初中几何反证法专题(编辑)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何反证法专题
学习要求
了解反证法的意义,懂得什么是反证法。
理解反证法的基本思路,并掌握反证法的一般证题步骤。
知识讲解
对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。
1.反证法的概念:
不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。
2.反证法的基本思路:
首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。
3.反证法的一般步骤:
(1)假设命题的结论不成立;
(2)从这个假设出发,经过推理论证得出矛盾;
(3)由矛盾判定假设不正确,从而肯定命题的结论正
确
简而言之就是“反设-归谬-结论”三步曲。
例题:
例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明:
假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。
∵OA=OB,M是AB中点
(1)
∴OM⊥AB (等腰三角形底边上的中线垂直于底边)
同理可得:
OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM
这与已知的定理相矛盾。
故AB与CD不能互相平分。
例2.已知:在四边形ABCD中,M、N分别是AB、DC
的中点,且MN=(AD+BC)。
求证:AD∥BC
(2)
证明:假设AD BC,连结ABD,并设P是BD的中点,再连结MP、PN。
在△ABD中
∵BM=MA,BP=PD
∴MP AD,同理可证PN BC
从而MP+PN=(AD+BC)①
这时,BD的中点不在MN上
若不然,则由MN∥AD,MN∥BC,得AD∥BC与假设AD BC矛盾,
于是M、P、N三点不共线。
从而MP+PN>MN ②
由①、②得(AD+BC)>MN,这与已知条件MN=(AD+BC)
相矛盾,
故假设AD BC不成立,所以AD∥BC。
课堂练习
1.求证:三角形中至少有一个角不大于60°。
2.求证:一直线的垂线与斜线必相交。
已知:设m,n分别为直线l的垂线
和斜线(如图),垂足为A,斜足为B。
求证:m和n必相交。
3.在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,
求证:AD与BE不能被点H互相平分。
4.求证:直线与圆最多只有两个交点。
5.求证:等腰三角形的底角必为锐角。已知:△ABC中,AB=AC,求证:∠B、∠C必为锐角。
参考答案:
1.证明:假设△ABC中的∠A、∠B、∠C都大于60°
则∠A+∠B+∠C>3×60°=180°
这与三角形内角和定义矛盾,所以假设不能成立。
故三角形中至少有一个角不大于60°。
2.证明:假设m和n不相交则
m∥n
∵m⊥l ∴n⊥l
这与n是l的斜线相矛盾,所以假设不能成立。
故m和n必相交。
3.证明:假设AD、BE被交点H互相平分,则ABDE是平行四边形。
∴AE∥BD,即AC∥BC
这与AC、BC相交于C点矛盾,
故假设AD、BE被交点H平分不能成立。
所以AD与BE不能被点H互相平分。
4.证明:假设一直线l与⊙O有三个不同的交点A、B、C,
M、N分别是弦AB、BC的中点。
∵OA=OB=OC
∴在等腰△OAB和△OBC中
OM⊥AB,ON⊥BC
从而过O点有两条直线都垂直于l,这是不可能的,故假设不能成立。
因此直线与圆最多只有两个交点。
5.证明:假设∠B、∠C不是锐角,
则可能有两种情况:
(1)∠B=∠C=90°
(2)∠B=∠C>90°
若∠B=∠C=90°,则∠A+∠B+∠C>180°,
这与三角形内角和定理矛盾。
若∠B=∠C>90°,则∠A+∠B+∠C>180°,
这与三角形内角和定理矛盾。
所以假设不能成立。
故∠B、∠C必为锐角。
本讲小结
对于一个几何命题,当用直接法证比较困难或甚至不能证明时,则可采用简接证法,反证法就是一种最常见的间接证明方法、掌握并运用好这种方法,对思维能力的提高大有裨益。
所谓反证法,就是先假设命题的结论不成立,从结论的反面入手,进行正确的逻辑推理,导致结果与已知学过的公理、定理,从而得出结论的反面不成立,于是原结论成立。
反证法证题的一般步骤是:
(1)反设:将结论的反面作为假设;
(2)归谬:由“反设”出发,利用已学过的公理、定理,推出与已知矛盾的结果;
(3)结论:由推出的矛盾判断“反设”错误,从而肯定命题的结论正确。
运用“反证法”的关键:
反证法的主要手段是从求证的结论的反面出发,导出矛盾的结
果,因此,如何导出矛盾,就
成了使用反证法的关键。
“反证法”宜用于证明否
定性命题、唯一性命题、“至少”“至多”命题和某些逆命题等,
一般地说“正难则反”凡是直接法很难证明的命题都可考虑用反
证法。
课后作业
1.求证:在平面上,不存在这样的凸四边形ABCD,使△ABC、△BCD、△CDA、△DAB都是锐角三角形。