空气动力学课件课件.

合集下载

空气动力学与飞行原理课件:高速气动特性

空气动力学与飞行原理课件:高速气动特性
空气动力学与飞行原理
高速气动特性
LOGO 1
第六节
目录页
学 习 大 纲
一、 二、 三、
翼型的亚音速空气动力特性 翼型的跨音速空气动力特性 翼型的超音速升力特性
2
壹 目录页
一、
翼型的亚音速空气动力特性
二、
翼型3
壹 翼型的亚音速空气动力特性
亚音速的定义:飞行 M 数大于0.4, 流场内各点的 M 数都小于1。
考虑空气密度随速度的变化,则 翼型压力系数基本按同一系数放大, 体现出“吸处更吸,压处更压”的特 点。因此,升力系数增大,逆压梯度 增大,压力中心前移,临界迎角减小, 阻力系数基本不变。
飞行M 数增大,升力系数和升力系数斜率增大 飞行M 数增大,最大升力系数和临界迎角减小
4
贰 目录
一、
翼型的亚音速空气动力特性
MCRIT 是机翼空气动力即将发生显著变化的标志。
6

翼型的跨音速空气动力特性
升力系数随飞行 M 数的变化
1.考虑空气压缩性,上表面密度下降更多,产生附 加吸力,升力 CL 系数增加,且由于出现超音速区,压力更 小,附加吸力更大;
2.下翼面出现超音速区,且后移较上翼面快,下翼 面产生较大附加吸力,CL 减小;
二、
翼型的跨音速空气动力特性
三、
翼型的超音速升力特性
5
贰 翼型的跨音速空气动力特性
跨音速是指飞行速度没达到音速,但机翼表面局部已经出现超 音速气流并伴随有激波的产生。
机翼上表面流速大于飞行速度,因此当飞行 M 数小于1时,机 翼上表面最低压力点的速度就已达到了该点的局部音速(此点称为等 音速点)。此时的飞行 M 数称为临界马赫数 MCRIT 。

《空气动力学》课件

《空气动力学》课件

1
喷管内的空气动力学基础
2
探索喷管中的气流加速和压力变化,为喷
气发动机和火箭的设计提供基础。
3
燃烧室内的空气动力学基础
研究燃烧室内的空气流动特性和压力分布, 为燃烧过程的优化提供依据。
空气动力学基本方程
介绍流体力学和空气动力学的基本方程, 包括质量守恒、动量守恒和能量守恒等等。
空气动力学应用
飞机机翼的空气动力 学
《空气动力学》PPT课件
空气动力学是研究物体在气流中运动的科学。探索空气动力学的基本概念、 应用领域以及对飞机和汽车等工业的重要性。
概述
空气动力学概述
了解空气动力学的定义和基本原理,包括流体 力学和空气动力学的关系。
应用领域
探索空气动力学在航空、汽车、火箭和建筑设 计等领域中的应用。
空气动力学基础
2 空气动力学现象的研究方法
探索研究空气动力学现象的实验和数值模拟方法。
3 毒性风险的影响因素
讨论空气动力学现象对毒性风险的影响因素,包括气流速度、颗粒物浓度和颗粒物分布测量
介绍测量汽车表面压力分布的实验方法和仪器。
2
汽车空气阻力的计算
探索计算汽车空气阻力的数值模拟方法和常用公式。
分析机翼的气流分布和升力产 生,探索如何优化飞机的机翼 设计。
空气动力学在航空工 业中的应用
探索空气动力学在飞机设计和 性能提升中的重要性。
空气动力学在汽车工 业中的应用
研究汽车的空气阻力和流线型 设计对燃油效率和驾驶体验的 影响。
空气动力学现象
1 空气动力学现象的分类
介绍不同类型的空气动力学现象,如升力、阻力、卡门涡街等。
3
汽车空气动力学在车身设计中的应用
研究空气动力学在改善汽车操控性、燃油效率和安全性方面的应用。

空气动力学课件

空气动力学课件

2
N-S方程的解算

理论解法
–非线性问题 –精确解的限制 –初边值条件的适定性 –物理模型 (粘性、热力学模型、 …) –优缺点的比较
N-S方程的解算

计算流体力学 (CFD)
–网格化的流场就是一个离散的世界
J.D. Anderson, “Computational Fluid Dynamics: The Basics with Applications”, McGraw-Hill, 1995

积分形式的连续方程
dV V dS 0 S t V V [ t ( V )]dV 0

微分形式的连续方程 ( V ) 0
t
连续方程

定常流动
( V ) 0

S
V dS 0
u sin / r v cos / r
Vr u cos v sin 0 1 V u sin v cos r 1 Irrotational flow? z V r 0 r V rV r 2 V dl V rd 2

旋度

V
z
v u x y

无旋流

有旋流
From M. van Dyke’s “An album of fluid motion” Video?
角变形率

角变形
2 (1 )

角变形率
xy
d v u dt x y
流线之间的质量流量
c2 c1
d V lim n 0 n dn

空气动力学绪论PPT课件

空气动力学绪论PPT课件
27
0.3 空气动力学的发展进程
现代航空和喷气技术的迅速发展使飞行速度迅猛提高在 高速运动的情况下,必须把流体力学和热力学这两门学科 结合起来,才能正确认识和解决高速空气动力学中的问题。 1887-1896年间,奥地利科学家马赫在研究弹丸运动扰动 的传播时指出:在小于或大于声速的不同流动中,弹丸引 起的扰动传播特征是根本不同的。
高等数学计算方法大学物理理论力学绪论2学时第一章流体的基本属性和流体静力学6学时第二章流体运动学和动力学基础12学时第三章不可压缩无粘流体平面位流6学时第四章粘性流体动力学基础6学时第五章边界层理论及其近似6学时第六章可压缩高速流动基础14学时第七章高超音速流动基础4学时6学时总复习2学时陈再新刘福长鲍国华空气动力学航空工业出版社1993杨岞生俞守勤飞行器部件空气动力学航空工业出版社1987andersonjr
按速度范围分类:
低速空气动力学 (Low Aerodynamics) 亚音速空气动力学 (Subsonic Aerodynamics) 超音速空气动力学 (supersonic Aerodynamics) 高超音速空气动力学 (hypersonic Aerodynamics)
其它
36
37
38
39
21
0.3 空气动力学的发展进程
18世纪是流体力学的创建阶段。伯努利(Bernoulli) 在1738年发表“流体动力学”一书中,建立了不可压流体 的压强、高度和速度之间的关系,即伯努利公式;欧拉 (Euler)在1755年建立了理想不可压流体运动的基本方程 组,奠定了连续介质力学的基础。达朗贝尔 D'Alembert 提出著名的达朗贝尔原理:“达朗贝尔疑题”就是他在 1744年提出的。拉格朗日(Lagrange)改善了欧拉、达朗 贝尔方法,并发展了流体动力学的解析方法。关于研究气 流对物体的作用力,最早是牛顿(Newton)于1726年提出 关于流体对斜板的作用力公式,他实际上是在撞击理论的 基础上提出来的,没有考虑到流体的流动性.

空气动力学基础-课件

空气动力学基础-课件
平飞中,可以通过机头高低判断迎角大小。而其他飞 行状态中,则不可以采用这种判断方式。
第二章 第 13 页
●水平飞行、上升、下降时的迎角
上升
第二章 第 14 页
平飞
下降
●迎角探测装置
第二章 第 15 页
2.1.4 流线和流线谱
空气流动的情形一般用流线、流管和流线谱来描述。 流线:流场中一条空间曲线,在该曲线上流体微团的 速度与曲线在该点的切线重合。对于定常流,流线是 流体微团流动的路线。
第二章 第 21 页
2.1.5 连续性定理
流体流过流管时,在同一时间流过流管任意截面的 流体质量相等。
质量守恒定律是连续性定理的基础。
第二章 第 22 页
●连续性定理
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v 1 A 1
单位时间内流过截面1的流体质量为1 v1 A1
同理,单位时间内流过截面2的流体质量为 2 v2 A2
则根据质量守恒定律可得:
1v1A 12v2A 2 即 v1A 1v2A 2C 常 数
结论:空气流过一流管时,流速大小与截面积成反比。
第二章 第 23 页
河水在河道窄的地方流
●日常的生活中的连续性定理 得快,河道宽的地方流
得慢 山谷里的风通常比平原大
高楼大厦之间的对流 通常比空旷地带大
第二章 第 24 页
1 2
v2
PP0
上式中第一项称为动压,第二项称为静压,第三项称为总压。
第二章 第 26 页
●伯努利定理
1 2
v2
PP0
1 2
v 2—动压,单位体积空气所具有的动能。这是一种附加的压
力,是空气在流动中受阻,流速降低时产生的压力。

《空气动力学》课件

《空气动力学》课件

未来挑战与机遇
环境保护需求
新能源利用
随着环境保护意识的提高,对空气污 染和气候变化的研究需求增加,这为 空气动力学带来了新的挑战和机遇。
新能源的利用涉及到流动、传热和燃 烧等多个方面,需要空气动力学与其 他学科合作,共同解决相关问题。
航空航天发展
航空航天领域的发展对空气动力学提 出了更高的要求,需要不断改进和完 善现有技术,以满足更高性能和安全 性的需求。
04
翼型与机翼空气动力学
翼型空气动力学
翼型概述
翼型分类
翼型是机翼的基本截面形状,具有特定的 弯度和厚度。
根据弯度和厚度的不同,翼型可分为超临 界、亚音速和超音速翼型等。
翼型设计
翼型与升力
翼型设计需考虑气动性能、结构强度和稳 定性等多个因素。
翼型通过产生升力使飞机得以升空。
机翼空气动力学
01
机翼结构
课程目标
掌握空气动力学的基本概 念和原理。
提高分析和解决实际问题 的能力。
了解空气动力学在各领域 的应用和发展趋势。
培养学生对空气动力学的 兴趣和热爱。
02
空气动力学基础
流体特性
01
02
03
04
连续性
流体被视为连续介质,由无数 微小粒子组成,彼此之间存在
相对运动。
可压缩性
流体的密度会随着压力和温度 的变化而变化。
《空气动力学》PPT课件
目 录
• 引言 • 空气动力学基础 • 流体动力学 • 翼型与机翼空气动力学 • 空气动力学应用 • 未来发展与挑战
01
引言
主题介绍
空气动力学:一门研 究空气运动规律和空 气与物体相互作用的 科学。
课件内容涵盖了基础 理论、应用实例和实 验演示等方面。

空气动力学课件-第1章 翼型资料

空气动力学课件-第1章 翼型资料
yf f 2 [( 1 2 p ) 2 px x ] 2 (1 p)
x p
x p
式中,p为弧线最高点的弦向位置。中弧线最高点的高度 f(即弯度)和该点的弦向位置都是人为规定的。给f和p 及厚度c以一系列的值便得翼型族。
§1.1 翼型的几何参数及其发展
其中第一位数代表f,是弦长的百分数;第二位数代表p,是弦长的十 分数;最后两位数代表厚度,是弦长的百分数。例如NACA 0012是一 个无弯度、厚12%的对称翼型。有现成实验数据的NACA四位数翼族 的翼型有6%、8%、9%、10%、12%、15%、18%、21%、24%
CL (C pl C pu ) cosdx
0
1
C pu
Pu P Pl P , C pl 1 1 2 V V 2 2 2
§ 1.3 低速翼型的低速气动特性概述
§ 1.3 低速翼型的低速气动特性概述
§ 1.3 低速翼型的低速气动特性概述
(1)在升力系数随迎角的变化曲线中,CL在一定迎角范围 内是直线,这条直线的斜率记为
随时间的发展翼面上边界层形成下翼面气流绕过后缘时将形成很大的速度压力很低从后缘点到后驻点存在大的逆压梯度造成边界层分离从而产生一个逆时针的环量称为起动1414儒可夫斯基后缘条件及环量的确定儒可夫斯基后缘条件及环量的确定3起动涡离开翼缘随气流流向下游封闭流体线也随气流运动但始终包围翼型和起动涡根据涡量保持定律必然绕翼型存在一个反时针的速度环量使得绕封闭流体线的总环量为零
在飞机的各种飞行状态下,机翼是飞机承受升力的主要 部件,而立尾和平尾是飞机保持安定性和操纵性的气动 部件。一般飞机都有对称面,如果平行于对称面在机翼 展向任意位置切一刀,切下来的机翼剖面称作为翼剖面 或翼型。翼型是机翼和尾翼成形重要组成部分,其直接 影响到飞机的气动性能和飞行品质。

(精品)空气动力学(全套1082页PPT课件)

(精品)空气动力学(全套1082页PPT课件)
雷诺(OsborneReynolds, 1842~1921),英国工程师兼物理学家, 维多利亚大学(在曼彻斯特市)教授。
录像\第0章\turbulent_laminarcombo.avi
0.3 空气动力学的发展进程简介
1904年普朗特提出了边界层理论,是 现代流体力学的里程碑论文。
在1910年-1920年期间,其主要精力 转到低速翼型和机翼绕流问题,提出著 名的有限展长机翼的升力线理论和升力 面理论。
陆士嘉长期从事空气动力学和航空工程的 研究和教学工作,倡导漩涡、分离流和湍流 结构的研究。
0.3 空气动力学的发展进程简介
儒可夫斯基简介 儒可夫斯基(Joukowski,
1847~1921),俄国数学家和空气 动力学家,科学院院士。1868年毕 业于莫斯科大学物理系,1886年起 历任莫斯科大学和莫斯科高等技术 学校教授,直至1921去世,一直在 这两所学校工作。
0.3 空气动力学的发展进程简介
• 钱学森(1911-2009) 1938年,他在导师冯卡门指导下,获
得博士学位,1947年任麻省理工学院终 身教授,1955年回国。
钱学森的主要贡献集中在跨、超声速 空气动力学方面。1946年他在一篇重要 的学术论文中首创了Hypersonic(高超 声速)一词,并提出了高超声速相似律。
的建立,流体力学和空气动力学才逐步迈 入理性研究和持续发展的阶段。
0.3 空气动力学的发展进程简介
微积分问世后,流体成为数学家们应用微 积分的最佳领域。
1738年伯努利出版了“流体力学”一书, 将微积分方法引进流体力学中,建立了分 析流体力学的理论体系,提出无粘流动流 速和压强的关系式,即Bernoulli能量方程。
0.2 空气动力学的研究对象

飞机的飞行原理--空气动力学基本知识 ppt课件

飞机的飞行原理--空气动力学基本知识  ppt课件
PPT课件 24
PPT课件
25
国际标准大气的主要规定
1、以海平面的高度为零,在海平面上(H=0)空气 的标准状态是: 气压 Po=10.13牛顿/厘米2 气温to=15℃(59 ℉ 、288 º K)

பைடு நூலகம்
密度ρo =1.225千克/米3 音速 ao = 341米/秒(1227公里/小时) 2、在11公里以下,高度每升高1000米,空气温度降低 6.5 ℃,从11公里起到25公里高,气温保持在一56.5℃; 高度每升高250米,音速降低1米/秒。 3、气压、空气密度、气温和音速随高度的变化如上图 所示。

PPT课件 11
2、空气的压缩性
一定质量的空气,当压力或温度改变时, 引起空气密度变化的性质,叫做空气的压缩性。 影响空气压缩性的主要因素: 1)气流的流动速度(v)。气流的流动速 度越大,空气密度的变化显著增大(或密度减 小的越多),空气易压缩(或空气的压缩性增 大)。 2) 空气的温度(t)。空气的温度越高, 空气的密度变化越小(或密度减小的越少) , 空气不易压缩(或空气的压缩性减小)。
PPT课件 20
3、中间层


中间层是在平流层之上,其顶端离地面的高度 大约为80~100公里。 中间层的特点: 1)随着高度的增加,空气的温度先升后降 中间层的气温,当高度增加到45公里时,由35 公里时的-56.5℃增加到40℃左右,再随着高度的 增加,到80公里时,温度降低到-65.5℃以下。 2)有大量臭氧存在。 3)有水平方向的风,且风速相当大。 4)空气质量很少,只占整个大气的三千分之一。 这层空气不利于飞机飞行,只有探空气球飞行。
9ppt课件二空气的物理性质?1空气的粘性10ppt课件?空气粘性的物理实质是空气分子作无规则运动的结果当相邻两层空气具有不同流速时流得快的那层空气分子的动量大它作无规则运动而进入小速度层通过分子间的掺和碰撞会增加该层分子的能量从而牵动该层空气加速

空气动力学与飞行原理课件:高速气流特性

空气动力学与飞行原理课件:高速气流特性

上世纪为制造飞三马赫数飞行的飞机,前苏联选用 不锈钢建造米格25,美国人选用钛合金建造SR71
5
贰 目录
一、
空气的压缩性
二、
激波
6
贰 激波 激波简介
飞机以超音速飞行时,沿途的空气来不及让开,物 体与空气骤然相遇,空气突然遭受强烈压缩,形成一个 强烈的扰动。(事先无影响)
扰动锥前后即受扰动空气与尚未受到扰动的空气之 间有一个压力、密度、温度等参数都相差很大的分界面, 这个分界面叫激波。
1200 56.6%
4
壹 空气的压缩性 与温度的关系
空气本身温度越高,越不易被压缩。 这种现象是空气分子热运动影响的结 果。温度越高,空气分子的整运动速度越 大,在外界压力改变量相同的条件下,体 积变化小,密度变化也较小、空气压缩性 较少。气体温度越高,它抵抗外界压缩的 能力越强,越难压缩。 空气密度是否容易变化,与温度有很 大的关系。
section
2
斜激波
12
LOGO 13
在大速度情况下,气流速度变化引起空气密度的变化显著增大,就会引起空气 动力发生额外的变化,甚至引起空气动力规律的改变,这就是高速气体特性所以区 别于低速气流根本点。
飞行速度 空气密度增加的百分比
200 1.3%
400 5.3%
600 12.2%
800 22.3%
空气密度随飞行速度变化的关系
1000 45.8%
膨胀波产生的特点: 1.超声速来流为定常二维流动,在壁面折转处必定产生一扇型膨胀波组,此扇型膨胀波是有 无限多的马赫波所组成。 2.经过膨胀波组时,气流参数是连续变化的,其速度增大,压强、密度和温度相应减小,流 动过程为绝热等熵的膨胀过程。 3. 气流通过膨胀波组后,将平行于壁面OB流动。 4. 沿膨胀波束的任一条马赫线,气流参数不变,固每条马赫线也是等压线。而且马赫线是 一条直线。 5. 膨胀波束中的任一点的速度大小仅与 该点的气流方向有关。

空气动力学与飞行原理课件:机翼空气动力学

空气动力学与飞行原理课件:机翼空气动力学

2mg v
S CL
它表明在相同翼型下,翼载荷越大,则定直平飞速度越快。从另一个方面来看
vmin
2mg
S CL max
即,最小平飞速度为机翼接近失速迎角飞行。在翼型失速迎角一定的情况下,翼载荷越 大,最小平飞速度也越大。
5
壹 翼面负载
下面是典型的无人机的翼面负载。
无人机机型 全球鹰 长空-1 捕食者 徘徊者
贰 目录
一、
翼面负载
二、
展弦比
三、
后掠角
四、
根梢比
7
贰 展弦比 展弦比λ定义为翼展L除以平均翼弦b(λ=L/b)。 展弦比对机翼升力的影响为:当机翼产生升力时,下表面压强向上,上表面压强向下,且下表面压强值 大于上表面。则在翼尖处,下表面的高压气流流向上表面,减小了翼尖附近的升力。同时,如上节所述,有 限展长机翼也是诱导阻力产生的重要来源。 因此,展弦比越大,则翼尖效应对机翼升力的影响越小。理想情况是和翼型升阻特性一样。对于低速和 亚声速无人机,机翼展弦比越大,则升力线斜率和升阻比都较大。 展弦比的另外一个特性是翼尖涡减小了翼尖处的有效迎角,增大了翼尖处的失速迎角。因此,在机翼展 向各翼型扭转角相同的情况下,翼根比翼尖较易失速,这也是要设计机翼扭转的作用。一般翼尖剖面翼型与 翼根剖面翼型的扭转角在±3度左右。另外,相同情况下,展弦比越大则机翼滚转方向转动惯量越大,滚转机 动性越差。
这对无人机结构设计产生一定影响。即后掠 翼无人机翼梢处气动力增大,需要适当加强梢部 结构强度。
后掠机翼升力分布
15
肆 目录
第一章
翼面负载
第二章
展弦比
第三章
后掠角
第四章
根梢比
16
肆 根梢比

空气动力学基础--空气动力学 ppt课件

空气动力学基础--空气动力学  ppt课件
称为流管。流线间隔缩小,表明流管收缩;反之,表明流管 扩张。
PPT课件
7
体积流量
Q Av
质量流量
qm Av
PPT课件
8
2.2 流体流动的基本规律
2.2.1 连续方程
连续方程是质量守恒定律在流体定常流动中的应用。 连续方程:
1 A1v1 2 A2v2 3 A3v3 ...
2.3.2机身的几何形状和参数
为了减小阻力, 一般机身前部为圆头锥体, 后都为尖 削的锥体,中间较长的部分为等剖面柱体。
表示机身儿何形状特征的参数
机身长度Lah 最大当量直径Dah 长细比λah =Lah/Dah
PPT课件
23
2.4 作用在飞机上的空气动力
2.4.1 空气动力、升力和阻力 2.4.2 升力的产生 2.4.3 阻力 2.4.4 升力和阻力 2.4.5 升力系数曲线、阻力系数曲线和升阻比曲线、极
连续介质
组成介质的物质连成一片,内部没有任何空隙。
在其中任意取一个微团都可以看成是由无数分子组成 ,微团表现出来的特性体现了众多分子的共同特性。
微小的局部也可代表整体
PPT课件
5
2.1.3 流场、定常流和非定常流
流场
流体流动所占据的空间。
非定常流
在流扬中的任何一点处,如果流体做困流过时的流动多数随 时间变化,称为非定常流;这种流场被称为非定常流场。
曲线 2.4.6 机翼的压力中心和焦点(空气动力中心)
PPT课件
24
2.4.1 空气动力、升力和阻力
空气动力
空气作用在与之有相对运动物体上的 力称为空气动力。
飞机飞行时,作用在飞机各部件上 的空气动力的合力叫做飞机的总空 气动力, 用R 表示。

《飞行原理空气动力》课件

《飞行原理空气动力》课件
气动力学对先进科技的贡献
回顾气动力学在推动先进科技发展中的贡献。
让我们一起探索气动力学的更多奥秘!
鼓励听众深入学习气动力学,并探索其更多的应用和发展。
《飞行原理空气动力》 PPT课件
通过本课件,我们将带您深入了解飞行原理中的空气动力学,包括其定义、 基本概念、应用以及与先进科技的关系。
认识空气动力学
空气动力学定义
探索飞行中的空气力学现象和原理。
空气动力学发展历程
了解空气动力学在航空和航天领域的演变过程。
空气动力学研究的重要意义
探讨空气动力学在飞行器设计中的关键作用。
能优化中的应用。
3
气动力的计算方法
探讨气动力学计算方法和模拟技术。
气动力学设计
1 气动力学和设计的联 2 飞行器设计中的气动 3 气动力学设计的实例

力学问题
分析
解释气动力学在飞行器设 计中的关键作用。
探索飞行器设计过程中涉 及的气动力学挑战。
通过实例研究,深入理解 气动力学设计的关键概念 和技术。
空气动力学基本概念
空气动力学的基本概念
介绍空气动力学中的重要概念, 如空气动力学力、气流等。
气体的物理性质
了解气体在空气动力学中的行为 和特性。
流体的基本特性
探索流体在空气动力学中的运动 和变化。
空气动力学原理
1
空气动力学公式
学习空气动力学中的关键公式和计算方
空气动力学原理的应用
2
法。
了解空气动力学原理在飞行器设计和性
气动力学与先进科技
先பைடு நூலகம்科技的气动力学 应用
探索先进科技领域中气动力学 的创新应用。
气动力学在航空航天 中的应用

《风力机空气动力学》课件

《风力机空气动力学》课件
随着材料科学和制造技术 的进步,风力机的尺寸和 功率逐渐增大,以提高能 源产出效率。
智能化趋势
通过引入传感器和智能化 控制算法,实现风力机的 自适应调节和远程监控, 提高运行效率和安全性。
海上风电发展
海上风能资源丰富,且具 有较高的开发价值,未来 海上风电将成为风能开发 的重要方向。
风力机市场前景展望
数值模拟
利用计算机软件模拟风力机的运行,预测其气动性能。
03
风力机气动性能分析
风能转换效率分析
风能转换效率定义
提高风能转换效率的方法
风能转换效率是指风能转换为机械能 的效率,是衡量风力机性能的重要指 标。
通过优化风力机设计、提高转速、选 择合适的翼型等方式可以提高风能转 换效率。
风能转换效率影响因素
风力机技术发展历程
从最早的简易风车到现代的大型风力发电机,风力机技术经历了漫长的
发展过程。
02
当前主流风力机类型
水平轴风力机和垂直轴风力机是当前主流的风力机类型,各有其优缺点
和应用场景。
03
风能利用效率
随着技术的不断进步,现代风力机的风能利用效率已经得到了显著提高

风力机技术发展趋势
01
02
03
大型化趋势
噪声。
风力机气动稳定性分析
风力机气动稳定性定义
风力机气动稳定性是指风力机在运行过程中抵抗外界干扰的能力 。
风力机气动稳定性影响因素
风力机气动稳定性受到多种因素的影响,包括气流速度、湍流强度 、叶片质量和设计等。
提高风力机气动稳定性方法
通过优化叶片设计、增加质量块等方式可以提高风力机气动稳定性 。
04
风力机的选址
为了获得最佳的风能利用效果,风 力机通常安装在风力资源丰富、地 势开阔的地方,如山顶、海边等。

《飞行原理空气动力》课件

《飞行原理空气动力》课件

04
飞行器阻力来源与减小方法
飞行器阻力来源
01
压差阻力
由于飞行器表面压
力分布不均匀所产
02
生的阻力。
摩擦阻力
由于空气与飞行器 表面之间的摩擦力 所产生的阻力。
04
干扰阻力
由于飞行器各部件
03
之间的相互干扰所
产生的阻力。
诱导阻力
由于升力产生时所 伴随的阻力。
减小飞行器阻力的方法
优化飞行器外形设计
1 2
3
密度和压力
空气的密度和压力随高度和温度的变化而变化,对飞行器的 性能和稳定性产生影响。
粘性和摩擦力
空气的粘性对飞行器表面的气流产生摩擦力,影响飞行器的 升力和阻力。
压缩性和膨胀性
空气在压缩和膨胀时会产生温度变化,对飞行器的推进系统 和发动机性能产生影响。
流体静力学基础
流体静压力
流体静压力与重力方向相反,对飞行器产生下压力,保持飞行器的稳定。
横向稳定性
保持飞行器偏航平衡的能力,通过调 节方向舵来实现。
纵向稳定性
保持飞行器俯仰平衡的能力,通过调 节升降舵来实现。
方向稳定性
保持飞行器滚转平衡的能力,通过调 节副翼来实现。
飞行器控制原理
飞行器控制系统组成
执行机构
包括传感器、控制器和执行 机构等部分。
01
02
接收控制指令并驱动飞行器 的操纵面,以改变飞行器的
优化螺旋桨的设计和制造工艺、提高转速 、合理选择桨叶角度等都是提高螺旋桨效 率的有效途径。
火箭升力的产生
火箭推进原理
火箭升力的特点
火箭与飞机升力的比较
火箭升力的局限性
火箭通过燃烧燃料产生高速气 体,高速气体从尾部喷出产生 反作用力,推动火箭向前运动 。同时,喷出的气体也产生一 定的升力使火箭离地升空。

西工大空气动力学PPT课件第一章

西工大空气动力学PPT课件第一章

3 气体的压缩性、粘性和热传导
压缩性(弹性)
在一定温度条件下,一定质量气体的 体积或密度随压强变化而变化的特性
度量气体压缩性大小用体积弹性模数E 各种物质的弹性模量是不同的,所以它们的压缩性也不同。
如水的弹性模量为 2.1×109 N / m2
−4 当压强增大一个大气压时密度变化 0.5 × 10
px = p y = pz = p
P
Px
dy
n
X o dx A
dz
结论 理想流体内一点处的压强与受压面 方位无关,方向垂直指向作用面。 压强仅是空间坐标的连续函数。
△ABC的面积ds
z C
Py
流体微团四面体和压强
2 流体的密度、压强和温度
完全气体的状态方程 分子是完全弹性的 忽略内聚力 忽略分子微粒的实有总体积
流动性弱
将固体、液体 和气体放在一 密闭的容器当 中,会有什么 现象?
1
连续介质假设
微观上:流体分子距离的存在以及分子运动的随机性使得 微观上:流体分子距离的存在以及分子运动的随机性使得 流体的各物理量在时间和空间上的分布都是不连续的。 流体的各物理量在时间和空间上的分布都是不连续的。
空气动力学研究对象(飞行器)的特 征尺寸远大于流体分子平均自由程
低层大气层
高温层:85~500Km
高层大气层
电离层
外层大气:>500Km
5 标准大气
大气的分层
•普通飞机主要在对流层和平流层飞行,约39Km左右。 •探测气球:44Km左右 •定点通讯卫星约35000Km •航天飞行器几百Km
5 标准大气
海平面上的标准值
Ta = 288.15 K pa = 101325 N / m 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔科玛峡谷桥风毁事件及电线风鸣声 19米/秒的风流经边墙 风吹电线 卡门涡街
涡交替发放
上下逆向旋涡 带走动量方向相反
流体物体施加横向交变侧向力 物体流体施加横向交变气动力
桥梁振动
涡发放频率 桥梁结构的固有频率 辐射声波
共振破坏
压强脉动形成声波
龙卷风 积雨云中大范围分布的涡量
由下降气流带到地面 涡管拉细/涡量增强 地面气压急剧下降/风速急剧上升
理论研究
基本概念如连续介质 定律如三大守恒定律 数学工具如复变函数
具体物理现象 主次因素
抽象模型 定量分析
运动规律 相对普适 解析解 简化方程
科学抽象/数学方法得到定量结论 揭示物理现象的内在规律/具有相对普适性 抽象模型简化无法满足复杂实际问题的研究需要 非线性偏微分方程组解析解困难强烈依赖数学分析方法、数学理论的发展 连续介质假设 分子统计力学 无规则热运动大量分子 流体充满一个体积 无分子空隙 宏观运动规律 连续介质 无分子运动 不考虑微观结构 100km以下
空气阻力
体育中的空气动力学
旋转球
香蕉球 弧圈球
黏性
上表面流体流速高低压 下表面流体流速低高压
侧向力 马格努斯力
顺时针旋转圆柱 不对称分离 侧向力
研究方法
空气动力学基本理论 风洞/水洞/其他实验台架 模型 实物
学时1 基础性 应用性 开拓性
实验研究
结果真实/可靠//丰富 为理论分析/数值计算提供依据 尺寸/边界/测试仪器及方法限制 耗时/耗力/耗经费
刚度
气流带走
可压缩性
热障 气动热力学
F16战斗机 Ma=2温度120℃铝合金 黑鸟SR-17侦察机 Ma=3温度370℃93%钛合金 航天飞机 Ma=36温度11000K硅瓷片防护瓦、烧蚀材料
化学反应
空气电离
等离子鞘套
等离子体振荡频率
黑障 气动热化学
无线电截止频率无线电信号屏蔽 常温常压 O2占20% N2占80%完全气体 P RT 2000K<T<4000K O22O 4000K<T<9000K N22N 9000K<T 原子电离OO++e- NN++e- O,N,阳离子O+, N+和自由电子的等离子体 分子密度低 大气稠密减速至一定程度 80km< 黑障区 < 54.8km 电离弱 温度低电离弱
森林空气动力学
树木风阻∝风速:种植方式避免风害 风阻树冠/树叶: 树叶在高速风中结构变形 种子传播:繁衍规律、仿生力学
建筑物空气动力学
高/矮建筑物间涡流:风速大于普通布局的3-4倍 建筑物迎背风面: 背风面低压吸力效应 斜屋顶:倾斜角较小吸力效应屋顶掀翻
车辆空气动力学
车型迎风阻力 占62% 拖曳涡涡阻 空气阻力下降10% 表面摩擦阻力 占9% 外部零件干扰阻力 占17% 油耗降低5% 内部气流阻力 占12%
诱导阻力 实际升力 有效迎角 翼尖尾涡 来流 下洗角 下洗速度 尾涡 内向侧力 翼梢小翼 阻挡气流上卷 削弱尾涡 下洗速度 内向侧力 推力
激波
V1 a 1
V2 V1
V1 V2 0 激波阻力 Dsh m
后掠机翼 边条涡
空 气 动 力 学
绪论及基本概念、知识
空气与气体动力学的任务、研究方法及发展
流体力学
流体静力学 液体
水力学 理论流体动力学 润滑理论
流体动力学 气体 无黏流动 黏性流动
变化小
不可压缩低速 空气动力学 高度或低压影响
动力气象学 稀薄气体动力学
变化大 高速影响
气体动力学 亚/跨/超声速空气动力学 高超声速空气动力学 电磁流体动力学
基本任务:空气、气体的运动规律及其与固体之间相互作用力
航空、航天、汽车/列车、建筑/桥梁、叶轮机械(风机/汽轮机等)、
天气预报、船舶、体育运动、……
升力储备:爬升、机动飞行 气动效率:高升阻比 航空飞行器空气动力学 稳定性、操控性 空气流过飞行器外部时运动规律 表面压力及换热规律:材料、结构 飞行器升力及形成机理
v2 理想不可压流体 p const 伯努利方程 2
假设 实际
库塔-儒科夫 儒可夫 L V 斯基定理
D 0 凯尔文定理 Dt
黏性
附面层 旋涡/涡量
Stokes定理

A
ndA c
环量从何而来?
翼型非对称附面层内涡量总和 即为导致升力的环量
飞行器气动部件及其空气动力学机理
进气道及扩压段 斜激波及正激波 超燃冲压发动机
气流增压至亚音速
燃烧室 燃烧
拉伐尔喷管
气流超音速喷出
推力
进气道/斜激波
气流增压且超音速 气流继续增压
隔离段 附面层诱导激波串 燃烧室/燃烧
扩张喷管 推力
气流超音速喷出
航天空气动力学
热障及黑障
热辐射 热传导
动能热能
黏性
摩擦力 激波
摩擦生热 压缩增温
加热飞行器表面 结构强度
音爆云 激波后气体 急剧膨胀降压降温 潮湿天气 气温低于露点 水汽凝结水珠 云雾
超音速 低压气流
局部正激波 斜激波
局部亚音气流 超音/亚音气流
压缩减速 膨胀加速 超音速气流 尾激波 压缩减速
音爆 激波面上声学能量高度集中,这些能量让人感受到短暂而极其强烈的爆炸声。
冲压发动机
亚燃冲压发动机 3<Ma<6
空气/气体动力学的其他应用
鸟类/昆虫飞行及扑翼机
合力 升力 推力 均匀来流 合速度 扑动速度
机动性强 举升/推进/悬停/快速变向等动作集于一个扑翼系统 大升力 利用非定常机制,其升力远高于常规飞行器,能够在低雷诺数条件下飞行。
绕障碍物流动的卡门涡街
低Re数 绕流运动 周期性脱落 旋向相反 排列规则 双列线涡 即卡门涡街
航空发动机主要部件及其作用
压气机/风扇:气体增压
燃烧室:气体加热
涡轮:气体膨胀
音障/音爆/音爆云
弱压缩波 正激波及阻力 斜激波
音障
楔型体 超音速运动
激波及激波阻力
阻力系数 消耗3/4功率
活塞发动机高速时螺旋桨效率低、桨尖易产生激波喷气发动机 降低波阻的超音速气动布局如后掠翼、面积率蜂腰机身等
平直机翼
Vn 是产生升力/激波的有效速度
后掠翼可提高产生激波的Macr
边条翼:下表面压力>上表面压力 气流旋转 涡旋转 涡心P低而V高 涡升力 流经部位压力低 边条涡 注入机翼表面气流能量推迟分离
高速气体(空气或燃气)在压缩性呈显著作用时的流动规
发动机气体动力学 律及其与物体之间的相互作用;
气体在物体内部(如发动机)的运动规律;
相关文档
最新文档