第2章 线性规划的对偶问题1

合集下载

第二章 线性规划的对偶理论

第二章 线性规划的对偶理论
max 3 2 A= 2 1 0 3 c=
对偶问题: Min f = 65 y1 + 40 y2 + 75 y3
s.t. 3y1 + 2 y2
y1, y2 , y3
min
≥1500
≥ 0
2y1 + y2 + 3y3 ≥2500
b=
65 40 75
A=
3 2
2 1
0 3
b=
1500 2500
1500 2500
例:
Min z= 5x1+ 25x2 7x1+ 75x2 ≤98 s.t. 5x1 + 6x2 = 78 24x1+ 12x2≥54 x1≥0 、x2 ≤ 0
怎么样, 没问题吧!
Max w= 98y1+ 78y2 + 54y3 7y1+ 5y2 + 24y3 ≤ 5 s.t. 75y1+ 6y2 + 12y3 ≥25 y1 ≤ 0 、y2无限制、 y3≥0
二、对偶规划问题的求解
1、利用原问题的最优单纯形表
3x1 x2 3x3 ≤100 x1, x2 , x3 ≥0 解: 对偶问题为
min w 100y1 100y2
max z 4 x1 3x2 7 x3 s.t. x1 2 x2 2 x3≤100
s.t.
2 y1 y2 ≥3 2 y1 3 y2≥7
原问题检验数与对偶问题的解的总结
•在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值 •容易证明,对偶问题最优解的剩余变量解值等于原问 题对应变量的检验数的绝对值 •由于原问题和对偶问题是相互对偶的,因此对偶问题 的检验数与原问题的解也有类似上述关系。 •更一般地讲,不管原问题是否标准,在最优解的单纯 型表中,都有原问题虚变量(松弛或剩余) 的检验数对应 其对偶问题实变量 (对偶变量)的最优解,原问题实变量 (决策变量) 的检验数对应其对偶问题虚变量 (松弛或剩 余变量)的最优解。因此,原问题或对偶问题只需求解 其中之一就可以了。

运筹学课件 第2章:线性规划的对偶理论

运筹学课件 第2章:线性规划的对偶理论

min w 16y1 36y2 65y3
90 y1 3 y 2 y1 2 y 2 5 y 3 70 y , y , y 0 1 2 3
原问题 A b C 约束系数矩阵
对偶问题 约束系数矩阵的转臵
约束条件的右端项向量 目标函数中的价格系数向量 目标函数中的价格系数向量 约束条件的右端项向量 Max z=CX Min w=Y’b 目标函数 AX≤b A’Y≥C’ 约束条件 X≥0 Y≥0 决策变量
若原问题为求极小形式的对称形式线性规划问题, 对偶问题应该具有什么形式?
Min w Y 'b A'Y C Y 0
max w Y 'b A'Y C Y 0
min z CX
Max z CX
AX b X 0
AX b X 0
min w 5 y1 4 y2 6 y3 4 y1 3 y2 2 y3 2 y1 2 y2 3 y3 3 3 y1 4 y3 5 2 y 7 y y 1 2 3 1 y1 0, y2 0, y3无约束
对偶问题 约束系数矩阵的转臵
目标函数中的价格系数向量
目标函数 约束条件
变量
Max z=CX m个 ≤ ≥ = n个 ≥0 ≤0 无约束
约束条件的右端项向量 目标函数 Min w=Y’b m个 ≥0 变量 ≤0 无约束 n个 ≥ 约束条件 ≤ =
【例2-3】写出下列线性规划问题的对偶问题
min 2x1 3x2 5x3 x4
1.初始表中单位阵在迭代后单纯形表中对应的位臵就是B-1 2.对于原问题的最优解,各松弛变量检验数的相反数恰好 是其对偶问题的一个可行解,且两者具有相同的目标函数 值。根据下面介绍的对偶问题的基本性质还将看到,若原 问题取得最优解,则对偶问题的解也为最优解。

线性规划的对偶问题

线性规划的对偶问题
第9页
(二)非对称型对偶问题
max z c1x1 c2x2 c3x3 c3x3 s.t. a11x1 a12 x2 a13x3 a13x3 b1
a21x1 a22 x2 a23x3 a23x3 b2 a2a1x21x1 a2a2 x222x2 a2a3x233x3 a2a3x233x3 b2b2 a31x1 a32x2 a33x3 a33x3 b3
min w b1y1 b2 y2 b3 y3 s.t. a11 y1 a21 y2 a31 y3 c1
a12 y1 a22 y2 a32 y3 c2
a13 y1 a23 y2 a33 y3 c3 y1 0,y2无约束,y3 0
第11页
(二)非对称型对偶问题
对偶问题(原问题)
目标函数 min
约束条件右端常数
目标函数的系数
3个
≥0

≤0

无符号限制
23个




条 件
=
第13页
二、原问题与对偶问题的对应关系
原问题(对偶问题)
目标函数 max
目标函数的系数
约束条件右端常数
约 m个
束≤
条 件

=
n个

≥0

≤0
无符号限制
对偶问题(原问题)
目标函数 min
约束条件右端常数
第8页
(二)非对称型对偶问题
max z = c1x1 + c2x2 + c3x3 s.t. a11x1 + a12x2 + a13x3 ≤ b1
a21x1 + a22x2 + a23x3 = b2 a31x1 + a32x2 + a33x3 ≥ b3 x1≥0, x2≤0, x3无约束 分析:化为对称形式。令 x2 x2,x3 x3 x3 (x3 0, x3 0)

运筹(第二章对偶与灵敏度分析)(1)

运筹(第二章对偶与灵敏度分析)(1)

5x2 3x3 30
x1 0, x2无约束,x3 0
2023/2/22
17
解:将原问题模型变形, 令x1 x1
min z 7x1 4x2 3x3
4x1 2x2 6x3 24
3x1 6x2 4x3 15 5x2 3x3 30
y1 y2 y3
x1 0, x2无约束,x3 0
则对偶问题是
max w 24 y1 15y2 30 y3
4 y1 3y2
7
x1
2 y1 6 y2 5 y3 4
x2
6 y1 4 y2 3x3 3
x3
y1, y2 0, x3无约束
2023/2/22
18
小结:对偶问题与原问题的关系:
目标函数:MAX
原 约束条件:m个约束


y1 y2
ym
2023/2/22
12
类似于前面的资源定价问题,每一个约束条件对 应一个“ 对偶变量”,它就相当于给各资源的单 位定价。于是我们有如下的对偶规划:
min W b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1 a12y1 a22y2 am2ymc2 a1n y1 a2n y2 amn ym cn y1, y2 ,, ym 0
分别是原问题和对偶问题的可行解,则恒有
n
m
c j x j bi yi
j 1
i 1
m
n
考虑利用 c j aij yi 及
aij x j bi
i 1
j 1
代入。
2、无界性 如果原问题(对偶问题)有无界解,则
其对偶问题(原问题)无可行解。
2023/2/22

运筹学习题解答(chap2)(1)(1)

运筹学习题解答(chap2)(1)(1)

第二章 对偶问题与灵敏度分析一、写出下列线性规划的对偶问题1、P89,(a)321422m in x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≥=++≤++≥++.,0,;534;332;243321321321321无约束x x x x x x x x x x x x解:原模型可化为321422m in x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≥=++≥≥++.,0,;534;3-3--2-;243321321321321321无约束x x x y y y x x x x x x x x x 于是对偶模型为321532m ax y y y W +-=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+-≤+-.,0,;4334;243;22321321321321无约束y y y y y y y y y y y y2、P89,(b)321365m ax x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≤≥≤++≥-+-=++.0,0,;8374;35;522321321321321x x x x x x x x x x x x 无约束解:令033≥-='x x 原模型可化为321365m ax x x x Z '-+=⎪⎪⎩⎪⎪⎨⎧≥'≥≤'+≤'='+.0,0,;83-74;3--5-;52-2321321321321321x x x y y y x x x x x x x x x 无约束于是对偶模型为321835m in y y y W +-=⎪⎪⎩⎪⎪⎨⎧≥-≥---≥+-=++.0,,;332;6752;54321321321321y y y y y y y y y y y y 无约束 或⎪⎪⎩⎪⎪⎨⎧≥≤++≥+-=++.0,,;332;6752;54321321321321y y y y y y y y y y y y 无约束二、灵敏度分析1、P92, 线性规划问题213m ax x x Z += ⎪⎩⎪⎨⎧≥≤+≤+0,1025;74212121x x x x x x最优单纯形表如下试用灵敏度分析的方法,分析:(1) 目标函数中的系数21,c c 分别在什么范围内变化,最优解不变(2) 约束条件右端常数项21,b b 分别在什么范围内变化,最优基保持不变解:(1) 1c 的分析:要使得最优解不变,则需⎪⎪⎩⎪⎪⎨⎧≤⨯-⨯+=≤⨯+⨯-=034131003513201413c c σσ 即 ⎪⎩⎪⎨⎧≤≥42511c c 所以:4251≤≤c 时可保持最优解不变。

第二章 线性规划的对偶理论1-对偶问题

第二章 线性规划的对偶理论1-对偶问题

矩阵表达形式:
min w Y b AY C Y 0
对偶的经济解释
1、原问题是利润最大化的生产计划问题
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1 x1 c2 x2 cnx n b1 s.t. a11 x1 a12 x2 a1n xn xn 1 xn 2 b2 a21 x1 a22 x2 a2 n xn xn m bm am1 x1 am 2 x2 amn xn x1 x2 xn xn 1 xn 2 xn m ≥ 0 消耗的资源(吨)
第二章 对偶理论与灵敏度分析
第一节 线性规划的对偶问题
每一个线性规划问题都存在一个与其对偶的问题,在求出
一个问题的解的时候,同时也给出了另一问题的解。
例:某公司计划生产甲、乙两种产品,已知各生产一件时 分别占用的设备A、B的台时、调试时间和调试工序每天可用于 这两种产品的能力、各销售一件时的获利情况,如下表所示。 问该公司应生产两种产品各多少件,使获取的利润为最大。
A
b
约束系数矩阵
约束条件右端项向量
约束系数矩阵的转置
目标函数中价格系数向量
C
目标函数
目标函数中价格系数向量
max z
约束条件右端项向量
min w
c
j 1
n
j
xj
b
i 1
m
i
yi
变量 xj (j=1,·,n) · ·
约束条件有n个
xj ≥0
xj ≤0 xj 无约束 约束条件有m个 ≤bi ≥bi =bi
min z 2 x1 3x 2 5 x3 x 4

运筹学第2章-线性规划的对偶理论

运筹学第2章-线性规划的对偶理论
❖ 影子价格不是市场价格,而是在现有技术和管理条件下, 新增单位资源所能够创造的价值,是特定企业的一种边 际价格;不同企业或同一企业不同时期,同种资源的影 子价格可能不同;当市场价格高于影子价格,可以卖出; 相反,则应买进,以获取更大收益
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0

第2章 线性规划(对偶问题)

第2章 线性规划(对偶问题)

对偶问题(或原问题)
目标函数为 Min W
n个
约束条件

m个
变量
0 0 无约束
约束条件右端项cj 价值系数bi 约束条件的系数矩阵AT
例:
• 写出下面线性规划问 题的对偶问题:
• 1.
max Z 2x1 x2 3x3 x4
x1 x2 x3 x4 5
s.t.
2x1 x2 3x3
原问题(对偶问题)
目标函数 限定向量 价值向量 技术系数 约束条件 变量数目 约束条件个数 变量正负
对偶问题(原问题)
目标函数 价值向量 限定向量 技术系数 对偶变量 约束条件个数 对偶变量数目 约束条件
非对称形式的对偶问题
• 在原线性规划问题为Max型,且变量非负 的前提下:
1. 原问题约束条件是“”型
x1
x3
x4
1
4
x1, x3 0, x2 , x4无约束
• 解:根据上述对偶关 系,可以写出原问题 的对偶问题:
min W 5 y1 4 y2 y3
y1 2 y2 y3 2
s.t.
y1 y1
y2 1 3y2 y3
3
y1
y3
1
y1 0, yLeabharlann 0, y2无约束例:y1
0,
y3
0,
y2无约束
对偶的基本性质
• 原问题: Max Z=CTX
• 对偶问题: Min W=bTY
s.t. AXb X0
s.t. ATY C Y0
• ①对称性:对偶问题的对偶是原问题; • ②弱对偶性:若X是原问题的可行解,Y是
对偶问题的可行解,则CTX bTY
• 弱对偶性的证明: AX’ b X’TAT bT X’TATY’ bTY’

第2章 线性规划的对偶理论

第2章 线性规划的对偶理论

≤9
y1≤0, y2≥0, y3无约束
2.1 线性规划的对偶模型 Dual model of LP
1.本节以实例引出对偶问题; 2.介绍了如何写规范与非规范问题的对偶问题;
作业:教材P61 T 1、2 下一节:对偶性质
2.2 对偶性质
Dual property
2.2 对偶性质 Dual property
时得到最优解,C CB B 1 A 是 X=(X B,X N)的检验数 CB CB B 1B 和
CN CB B1N 的合并。
令 Y CB B1 ,由 C CB B 1 A 0与 CB B 1 0 得
YA C Y 0
可见,这是Y是对偶问题的一个可行解。 思考:Y右边的部分是什么?
C X°≤Y°AX≤Y°b
这一性质说明了两个线性规划互为对偶时,求最大值的 线性规划的任意目标值都不会大于求最小值的线性规划 的任一目标值,不能理解为原问题的目标值不超过对偶 问题的目标值。
2.2 对偶性质 Dual property
由这个性质可得到下面几个结论:
(1)(LP)的任一可行解的目标值是(DP)的最优值下界; (DP)的任一可行解的 目标是(LP)的最优值的上界;
【例2.3】 写出下列线性规划的对偶问题
max Z 4x1 3x2
5x1 x2 6 7x1x135x2x2108 x1 0, x2 0
【解】这是一个规范形式的线性规划,它的对偶问题求 最小值,有三个变量且非负,有两个“ ≥”约束,即
min w 6 y1 8 y2 10 y3
5yy1172yy22
y3 3y3
4
3
yi 0,i 1,2,3
2.1 线性规划的对偶模型 Dual model of LP

第2章线性规划讲义的对偶问题

第2章线性规划讲义的对偶问题

称CBB-1为单纯形乘子
19
二、对偶问题的基本性质
1. 对称性
2. 弱对偶性
推论:
(1)原问题任一可行解的目标函数值是其对偶问题目标函数 值的下界;反之对偶问题任一可行解的目标函数值是其 原问题目标函数值的上界。
(2)如原问题有可行解且目标函数值无界,则其对偶问题无 可行解;反之对偶问题有可行解且目标函数值无界,则 其原问题无可行解。
35
三、分析cj的变化 线性规划目标函数中变量系数cj的变化仅仅影响到检验 数,所以将cj的变化直接反映到最终单纯形表中,只可 能出现表2-9中的第一、二两种情况。
例5:在美佳公司例子中, (1) 若家电Ⅰ的利润降至1.5元/件, 而家电Ⅱ的利润增 至2元/件, 美佳公司最优生产计划有何变化? (2) 若家电Ⅰ的利润不变, 而家电Ⅱ的利润在什么范围 内变化时, 该公司的最优生产计划不发生变化。
28
练习: 用对偶单纯形法求解下述LP问题:
min w x1 4x2 3x4 x1 2x2 x3 x4 3
st. 2x1 x2 4x3 x4 2 xi 0(i 1,2,3,4)
29
min z cx
注: 若LP问题的标准形式为:
Ax b
st
.
x
0
其对偶单纯形法的求解步骤确定换入基变量的原则如下:
目标函数求极小值时,约束方程均为≥
2
二、对称形式下对偶问题的一般形式
对称形式的LP问题(LP1):
M Z c 1 x a 1 c 2 x x 2 c n x n
a 1 x 1 1 a 1 x 2 2 a 1 n x n b 1 a 2 x 1 1 a 2 x 2 2 a 2 n x n b 2

《运筹学》第二章 对偶问题

《运筹学》第二章 对偶问题


3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2

20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1

2 y2
3 y3 4 y3
3 5

2 y1 7 y2 y3 1
y1

0,
y2

0,
y

3


对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1

运筹学概论 第2章 线性规划的对偶理论

运筹学概论 第2章 线性规划的对偶理论

xi (i 1,, n)
x
j
0
变量
x
j
0
x
j
无约束
约束条件的右端项向量
m
min w bi yi i 1
有n个( j 1,, n)
m
aij y j c j
i 1
m
aij y j c j
约束条件
i 1
m
aij y j c j
i 1
2020/12/13
有m个(i 1,, m)
例2 假设某个公司想把美佳公司的资源购买过来,他至少应付多大的代 价,才能使美佳公司愿意放弃生产活动,出让自己的资源。
( LP 1) max z 2 x1 x 2
5 x 2 15
6 x
x
1
1
x
2
2
x2
5
24
x1 , x 2 0
(LP2) min f 15y1 24y2 5y3
6y2 y3 2 5y1 2y2 y3 1 y1, y2, y3 0
线性规划的对偶问题 对偶问题的基本性质 影子价格
2020/12/13
第二节 对偶问题的基本性质
为了便于讨论,下面不妨总是假设:
原问题:
maxZ CX
s.t.
AX b
X
0
对偶问:题minW Y'b
2020/12/13
A'Y C' s.t.
Y 0
一、单纯形法的矩阵描述
原线性规划问题的矩阵表达式加上松弛变量后为:
2020/12/13
原问题
对偶问题
二、对称形式下对偶问题的一般形式
Max z c1 x1 c 2 x 2 c n x n

第2章线性规划(对偶问题)

第2章线性规划(对偶问题)

• 解:根据上述对偶关 系,可以写出原问题 的对偶问题:
m in W 5 y 1 4 y 2 y 3 y1 y1 s .t . y 1 y 1 y1 2 y2 y3 2 y2 1 3 y2 y3 3 y3 1 0 , y3 0 , y 2无 约 束
• 令y4=y2-y3 ,得:
• Min W=y1+2y4 S.t. y1+2y4 1 2y1-3y4 2 5y1-4y4 -3 y1 0, y4无符号约束
原问题与对偶问题的对应关系
原问题(或对偶问题) 目标函数为 Max Z 变量 n个 0 0 无约束 对偶问题(或原问题) 目标函数为 Min W n个 = 约束条件
– 设X*是原问题的可行解,Y*是对偶问题的可行
解,当CTX*=bTY*时,X*,Y*是最优解。
– 证明:由弱对偶性,可知原问题的所有可行解
X’均满足 CT X’ bTY*
又因为CTX* = bTY* ,所以CT X’ CTX* ,即: X*是使目标函数取值最大的可行解。因而是最 优解。 同理可证Y*也是最优解。
m个 = 价值系数cj 约束条件右端项bi 约束条件的系数矩阵A 约束 条件
m个 变量 0 0 无约束 约束条件右端项cj 价值系数bi 约束条件的系数矩阵AT
例:
• 写出下面线性规划问 题的对偶问题: • 1.
m a x Z 2 x1 x 2 3 x 3 x 4 x1 x 2 x 3 x 4 5 2 x x 3x 4 1 2 3 s .t . x1 x 3 x 4 1 x1 , x 3 0 , x 2 , x 4 无 约 束

线性规划的对偶问题

线性规划的对偶问题

第二章线性规划的对偶问题习题2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤5 4x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。

分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。

(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。

第二章线性规划的对偶理论

第二章线性规划的对偶理论

2.1 写出线性规划问题的对偶问题,并进一步写出其对偶问题的对偶问题(a) min z=2x1+2x2+4x3(b) max z=5x1+6x2+3x3s.t. x1+3x2+4x3≥2 s.t. x1+2x2+2x3=52x1+x2+3x3≤3 -x1+5x2-3x3≥3x1+4x2+3x3=5 4x1+7x2+3x3≤8x1, x2≥0, x3无约束x1无约束,x2≥0, x3≤0解:(a)对偶问题的原问题为max w=2y1+3y2+5y3s.t. y1+2y2+y3≤23y1+y2+4y3≤24y1+3y2+3y3=4y1≥0, y2≤0, y3无约束(b)原问题的对偶问题为min w=5y1+3y2+8y3s.t. y1-y2+4y3=52y1+5y2+7y3≥62y1-3y2+3y3≤3y1无约束, y2≤0, y3≥02.3 已知线性规划问题:max z=x1+x2s.t. -x1+ x2+ x3 ≤2-2x1+x2- x3 ≤1x1, x2, x3≥0试应用对偶理论证明上述线性规划问题最优解为无界。

解:原问题的对偶问题为min w=2y1+ y2s.t. -y1- 2y2 ≥12y1+ 5y2 ≥1y1- y2 ≥0y1, y2≥0由于约束条件3可得y1-y2 ≥0 →y1≥y2 →-y1≤-y2 且y2≥0所以-y1-2y2 ≤-3y2≤0 (1)由于约束条件1可得-y1- 2y2 ≥1 (2)(1)(2)不等式组无解所以其对偶问题无可行解,又知点X=(1,1,1)为原问题一个可行解,即原问题有可行解, 现在其对偶问题无可行解。

根据对偶理论性质3原问题无界.2.4 已知线性规划问题:max z=2x 1+4x 2+ x 3+x 4 s.t. x 1+ 3x 2 +x 4 ≤8 2x 1+ x 2 ≤6 x 2+ x 3 +x 4 ≤6 x 1+ x 2+ x 3 ≤9 x j ≥0 (j=1,…4)要求(a)写出其对偶问题;(b)已知原问题最优解X=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解. 解:对偶问题: min w=8y 1+ 6y 2+6y 3+9 y 4 s.t. y 1+ 2y 2 +y 4 ≥2 3y 1+ y 2 + y 3 +y 4 ≥4 y 3+ y 4 ≥1 y 1 +y 3 ≥1 y 1, y 2,y 3, y 4≥0将最优解X=(2,2,4,0)代入原问题的约束条件得: x 1+ 3x 2 +x 4 =8 2x 1+ x 2 =6 x 2+ x 3 +x 4 =6 x 1+ x 2+ x 3 =8<9根据对偶理论性质5, 如果∑=<ni i j ij b xa 1ˆ,则0ˆ=i y 。

第二章对偶规划

第二章对偶规划
本章主要内容
1. 对偶规划的定义 2. 对偶规划定理 3. 互补松弛关系 4. 对偶单纯形法
对偶规划应掌握的主要内容
对偶规划的意义 对偶规划与原问题的关系 对偶规划的定理 对偶单纯形法 影子价格 灵敏度分析
第一节 线性规划的对偶问题
一、对偶问题的提出 例2.1:某工厂拥有A、B、C三种类型的设备,生产甲、乙两种产品。每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备可利用的机时数如下表所示。求获最大利润的方案。
推论1
如果X0 、Y0 分别是原问 题和对偶问题的可行解,并 且它们对应的目标函数值相 同CX0 = Y0b,则X0 、Y0 分别是 原问题和对偶问题的最优解。
推论2:
如果原始问题和对偶问题中 的任一个目标函数无界,则另一 个必定无可行解。 请注意推论2之逆命题不存在 即一个问题无可行解,不能推得 另一个问题目标函数无界。
原 问 题
有最优解
一定
不可能
不可能
无界解
不可能
不可能
可能
无可行解
不可能
可能
可能
定理四、互补松弛定理
对偶问题 Min W=Yb s.t. YA≥C Y≥0
设X0 、Y0 分别为原问题和对偶问题的可行解,则X0 、Y0分别为原问题和对偶问题最优解的充要条件是: YSX0=0 和 Y0XS =0
∵ CX` ≥ CX0 ∵ Y`b ≤ Y0 b CX0 ≤ Y0b ∴ CX` ≥ CX0 ≤ Y0 b≤ Y`b CX` = Y`b 换句话说:当对偶问题和原问题目标函 数值相同时 Z = W ,则 X`和 Y`一定是 对偶问题和原问题的最优解。或者说如 果对偶问题和原问题有最优解,那么它 们的目标函数值一定相等。

线性规划对偶问题

线性规划对偶问题

MaxZ 2 x1 3 x 2 3 x3 x1 x 2 x3 3 s.t. x1 4 x 2 7 x3 9 x , x , x 0 1 2 3
它的对偶问题就是一个价格系统,使在平衡了劳动力和原材料 的直接成本后,所确定的价格系统最具有竞争力:
5
11
2、非对称形式的对偶关系: (1) 原问题
max Z c j x j
j 1 n
对偶问题
min W bi xi
i 1 m
aij x j bi i 1,2, , m s.t. j 1 x 0 j 1,2, , n j
n
m aij yi c j j 1, 2, , n s.t. i 1 y 符号不限, i 1, 2, , m i
17
(4) 对于极小化问题的具有非负限制的变量(极大化问题的具 有非正限制的变量),在其对偶问题中,相应的约束为“≤” 型不等式;对于极小化问题的具有非正限制的变量(极大化问 题的具有非负限制的变量),在其对偶问题中,相应的约束为 “≥”型不等式;对于原问题中无正负限制的变量,在其对偶 问题中,相应的约束为等式。
“上、下”交换,“左、右”换位, 不等式变号,“极大”变“极小”
(4) 对称性: 对偶问题的对偶是原问题.
9
例:写出下面线性规划的对偶规划模型:
max z c1 x1 c2 x2 c3 x3 a11 x1 a12 x2 a13 x3 b1 a x a x a x b 21 1 22 2 23 3 2 s.t. a31 x1 a32 x2 a33 x3 b3 x1 0, x2 0, x3无约束
19
第二节
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

约束条件右端项 目标函数变量的系数
目标函数变量的系数 约束条件右端项
• 例2-7:写出下列线性规划的对偶问题
min z=7x1+4x2-3x3 s.t. -4x1+2x2-6x3≤24 -3x1-6x2-4x3≥15 5x2+3x3=30 x1≤0,x2取值无约束,x3≥0
Max w=24y1+15y2+30y3
例2-6:写出下列线性规划问题的 对偶问题 s.t. min S = 2x1 + 3x2 - 5x3 x 1 + x 2 - x3 5 2x1 + x3 = 4 x1 ,x2 , x3 0
解:将原问题的约束方程写成不等式 约束形式: min S = 2x1 + 3x2 - 5x3 x1 + x 2 - x3 5 y1 2x1 + x3 4 y 2’ -2x1 - x3 -4 y 2” x1 ,x2 , x3 0
(2.3)(2.4)称作互为对偶问题。其中一个 称为原问题,另一个称为它的对偶问题。
例2-3:写出下列线性规划问题的 对偶问题
min w=12x1+8x2 +16x3+12x4 s.t. 2x1+ x2 +4x3 2 2x1+2x2 + 4x4 3 x 1, x 2 , x 3 , x 4 0
假设 y1, y2 分别表示每个木工 和油漆工工时的租金,则所付租金 最小的目标函数可表示为: min s = 120 y1 + 50 y2 目标函数中的系数 120,50 分别表 示可供出租的木工和油漆工工时数。
该企业家所付的租金不能太低, 否则家具厂的管理者觉得无利可图 而不肯出租给他。因此他付的租金 应不低于家具厂利用这些资源所能 得到的利益:
解: 综合运用对偶原则得到 max g = y1-2y2 +3y3 +4y4 s.t. y1+ 2y3 + y4 3 2y1 +2y2 - 2y4 -2 -y2+ y3 +3y4 = 1 y2≤0, y3, y4 0 ,y1 无非负约束
把例2.2用矩阵表示:
对偶问题
y1 min 12 16 15 y 2 y3
原问题:
Max z=(2,3)
2 2 12 4 0 x1 16 x 2 0 5 15 x1 x 0 2
4 y1 + 2y2 50
3 y1 + y2 30
y 1, y 2 0
得到另外一个数学模型:
min s = 120 y1 + 50 y2
s.t. 4 y1 + 2y2 50 3 y1+ y2 (2.2) 既有区别又有 联系。联系在于它们都是关于家具 厂的模型并且使用相同的数据,区 别在于模型反映的实质内容是不同 的。模型(2.1)是站在家具厂经营者 立场追求销售收入最大,模型(2.2) 是则站在家具厂对手的立场追求所 付的租金最少。
引入变量 y1 , y2’,y2” 写出对偶问题
max g = 5 y1+ 4y2’- 4y2” s.t. y1 +2y2’- 2y2” 2 y1 3 -y1 + y2’- y2” -5 y 1 , y 2 ’, y 2 ” 0
令y2 = y2’- y2” 得到 max g = 5 y1 + 4y2 s.t. y1 + 2y2 2 y1 3 -y1+ y2 -5 y1 0 ,y2 无非负约束
解:用(-1)乘以第二个约束方程 两边 min S=x1+2x2 +3x3 2x1+3x2 + 5x3 2 y1 -3x1- x2 - 7x3 -3 y2 x1 ,x2 , x3 0
s.t.
该问题的对偶问题:
max z = 2 y1 - 3y2 s.t. 2y1- 3y2 1 3y1- y2 2 5y1- 7y2 3 y 1,y 2 0
y1 y2
解:该问题的对偶问题:
min g = 10 y1 + 20 y2 s.t. y1 + 4y2 10 y1 + 2y2 1 2 y1 - y2 2 y 1,y 2 0
例2-5:写出下列线性规划问题的 对偶问题
min S = x1 + 2x2 + 3x3 s.t. 2x1+3x2 + 5x3 2 3x1+ x2 + 7x3 3 x1 ,x2 , x3 0
x1 x 2
2 2
4 0
y1 0 y 2 5 y3
2 3
y1 y 0 2 y3
线性规划的对偶关系:
( I) Max z = C x s.t. Ax b x0 (II) Min w = b’ y s.t. A’y C’ y0 (2.4) (2.3)
问该企业因安排生产两种产品各多少件,使总的 利润收入为最大?
数学模型 max Z=2x1+3x2 s.t. 2x1+2x2 12 4x1 16
5x2 15 x1,x2 0
现某机械厂为扩大生产租借常山机器厂 拥有的设备资源,问常山厂分别以每小时 什么样的价格才愿意出租自己的设备?
设常山厂将设备A、B、C每h的出租 价格为y1,y2,y3; • 它的对偶问题为 min w=12y1+16y2+15y3 2y1+4y2 ≥2 2y1 +5y3≥3 y1,y2,y3≥0
2、线性规划问题的对偶问题
例2.1
2.1 对偶问题
胜利家具厂生产桌子和椅子两种家具。 桌子售价50元/个,椅子销售价格30元/ 个,生产桌子和椅子要求需要木工和油 漆工两种工种。生产一个桌子需要木工4 小时,油漆工2小时。生产一个椅子需要 木工3小时,油漆工1小时。该厂每个月 可用木工工时为120小时,油漆工工时为 50小时。问该厂如何组织生产才能使每 月的销售收入最大?
数学模型
max g= 50x1 + 30x2 s.t. 4x1 + 3x2 120 2x1 + x2 50 x1,x2 0
(2.1)
假如有一个企业家有一批等待加 工的订单,有意利用该家具厂的木工 和油漆工资源来加工他的产品。因此, 他要同家具厂谈判付给该厂每个工时 的价格。可以构造一个数学模型来研 究如何既使家具厂觉得有利可图肯把 资源出租给他,又使自己付的租金最 少?
解:该问题的对偶问题:
max z = 2y1 + 3y2 s.t. 2y1 + 2y2 12 y1 + 2y2 8 4 y1 16 4y2 12 y 1, y 2 0
例2-4:写出下列线性规划问题的 对偶问题 max S = 10x1 + x2 + 2x3 s.t. X1 + x2 + 2x3 10 4x1 +2x2 - x3 20 x1 ,x2 , x3 0
s.t. -4y1-3y2
≥7
2y1-6y2+5y3=4 -6y1-4y2+3y3≤-3
y1≤0,y2≥0,y3无约束
例2-8:写出下列线性规划问题的对 偶问题 s.t. min w = 3x1 - 2x2 + x3 x1+2x2 =1 y1 2x2 - x3 -2 y2 2x1 +x3 3 y3 x1- 2x2 + 3x3 4 y4 x1,x2 0 , x3 无非负限制
此类问题称为非对称型对偶问题。 前面的问题称为对称型对偶问题。
综上所述其变换形式如下:
原问题(或对偶问题) 目标函数 max 约 束 条 件 变 量 m个 ≤ ≥ = n个 ≥0 ≤0 无约束 对偶问题(或原问题) 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 变 量 约 束 条 件
如果模型(2.1)称为原问题,
则模型(2.2)称为对偶问题。
任何线性规划问题都有对偶问题,
而且都有相应的意义。
例2.2 :常山机器厂生产Ⅰ、Ⅱ两种产品,按工艺 资料获得如下资料:
Ⅰ 2h 4h 0h 2 Ⅱ 2h 0h 5h 3 设备能力 12h 16h 15h
设备A 设备B 设备C 单位利润(元)
相关文档
最新文档