二次函数公式汇总

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.抛物线c bx ax y ++=2中,b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2

的对称轴是直线a

b

x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴

左侧;③

0

b

(即a 、b 异号)时,对称轴在y 轴右侧.(同左异右) 3.用待定系数法求二次函数的解析式

(1)一般式:c bx ax y ++=2

.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,

只有抛物线与x 轴有交点,即2

40b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式

的这三种形式可以互化.

4.抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2

与x 轴两交点为()()0021,,,

x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故

a

c

x x a b x x =

⋅-=+2121,()

()

a a ac

b a c

a b x x x x x x x x AB ∆=-=-⎪⎭

⎫ ⎝⎛-=-+=

-=

-=44422

212

212

2121

5.点A 坐标为(x1,y1)点B 坐标为(x2,y2)则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-

6.直线斜率:

1

212tan x x y y k --=

7.对于点P (x0,y0)到直线滴一般式方程 ax+by+c=0 滴距离有

2

200a b a c by x d +++=

8.平移口诀:上加下减,左加右减

二、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

2. 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

3. 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-; 4. 关于顶点对称

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

5. 关于点()m n ,对称

()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

相关文档
最新文档