为锐二面2AE6 23角,∴ AED,即二面角 A A 1CB 的大小为3..................12 分3解法二(向量法):由( 1)知 AB BC 且 BB 1 底面 ABC ,所以以点 B 为原点,以 BC 、 BA 、 BB 1 所在直线分别为 x, y, z 轴成立空间直角坐标系 Bxyz ,如下图,且设 BC a ,则A 0,2,0 ,B 0,0,0 ,C a,0,0 , A 1 0,2,2 ,uuuv uuuv uuuv uuuv0,0,2 .........................9 BC a,0,0 , BA 10,2,2 , ACa, 2,0 , AA 1 分设平面 A 1BC 的一个法向量 n 1x, y, z ,uuuvuuuvn 1 得:由 BCn 1 , BA 1za,令 y 1 ,得 x 0, z1 ,则 n 10,1, 1 ............10 分2 y 2z 0设直线 AC 与平面 A 1BC 所成的角为,则,uuuv6g2uuuv得 sinAC n11,解得 a 22, 2,0 ,ACgn 1,即 AC6 4 a 222又设平面 A 1 AC 的一个法向量为 n 2 ,同理可得 n 3 1,1,0 ,设锐二面角 AA 1CB 的大小为,则coscos n 1, n 2n 1 g1,且0,,得,n 2n 1 n 2 223∴锐二面角 AA 1CB 的大小为....................................12 分32,∴ 20.解:(1)∵ g x3 a x2 a 2ln x ,∴ g x3 axg x 1 a ,........2 分又 g 1 11 a 1 21,得 a2...........................4 分,∴ 1 0由 g x 3 2 2x 2 0 ,得 0 x 2 ,x x∴函数 g x 单一减区间为 0,2 ...............................5 分(2)因为 f x0在区间 0,1上恒成立不行能,2故要使函数 f x在 0,1 上无零点,只需对随意的 x 0, 1, f x 0 恒成立,22即对 x0,1,a22ln x恒成立................................8 分2x 1令 I x2 2ln x , x0,1,x 1221 2ln x2ln x22x则 I xxx 2x 2.................10 分1x 1再令 m x 2ln x2 2, x 0,1,x 22 22 1 x ,则 m xxx 2x 2故 m x 在 0,1上为减函数,于是 m x m12 2ln 2 0 ,22进而,故要使I x0 ,于是 I x 在 0,1 上为增函数,所以 I x I 12 4ln 2 ,22a 22ln x恒成立,只需 a2 4ln 2,,x 1综上,若函数 f x 在 0,1上无零点,则 a 的最小值为22 4ln 2 .................. 12 分uvvx a,1 , f xuv v21.解:(1)∵ p x, m , qpgq 1,∴二次函数 f x x 2 ax m 1,..........................1 分 对于 x 的不等式 f x2m 1 x1 m2 的解集为,0 U m 1,,也就是不等式 x 2a 1 2m xm 2 m 0 的解集为,0 U m 1,,∴ m 和 m 1 是方程 x 2 a 1 2m x m 2 m 0 的两个根,由韦达定理得: mm 1a 1 2m ,∴ a 2 .............................2 分(2)由( 1)得 gf x x2 2x m 1m ,xx1x 1x 1x 1∴ x g x x ln x ln x 1m,x1m ,x1 xx 21∵存在一条与 y 轴垂直的直线和x 的图象相切,且切点的横坐标为 x 0 ,1mmx 0 1 2 ......................4 分∴ x 02x 0x 0 x 0 1∵ x 0 1 x 0 3 ,∴ x 02 .....................5 分令 h xx12 x 2 ,则 h x 11 x 1 x 1 ,xx 2x 2当 x 2 时, hx1x 1 x 10 ,12x 2x∴ h xx 12在 2,上为增函数,x进而 h x 0x 0 + 1 2 h 2 1,∴ m1..................... 7 分x 022(3)x g x k ln x 1x 1m k ln x 1 的定义域为 1,,x 1∴x1mkx 22 k x k m 1x2x 1x 211方程 x 22 k x km 1 0 (* )的鉴别式2 k 2 4 k m 1 k 24m .①若 m 0 时,2kk 2 4m0 ,方程( * )的两个实根为 x 121,或2 kk 2 4m 1,x 22则 x 1, x 2 时, x0 ; xx 2 ,时,x 0 ,∴函数 x 在 1,x 2 上单一递减,在 x 2 ,上单一递加,此时函数x 存在极小值,极小值点为x 2 ,k 可取随意实数,........................9 分②若 m 0 时,当0 ,即 2m k 2m 时, x 22 k x km 1 0 恒成立,x0, x 在 1,上为增函数,此时x 在 1,上没有极值.................................10 分下边只需考虑0 的状况,由 0,得 k2m 或 k 2 m ,当 k2 k k24m 2 kk 24m2 m ,则 x121, x221,故 x 1,时,x 0,∴函数x 在 1,上单一递加,∴函数x 没有极值................................11分当 k 22k k 24m2k k 24mm 时, x121, x221,则 x 1, x1时,x0; x x1, x2时,x0; x x2 ,时,x0 ,∴函数x 在 1,x1上单一递加,在x1 , x2上单一递减,在 x2 ,上单一递加,此时函数x 存在极大值和极小值,极小值点x2,有极大值点 x1.综上所述,若 m0 时, k 可取随意实数,此时函数x 有极小值且极小值点为x2;若 m 0 时,当k2m 时,函数x 有极大值和极小值,此时极小值点为x2,极大值点为 x1(此中x1 2 kk24m, x2 2 kk24m).......................12 分2222.解:(1)由BC CD 可知,BAC DAC ,在ABD 中,则AB AD,所以 ABgMD AD gBM ;.............5分BM DM(2)由CPgMD CBgBM ,可知CP BMCB MD ,又由( 1)可知BM AB,MD AD则 CP AB,由题意 BAD PCB ,可得 BAD :PCB ,CB AD则 ADB CBP ,又 ADB ACB ,即 CBP ACB ,又 PB为圆O 的切线,则CBP CAB ,所以ACB CAB ,即AB AC ...............10分23.解:(1)已知曲线 C 的标准方程为x2y21,则其左焦点为2 2,0 .124x2 22t与曲线C : x2y 2则 m 2 2 ,将直线l的参数方程2 1 联立,2124y t2得 t 22t 2 0 ,则FA gFB t1t22...............5分(2)由曲线C的方程为x2y 21,可设曲线 C 上的定点P 2 3 cos ,2sin,124则以 P 为极点的内接矩形周长为4 2 3 cos2sin16sin0,32所以该内接矩形周长的最大值为16...................10 分1, x124.解:(1)令f x x1x22x 3,1x2,则1 f x1,1, x2因为x0 R 使不等式x1x2t 成立,有 t T t |t 1..............5 分(2)由( 1)知,log3mglog3n 1,依据基本不等式 log3 m log3 n2log3 mlog 3 n 2 ,进而 mn 32,当且仅当m n 3 时取等号,再依据基本不等式 m n 2 mn 6 当且仅当m n 3 时取等号,所以 m n 的最小值为6..................10分。

河北省衡水中学2017届高三下学期第三次摸底考试数学理

河北省衡水中学2017届高三下学期第三次摸底考试数学理

河北衡水中学2016-2017学年度 高三下学期数学第三次摸底考试(理科)必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合()13lg 21|,|1x M x f x N x x -⎧⎫-⎧⎫===>⎨⎨⎬⎩⎩⎭,则集合MN 等于( )A .2,3⎛⎫+∞⎪⎝⎭ B .()1,+∞ C .12,23⎛⎫ ⎪⎝⎭ D .2,13⎛⎫⎪⎝⎭2. z C ∈,若12z z i -=+,则1zi+等于( ) A .7144i + B .7144i - C .1144i -- D .1144i -+3.数列{}n a 为正项等比数列,若33a =,且()1123,2n n n a a a n N n +-=+∈≥,则此数列的前5项和5S 等于 ( ) A .1213B .41C .1193D .24194. 已知1F 、2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,以线段12F F 为边作正三角形12F MF ,如果线段1MF 的中点在双曲线的渐近线上,则该双曲线的离心率e 等于( )A ...25.在ABC ∆中,“sin sin cos cos A B B A -=- ”是“A B =”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件6.已知二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,则()3f 的取值范围是 ( )A .()12,20B .()12,18 C. ()18,20 D .()8,187.如图,一个简单几何体的正视图和侧视图都是边长为2的等边三角形,若该简单几何体的体积是3,则其底面周长为( )A.)21 B.)21C. )22 D38.20世纪30年代,德国数学家洛萨---科拉茨提出猜想:任给一个正整数x ,如果x 是偶数,就将它减半;如果x 是奇数,则将它乘3加1,不断重复这样的运算,经过有限步后,一定可以得到1,这就是著名的“31x +”猜想.如图是验证“31x +”猜想的一个程序框图,若输出n 的值为8,则输入正整数m 的所有可能值的个数为( )A .3B . 4 C. 6 D .无法确定9.632243ax x x x ⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为16,则展开式中3x 项的系数为( )A .1172 B . 632C. 57 D .33 10. 数列{}n a 为非常数列,满足:39511,48a a a +==,且1223111n n n a a aa aa n a a +++++=对任何的正整数n 都成立,则1250111a a a ++的值为( ) A .1475 B .1425 C. 1325 D .127511.已知向量,,αβγ 满足()()()1,2,αααβαγβγ=⊥--⊥-,若172β=,γ的最大值和最小值分别为,m n ,则m n +等于( )A .32 B .2 C. 52 D 12.已知偶函数()f x 满足()()44f x f x +=-,且当(]0,4x ∈时,()()ln 2x f x x=,关于x 的不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( )A .1ln 6,ln 23⎛⎤- ⎥⎝⎦B .1ln 2,ln 63⎛⎫-- ⎪⎝⎭ C. 1ln 2,ln 63⎛⎤-- ⎥⎝⎦D .1ln 6,ln 23⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上13.为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场商品的售价x 元和销售量y 件之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归方程是ˆˆ3.2yx a =-+,则ˆa = .14.将函数()2cos 2f x x x =-的图象向右平移m 个单位(0m >),若所得图象对应的函数为偶函数,则m 的最小值是 .15.已知两平行平面αβ、间的距离为A B α∈、,点C D β∈、,且4,3AB CD ==,若异面直线AB 与CD 所成角为60°,则四面体ABCD 的体积为 .16.已知A B 、是过抛物线()220y px p =>焦点F 的直线与抛物线的交点,O 是坐标原点,且满足3,3OAB AB FB S AB ∆==,则AB 的值为 . 三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 如图,已知ABC ∆关于AC 边的对称图形为ADC ∆,延长BC 边交AD 于点E ,且5,2AE DE ==, 1tan 2BAC ∠=.(1)求BC 边的长; (2)求cos ACB ∠的值.18.如图,已知圆锥1OO 和圆柱12O O 的组合体(它们的底面重合),圆锥的底面圆1O 半径为5r =,OA 为圆锥的母线,AB 为圆柱12O O 的母线,D E 、为下底面圆2O 上的两点,且6, 6.4DE AB ==,AO =AO AD ⊥.(1)求证:平面ABD ⊥平面ODE ; (2)求二面角B AD O --的正弦值.19.如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为X .(1)求游戏结束时小华在第2个台阶的概率; (2)求X 的分布列和数学期望.20.如图,已知P ⎫⎪⎪⎝⎭为椭圆()2222:10x y E a b a b +=>>上的点,且225a b +=,过点P 的动直线与圆222:1F x y a +=+相交于A B 、两点,过点P 作直线AB 的垂线与椭圆E 相交于点Q .(1)求椭圆E 的离心率;(2)若AB =PQ .21. 已知函数()()()()11,2x x x ax b e f x a R g x b R e e x e--=∈=+∈+,其中e 为自然对数的底数.(参考数据:112427.39 1.28, 1.65e e e ≈≈≈, ) (1)讨论函数()f x 的单调性;(2)若1a =时,函数()()2y f x g x =+有三个零点,分别记为()123123x x x x x x <<、、,证明:()12243x x -<+<.选考部分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中直线1l 的倾斜角为α,且经过点()1,1P -,以坐标系xOy 的原点为极点,x 轴的非负半轴为极轴,建立极坐标系Ox ,曲线E 的极坐标方程为4cos ρθ=,直线1l 与曲线E 相交于A B 、两点,过点P 的直线2l 与曲线E 相交于C D、两点,且12l l ⊥.(1)平面直角坐标系中,求直线1l 的一般方程和曲线E 的标准方程; (2)求证:22AB CD +为定值. 23.选修4-5:不等式选讲已知实数a b 、满足223a b ab +-=. (1)求a b -的取值范围; (2)若0ab >,求证:2211344a b ab++≥.试卷答案一、选择题1-5:DAADB 6-10: ACBAB 11、12:CC二、填空题13. 39.4 14.6π 15. 6 16. 92三、解答题17.解:(1)因为1tan 2BAC ∠=,所以22tan 4tan 1tan 3BAC BAE BAC ∠∠==-∠,所以3cos 5BAE ∠=. 因为527AB AD AE DE ==+=+=,所以2222cos 49254232BE AB AE AB AE BAE =+-∠=+-=,所以BE =75BC AB CE AE ==,所以BC =.(2)由(1)知BE =所以222cos22AB BE AE B AB BE +-===,所以sin 2B =,因为1tan 2BAC ∠=,所以sin ,cos 55BAC BAC ∠=∠=所以()cos cos ACB BAC B ∠=-∠+sin sin cos cos B BAC B BAC =∠-∠==.18.解:(1)依题易知,圆锥的高为5h =,又圆柱的高为6.4,AB AO AD =⊥,所以222OD OA AD =+,因为AB BD ⊥,所以222AD AB BD =+,连接1122OO O O DO 、、,易知12O O O 、、三点共线,22OO DO ⊥,所以22222OD OO O D =+,所以()(22222222222 6.455 6.464BD OO O D AO AB =+--=++--=,解得8BD =,又因为6DE =,圆2O 的直径为10,圆心2O 在BDE ∠内,所以易知090BDE ∠=,所以DE BD ⊥.因为AB ⊥平面BDE ,所以DE AB ⊥,因为AB BD B =,所以DE ⊥平面ABD .又因为DE ⊂平面ODE ,所以平面ABD ⊥平面ODE .(2)如图,以D 为原点,DB 、DE 所在的直线为x y 、轴,建立空间直角坐标系.则()()()()0,0,0,8,0,6.4,8,0,0,4,3,11.4D A B O . 所以()()()8,0,6.4,8,0,0,4,3,11.4DA DB DO ===, 设平面DAO 的法向理为(),,u x y z =,所以8 6.40,4311.40DA u x z DO u x y z =+==++=,令12x =,则()12,41,15u =-.可取平面BDA 的一个法向量为()0,1,0v =, 所以82cos ,582u v u v u v===, 所以二面角B AD O --的正弦值为10. 19.解:(1)易知对于每次划拳比赛基本事件共有339⨯=个,其中小华赢(或输)包含三个基本事件上,他们平局也为三个基本事件,不妨设事件“第()*i i N ∈次划拳小华赢”为i A ;事件“第i 次划拳小华平”为i B ;事件“第i 次划拳小华输”为i C ,所以()()()3193i i i P A P B P C ====. 因为游戏结束时小华在第2个台阶,所以这包含两种可能的情况:第一种:小华在第1个台阶,并且小明在第2个台阶,最后一次划拳小华平; 其概率为()()()()()()212122124781p A P B P C P B P C P A P B =+=, 第二种:小华在第2个台阶,并且小明也在第2个台阶,最后一次划拳小华输, 其概率为()()()()()()()()()()()()3221233123421234529243p P B P B P C A P A P B P C P C A P A P C P A P C P C =++=所以游戏结束时小华在第2个台阶的概率为127295081243243p p p =+=+=. (2)依题可知X 的可能取值为2、3、4、5,()()()()()4123412522381P X P A P C P A P C ⎛⎫===⨯= ⎪⎝⎭,()()()2121222239P X P A P A ⎛⎫===⨯= ⎪⎝⎭,()()()()()()()()()()123123123322P X P A P B P A P B P A P A P B P B P B ==++ ()()()()()()()()()()()()12312312312322213227P A P B P B P B P A P B P B P B P A P C P A P A ++++=()()()()224152381P X P X P X P X ==-=-=-==,所以X 的分布列为:所以X 的数学期望为:()2132222512345927818181E X =⨯+⨯+⨯+⨯=.20.解:(1)依题知2222611,5,04ab a b a b+=+=>>,解得223,2ab ==,所以椭圆E的离心率e ===; (2)依题知圆F的圆心为原点,半径为2,r AB ==所以原点到直线AB的距离为1d ==, 因为点P 坐标为2⎛⎫⎪ ⎪⎝⎭,所以直线AB 的斜率存在,设为k . 所以直线AB 的方程为1y k x ⎛-=-⎝⎭,即10kx y -+=,所以1d ==,解得0k=或k =①当0k =时,此时直线PQ 的方程为x =, 所以PQ 的值为点P 纵坐标的两倍,即212PQ =⨯=;②当k =PQ 的方程为12y x ⎛-=-⎭, 将它代入椭圆E 的方程2132x y 2+=,消去y 并整理,得234210x --=,设Q 点坐标为()11,x y,所以1234x +=134x =-,所以13017PQ ==. 21.解:(1)因为()1x x ax x f x ae e e -⎛⎫== ⎪⎝⎭的定义域为实数R , 所以()1x x f x ae e -⎛⎫'= ⎪⎝⎭. ①当0a =时,()0f x =是常数函数,没有单调性.②当0a <时,由()0f x '<,得1x <;由()0f x '>,得1x >.所以函数()f x 在(),1-∞上单调递减,在()1,+∞上单调递增.③当0a >时,由()0f x '<得,1x >; 由()0f x '>,得1x <,所以函数()f x 在()1,+∞上单调递减,在(),1-∞上单调递增.(2)因为()()1,20a f x g x =+=, 所以121202x x x x b e e e x e--++=+,即1111221022x x x x x x x e x b b x e e x e e e ----++=++=++. 令12x x t e e -=+,则有10t e b t-++=,即()210t b e t +-+=. 设方程()210t b e t +-+=的根为12t t 、,则121t t =,所以123x x x 、、是方程()()121122*,**x x x x t e t e e e --=+=+的根. 由(1)知12x x t e e-=+在(),1-∞单调递增,在()1,+∞上单调递减. 且当x →-∞时,t→-∞,当x →+∞时,()max ,12t e t t e →==+,如图,依据题意,不妨取22e t e <<+,所以121112t e t e<=<+, 因为315122244111110,112422t e e e e t e e e e e ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+<-=-+=-+> ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 易知201x <<,要证()12243x x -<+<,即证11124x -<<-. 所以()1111024t t x t e ⎛⎫⎛⎫-<<<<- ⎪ ⎪⎝⎭⎝⎭,又函数()y t x =在(),1-∞上单调递增, 所以11124x -<<-,所以()12243x x -<+<. 22.解:(1)因为直线1l 的倾斜角为α,且经过点()1,1P -,当090α=时,直线1l 垂直于x 轴,所以其一般方程为10x -=,当090α≠时,直线1l 的斜率为tan α,所以其方程为()1tan 1y x α+=-, 即一般方程为()tan tan 10x y αα---=.因为E 的极坐标方程为4cos ρθ=,所以24cos ρρθ=,因为cos ,sin x y ρθρθ==,所以224x y x +=.所以曲线E 的标准方程为()2224x y -+=. (2)设直线1l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=-+⎩(t 为参数),代入曲线E 的标准方程为()2224x y -+=,可得()()221cos 21sin 4t t αα+-+-+=,即()22cos sin 20t t αα-+-=, 则()12122cos sin ,2t t t t αα+=+=-,所以()()()222212121244cos sin 8124sin AB t t t t t t ααα=-=+-=++=+2, 同理2124sin 2124sin 22CD παα⎛⎫=++=- ⎪⎝⎭, 所以22124sin 2124sin 224AB CD αα+=++-=为定值.23.解:(1)因为223a b ab +-=,所以2232a b ab ab +=+≥.①当0ab ≥时,32ab ab +≥,解得3ab ≤,即03ab ≤≤;②当0ab <时,32ab ab +≥-,解得 1ab ≥-,即10ab -≤<, 所以13ab -≤≤,则034ab ≤-≤,而()2222323a b a b ab ab ab ab -=+-=+-=-, 所以()204a b ≤-≤,即22a b -≤-≤;(2)由(1)知03ab <≤, 因为2222224113444344a b a b ab a b ab +++-=-+ 2222222343333111113304442ab a b ab a b ab a b ab ab +⎛⎫⎛⎫=-+=-+=-+=-≥ ⎪ ⎪⎝⎭⎝⎭ 当且仅当2ab =时取等号,所以 2211344a b ab++≥ .。

【河北省衡水中学年】2017届高三下学年期三调数学年(理科)试题

【河北省衡水中学年】2017届高三下学年期三调数学年(理科)试题

(12 分)
故 CB 平面ABFE ,以 B 为原点, BA,BF,BC 分别为 x 轴, y 轴, z 轴正方向.
建立如图所示的空间直角坐标系,则 F(0,2,0), D(2,0,1), G(1,1,1), E(2,1,0), C(0,0,1) 2
所以
EG=

1,
0,
1 2

,易知
(1 分)

a1

0
,∴
a1

2
,当
n

2
时,
2an

2

Sn , 2an1

2

Sn1 .
(2 分)
两式相减得 2an 2an1 an n 2 ,∴ an 2an1 n 2 ,从而数列an 为等比数列.
∴ an
a1
2n1

2n

(5 分)
,得
2 2
x1 x1
2 y1 0

z1

0
,取
y1
1得 平面FCD
的一个法向量 n1
0,1,2 .
假设线段 FD 上存在一点 N ,使得直线 BN 与 平面FCD 所成角的正弦值等于 2 . 5
所以 sin cos BN, n
BN n1 BN n1
2

5 2 2 2 2 2 2
所以 3 2m 3 且 m 0 , 3 m 3 且 m 0 .
2
2
因为 k1

x1
y1
2
,
k2

y2 x2 2
,所以
k1 k2

【高考模拟】河北省2017届高三上学期第三次调研考试数学(理)试题 Word版含答案

【高考模拟】河北省2017届高三上学期第三次调研考试数学(理)试题 Word版含答案

数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合{}(){}22,|30,|log 1,U R A x x x B y y x x A ==->==+∈,则()U A C B 为 ( )A .[)2,3B .()2,3C .()0,2D .∅ 2. 若不等式2162a bx x b a+<+对任意(),0,a b ∈+∞恒成立,则实数x 的取值范围是 ( ) A .()2,0- B .()(),20,-∞-+∞ C .()4,2- D .()(),42,-∞-+∞ 3. 设n S 是等比数列{}n a 的前n 项和为425S S = ,则3825a a a 的值为 ( ) A .2-或1- B .1或2 C .2±或1- D .1±或2 4. 已知函数()sin cos f x x x λ=+的图象的一个对称中心是点,03π⎛⎫⎪⎝⎭,则函数()2sin cos sin g x x x x λ=+的图象的一个对称轴是直线 ( )A .56x π=B .43x π= C. 3x π= D .3x π=- 5. 下列命题正确的个数是( )①命题“2000,13x R x x ∃∈+>” 的否定是“2,13x R x x ∀∈+≤”;②函数()22cos sin f x ax ax =-的最小正周期为π,是“1a =”的必要不充分条件;③22x x ax +≥在[]1,2x ∈上恒成立()()2max min2x xax ⇔+≥在[]1,2x ∈上恒成立;④“平面向量a 与b 的夹角是钝角” 的充分必要条件是“0a b <”. A .1 B .2 C.3 D . 46. 设不等式组4010x y y x x +≤⎧⎪-≥⎨⎪-≥⎩,表示平面区域为D ,若圆()()()222:110C x y r r +++=>经过区域D 上的点,则r 的取值范围是 ( )A.⎡⎣B.(C.(D.(()0,+∞7. ()021nn a x dx =+⎰,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,数列{}n b 的通项公式为8n b n =-,则n n b S 的最小值为( )A .3-B .4- C.3 D .48. 若对[),0,x y ∀∈+∞,不等式2242x y x y ax e e +---≤++,恒成立,则实数a 的最大值是 ( ) A .14 B .1 C. 2 D .129. 已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( )A.(,-∞ B.()C. ()),0-∞⋃+∞ D.(),-∞⋃+∞10. 在ABC ∆中,,3,6A AB ACD π===在边BC 上,且2CD DB =,则AD =( )AC.5 D.11. 已知函数()()2cos ,43f x x x g x x x =+=-+-,对于[],1a m m ∀∈+,若,03b π⎡⎤∃∈-⎢⎥⎣⎦,满足()()g a f b =,则m 的取值范围是( )A.22⎡-+⎣ B.1⎡-⎣C.2⎡⎣ D.12⎡-+⎣12.已知()f x 是定义在R 上的偶函数,其导函数为()'f x ,若 ()()'f x f x <,且()()()13,20152f x f x f +=-=,则不等式()12x f x e -<的解集为 ( )A .()1,+∞B .(),e +∞ C. (),0-∞ D .1,e ⎛⎫-∞ ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()()()()2200x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()1g -= __________. 14.若向量,a b是两个互相垂直的单位向量,则向量a 在向量b 方向上的投影为__________.15. 如图是网格工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行,数字6,5,4(从左至右) 出现在第3行; 数字7,8,9,10出现在第4行,依此类推,则第20行从左到右第4个数字为_________.16. 对于数列{}n a ,定义1122...2n n a a a Hn n-+++=为{}n a 的“优值”,现在已知某数列{}n a 的“优值”12n Hn +=,记数列{}n a kn -的前n 项和为n S ,若5n S S ≤对任意的 n 恒成立,则实数k 的取值范围是_________.三、解答题(本大题共6小题,共70分.2,3:解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)已知{}n a 是单调递增的等差数列,首项13a =,前n 项和为n S ,数列{}n b 是等比数列,其中11b =,且223212,20a b S b =+=. (1)求 {}n a 和{}n b 的通项公式;(2) 令()cos 3n n n a c S n N π*⎛⎫=∈ ⎪⎝⎭,求 {}n c 前20项和20T . 18. (本小题满分12分)已知函数()()12ln 2f x a x ax x=-++. (1)当2a =时,求函数()f x 的极值; (2) 当0a <时,求函数()f x 的单调增区间.19. (本小题满分12分)已知数列{}n a 是等比数列,首项11a =,公比0q >,其前n 项和为n S ,且113322,,S a S a S a +++,成等差数列. (1) 求{}n a 的通项公式;(2)若数列{}n b 满足11,2n na b n n aT +⎛⎫= ⎪⎝⎭为数列{}n b 前n 项和,若nTm ≥恒成立,求m 的最大值.20. (本小题满分12分)如图,某生态园将一三角形地块ABC 的一角APQ 开辟为水果园种植桃树,已知角A 为120 ,,AB AC 的长度均大于200米,现在边界,AP AQ 处建围墙,在PQ 处围竹篱笆.(1)若围墙,AP AQ 总 长度为200米,如何围可使得三角形地块APQ 的面积最大? (2)已知AP 段围墙高1米,AQ 段围墙高1.5米,造价均为每平方米100元. 若围围墙用了20000元,问如何围可使竹篱笆用料最省?21.(本小题满分12分)已知函数()22cos 3sin cos 3f x x x x x =--+.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域; (2)若ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,且满足()()sin222cossinA CbA Ca A+==++,求()f B的值.22. (本小题满分12分)已知函数()(),xf x eg x mx n==+.(1)设()()()h x f x g x=-;①若函数()h x在0x=处的切线过点()1,0,求m n+的值;②当0n=时,若函数()h x在()1,-+∞上没有零点,求m的取值范围.(2)设函数()()()1nxr xf xg x=+,且()40n m m=>,求证:当0x≥时,()1r x≥.河北省武邑中学2017届高三上学期第三次调研考试数学(理)试题参考答案一、选择题(每小题5分,共60分)1-5.ACCDB 6-10.ABDAA 11-12. CA二、填空题(每小题5分,共20分)13.3-14. 3-15. 19416.712,35⎡⎤⎢⎥⎣⎦三、解答题17.解:(1)设公差为d,公比为q,则()()223222312,33320a b d q S b a b d q=+=+=+=++=,()(){}232210,3730,nd d d d a∴--=+-= 是单调递增的等差数列,()10,3,2,3133,2nn nd d q a n n b-∴>∴==∴=+-⨯==.(2),cos,nn nnS nc S nS nπ⎧⎪==⎨-⎪⎩是偶数是奇数,2012341920...T S S S S S S∴=-+-+--+ 24620......61218 (60330)a a a a=++++=++++=.18.解:(1)函数()f x的定义域为()()210,,'4f xx+∞=-+,令()21'40f xx=-+=,得1211;22x x ==-(舍去). 当x 变化时,()()',f x f x 的取值情况如下:所以,函数()f x 的极小值为142f ⎛⎫=⎪⎝⎭,无极大值. (2)()()()2221121'2x ax a f x a x x x -+-=-+=,令()'0f x =,得1211,2x x a==-,当2a =-时,即314a a =,于是12311111,0,,1,422n n a q q q a a a -⎛⎫==>∴==∴= ⎪⎝⎭.(2)11111,,2222n nn na b na b n n n a b n -+⎛⎫⎛⎫⎛⎫=∴=∴= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,21112232...2n n T n -∴=⨯+⨯+⨯++ , ① 232122232...2n n T n ∴=⨯+⨯+⨯++ ,②∴①- ②得:()2112122 (2)2212112nn nn n n T n n n ---=++++-=-=--- ,()112n n T n ∴=+-,n T m ≥ 恒成立,只需()()()11min 212120n n n n n n T m T T n n n ++≥-=--=+> ,{}n T ∴为递增数列,∴当1n =时,()min 1,1,n T m m =∴≤∴的最大值为1.20.解:设AP x =米,AQ y =米.(1)则200,x y APQ +=∆的面积21sin120,22x y S xy xy S +⎫==∴≤=⎪⎭.当且仅当200x y x y =⎧⎨+=⎩,即100x y ==时,取“=”.(2)由题意得()1001 1.520000x y ⨯+= ,即 1.5200x y +=,要使竹篱笆用料最省,只需其长度PQ 最短,所以()()22222222cos120200 1.5200 1.5PQ x y xy x y xy y y y y =+-=++=-++-21.7540040000y y =-+28001200004001.750773y y ⎛⎫⎛⎫=-+<< ⎪ ⎪⎝⎭⎝⎭,当8007y =时,PQ ,此时200,7x =∴当2007AP =米,8007AQ =米时, 可使篱笆最省. 21.解:(1)()221cos 21cos 2cos 3sin cos 323322x xf x x x x x x -+=--+=--+72cos 212sin 21,0,,2,62666x x x x x πππππ⎛⎫⎛⎫⎛⎫=-+=++∈∴+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()(]1sin 2,1,2sin 210,3626x f x x ππ⎛⎫⎛⎤⎛⎫∴+∈-∴=++∈ ⎪ ⎪⎥⎝⎭⎝⎦⎝⎭.(2)()()()()sin 222cos ,sin 22sin 2sin cos sin A C A C A C A A A C A+=++∴+=++, ()()()sin cos cos sin 2sin 2sin cos A A C A A C A A A C ∴+++=++,()()sin cos cos sin 2sin A A C A A C A ∴-+++=即sin 2sin C A =,由正弦定理可得2c a =,又由ba=b =,由余弦定理可得222cos302b c aA Abc+-===∴= .由正弦定理可得sin2sin1,90C A C=== ,由三角形的内角和可得()()60,602B f B f=∴==.22.解:(1)由题意,得()()()()()'''x xh x f x g x e mx n e m=-=--=-,所以函数()h x 在0x=处的切线斜率1k m=-,又()01h n=-,所以函数()h x在0x=处的切线方程()()11y n m x--=-,将点()1,0代入,得2m n+=.(2)当0n=,可得()()''x xh x e mx e m=-=-,因为11,xx ee>-∴>.①当1me≤时,()'0xh x e m=->,函数()h x在()1,-+∞上单调递增,而()01h=,所以只需()110h me-=+≥,解得1me≥-,从而11me e-≤≤.②当1me>时,由()'0xh x e m=-=,解得()ln1,x m=∈-+∞,当()1,lnx m∈-时,()()'0,h x h x<单调递减;当()ln,x m∈+∞时,()()'0,h x h x>单调递增,所以函数()h x在()1,-+∞上有最小值为()ln lnh m m m m=-,令ln0m m m->,解得1,m e m ee<∴<<.综上所述,1,m ee⎡⎫∈-⎪⎢⎣⎭.(3)由题意,()()()11144x xnxnx xmr xnf xg x e e xxm=+=+=+++,而()1414xxr xe x=+≥+,等价于()()()3440,344x xe x x F x e x x-++≥=-++,则()00F=,且()()()'311,'00xF x e x F=-+=,令()()'G x F x=,则()()'32xG x e x=+,因为()0,'0x G x≥∴>,所以导数()'F x在[)0,+∞上单调递增,于是()()''00F x F≥=,从而函数()F x在[)0,+∞上单调递增,即()()00≥=.F x F。

2017年5月2017届高三第三次全国大联考(新课标Ⅲ卷)理数卷(解析版)

2017年5月2017届高三第三次全国大联考(新课标Ⅲ卷)理数卷(解析版)

2017年第三次全国大联考【新课标III 卷】理科数学·全解全析(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2|20M x x x =--<,21{|1,}2N y y x x ==-+∈R ,则MN =( )A .{}|21x x -≤<B .{}|12x x <<C .{}|11x x -<≤D .{}|12x x ≤< 1.C 【命题意图】本题考查集合的运算、不等式的解法、二次函数的值域,意在考查运算求解能力.【解析】{}|12M x x =-<<,{}|1N y y =≤,则{}|11M N x x =-<≤,故选C .2.已知i 是虚数单位,若复数z 满足211i 122z =-+,则||z =( ) A .1 B .2 C 5 D 62.C 【命题意图】本题考查复数的运算、共轭复数与模的计算,意在考查运算求解能力.【解析】由211i 122z =-+,得()()()41i 41112i 1i 1i 1i z +=-=-=+--+,则||||5z z ==C .3.在长为4的线段PQ 上随机取一点R (R 不取端点值),以PR 为棱长的正方体体积大于27的概率为( ) A .12 B .14 C .3764D .2764 3.B 【命题意图】本题考查几何概型,意在考查运算求解能力.【解析】由题意,知327PR >,即43PR >>,则所求概率为43144-=,故选B. 4.设焦点为F 的抛物线C :22(0)y px p =>的准线与x 轴交于K 点,P 是抛物线C 上纵坐标为22的点,若22PKF S =△,则p =( ) A .12B .2C .4D .8 4.B 【命题意图】本题主要考查抛物线的几何性质,意在考查运算求解能力.【解析】由条件知11||222222PKF P S FK y p =⋅=⨯⨯=△,解得2p =,故选B . 5.已知函数()3122xxf x x ⎛⎫=-⋅ ⎪⎝⎭,且()20f x ->,则实数x 的取值范围是( ) A .()(),22,-∞+∞ B .(),2-∞ C .()2,+∞ D .(),-∞+∞5.A 【命题意图】本题主要考查函数的奇偶性与单调性的应用,意在考查运算求解能力、等价变换的能力.【解析】由题意易知()f x 为偶函数,且在[)0,+∞为增函数,()00f =,所以原不等式等价于()()|2|0f x f ->,所以|2|0x ->,所以2x ≠,故选A .6.已知变量 x y ,满足约束条件2204x y x y x -≥-⎧⎪-≤⎨⎪≥-⎩,若2m x y ≥-+恒成立时,则实数m 的取值范围为( ) A .[)0,+∞ B .[)4,+∞ C .[)2,-+∞ D .[)7,+∞ 6.D 【命题意图】本题主要考查线性规划问题,意在考查作图与识图能力.【解析】作出约束条件2204x y x y x -≥-⎧⎪-≤⎨⎪≥-⎩所对应的可行域(如图中阴影部分),令2z x y =-+,当直线经过点()4,1A --时,z 取得最大值,即()max 2417z =-⨯--=,所以7m ≥,故选D .7.如图,网格上小正方形的边长为1,粗实线与粗虚线画出的是正方体中挖去了两个半圆锥得到的一个几何体的三视图,则该几何体的体积为( )A .32643-π B .16643-π C .8643-π D .4643-π 7.B 【命题意图】本题主要考查三视图与正方体、圆锥的体积,意在考查空间想象能力、转换能力、运算求解能力.【解析】根据三视图还原出来的几何体如下图所示,其体积为3211422423V =-⨯⨯π⨯⨯=16643-π,故选B .8.函数()22exx xf x +=的大致图象是( )8.B 【命题意图】本题考查函数图象、导数与极值的关系,意在考查识图能力.【解析】由()f x 的解析式知有两个零点2x =-与0x =,排除A ,又()22e xx f x -'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B .9.执行下列程序框图,如果输出i 的值为3,那么输入的x 取值范围是( )A .16x <B .416x <<C .416x ≤<D .1664x ≤< 9.C 【命题意图】本题主要考查程序框图,意在考查辨识框图的能力、运算求解能力.【解析】执行下列程序:20,log i x x==→()221,log log i x x ==→()()2222,log log log i x x ==,()()()22223,log log log log i x x ==,则由()()()()()2222222log log log log 0log log log 0x x ⎧<⎪⎨≥⎪⎩,解得416x ≤<,故选C .10.已知过半径为2的球的球心的截面α圆内有一个内接正ABC △,点P 是过AB 且与平面α垂直的球的截面圆上任意一点,则点P 到平面ABC 的最大距离为( ) A .32B .3C .3D .23 10.B 【命题意图】本题主要考查球的性质、面面垂直的应用,意在考查空间想象能力、运算求解能力.【解析】如图所示,由题意,知平面PAB ⊥平面ABC ,所以点P 在平面ABC 上的射影D 落在AB 上,所以PD ⊥平面ABC ,所以当D 为AB 的中点时,点P 到平面ABC 的距离最大,即为PD .因为ABC △是正三角形,则31CD OD ==,,223PD OP OD =-=,故选B .11.已知双曲线C :22221(0,0)x y a b a b -=>>5C 的右顶点A 作倾斜角为34π的直线l 与两条渐近线12,l l 分别相交于,P Q 两点,且满足AP PQ λ=,则实数λ的值是( ) A .12 B .13C .2D .3 11.A 【命题意图】本题主要考查双曲线的几何性质、向量的线性关系,意在考查逻辑思维能力、运算求解开始x输入0i =2log x x=0?x <1i i =+i输出结束是否能力及方程思想的应用.【解析】由题意,得()0A a ,,直线l 的方程为y x a =-+,则由0y x a bx ay =-+⎧⎨-=⎩,得2,a ab P a b a b ⎛⎫⎪++⎝⎭.由0y x a bx ay =-+⎧⎨+=⎩,得2,a ab Q a b a b ⎛⎫- ⎪--⎝⎭,所以,abab AP a b a b ⎛⎫=- ⎪++⎝⎭,22222222,a b a b PQ a b a b ⎛⎫=- ⎪--⎝⎭.因为AP PQ λ=,所以2222ab a b a b a b λ-=⋅+-,即()21b a λ=+,又由5ce a==,结合222c a b =+,得2b a =,则212λ+=,即12λ=,故选A . 12.已知各项均为正数的递增数列{}n a 的前n 项和为n S 满足21n n S a =+,nn n a b a t=+(*t ∈N ),若12,,m b b b 成等差数列,则t m +=( )A .8B .9C .7或8D .8或912.D 【命题意图】本题考查数列通项n a 与前n 项和n S 间的关系、等差数列,意在考查运算求解能力、逻辑推理能力、估算能力.【解析】当1n =时,1121a a =+,解得11a =;当2n ≥时,由21n n S a =+,得212nn a S +⎛⎫= ⎪⎝⎭,则22111122nn n n n a a a S S --++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,整理,得2211220n n n n a a a a -----=,配方,得()()22111n n a a --=+.由题意知,数列{}n a 为单调递增数列,且0n a >,则111n n a a --=+,即12n n a a --=,所以数列{}n a 为等差数列,则21n a n =-,所以2121n n b n t-=-+,则由12,,m b b b 成等差数列,得312123121m t t m t -⨯=+++-+,所以431m t =+-.因为,*m t ∈N ,故t 只能取2,3,5.当2t =时,7m =;当3t =时,5m =;当5t =时,4m =,所以8m t +=或9,故选D .第Ⅱ卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分)13.已知,AB DC 为梯形ABCD 的两腰,若()1,3AD =-,()1,2BC x x =-,则x =____________. 13.3【命题意图】本题主要考查平面向量的平行条件,意在考查运算求解能力与转化能力.【解析】由梯形的性质知ADBC ,且同向,则()12310x x -⋅--=,解得3x =.14.《孙子算经》是中国古代重要的数学专著,其中记载了一道有趣的数学问题:“今有出门,望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色.”则这个数学问题中动物有_____只.(数字作答)14.590490【命题意图】本题考查数学文化、等比数列,意在考查运算求解能力、审读能力.【解析】由题意,知“堤、木、枝、巢、禽、雏、毛”的数量构成一个首项19a =,公比9q =的等比数列{}n a ,其通项公式为1999n nn a -=⋅=,则动物的数量为()5655699919590490a a +=+=+=(只).15.某同学要用红、黄两种颜色给如下图中并排的七个矩形图形涂色,要求每一块矩形只涂一种颜色,要求任意两相邻的两块矩形至多有1块涂红色,且任意相邻三块矩形至少有一块矩形涂红色,则涂色方案有___________种.15.12【命题意图】本题主要考查计数原理的应用,意在考查运算求解能力、分类讨论思想的应用.【解析】分三类:(1)选2块矩形涂红色:第2块和第5块、第3块和第5块、第3块和第6块涂红色3种可能情况;(2)选3块矩形涂红色:考虑为插空问题,即涂红色的3块插入涂黄色的4块形成的5个空位中,有35C 种插入法,但须减去第1、5、2空涂红或第1、5、4空涂红色,所以有35C 28-=种涂法;(3)选4块矩形涂红色:只有第1、3、5、7块涂红色1种情况.根据分类加法计数原理知涂色方案共有38112++=种.16.将函数()()2sin 0,||2f x x ωϕωϕπ⎛⎫=+><⎪⎝⎭的图象上所有点的横坐标伸长到原来的4倍,再向右平移3π个单位得到得到函数()g x 的图象,若不等式()1g x ≥的解集为()74,43k k k π⎡⎤π+ππ+∈⎢⎥⎣⎦Z ,则()f x =___________.16.2sin 26x π⎛⎫-⎪⎝⎭【命题意图】本题主要考查三角函数的图象变换、三角函数性质,意在考查运算求解能力、逻辑推理能力.【解析】由题意,得()2sin 43g x x ωϕ⎡π⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,则由()1g x ≥,即1sin 432x ωϕ⎡π⎤⎛⎫-+≥ ⎪⎢⎥⎝⎭⎣⎦,所以()5226436k x k k ωϕπππ⎛⎫π+≤-+≤π+∈ ⎪⎝⎭Z ,解得848612k k x ωϕωωωππππ⎛⎫++-≤≤ ⎪⎝⎭+()45612k ωϕωππ⎛⎫+-∈ ⎪⎝⎭Z ,则与()1g x ≥的解集区间比较得844612k k ωωϕωπ⎧=π⎪⎪⎨ππ⎛⎫⎪+-=π ⎪⎪⎝⎭⎩,解得2ω=,6ϕπ=-,检验知不等式()1g x ≥解集右端也成立,故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12)在ABC △中,内角,,A B C 所对的边分别为,,a b c ,满足cos cos 2a B b A +=,且()cos 1cos c A b C =-.(Ⅰ)求c 的值及判断ABC △的形状;(Ⅱ)若()3sin 323sin()x x x C x =-∈R ,求ABC △的面积.17.【命题意图】本题考查正弦定理、余弦定理、三角形面积与三角恒等变换,意在考查运算求解能力、逻辑推理能力,以及方程思想、转化思想的应用.【解析】(Ⅰ)由cos cos 2a B b A +=,根据余弦定理,得222222222a c b b c a a b ac bc+-+-⋅+⋅=,整理,得2c =.………………2分由()cos 1cos c A b C =-,根据正弦定理,得()sin cos sin 1cos C A B C =-,即sin sin cos sin cos B C A B C =+,又sin B =()sin sin cos cos sin A C A C A C +=+,………4分sin cos sin cos B C A C =,故cos 0C =或sin sin A B =.………………5分当cos 0C =时,2C π=,故ABC △为直角三角形; 当sin sin A B =时,A B =,故ABC △为等腰三角形.………………7分(Ⅱ)因为313sin 323cos 23226x x x x x ⎫π⎛⎫-=-=-⎪ ⎪⎪⎝⎭⎭,所以6C π=.………………8分 由(Ⅰ)知2c =,A B =,则a b =,………………9分 所以由余弦定理,得22242cos 6a a a π=+-,解得2843a =+,………………10分 所以ABC ∆的面积21sin 2326S a π==………………12分 18.(本小题满分12分)某初级中学根据运动场地的影响,但为尽大可能让学生都参与到运动会中来,在2016冬季运动会中设置了五个项目,其中属于跑步类的两项,分别是200米和400米,另外三项分别为跳绳、跳远、跳高.学校要求每位学生必须参加,且只参加其中一项,该校780名学生参加各运动项目人数统计如下条形图:其中参加跑步类的人数所占频率为713,为了了解学生身体健康与参加运动项目之间的关系,用分层抽样的方法从这780名学生中抽取13人进行分析.(Ⅰ)求条形图中m 和n 的值以及抽取的13人中参加200米的学生人数;(Ⅱ)现从抽取的参加400米和跳绳两个项目中随机抽取4人,记其中参加400米跑的学生人数为X ,求离散型随机变量X 的分布列与数学期望.18.【命题意图】本题考查分层抽样、条形图、离散型随机变量的分布列与数学期望,意在考查学生的数据获取与处理能力、逻辑思维能力、运算求解能力. 【解析】(Ⅰ)由题意,得参加跑步类的有778042013⨯=人,………………1分 所以420180240m =-=,78042018012060n =---=.………………3分 根据分层抽样法知,抽取的13人中参加200米的学生人数有180133780⨯=人.………………5分 (Ⅱ)由题意,得抽取的13人中参加400米的学生人数有240134780⨯=,参加跳绳的学生人数有3人,所以X 的所有可能取值为1、2、3、4,………………6分()134347C C 41C 35P X ===,()224347C C 182C 35P X ===,()314347C C 123C 35P X ===,()4447C 14C 35P X ===,………………9分所以离散型随机变量X 的分布列为:X 1 2 3 4P435 1835 1235 135所以41812116()1234353535357E X =⨯+⨯+⨯+⨯=.………………12分 19.如图,在多面体ABCDEFG 中,ABCD 为正方形,AF ⊥平面ABCD ,AFBGDE ,且AB AF BG DE ===,H 为EG 中点.(Ⅰ)求证:BD CH ⊥;(Ⅱ)求二面角F CE G --的余弦值.19.【命题意图】本题考查空间直线与平面间平行和垂直的判断与证明、二面角、空间向量的应用,意在考查空间想象能力、逻辑推证能力、运算求解能力.【解析】(Ⅰ)如图,连接AC 交BD 于点M ,连接MH . ∵AFBG DE ,BG DE =,AF ⊥平面ABCD ,∴四边形BDEG 为矩形,………………1分又∵H 为EG 中点,∴MHBGAF,MH BG =,………………2分又∵AF ⊥平面ABCD ,∴MH ⊥平面ABCD ,∴MH ⊥BD .………………3分 在正方形ABCD 中,BD AC ⊥,且ACMH M =,∴BD ⊥平面CMH ,………………4分又CH ⊂平面CMH ,∴BD CH ⊥.………………5分(Ⅱ)由题意,以D 为坐标原点,以,,DA DC DE 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,且设1AB AF BG DE ====,………………6分则()0,0,1E ,()1,0,1F ,()1,1,1G ,()0,1,0C ,()1,0,0EF =,()0,1,1EC =-,()1,1,0EG =. …………………………………………………………………7分 设()1111,,x y z =n 为平面FCE 的一个法向量,则由110EF EC ⎧=⎪⎨=⎪⎩n n ,得11100x y z =⎧⎨-=⎩,取11y =,得()10,1,1=n .………………9分设()2222,,x y z =n 为平面GCE 的一个法向量,则由2200EG EC ⎧=⎪⎨=⎪⎩n n ,得222200x y y z +=⎧⎨-=⎩,取21y =,得()21,1,1=-n ,………………11分∴1212126cos ,||||323⋅===⋅⨯n n n n n n , ∴二面角F CE G --的余弦值为6.………………12分20.(本小题满分12分)已知左、右焦点分别为12,F F 的椭圆C :22221(0)x y a b a b+=>>的离心率为63直线l 与椭圆C 交于,P Q 两个不同的点,当四边形12PF F Q 为矩形时,其面积为63. (Ⅰ)求椭圆C 的方程;(Ⅱ)若与x 轴不平行且过定点()2,0的直线m 与椭圆C 交于不同的两点,A B ,问:在x 轴上是否存在一个定点()0,0M x ,使得MA MB ⋅的值为定值?若存在,试求出0x 的值及定值;若不存在,请说明理由.20.【命题意图】本题主要考查椭圆的方程、直线与椭圆的位置关系,意在考查运算求解能力、逻辑推证能力、探究能力,以及分类讨论的思想、转化思想、设而不求法的应用.【解析】(Ⅰ)由题意,得6c a = ①,且12||2F F c =,21||b PF a =,则212146||||2b F F PF c a ⋅=⋅= ②.………………2分由①②联立,并结合222a b c =+,解得26a =,22b =,所以椭圆C 的方程为22162x y +=.………………4分 (Ⅱ)当直线m 与x 轴不垂直时,设直线m 的方程为()()20y k x k =-≠,代入椭圆C 的方程22162x y +=,得()222213121260k x k x k +-+-=.………………5分设()11,A x y 、()22,B x y ,所以21221213k x x k +=+,212212613k x x k -=+.………………6分根据题意,假设在x 轴上存在一个定点()0,0M x ,使得MA MB ⋅的值为定值, 则()()()()101202102012,,MA MB x x y x x y x x x x y y ⋅=-⋅-=--+()()()()()()222002222120120231210612413x x k x k x x k x x x k x k -++-=+-++++=+.…………7分要使上式为定值,即与k 无关,则()220003121036x x x -+=-,解得073x =, 此时,20569MA MB x ⋅=-=-,………………8分 所以在x 轴上存在定点7,03M ⎛⎫⎪⎝⎭,使得MA MB ⋅为定值,且073x =,定值为59-.……………9分当直线m 与x 轴垂直时,将2x =代入椭圆方程可求得出,A B 的坐标,不妨设662,,2,33A B ⎛⎛- ⎝⎭⎝⎭,则1616,,,3333MA MB ⎛⎫⎛=-=-- ⎪ ⎪ ⎝⎭⎝⎭ ∴11665()()339MA MB ⋅=-⨯--=-.…………11分 综上可知,在x 轴上存在定点7,03M ⎛⎫⎪⎝⎭,使得MA MB ⋅为定值,且073x =,定值为59-.……12分21.(本小题满分12分)已知函数()()()()2ln 11af x x a x =++∈+R .(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)已知()32g x x x =-,若对于12,13x ⎡⎤∀∈-⎢⎥⎣⎦,21,23x ⎡⎤∀∈⎢⎥⎣⎦,不等式()()()11213x f x g x ++≥恒成立,求实数a 的取值范围.21.【命题意图】本题主要考查导数与函数单调性间的关系、不等式恒成立问题,意在考查运算求解能力、逻辑推理能力,以及分类讨论的思想、等价转化的思想、构造法的应用. 【解析】(Ⅰ)函数()f x 的定义域为()1+∞-,,()()()()2331212111x a af x x x x +-'=+++-=,………………2分 当0a ≤时,()0f x '≥,函数()f x 在()1+∞-,上单调递增;……………3分 当0a >时,若21x a ≥,则()0f x '≥,函数()f x 在(21,)a +∞上单调递增;若121x a -<<,则()0f x '<,函数()f x 在(21)a -上单调递减.……………4分综上所述,当0a ≤时,函数()f x 在()1+∞-,上单调递增;当0a >时,函数()f x 在区间()21a -上单调递减,在)21,a +∞上单调递增.………………5分(Ⅱ)22()323()3g x x x x x '=-=-,1,23x ⎡⎤∈⎢⎥⎣⎦,可见,当2,23x ⎡⎤∈⎢⎥⎣⎦时,()0g x '≥,()g x 在2,23⎡⎤⎢⎥⎣⎦上单调递增,当12,33x ⎡⎤∈⎢⎥⎣⎦时,()0g x '≤,()g x 在12,33⎡⎤⎢⎥⎣⎦上单调递减,………………7分而()1224327g g ⎛⎫=-<= ⎪⎝⎭,所以,()g x 在1,23⎡⎤⎢⎥⎣⎦上的最大值为4,………………8分 依题意,只需当12,13x ⎡⎤∈-⎢⎥⎣⎦时,()()11134x f x ++≥恒成立, 即()()1111x f x +≥,即()()1ln 111a x x x +++≥+在2,13⎡⎤-⎢⎥⎣⎦上恒成立, 亦即()()()211ln 1a x x x ≥+-++在2,13⎡⎤-⎢⎥⎣⎦上恒成立.………………9分 令()()()2()11ln 1h x x x x =+-++2,13x ⎛⎫⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭,则()()()21ln 1h x x x x '=--++,………9分显然(0)0h '=, 当2,03x ⎡⎫∈-⎪⎢⎣⎭时, 0x ->,()()21ln 10x x ++<,()0h x '>,即()h x 在2,03⎡⎫-⎪⎢⎣⎭上单调递增;………………10分当(]0,1x ∈时,0x -<,()()21ln 10x x ++>,()0h x '<,即()h x 在区间(]0,1上单调递减; 所以,当0x =时,函数()h x 取得最大值(0)1h =,………………112分 故1a ≥,即实数a 的取值范围是[)1,+∞.………………12分请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为21222x y ⎧=⎪⎪⎨⎪=+⎪⎩(t为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为()4cos 2sin m ρρθθ--=-,且直线l 与圆C 相交于不同的,A B 两点.(Ⅰ)求线段AB 垂直平分线l '的极坐标方程; (Ⅱ)若||2AB =m 的值.(Ⅲ)若1m =,求过点()4,4N 与圆C 相切的切线方程.22.【命题意图】本题考查直线的极坐标与圆的参数方程、直线与圆的位置关系,意在考查运算求解能力、等价转化能力.【解析】(Ⅰ)消去参数t ,得直线l 的普通方程为10x y -+=,斜率为1, 所以直线l '的斜率为1-.………………1分因为圆C 的极坐标方程可化为24cos 2sin 0m ρρθρθ--+=,所以将222,cos ,sin x y x y ρρθρθ=+==代入上述方程得圆C 的直角坐标方程为22420x y x y m +--+=,则配方,得()()22215x y m -+-=-,其圆心为()2,1C ,半径为)55m m -<.………………3分由题意,知直线l '经过圆心()2,1C ,所以直线l '的方程为()12y x -=--,即30x y +-=,所以由cos ,sin x y ρθρθ==,得直线l '的极坐标方程为()cos sin 3ρθθ+=.………………5分(Ⅱ)因为||2AB =C 到直线l )22||5252AB r m m ⎛⎫-=--< ⎪⎝⎭.)5252m m =--<,解得1m =.………………7分 (Ⅲ)当所求切线的斜率存在时,设切线方程为4(4)y k x -=-,即440kx y k --+=. 221k =+,解得512k =,所以所求切线的方程为512280x y -+=; 当所求切线的斜率不存在时,切线方程为4x =.………………9分 综上,所求切线的方程为4x =或512280x y -+=.………………10分23.(本小题满分10分)选修4-5:不等式选讲已知不等式2222x x +-->的解集为M . (Ⅰ)求集合M ;(Ⅱ)已知t 为集合M 中的最小正整数,若1,1,1a b c >>>,且()()()111a b c t ---=,求证:8abc ≥.23.【命题意图】本题主要考查绝对值不等式的解法、不等式的证明,意在考查运算求解能力、逻辑推理能力、分类讨论与等价转化的思想.【解析】(Ⅰ)设()222f x x x =+--,则()4,13,124,2x x f x x x x x --<-⎧⎪=-≤<⎨⎪+≥⎩,………………1分当1x <-时,由42x -->,得6x <-,6x <-∴;………………2分 当12x -≤<时,由32x >,得23x >,223x <<∴;………………3分 当2x ≥时,由42x +>,得2x >-,2x ≥∴.………………4分 综上所述,集合M 为2|63x x x ⎧⎫><-⎨⎬⎩⎭或.………………5分 (Ⅱ)由(Ⅰ)知1t =,则()()()1111a b c t ---==.因为1,1,1a b c >>>,所以10,10,10a b c ->->->, ………………6分 则()11210a a a =-+≥->,(当且仅当2a =时等号成立)……………7分 ()11210b b b =-+≥->,(当且仅当2b =时等号成立)………………8分 ()11210c c c =-+≥->,(当且仅当2c =时等号成立)………………9分 则()()()81118abc a b c ≥---≥(当且仅当2a b c ===时等号成立), 即8abc ≥.………………10分。

【全国百强校word】河北省衡水中学2017届高三下学期三调考试数学(理)试题

【全国百强校word】河北省衡水中学2017届高三下学期三调考试数学(理)试题

河北衡水中学2016~2017学年度 高三下学期数学第三次调研(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足iiiz 2134++=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 已知集合}0)12(log |{3≤-=x x A ,}23|{2x x y x B -==,全集R U =,则)(B C A U 等于( )A .]1,21( B .)32,0( C .]1,32( D .)32,21( 3.若),2(ππα∈,且)4sin(2cos 3απα-=,则α2sin 的值为( )A .181-B .181C .1817-D .18174. 已知2)(,12)(xx g x x f x =-=,则下列结论正确的是( )A .)()()(x g x f x h +=是偶函数B .)()()(x g x f x h +=是奇函数 C. )()()(x g x f x h =是奇函数 D .)()()(x g x f x h =是偶函数5.已知双曲线E :)0,0(12222>>=-b a by a x ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为双曲线E 的两个焦点,且双曲线E 的离心率是2,直线AC 的斜率为k ,则||k 等于( )A .2B .23 C. 25D .3 6.在ABC ∆中,NC AN 41=,P 是直线BN 上的一点,若AC AB m AP 52+=,则实数m 的值为( )A .4-B .1- C. 1 D .47.已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的图象与直线)0(A a a y <<=的三个相邻交点的横坐标分别是2,4,8,则)(x f 的单调递减区间是( )A .)](36,6[Z k k k ∈+ππB .)](6,36[Z k k k ∈-ππC. )](36,6[Z k k k ∈+ D .)](6,36[Z k k k ∈-8. 某旅游景点统计了今年5月1号至10号每天的门票收入(单位:万元),分别记为1a ,2a ,…,10a (如:3a 表示5月3号的门票收入),下表是5月1号到5月10号每天的门票收入,根据表中数据,下面程序框图输出的结果为( )A .3B .4 C. 5 D .69.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每天还会说其他三国语言的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:①甲是日本人,丁不会说日语,但他俩都能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③甲、乙、丙、丁交谈时,找不到共同语言沟通;④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言,正确的推理是( )A .甲日德、乙法德、丙英法、丁英德B .甲日英、乙日德、丙德法、丁日英 C. 甲日德、乙法德、丙英德、丁英德 D .甲日法、乙英德、丙法德、丁法英 10.如图,已知正方体''''DC B A ABCD -的外接球的体积为π23,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )A .2329+ B .33+或2329+ C. 32+ D .2329+或32+ 11.如图,已知抛物线的方程为)0(22>=p py x ,过点)1,0(-A 作直线l 与抛物线相交于Q P ,两点,点B 的坐标为)1,0(,连接BQ BP ,,设BP QB ,与x 轴分别相交与N M ,两点.如果QB 的斜率与PB 的斜率之积为3-,则MBN ∠的大小等于( )A .2π B .4π C. 32π D .3π12.已知R b a ∈,,且b x a e x+-≥)1(对R x ∈恒成立,则ab 的最大值是( )A .321e B .322e C. 323e D .3e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在92017)11(xx +-的展开式中,含3x 项的系数为 . 14. 在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3kD V =,欧几里得未给出k 的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式3kD V =中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式3kD V =求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长).假设运用此体积公式求得球(直径为a )、等边圆柱(底面圆的直径为a )、正方体(棱长为a )的“玉积率”分别为1k ,2k ,3k ,那么=321::k k k .15.由约束条件⎪⎩⎪⎨⎧+≤+-≤≥1330,kx y x y y x ,确定的可行域D 能被半径为22的圆面完全覆盖,则实数k 的取值范围是 .16.如图,已知O 为ABC ∆的重心,90=∠BOC ,若AC AB BC ⋅=24,则A 的大小为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列}{n a 的前n 项和为n S ,01≠a ,常数0>λ,且n n S S a a +=11λ对一切正整数n 都成立. (1)求数列}{n a 的通项公式;(2)设100,01=>λa ,当n 为何值时,数列}1{lgna 的前n 项和最大? 18.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:x (月份) 1 2 3 4 5y (万盒) 4 4 5 6 6(1)该同学为了求出y 关于x 的线性回归方程a x b yˆˆˆ+=,根据表中数据已经正确计算出6.0ˆ=b ,试求出a 的值,并估计该厂6月份生产的甲胶囊产量数;(2)若某药店现有该制药厂今年二月份的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为X ,求X 的分布列和数学期望.19.已知多面体ABCDEF 如图所示,其中ABCD 为矩形,DAE ∆为等腰等腰三角形,AE DA ⊥,四边形AEFB 为梯形,且BF AE //,90=∠ABF ,22===AE BF AB . (1)若G 为线段DF 的中点,求证://EG 平面ABCD ;(2)线段DF 上是否存在一点N ,使得直线BN 与平面FCD 所成角的余弦值等于521?若存在,请指出点N 的位置;若不存在,请说明理由.20.如图,椭圆E :)0(12222>>=+b a b y a x 左、右顶点为A 、B ,左、右焦点为1F 、2F ,4||=AB ,32||21=F F .直线m kx y +=(0>k )交椭圆E 于点D C ,两点,与线段21F F 、椭圆短轴分别交于NM ,两点(N M ,不重合),且||||DN CM =.(1)求椭圆E 的方程;(2)设直线AD ,BC 的斜率分别为21,k k ,求21k k 的取值范围. 21.设函数ax xbxx f -=ln )(,e 为自然对数的底数. (1)若函数)(x f 的图象在点))(,(22e f e 处的切线方程为0432=-+e y x ,求实数b a ,的值; (2)当1=b 时,若存在],[,221e e x x ∈,使a x f x f +≤)(')(21成立,求实数a 的最小值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,斜率为1的直线l 过定点)4,2(--.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为0cos 4sin 2=-θθρ. (1)求曲线C 的直角坐标方程以及直线l 的参数方程;(2)两曲线相交于N M ,两点,若)4,2(--P ,求||||PN PM +的值. 23.选修4-5:不等式选讲已知函数|23||12|)(-++=x x x f ,且不等式5)(≤x f 的解集为}5354|{bx a x ≤≤-,R b a ∈,. (1)求b a ,的值;(2)对任意实数x ,都有53||||2+-≥++-m m b x a x 成立,求实数m 的最大值.试卷答案一、选择题1-5: CDCAB 6-10: BDAAB 11、12:DA二、填空题13. 84- 14.1:4:6ππ 15.]31,(-∞ 16.3π三、解答题17.解:(1)令1=n ,得0)2(,22111121=-==a a a S a λλ,因为01≠a ,所以λ21=a ,当2≥n 时,n n S a +=λ22,1122--+=n n S a λ,两式相减得)2(221≥=--n a a a n n n ,所以)2(21≥=-n a a n n ,从而数列}{n a 为等比数列, 所以λnn n a a 2211=⋅=-.(2)当01>a ,100=λ时,由(1)知,2lg 22lg 100lg 1002lg 1lg ,1002n a b a n nn n n n -=-====,所以数列}{n b 是单调递减的等差数列,公差为2lg -,所以01lg 64100lg 2100lg6621=>==>>>b b b 当7≥n 时,01lg 2100lg77=<=≤b b n ,所以数列}1{lg na 的前6项和最大.18.解:(1)3)54321(51=++++=x ,5)66544(51=++++=y ,因线性回归方程a x b yˆˆˆ+=过点),(y x ,∴2.366.05ˆ=⨯-=-=x b y a∴6月份的生产胶囊的产量数:8.62.366.0ˆ=+⨯=y. (2)3,2,1,0=X ,4254810)0(3935====C C X P ,21108440)1(392514====C C C X P ,1458430)2(391524====C C C X P ,211844)3(3934====C C X P ,其分布列为 X 0 1 2 3P425 2110 145 211 ∴3432112145121100425)(=⨯+⨯+⨯+⨯=X E .19.(1)因为AE DA ⊥,AB DA ⊥,A AE AB = ,故⊥DA 平面ABFE ,故⊥CB 平面ABFE ,以B 为原点,BC BF BA ,,分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系,则)0,2,0(F ,)1,0,2(D ,)21,1,1(G ,)0,1,2(E ,)1,0,0(C ,所以)21,0,1(-=EG ,易知平面ABCD 的一个法向量)0,1,0(=n ,所以0)0,1,0()21,0,1(=⋅-=⋅n EG ,所以n EG ⊥,又⊄EG 平面ABCD ,所以//EG 平面ABCD .(2)当点N 与点D 重合时,直线BN 与平面FCD 所成角的余弦值等于521.理由如下: 直线BN 与平面FCD 所成角的余弦值为521,即直线BN 与平面FCD 所成角的正弦值为52,因为)0,0,2(),1,2,2(=-=CD FD ,设平面FCD 的法向量为),,(1111z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅011CD n FD n ,得⎩⎨⎧==+-020221111x z y x ,取11=y 得平面FCD 的一个法向量)2,1,0(1=n 假设线段FD 上存在一点N ,使得直线BN 与平面FCD 所成角的正弦值等于52,设)10(≤≤=λλFD FN ,则),2,2()1,2,2(λλλλ-=-=FN ,),22,2(λλλ-=+=FN BF BN ,所以5248952)22()2(52||||||,cos sin 2222111=+-⋅=+-+⋅=⋅>=<=λλλλλαn BN n BN n BN ,所以01892=--λλ,解得1=λ或91-=λ(舍去) 因此,线段DF 上存在一点N ,当N 点与D 点重合时,直线BN 与平面FCD 所成角的余弦值为521. 20.解:(1)因为322,42==c a ,所以1222=-=c a b ,所以椭圆的方程为1422=+y x . (2)将直线m kx y +=代入椭圆1422=+y x ,得0448)41(222=-+++m mkx x k . 设),(),,(2211y x C y x D ,则22212214144,418k m x x k km x x +-=+-=+,又),0(),0,(m N k m M -,由||||DN CM =得N M x x x x +=+21,即kmk km -=+-2418,因为0,0>≠k m ,得21=k ,此时22,222121-=⋅-=+m x x m x x , 因为直线l 与线段21F F 、椭圆短轴分别交于不同两点, 所以323≤-≤-m 且0≠m ,即2323≤≤-m 且0≠m . 因为2,2222111-=+=x y k x y k ,所以)2()2(122121+-=x y x y k k ,两边平方得212121211212212222212122222221)(24)(24)2)(2()2)(2()2)(41()2)(41()2()2()(1x x x x x x x x x x x x x x x x x y x y k k +++++-=++--=----=+-= 2222)1()1(22)2(2422)2(24-+=-+-+-+--=m m m m m m ,所以1211121---=-+=m m m k k ,又因为12121---=m k k 在]23,0(),0,23[-上单调递增,所以34723123111231231347+=-+≤-+≤+-=-mm ,且111≠-+m m ,即34734721+≤≤-k k ,且121≠k k,所以]347,1()1,347[21+-∈ k k .21.解:(1)由已知得1,0≠>x x ,a x x b x f --=2)(ln )1(ln )(',则22)(2222e ae be e f -=-=,且434)('2-=-=a b e f ,解之得1,1==b a . (2)当1=b 时,a x x x f --=2)(ln 1ln )(',又a x a x x a x x x f -+--=-+-=--=41)21ln 1(ln 1)ln 1()(ln 1ln )('222+故当21ln 1=x 即2e x =时,a x f -=41)('max . “存在],[,221e e x x ∈,使a x f x f +≤)(')(21成立”等价于“当],[2e e x ∈时,有a xf x f +≤max min )(')(”又当],[2e e x ∈时,a xf -=41)('max ,∴41)('max =+a x f , 问题等价于“当],[2e e x ∈时,有41)(min ≤x f ”.①当41≥a 时,)(x f 在],[2e e 上为减函数,则412)()(22min ≤-==ax e ef x f ,故24121ea -≥; ②当41<a 时,a x x f -+--=41)21ln 1()('2在],[2e e 上的值域为]41,[a a --, (i )当0≥-a ,即0≤a 时,0)('≥x f 在],[2e e 上恒成立,故)(xf 在],[2e e 上为增函数,于是41)()(min >≥-==e ae e e f x f ,不合题意; (ii )当0<-a ,即410<<a 时,由)('x f 的单调性和值域知,存在唯一∈0x ),(2e e ,使0)('=xf ,且满足当∈0x ),(0x e 时,0)('<x f ,)(x f 为减函数;当∈0x ),(20e x 时,0)('>x f ,)(x f 为增函数.所以),(,41ln )()(200000min e e x ax x x x f x f ∈≤-==,所以412141ln 141ln 22000-<->-≥e e x x x a ,与410<<a 矛盾. 综上,得a 的最小值为24121e -. 22.解:(1)由0cos 4sin 2=-θθρ得0cos 4sin 22=-θρθρ,所以曲线C 的直角坐标方程为042=-x y ,即x y 42=,所以直线l 的参数方程为是⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222(t 为参数).(2)将直线l 的参数方程代入x y 42=中,得到0482122=+-t t ,设N M ,对应的参数分别为21,t t ,则21221=+t t ,04821>=t t ,故212||||||||2121=+=+=+t t t t PN PM .23.解:(1)若21-≤x ,原不等式可化为52312≤+---x x ,解得54-≥x ,即2154-≤≤-x ; 若3221<<-x ,原不等式可化为52312≤+-+x x ,解得2-≥x ,即3221<<-x ;若32≥x ,原不等式可化为52312≤-++x x ,解得56≤x ,即5632≤≤x ;综上所述,不等式5|23||12|≤-++x x 的解集为]56,54[-,所以2,1==b a .(2)由(1)知2,1==b a ,所以3|21||2||1|||||=---≥++-=++-x x x x b x a x , 故3532≤+-m m ,0232≤+-m m ,所以21≤≤m ,即实数m 的最大值为2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北衡水
2017届高三第三次联考
数学(理)试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,总分150 分,考试时间120 分钟。

第Ⅰ卷(选择题,共60 分)
一、选择题(本大题共12 个小题,每小题5分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.设集合A={2,lnx}, B={x, y}若A ∩B={0},则y 的值为 A .0
B .1
C .e
D .1e
2.若11(2)a
x x
+⎰dx=3+ln2, 且a>1,则a 的值为() A .6
B .4
C .3
D .2
3.已知下列各组命题,其中p 是q 的充分必要条件的是() A .p ︰m ≤-2或m ≥6;q ︰y=x 2
+mx+m +3 有两个不同的零点
B .p ︰
()
()
f x f x -=1;q ︰y=f (x )是偶函数 C .p ︰cos α=cos β;q ︰tan α=tan β D .p ︰A ∩B=A;q ︰
A ⊆U,
B ⊆U,
4.若不等式|ax+1|
≤3 的解集为{x|-2≤x ≤1 }。

则a 的值为()
A .2
B .1
C .12
D .-2
5.已知一个几何体的正视图和俯视图如右图所示,正视图是边长为2a 的正三角形,俯视图是边长为 a 的正六边形,则该几何体的侧视图的面积为() A .22
3a
B .22
3a C .23a D .23a
6



正项数列{a n }中,
则a 6 等( )
A .16
B .4
C .
D .45
7.平面直角坐标系中,点(3, t )和(2t, 4)分别在顶点为原点,始边为x 轴的非负半轴的角α, α+45°的终边上,则t 的值为( )
A .±6或±1
B .6或1
C .6
D .1
8.已知等比数列{a n }的公比q<0,其前n 项的和为S n , 则a 9S 8 与a 8S 9 的大小关系是( )
A .a 9S 8>a 8S 9
B .a 9S 8<a 8S 9
C .a 9S 8≥a 8S 9
D .a 9S 8≤a 8S 9 9.已知两点A (1,0)、B (
,O 为坐标原点,点
C 在第
二象限,且∠AOC =120°,设OC
= -2
,则λ 等
于( ) A .-1
B .2
C .1
D .-2
10.函数f (x )的部分图像如右图所示,则f (x )
的解析式为( ) A .f (x )=x+sinx B .f (x )=cos x x
C .f (x )=xcosx
D .f (x )=3()()2
2
x x x ππ--
11.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94
,底面
P 为底面A 1B 1C 1的中心,则PA
与平面ABC 所成角的大小为( )
12




A
=[0,1

,B=[1,2],


则x 0 的取值范围是
( )
第Ⅱ卷(非选择题,共90分)
二、填空题(本大题共4个小题,每小题5分,共20分,请把正确的答案填写在各小题的横线上。

) 13.已知向量a=(cos θ,sin θ),向量b=

,则|2a-b|的最大值是 。

14.已知
f (x )=1
1
x x e e -+,若
f (m )=12
, 则f (-m )= 。

15.已知实数
x 、y 满足20
40250x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩
, 则
z=|x+3y|的最小
值 。

16.给出下列四个命题:①若a<b,则a 2<b 2
;②若a ≥b>-1,则
11a b a b
≥++;③若正整数m 、n 满足m <n,2n ≤; ④
若x>0,则lnx+121nx
≥。

其中正确命题的序号
是 。

三、解答题(本大题共6个小题,共70 分,解答应写出文字说明、证明或演算步骤。


17.(12 分)已知等差数列{a n }中,a 2+a 6=6, S n 为其前n 项和,S 5=353。

(1)求数列{a n }的通项公式;
(2)令b n =
若S n <m 对一
切n ∈N *
成立,求最小正整数m 。

18.(12 分)△ABC 中,角 A 、B 、C 所对的边分别为a 、b 、
c,且acosB=
)cosA 。

(Ⅰ)求角A 的大小;
(Ⅱ)若
为AC 的中点, 求BD 的长。

19.(12 分)如右图,在正方体ABCD -A 1B 1C 1D 1中,O 是AC 的
中点, E 是线段D1O 上一点,且|D1E|=λ|EO|。

(1)求证:DB1⊥平面CD1O;
(2)若平面CDE⊥平面CD1O,求λ的值。

20.(12 分)如右图所示,在等腰直角三角形ABC 中
为AB 的中点,点F 在BC 上,且EF⊥BC 。

现沿EF 将△BEF 折1起到△PEF 的位置,使PF⊥CF,点D 在
DC 。

PC上,且PD=1
2
(1)求证:AD∥平面PEF;
(2)求二面角A-PC-F 的余弦值。

21.(12 分)已知函数f(x)=ax2-2x+1,g(x)=ln(x+1)。

(Ⅰ)求函数y=g(x)-x 在[0,1]上的最小值;
(Ⅱ)当a1
时,函数t(x)=f(x)+g(x)的图象记为曲
2
线C,曲线C 在点(0,1)处的切线2 为l,是否存在a 使l 与曲线C 有且仅有一个公共点? 若存在,求出所有a 的值;
否则, 说明理由。

22.(10 分)如右图, D、E 分别是△ABC 的边AB、AC 的中点,直线DE 交△ABC 的外接圆于F、G 两点,BG=BD 。

(Ⅰ)CF∥AB;
(Ⅱ)CB=CD 。

参考答案。

相关文档
最新文档