最短路径分析
最短路径问题网络分析毕业论文(可编辑)
![最短路径问题网络分析毕业论文(可编辑)](https://img.taocdn.com/s3/m/9e0945b7294ac850ad02de80d4d8d15abe2300b5.png)
最短路径问题网络分析毕业论文摘要第一章绪论二十世纪中后期,随着计算机的出现和发展,图论的研究得到广泛重视,最短路径问题是图论中的一个典范问题,它已经被应用于众多领域.最短路径问题最直接的应用当数在地理信息领域,如:GIS 网络分析、城市规划、电子导航等.在交通咨询方面,寻找交通路网中两个城市间最短的行车路线就是最短路径问题的一个典型的例子.在网络通信领域,信息包传递的路径选择问题也与最短路径问题息息相关.举个例子,OPSF开放路由选择协议,每个OPSF路由器都维护一个描述自治系统拓扑结构的数据库,通过这个数据库构建最短路径树来计算路由表,从而跟踪自治系统范围内到每个目标的最短路径.在图象分割问题中,最短路径也有直接的应用:在语音识别中,一个主要的问题就是区别同音词,例如,to、two、too.为解决这个问题,我们需要建一个图,顶点代表可能的单词,边连接相邻的单词,边上的权代表相邻的可能行大小.这样图中的最短路径,就是对句子的最好解释.由于最短路径问题的广泛应用,很多学者都对此进行了深入的研究,也产生了一些经典的算法.近些年来,对最短路径研究的热度依然不减,并且时间复杂度降得越来越低.所以在本课题中我们将提出不仅是以前我们学习过的一些经典的算法,我们还将提出一些以前没有学习过的更有应用空间的算法.以及各算法之间的比较.最后还将把这些算法在现实中的应用最一些简单的介绍.第二章网络的最短路问题的基础知识2.1 图的基本概念(1)图定义:一个(无向)图G 是一个有序二元组(V,E),其中是顶点集,是边集,且是一个无序二元组,它表示该边连接顶点与.图1就是一个图说明:在保持图的点边关系不变的情况下,图形的位置、大小、形状都是无关紧要的.若,则称连接与;点和称为的顶点,称或与关联,与是邻接的顶点;如果两条边有一个公共顶点,则称这两条边是邻接的;(2)环定义:两个顶点重合为一点的边称为环如图图1中.图1(3)重边定义:如果有两条边的顶点是同一对顶点,则称这两条边为重边(如图1中与中有两条边相连).(4)孤立点定义:不与任何边关联的点称为孤立点(如图1中);(5)无环图定义:没有环的图称为无环图;(6)简单图:定义:既没有环也没有重边的图称为简单图.设G(V,E)是一个简单图,则显然有.(7)完全图定义:若上式中等号成立,则说明该图中每对顶点间恰有一条边相连,称此图为完全图.(8)补图定义:一个简单图的补图是与有相同顶点的简单图,且中两个点相邻当且仅当它们在中不相邻.(9)二分图定义:一个图G(V,E),若存在V 的一个分划(,),使得每条边有一个顶点在中,另一个在中,则称为二分图.(10)子图、支撑子图定义:设有两个图,,如果,,则称为的支撑子图.(11)点导出子图定义:设有图G(V,E),是的非空子集,若以为点集,以两点均在中的所有边为边集的子图称为由导出的的子图,记为,简称点导出子图.(12)边导出子图定义:若是的一个非空子集,则以为边集以中边的所有顶点作为点集的子图,称为由导出的的子图,记为,简称边导出子图.(13)度:定义:图中顶点的度为与关联的边的数目(与关联的每个环算作两条边),记为.结论:设G(V,E)是一个图,则,即度数为奇数的顶点有偶数个.2.2有向图(1)有向图定义:一个有向图是一个有序二元组,其中是顶点集,称为的弧集,为一个有序二元组.称为连向的弧,为的出弧,的入弧;称为得尾,称为的头;称为的前继,称为的后继.图2就是一个有向图.图2(2)环定义:头和尾重合的弧称为环.(3)重弧定义:若两条弧有相同的头和尾,则称这两条弧为重弧.(4)简单有向图定义:没有环和重弧的有向图称为简单有向图‘(5)基图定义:把有向图中每条弧用边来代替,得到一个无向图,称为得基图.(6)完全有向图定义:设G(V,E)是一个简单有向图,则,若等号成立,则称这样的图为完全有向图.(7)出度、入度定义:有向图中顶点的出弧的数目称为的出度,记为;顶点入弧的数目称为的入度,记为.结论:设G(V,E)是一有向图,则类似地可以定义有向图的子图,支撑子图,点,边导出之子图的概念.(8)网络定义:设是一个图,若对的每一条边都赋以一个实数,称为边的权,则连同边上的权称为一个网络,记为.同样可以定义有向网络.在此主要讨论网络上的各种优化问题.无向网络可以转化为有向网络,具体做法为:把无向网络中每条边代之以一对弧()和(),且两条弧的权都等于边的权.2.3连通性途径、迹、路定义:设有图 G(V,E),如果它的某些顶点与边可以排成一个非空的有限交错序列,这里该途径中边互不相同,则称为迹;如果顶点互不相同,则称它为路.显然路必为迹,但反之未必.闭路径定义:如果某途径至少含一条边,且起点与终点重合,则称它为一条闭途径.类似可定义闭迹和回路(又称圈).注意:若为简单图,则两个顶点间边若存在必是唯一的,故由到的一条途径可以用顶点序列表示.连通图:定义:图中若存在一条从顶点到的途径,则称与是连通的.如果图中任何两个顶点都是连通的,则称是连通图.例如,完全图是连通的.二分图,,则只要,中有一个大于1,则一定不是连通图.连通子图定义:如果是的子图,且是连通的,则称为的连通子图.极大连通子图定义:如果为的连通子图,且不存在连通子图,使是的子图.图的极大连通子图又称为的连通分支.有向途径定义:设有一个有向图,中某些顶点与弧组成的非空有限序列这里,,且,则称它为从到的有向途径.类似可定义有向迹,有向路,有向闭途径,有向闭迹,有向回路(有向圈).当是简单有向图时,从到的一条有向途径可简记为().强连通定义:中若既存在一条从顶点到的有向途径,又存在从到的有向途径,则称和是强连通的.如果中任意两顶点都是强连通的,则称是强连通的.强连通分支定义:的极大强连通子图称为强连通分支.注:若强连通,则恰有一个强连通分支.结论:若为有个连通分支的简单无向图,则的邻接矩阵为准对角矩阵若为有个强连通分支的简单有向图,则的邻接矩阵为准上三角矩阵2.4割集割边定义:设有图,是的一条边,如果从中删去,使它的连通分支数量增加1,则称是的割边.显然,的一条边是割边当且仅当该边不包含在的任何闭迹中.边割定义:设是的一个非空子集,,记,如果,且从中删去这些边后,的连通分支至少增加1,则称是的一个边割.割集定义:若是一个边割,且的任何真子集都不是边割,则称它为极小边割,的极小边割又称为割集.结论:任给图,设是图的圈,是图的割集,用表示的边集.如果,那么.弧割定义:设是一个有向图,记,如果,则从中删去这些弧以后,的强连通分支数至少增加1,称它为的一个弧割.的极小弧割称为有向割集.2.5最短路问题定义:所谓最短路径是指如果从图中某一顶点称为源点到达另一顶点称为终点的路径可能不止一条,如何找到一条有向路径使得沿此路径上各弧的权值总和达到最小.第三章网络的最短路问题的算法研究3.1最短路问题的提出某旅客要从杭州乘飞机前往奥地利的萨尔斯堡,因为他害怕乘飞机,所以要选择一条航线,使得在空中飞行的时间尽可能的少.问题是如何选择航线以达到要求.为此构造一个无向网络总可以化成有向网络,故下面只讨论有向网络的最短路问题.设是一有向网络,为中一条有向路,称为路的权或路长.现寻找网络中自某一指定顶点到另一指定顶点的最短有向路.3.2 Bellman最短路方程设有一个有向网络,.若用表示自顶点到顶点的最短有向路长,用表示弧()的长度,若,则定义,则对一切有且当且仅当弧在自顶点到顶点的最短有向路上.因为所有均表示自到的最短路长,因此这些最短路必有最后一条弧(),且该有向路上自到的一段也是最短路,故有Bellman最短路方程:即自点到各点最短路长度必满足Bellman最短路方程.反过来,Bellman最短路方程的解是自点到其余各点最短路的长度.3.3无负回路网络的最短有向路的Ford算法3.3.1 Ford算法的基本思想Ford算法的思想是逐次逼近,每次逼近求出网络从到其余各顶点的带某种约束的最短路,这里的约束是路中弧数.第一次逼近是从到其他任意顶点由一条弧组成的所有路中找一条最短路,记其长度为;第二次逼近是从到由不多于两条弧组成的所有路中找一条最短路,记其长度为.一般地,第次逼近是从到由不多于条弧组成的路中找一条最短的,记其长度为.因为中自到的最短路至多含个顶点, 条弧,所以最多次逼近即可. 即为中自到的最短路长.3.3.2 Ford算法的步骤为方便起见,定义.第一步置,,.第二步令.第三步若,停止;否则令,返回第二步.3.3.3实例求如下图所示网络中从顶点到其余各点的最短路.解求解过程如下:因此从到的最短路径分别为,,,,,路长分别为1,2,-3,0,2.3.4求正权网络中有向最短路的Dijkstra算法3.4.1Dijkstra算法的基本思想对网络中每个顶点赋以一个标号,用来记录从顶点到该顶点的最短路的长度(此时称为永久标号)或最短路长度的上界(此时称为暂时标号).算法开始时,只有顶点被赋予永久标号,其它顶点被赋予暂时标号.一般地,算法在被暂时标号的顶点中寻找一个顶点,其暂时标号最小,然后将赋予永久标号,且对其余暂时标号的顶点按方式修正其标号.算法在所有顶点均被赋予永久标号终止.3.4.2Dijkstra算法的理论依据对于中任一顶点,其永久标号是从顶点到该顶点的最短路的长度.对于中任一顶点,其暂时标号是从顶点出发,只经过中顶点到达该顶点的最短路的长度.3.4.3 Dijkstra算法的算法步骤最短路径问题是指在一个赋权图的两个指定节点和之间找出一条具有最小权的路.Dijkstra 算法是一个解最短路径问题的算法,这个算法不仅可以找到最短的,路径而且可以给出从到图中所有节点的最短路径.其基本步骤如下:1 设,对所有的节点来说,设,并将标号为0, ,为和w之间的权值距离.2按照每个未标号的节点w计算, ,表示点t 到点w 之间的权值距离 .若被修改了说明在当前得到的到w 的最优路径上t 和w 相邻用记录下来在所有中选择一个最小的即,未标号.将s 标号为, 表示节点到s的最优路径的长度为且与s 相邻.3 若终点v 已标号,则停止.得到一条从到v 的最优路径,否则,转向2再计算.3.4.4 Dijkstra算法的应用举例以具体实例说明Dijkstra 算法的具体应用.例 1. 利用Dijkstra 算法求图1 中节点A 到其它各节点的最优路径 202.9 3.218 4.4 3.5 3.2 4.516 Y 4.1 2.2 14 4.22 3.4 4.512 5.62.9 3 4.22.2 10 3.4 3.5 4 2.23 8 0 24 6 X 8 图1 101214相应的权值为:根据Dijkstra 算法的实现步骤其计算过程可归纳为表1 所示.从表1 中可以看出从到的最短路径为且到的距离为18.3 在求到最短路径的过程中到其余各点的最短路径也相应求出.若以计算一次为计算单位,则利用Dijkstra算法计算到最短路径时所需的计算次数15+14+13+ +2 119次表1采用Dijkstra 算法求解A到其他各节点最优路径的过程序号 A B C D E F G H I J K L M N O P1 - 4.2 3.42 - 4.2 3.4/A9.0 6.93 - 4.2/A - 8.6 8.3 6.94 - - - 8.6 8.3 6.9/C 11.9 10.95 - - - 8.5 8.3/B -10.3 11.2 10.96 - - - 8.6/B - - 11.5 10.3 11.2 10.97 - - - - - - 11.5 10.3/D 11.2 10.9 13.513.78 - - - - - - 11.5 - 11.2 10.9/F 13.5 13.713.19 - - - - - - 11.5 - -11.2/E - 13.5 13.713.110 - - - - - - 11.5/D - - - 13.5 13.713.111 - - - - - - - - - - 13.5 13.713.1/J16.112 - - - - - - - - - - 13.5/H 13.7 -18.0 16.113 - - - - - - - - - - - 13.7/H - 15.916.114 - - - - - - - - - - - - - 15.9/L16.1 18.715 - - - - - - - - - - - - - - 16.1/M18.33.4.5 Dijkstra算法的不足在现行电子地图中,网络模型的规模常常较大,节点数多达上千或上万,并且对网络模型的查询也要求实时性,因此Dijkstra 算法虽然在理论上是可行的,但在实际应用中不尽人意,当网络模型中节点数和边数较多的情况下,算法的计算量较大时间花费较多效率非常低.3.4.6 改进Dijkstra 算法的基本思想及实现表1 中的数值大多数是,都是无用运算,如果节点数量很大,将极其浪费运算时间.由于,节点是否在上次已经被计算出最短路径未知,当前节点是否与节点是否相连也未知,也就是未知,这时是已知的,故本次计算的到底是不是,取决于上一步数值和的数值,从表达式可以看出,只要这两个数值不都是,本次计算的就不会是,所以在上面Dijkstra 算法的实现步骤第2 步时,先判断一下,只要原来的, 的数值中至少有一个不是,才进行下面的计算,这样就保证了当预见是时,不对它进行计算,避免了大量无效的计算,提高了搜索效率.下面仍以一个具体实例来说明改进的Dijkstra算法的具体应用.例2 利用改进的Dijkstra 算法求图1中节点A到其他各节点的最优路径,此例的计算过程和Dijkstra 算法基本一致,只是表 1 中所有标记的部分在改进Dijkstra 算法中被省去了,利用改进的Dijkstra 算法计算到最短路径时所需计算次数为次,由此可见,改进的Dijkstra 算法确实减小了计算量在程序设计中,判断语句所花费的时间可以忽略,并不增大计算量.3.4.7 实验对比为了更好地说明改进的Dijkstra 算法的有效性,利用C语言自行编制了最短路径搜索程序并进行了仿真实验,采用自绘制的地图,共5 张,第一张图16个节点,共24条弧;第二张图32个节点,共55条弧;第三张图43个节点,共75条弧;第四张图62个节点,共111条弧;第五张图78个节点,共139条弧,计算结果如表2 所示.从表 2 可以看出,两种算法的计算量有很大的区别,改进的Dijkstra 算法较之经典Dijkstra 算法在计算量方面有很大幅度的减少,而且这种减少的程度在节点数目增加地图更大,更复杂时,会变得越来越明显.对于实际系统,由于地图都会很大,使用改进Dijkstra 算法的改进效果将非常显著.表2 改进Dijkstra 算法和经典Dijkstra 算法计算次数比较节点数经典Dijkstra 算法改进的Dijkstra 算法16 119 4739.5%32 465 13428.8%43 861 23427.2%62 1830 44124.1%78 2926 54018.5%注:表中的百分数表示改进算法计算量与经典算法计算量的百分比3.5 算法的问题和改进3.5.1算法的基本思想算法在人工智能中是一种典型的启发式搜索算法.通过选择合适的估价函数,指导搜索朝着最有希望的方向前进,以求得最优解. 算法中关键是求估价函数:其中, 是从起点到当前节点已付出的代价, 是从当前节点到目标节点的代价估计函数,必须保证其中是从当前点到目标点的实际最小代价.3.5.2算法的步骤算法的搜索步骤如下:1给起始节点标记,对它的没有标记过的子节点进行扩展;2对每一个子节点计算评价函数值,按评价值的大小进行排列,找出评价值最小的节点,并给它作标记,如果当前节点就是目标节点,则停止搜索;3 否则,对最新被标记的节点进行第2 步处理并记录最短路径.3.5.3算法分析算法是利用对问题的了解和对问题求解过程和解的了解,寻求某种有利于问题求解的启发信息,从而利用这些启发信息去搜索最优路径.它不用遍历整个地图,而是每一步搜索都根据启发函数朝着某个方向搜索.当地图很大很复杂时,它的计算复杂度大大优于Dijkstra 算法,是一种搜索速度非常快、效率非常高的算法.但是,相应的算法也有它的缺点.启发性信息是人为加入的,有很大的主观性,直接取决于操作者的经验,对于不同的情形要用不同的启发信息和启发函数,且他们的选取难度比较大,很大程度上找不到最优路径.下面通过一个具体加以实例说明.例3 利用算法求图1 中从点出发到点的最优路径.解:在本例中将评价函数中的取为当前节点到起始节点的最短距离,而取为当前节点到目标节点的欧氏距离,在应用算法时除采用上面Dijkstra 算法所用过的拓扑结构外,还应该再给定所有节点的坐标如各点坐标为0,13, 3,16, 3,11,….根据算法的具体实现步骤可求得从到的最短路径其距离是16.6.查看表1可知,用Dijkstra 算法搜索的最优路径是, 路径长度15.9 ,很明显算法没有找到最优路径,而且通过比较两条路径可以发现:当采用算法搜索路径时,从第二个节点就把最优路径舍弃了.3.5.4 算法改进思想及实现为了克服最优路径可能被轻易舍弃的缺点,本文提出采用多次搜索的方法,用增大计算量为代价来换取尽量多的最优路径备选结果.具体的方法如下:将经典算法搜索出原始最优路径中的节点依次进行封堵后,再按照经典算法搜索在每一次封堵情况下的最优路径.最后将这些新的最优路径与原始最优路径进行对比以便确定最后的最优路径.现举例说明改进算法的具体应用.例4.利用改进的算法求图1中从点出发到点的最优路径.1 按算法寻找路径得到: ,路径长度16.6;2 封闭此路径中节点后得到的最优路径为:, 路径长度15.9;3 封闭此路径中节点后得到的最优路径为: , 路径长度17.1;4 封闭此路径中节点后得到的最优路径为: ,路径长度17.2;5 封闭此路径中节点后得到的最优路径为: ,路径长度18.7;对前面求得的5 种路径长度进行对比,得到最优路径,其长度为15.9 ,从而将此路径定为改进算法求得的最优路径.查看表1可知此路径正是采用Dijkstra算法时求得的最优路径.3.5.5 实验对比为了进一步验证改进算法的有效性利,用C 语言自行编制了最短路径搜索程序并进行了仿真实验.以78个节点含1个起始节点,77个待规划节点的地图作为对象得到的仿真结果.采用经典算法对77个节点分别进行路径规划,有45个找到了最优路径而采用改进的算法对77个节点进行路径规划时,有68个找到了最优路径,有8个节点虽未找到最优路径但得到了比经典算法更短的路径,只有1个节点和经典算法结果一致.这充分说明改进的算法较之经典的算法在搜索最优路径的成功率方面具有明显的优势.3.6 结论本文对经典Dijkstra 算法和算法进行了改进,改进后的算法具有以下特点.1改进的Dijkstra 算法能在很大程度上节省计算量,提高路径规划的速度.2改进的算法虽在一定程度上增大了计算量但远远小于Dijkstra 算法的计算量, 却大大增大了搜索到最优路径的成功率.3.7 混合步长网络漫游最短路算法3.7.1引言网络最短路问题一直是网络理论与实践的重要研究课题之一,是在工农业生产及各项经济活动中非常具有实用价值的一门计算技术,是系统工程和运筹学研究的一个重要分枝.随着图与网络理论的不断发展与完善和计算技术、计算手段的不断进步,为新的网络最短路算法的研究提供了前提和条件.经过深入的研究探索和实践,本文提出一种任意路权网络最短路的新算法??混合步长网络漫游法.3.7.2 网络漫游法原理在一个给定的任意路权网络图中,为该网络的点集合,为该网络的弧集合,为网络各弧的权数集合.确定一个点作为漫游网络的起点,并记该点的漫游路长为零 ,其余各点的漫游路长 ,以此作为初始状态.之后,每一步都以当前漫游点的路长来修正其余相关连点的路长,并选择一个新的漫游点,如此往复,直至不再有可以漫游的点为止.若从起始点到任意点的直接路长为 (为网络的顶点数,若两点和之间没有直接的弧连接,则),则以修改各点的初始漫游路长, 作为第一步各点的漫游路长,并选择所对应的点作为第一步的漫游点,称之为当前漫游点.一般而言,经过步漫游到达第点,则第点为当前漫游点,该点的当前漫游路长为 .为寻找下一步的漫游点,要计算 ,并以作为点第步的漫游路长,选择点作为第步的漫游点,如此循环,直至各能够到达的点均已漫游过且各点已不存在更短的漫游路长时,漫游终止.同时得到了从起始点到各点的最短路.3.7.3网络漫游法的特点3.7.3.1 混合步长每次从当前漫游点寻找下一漫游点时,采用了算式,所以,下一漫游点的路长不只是第步中的最短路,而且是在第步、第步、…、第1步、第0步中的最短路,是当前步长内所有步数能够到达该点的最短路.3.7.3.2路长递减性由于采用了算式作为第点的第步的路长,它小于等于步之内任一步长的路长,具有递减性.3.7.3.3条件记忆性由第k步的当前漫游点寻找下一漫游点时,是在除当前点之外的其它点中寻找.其余的点分为两类,一类是还没有漫游过的点,它自然属于寻找的范围;另一类是已经漫游过的点,这类点分为两种情况,其一是该点记录的步步长之内的最短路值是该点作为漫游点时的路长,则该点不在寻找之列,即该点已漫游过这件事是在记忆之中的,其二是该点虽然已漫游过,但在其后的漫游中更新了该点漫游时的路长值,则该点在寻找范围之列,即对该点已漫游过这一事实失去记忆,如同没有漫游过的点一样.也就是说,若该点作为漫游点时的路长值一直保持为该点的最短漫游路长,则对该点保持记忆;若该点作为漫游点时的路长值已发生变化,则对该点的漫游失去记忆.3.7.4 网络漫游法的算法对于给定的任意路权网络,按照如下步骤进行网络漫游,只要网络中不含负回路,最终总可以求得从起始点到其所能到达的所有点的最短路.当然,也可以从终点反向漫游,以求得从网络的任意一点到终点的最短路.3.7.4.1 确定漫游起始状态若求从某点到其它各点的最短路,则以作为漫游的起始点(当前漫游点),并记该点的起始漫游路长为零,其余各点的漫游路长为无穷大(注:若求其它各点到终点的最短路,则以作为漫游起点,进行反向漫游即可).3.7.4.2 从当前漫游点向外探索计算从当前漫游点走到其它各点所产生的路长3.7.4.3确定各点新的漫游路长将各点的与其当前的最短路长进行比较,选取较小者作为该点新的漫游路长,即.3.7.4.4 作漫游标记当从本漫游点向外探索之后则对其作一标记,表示此点已漫游过.在以后的漫游中保持此标记,直到该点有更短的漫游路长出现时,则除去该点的漫游标志.3.7.4.5 确定新的漫游点在当前没有作漫游标记的点中,选取所对应的点作为新的漫游点.返回3.2继续漫游.。
八年级上册 课题学习《最短路径问题》说课稿
![八年级上册 课题学习《最短路径问题》说课稿](https://img.taocdn.com/s3/m/99d93c4a77c66137ee06eff9aef8941ea76e4b3e.png)
课题学习《最短路径问题》说课稿各位领导、专家、同仁们大家好:今天我说课的的内容是:人教八年级上册第13章第四节课题学习最短路径问题。
下面我将从:教材分析、学情分析、教学目标、教学重难点、教法、学法、教学手段、教学过程、板书设计、反思十个方面展开我的说课。
一、教材分析:本节课的内容是在学习了轴对称图形及两点之间线段最短知识的基础上学习的最短路径问题。
同时为我们今后解决坐标系下线段和最短的问题打下基础。
所以本节课的学习既是对前面所学知识的应用又为今后学习新知识做了铺垫,起到了呈上起下的作用。
二、学情分析1、已有的知识与能力:八年级学生已经学习了“两点之间线段最短”“垂线段最短”这些关于距离最短问题的解决依据。
也初步接触了逻辑推理证明的方法。
2、未接触的知识能力:由于八年级学生首次遇到线段和最小,所以无从下手,另外证明两条线段和最小时要选取另外一点,学生想不到、不会用,所以利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短是本节课的难点。
3.综合能力方面:八年级学生这一阶段的学生思维能力发展较快,自我意识增强,有较强的求知欲和表现欲,在情感方面他们能进行自我教育。
经过一年多新课程理念的熏陶及实践,学生已有了初步的自主学习、合作探究的能力,但部分学生存在不自信,羞于表现等思想顾虑,但又希望能得到他人的肯定。
因此我的教学目标分了三层,照顾不同程度的学生。
在教学活动中尽量让他们参与到活动中来,减少他们的恐惧感,通过学生间的合作学习,降低他们的学习难度,使各层次的学生都有所收获,使他们体验到成功的喜悦。
通过以上教材与学情分析我制定了本节课教学目标:三、教学目标:1、知识与能力目标:(1)能利用轴对称解决简单的最短路径问题。
(2)能将实际问题中的“地点”、“河”抽象为数学中的“点”、“直线”,把实际问题抽象为数学问题。
2、过程与方法目标:(1)使学生经历提出问题——合作探究——动手操作——组间对比——理论证明——解决问题的过程。
几何教学中核心素养的渗透路径——《最短路径问题》教学分析
![几何教学中核心素养的渗透路径——《最短路径问题》教学分析](https://img.taocdn.com/s3/m/97929d52195f312b3069a516.png)
教育实践教海寻理湖北教育·2019-01下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下下在几何教学中,如何合理设计问题,引导学生直观想象,如何让学生通过独立思考和探索分析来获得数学模型,进行逻辑推理,如何让学生慢慢形成在解决实际生活中的数学问题时能将实际问题抽象成数学问题,形成数学思维模式的能力,是初中教师需要探索和解决的重要课题。
下面笔者就以人教版《数学》八年级上册《最短路径问题》内容为例,谈谈几何教学中核心素养的渗透。
一、复习迁移,引入数学模型本节课是在学生学习了线段和角,研究了三角形以及轴对称图形之后给出的一个课题材料的学习。
最短路径问题在生活中经常遇到,初中阶段以“两点之间,线段最短”“连接直线外一点与直线上各点的所有连线中垂线段最短”为知识基础,还要借助轴对称、平移、旋转等知识进行探究。
本节课以复习预备知识作为内容的切入点,教师设计了两个问题:1.连接A,B两点的所有连线中,哪条最短?为什么?2.点P是直线l外一点,点A,B,C,D在直线l上,则线段PA,PB,PC,PD哪条最短?为什么?配上相应的图形,设计的问题目的明确,让学生马上积极思考进入正题。
当然,如果用“蚂蚁找食物”的实例引入,可能更形象、更有趣味性。
单源最短路径问题并行算法分析
![单源最短路径问题并行算法分析](https://img.taocdn.com/s3/m/70f5ad03de80d4d8d15a4fa3.png)
单源最短路径问题并行算法分析实验报告一、实验名称单源最短路径问题并行算法分析。
二、实验目的分析单源最短路径Dijkstra并行算法和MPI源程序,并分析比较Dijkstra并行算法和Moore并行算法的性能。
三、实验内容1、分析单源最短路径Dijkstra并行算法和MPI源程序。
2、分析单源最短路径问题的Moore并行算法,比较两种并行算法的性能。
四、实验步骤1、问题描述单源最短路径问题即指:已知一个n结点有向图G=(V,E)和边的权函数c(e),求由G中某指定结点v0到其他各个结点的最短路径。
这里还假定所有的权值都是正的。
2、比较串行Dijkstra算法和Moore算法2.1、Dijkstra算法基本思想假定有一个待搜索顶点表VL,初始化时做:dist(s)←0;dist(i)←∞(i≠s);VL←V。
算法执行时,每次从VL(≠Φ)中选取这样一个顶点u,它的dist(u)值最小。
将选出的u作为搜索顶点,若<u,v>∈E,而且dist(u)+w(u,v)<dist(v),则更新dist(v)为dist(u)+w(u,v),直到VL=Φ时算法终止。
算法描述如下:输入:加权邻接矩阵W,约定i,j之间无边连接时w(i,j)=∞,且w(i,i)=∞;输出:dist(1:n),其中,dist(i)表示顶点s到顶点i的最短路径(1≤i≤n)。
begin/*初始化*/(1)dist(s)←0;(2)for i←1 to n doif i≠s then dist(i)←∞endifendfor;(3)VL←V;(4)for i←1 to n do /*找最短距离*/(5)find a vertex u∈VL,such that dist(u) is minimal;(6)for each(<u,v>∈E) ∧(v∈VL) doif dist(u)+w(u,v)<dist(v) thendist(v)←dist(u)+w(u,v)endifendfor;(7)VL←VL-{u}endforend.2.2、Moore算法的基本思想设源点为s∈V,从s到其它各顶点的最短路径长度用一个一维数组dist存储。
初中数学_《最短路径问题》教学设计学情分析教材分析课后反思
![初中数学_《最短路径问题》教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/bfb3089f2cc58bd63086bd31.png)
《最短路径问题》教学设计一、教学目标(一)知识与技能:能利用轴对称等图形变换,依据“两点之间,线段最短”或“三角形两边之和大于第三边”解决最短路径问题.(二)过程与方法:在观察、操作、想象、论证、交流的过程中,获得解决最短路径问题的基本思路及经验.(三)情感态度与价值观:体会图形的变化在解决最值问题中的作用,感悟转化思想,在实际问题中迁移使用所获得的基本经验,深入领会其应用价值.二、教学重点和难点(一)教学重点:用轴对称变换以及平移解决实际问题中的最短路径问题.(二)教学难点:学生发现确定最短路径的“路径向导点”.三、教学方法和策略采用“实验—猜测—验证—应用”的教学线索,以学生的知识建构和认识发现为主轴,把线索发现的主动权和问题解决的个性化还给学生.充分利用网络多媒体教学环境和几何画板,制作学生可以动手操作体验的多媒体课件,把抽象的数学理论形象化,学生利用课件创建的图形去发现规律,验证思路,得出结论.让数学学习过程可视化、可操作化并增加互动性.四、教学过程题.二、观看视频,激发兴趣用教师机向学生机广播视频.视频内容1:虫洞(Wormhole),又称爱因斯坦-罗森桥.视频内容2:朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.三、分发课件,自主探究【课件引入】“最短路径的选择-看图思考”预设问题:问题:在不同的情景中,怎么合理选择路径呢?【发现】折线路径或立体路径 两点之间,线段最短.【活动1】“读历史故事,智闯六关之第一关”官渡之战,是东汉末年“三大战役”之一,也是中国历史上著名的以弱胜强的战役之一.建安五年(200年),曹操军与袁绍军相持于官渡(今河南中牟东北),在此展开战略决战.曹操奇袭袁军在乌巢的粮仓(今河南封丘西),继而击溃袁军主力.此战奠定了曹操统一中国北方的基础. 在自己的计算机上观看视频.【课件引入】在四幅图片的引领下,学生逐渐发现平面内两点之间的最短路径到立体图形中的最短路径隐含的内在联系.【活动1】学生独立操作:拖动点P,确定点P的位置.意图:引发学生的学习兴趣和思考.融合点:将网络素材与所要学习内容整合,古诗词作为最短路径问题的载体.意图:【课件引入】通过对逐渐递进的四幅图形的思索,培养学生能够用数学的眼光认识生活中现象的能力;将复杂的折线路径或立体路径转化为“两点之间,线段最短”,让学生体验“转化思想”的作用.融合点:取自现实生活中的情景与合理选择路径整合起来,直观形象与抽象思索整合起来.意图:【活动1】通过设置历史背景,将六个问题有机的串联起来,增强趣味本节课以此为背景,设置六关,鼓励学生一一破解. 第一关:曹军先遣队要趁夜色到河对岸的敌军营地营地附近做好埋伏,应该怎样走线路最短?预设问题:先遣队从A,到河对岸敌军营地B,在河流a上求一点P,使得P A+PB最小.预案:如果有的学生不会操作拖动一个点,则及时向学生讲解一下如何拖动点P.【活动2】“智闯六关之第二关”攻占营地后,我军分设马场和营地两个驻扎点,为了给战士和马匹提供饮水,我军计划在河边修建水站,用水渠引水,为了减小挖水渠的工作量,水站应选在何处?预设问题:如图,要在河边修建一个水站,分别向马场A、营地B送水,水站修在河边什么地方可使所挖的水渠最短?预案:如有必要,须向学生讲一下按钮的先后顺序.【活动3】“智闯六关之第三关”为巩固战果,我军修建了两条防御工事,交成一个角,并在它的内部建了弹药库,为了提高运送效率,准备修两【活动2】学生动手操作,在感受图形变化的同时,可以借助表格,定量分析当点C运动过程中AC+BC的值由小到大或由大到小的变化过程,当点C到合适的位置时,AC+BC的值最小.【活动3】学生可以用鼠性,调动学生探究的积极性,在本环节,只是简单拖动一个点,“两点位于一条直线异侧”,很容易将所要确定的点与“两点之间,线段最短”确立联系,本活动每位学生均可无困难的完成.融合点:历史故事+直观图形+抽象的“两点一线”模型结合起来.意图:【活动2】通过使用表格工具,让学生体会定量分析的作用,借助几何画板的动态演示功能,学生可以方便的找到点C,培养学生由数到形的数学思想以及转化的能力.在实验探究的过程中验证所学知识,发展学生的空间想象力.融合点:直观的辅助图形+准确的表格测量数据和空间想象结合.意图:【活动3】条通道从弹药库分别通往工事,应如何设计?预设问题:如图,A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点D、E,使△ADE周长最小.【活动4】“智闯六关之第四关”侦察兵申请在防御工事内各修建一个瞭望塔,并规划好士兵侦查路线,即从兵营出发,先去往1号瞭望塔,再去2号瞭望塔侦察,侦查完毕去将军营汇报侦察结果.要怎样设计两个瞭望塔的位置,才能使士兵走的路最短?预设问题:在∠MON内有两点A、B,现在从点A先到射线OM 上点C,再到射线ON上点D,最后到达点B,请问最短距离如何确定?【活动5】“智闯六关之第五关”由于敌军近日反抗较强烈,我军需做好撤退计划,为了使战士快速全部撤回原河内营地,需在河上修建桥梁,桥梁应如何选址,才能使战士走的路程最短?标选中D、E中的一个点拖动或两个点同时拖动,感受图形变化引发的数量变化,如果借助表格无法正确确定D、E的位置,则需按“显示辅助线段”和“显示四边形”按钮,当两个四边形都消失的时候,点D、E运动到合适的位置,AD+EA+DE的值最小.【活动4】学生在上一个活动中得到的经验若还不能帮助他们正确找到“两个定点和两个动点在两条射线上运动”这一模型下的点D、E运动到的位置,则发挥小组合作的作用,再由老师引导启发,从而得出AC+CD+DB的值最小.【活动5】通过使用辅助的“显示/隐藏四边形”按钮,让学生体会四点共线时,线段最短.学生如果之前没有学过本题内容,确定点D、E的位置不会很轻松,需要胆大心细,仔细操作、观察、总结方可找到正确的位置.融合点:将一个点作两次关于直线的轴对称和两点之间线段最短结合起来.意图:【活动4】在这一过程中让学生进一步体会作法的合理性,提高了学生的逻辑思维能力.老师的引导,小组的合作,再次体现了老师的主导性,学生的主体性.融合点:将复杂背景中的问题与抽象的两个点作两次关于直线的轴对称结合起来.将直觉猜想和验证结合起来.培养学生严谨的思考习惯.意图:【活动5】“造桥选址”问预设问题:如图,A、B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥与河岸垂直)【阶段小结】以上五种情景均为平面内利用轴对称或平移变换将最短路径问题转化为“两点之间,线段最短”.【活动6】“智闯六关之第六关”为了防止敌人返攻,我军战士乔装后去了敌人后方侦察,发现敌军营内有一底面周长为16m,高5m的圆柱形的弹药库,顶部有个通风孔可以进人,在内壁远离我军方向距顶部1m处有一个凹陷,可用来安放炸药,战士手中有10.5m的引线,该战士想安放炸药后,将引线引至弹药库外靠近我方的地面上,点燃后迅速跑离,请问能否实现?说明:先观察下图中,撤退点、烛龛分别对应哪个点?思考最短路径是一条什么类型的线?然后按顺序①[圆柱侧面展开],②[显示矩形],③[向上翻折],思考问题的答案.四、归纳总结,反思提升同学们总结一下,通过本节课借助几何画板所研究的内容,学生可以用鼠标选中点C拖动,感受CD长度不随其位置的改变而变化,也可借助表格确定C、D的位置.【活动6】学生通过思考将一个实际问题转化为一个数学问题,将一个空间问题转化为平面问题,将一个平面问题转化为解三角形,通过操作3D模型将圆柱侧面展开,从而形象直观得到答案.【归纳总结】题有着非常好的实际背景,情境贴近生活.从求解方法看,平移是问题实现转化中的一个重要策略,联想到平移,其本质还是对“两点之间,线段最短”公理的深刻理解.同学们值得认真体会和积累.融合点:将平移作图和求最短路径结合起来.意图:【活动6】通过将圆柱侧面展平,把较复杂的最短路径问题转化为“两点之间,线段最短”问题.融合点:将曲面中的最短路径问题和平面问题的转化结合起来.有何收获和思考?五、巩固练习,适当拓展如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,求这个最小值.六、一试身手,分层检测专题:最短路径问题小测试A卷学生回顾前面的探究过程,小结解决问题的步骤是怎样的?借助了什么知识解决问题的?体现了什么数学思想?打开链接“专题:最短路径小测试A卷”完成基础题.意图:【归纳总结】让学生养成反思的好习惯,积累解决问题的方法,再次体会转化的数学思想.意图:通过“问卷星”分层检测,实时打分,可以及时反馈学生的掌握程度.融合点:将网络教学环境与满足不同学生发展的需求整合起来.意图:基础题是最短路径问题的简单应用,帮助学生巩固基础.A DEPB C专题:最短路径问题小测试B卷1.在平面直角坐标系中,有A(3,-2),B(4,2)两点,现另取一点C(1,n),当n=时,AC+BC的值最小.打开链接“专题:最短路径小测试B卷”完成提高题. 意图:提高题是“最短路径问题”的升华,考查学有余力的同学掌握情况,并且在课件中有B卷配图,可以帮助有困难的学生借助动态图形降低难度.七、布置作业(基础必做题)做完课上没有完成的:专题:最短路径问题小测试B卷(提高选做题)1.搜集最短路径问题的其他经典题目,并整理在笔记本上.2.阅读“平面几何中的费马问题和费马点”,并与同学们交流. 学生课后完成作业,其中的提高选作题可预留一周时间完成. 意图:为了有效地对学生的学习情况进行反馈,尊重学生的个体差异,满足学生多样化的学习需要,我对作业进行分层布置,分为基础必做题和提高选作题.融合点:搜集其他经典题目的过程和学生用数学整合起来,让学生掌握的能力可以解决最短路径问题.费马点问题和本节课没讲到的旋转变换整合起来,训练了学生寻找问题结论的发散思维.学情分析(一)教学对象分析:最短路径问题从本质上说是最值问题,初二的学生对这类问题比较陌生,经验不足,特别是对于具有实际背景的最值问题,更会无从下手,应让学生牢记两点之间线段最短,从而想到把其中一个点转移到另一侧进行解题.(二)教学环境分析:根据学生理性归纳能力不强的特点,采用几何画板制作成易于学生观察和动手操作的课件,辅助学生验证和增强解决问题的兴趣.运用计算机网络环境授课,方便学生展示、交流和纠错.效果分析本节课的活动设计与评测练习借助多媒体教学环境,有利于教学目标的实现,突出了重点,突破了难点.1.几何画板的软件环境,有利于揭示隐含条件.数学最值问题设计运动、轨迹、存在、最值、任意、不等式等较为抽象复杂的概念,传统方法常常让学生感到力不从心,借助几何画板,使多元抽象关系动态化、直观化,可以促使学生深入理解题意.2.最值求解的过程常常需要建立函数模型,寻求合适的自变量建立函数模型是解题难点.几何画板通过坐标系数形结合、动态直观展示自变量与函数值的内在联系,可有效突破难点.能够抽象出“最短路径问题”数学模型,在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.3、一般而言,解决最值的思维过程比较隐匿.传统教学较难凸显其思维过程.几何画板不仅能动态展示数学关系的多元联系,而且可以视觉化思维过程.《最短路径问题》教学设计一、教学目标(一)知识与技能:能利用轴对称等图形变换,依据“两点之间,线段最短”或“三角形两边之和大于第三边”解决最短路径问题.(二)过程与方法:在观察、操作、想象、论证、交流的过程中,获得解决最短路径问题的基本思路及经验.(三)情感态度与价值观:体会图形的变化在解决最值问题中的作用,感悟转化思想,在实际问题中迁移使用所获得的基本经验,深入领会其应用价值.二、教学重点和难点(一)教学重点:用轴对称变换以及平移解决实际问题中的最短路径问题.(二)教学难点:学生发现确定最短路径的“路径向导点”.三、教学方法和策略采用“实验—猜测—验证—应用”的教学线索,以学生的知识建构和认识发现为主轴,把线索发现的主动权和问题解决的个性化还给学生.充分利用网络多媒体教学环境和几何画板,制作学生可以动手操作体验的多媒体课件,把抽象的数学理论形象化,学生利用课件创建的图形去发现规律,验证思路,得出结论.让数学学习过程可视化、可操作化并增加互动性.四、教学过程视频内容1:虫洞(Wormhole),又称爱因斯坦-罗森桥.视频内容2:朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.三、分发课件,自主探究【课件引入】“最短路径的选择-看图思考”预设问题:问题:在不同的情景中,怎么合理选择路径呢?【发现】折线路径或立体路径 两点之间,线段最短.【活动1】“读历史故事,智闯六关之第一关”官渡之战,是东汉末年“三大战役”之一,也是中国历史上著名的以弱胜强的战役之一.建安五年(200年),曹操军与袁绍军相持于官渡(今河南中牟东北),在此展开战略决战.曹操奇袭袁军在乌巢的粮仓(今河南封丘西),继而击溃袁军主力.此战奠定了曹操统一中国北方的基础.本节课以此为背景,设置六关,鼓励学生一一破解. 第一关:曹军先遣队要趁夜色到河对岸的敌军营地营地附近做好埋伏,应该怎样走线路最短?机上观看视频.【课件引入】在四幅图片的引领下,学生逐渐发现平面内两点之间的最短路径到立体图形中的最短路径隐含的内在联系.【活动1】学生独立操作:拖动点P,确定点P的位置.的学习兴趣和思考.融合点:将网络素材与所要学习内容整合,古诗词作为最短路径问题的载体.意图:【课件引入】通过对逐渐递进的四幅图形的思索,培养学生能够用数学的眼光认识生活中现象的能力;将复杂的折线路径或立体路径转化为“两点之间,线段最短”,让学生体验“转化思想”的作用.融合点:取自现实生活中的情景与合理选择路径整合起来,直观形象与抽象思索整合起来.意图:【活动1】通过设置历史背景,将六个问题有机的串联起来,增强趣味性,调动学生探究的积极性,在本环节,只是简单拖动一个点,预设问题:先遣队从A,到河对岸敌军营地B,在河流a上求一点P,使得P A+PB最小.预案:如果有的学生不会操作拖动一个点,则及时向学生讲解一下如何拖动点P.【活动2】“智闯六关之第二关”攻占营地后,我军分设马场和营地两个驻扎点,为了给战士和马匹提供饮水,我军计划在河边修建水站,用水渠引水,为了减小挖水渠的工作量,水站应选在何处?预设问题:如图,要在河边修建一个水站,分别向马场A、营地B送水,水站修在河边什么地方可使所挖的水渠最短?预案:如有必要,须向学生讲一下按钮的先后顺序.【活动3】“智闯六关之第三关”为巩固战果,我军修建了两条防御工事,交成一个角,并在它的内部建了弹药库,为了提高运送效率,准备修两条通道从弹药库分别通往工事,应如何设计?【活动2】学生动手操作,在感受图形变化的同时,可以借助表格,定量分析当点C运动过程中AC+BC的值由小到大或由大到小的变化过程,当点C到合适的位置时,AC+BC的值最小.【活动3】学生可以用鼠标选中D、E中的一个点拖动或两个点同时拖动,感受图形“两点位于一条直线异侧”,很容易将所要确定的点与“两点之间,线段最短”确立联系,本活动每位学生均可无困难的完成.融合点:历史故事+直观图形+抽象的“两点一线”模型结合起来.意图:【活动2】通过使用表格工具,让学生体会定量分析的作用,借助几何画板的动态演示功能,学生可以方便的找到点C,培养学生由数到形的数学思想以及转化的能力.在实验探究的过程中验证所学知识,发展学生的空间想象力.融合点:直观的辅助图形+准确的表格测量数据和空间想象结合.意图:【活动3】通过使用辅助的“显示/隐藏四边形”按钮,让学生体会四预设问题:如图,A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点D、E,使△ADE周长最小.【活动4】“智闯六关之第四关”侦察兵申请在防御工事内各修建一个瞭望塔,并规划好士兵侦查路线,即从兵营出发,先去往1号瞭望塔,再去2号瞭望塔侦察,侦查完毕去将军营汇报侦察结果.要怎样设计两个瞭望塔的位置,才能使士兵走的路最短?预设问题:在∠MON内有两点A、B,现在从点A先到射线OM 上点C,再到射线ON上点D,最后到达点B,请问最短距离如何确定?【活动5】“智闯六关之第五关”由于敌军近日反抗较强烈,我军需做好撤退计划,为了使战士快速全部撤回原河内营地,需在河上修建桥梁,桥梁应如何选址,才能使战士走的路程最短?变化引发的数量变化,如果借助表格无法正确确定D、E的位置,则需按“显示辅助线段”和“显示四边形”按钮,当两个四边形都消失的时候,点D、E运动到合适的位置,AD+EA+DE的值最小.【活动4】学生在上一个活动中得到的经验若还不能帮助他们正确找到“两个定点和两个动点在两条射线上运动”这一模型下的点D、E运动到的位置,则发挥小组合作的作用,再由老师引导启发,从而得出AC+CD+DB的值最小.【活动5】学生可以用鼠标选中点C拖动,感受CD长度不随其位置点共线时,线段最短.学生如果之前没有学过本题内容,确定点D、E的位置不会很轻松,需要胆大心细,仔细操作、观察、总结方可找到正确的位置.融合点:将一个点作两次关于直线的轴对称和两点之间线段最短结合起来.意图:【活动4】在这一过程中让学生进一步体会作法的合理性,提高了学生的逻辑思维能力.老师的引导,小组的合作,再次体现了老师的主导性,学生的主体性.融合点:将复杂背景中的问题与抽象的两个点作两次关于直线的轴对称结合起来.将直觉猜想和验证结合起来.培养学生严谨的思考习惯.意图:【活动5】“造桥选址”问题有着非常好的实际背景,情境贴近生活.从求解方法看,平预设问题:如图,A、B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥与河岸垂直)【阶段小结】以上五种情景均为平面内利用轴对称或平移变换将最短路径问题转化为“两点之间,线段最短”.【活动6】“智闯六关之第六关”为了防止敌人返攻,我军战士乔装后去了敌人后方侦察,发现敌军营内有一底面周长为16m,高5m的圆柱形的弹药库,顶部有个通风孔可以进人,在内壁远离我军方向距顶部1m处有一个凹陷,可用来安放炸药,战士手中有10.5m的引线,该战士想安放炸药后,将引线引至弹药库外靠近我方的地面上,点燃后迅速跑离,请问能否实现?说明:先观察下图中,撤退点、烛龛分别对应哪个点?思考最短路径是一条什么类型的线?然后按顺序①[圆柱侧面展开],②[显示矩形],③[向上翻折],思考问题的答案.六、归纳总结,反思提升同学们总结一下,通过本节课借助几何画板所研究的内容,的改变而变化,也可借助表格确定C、D的位置.【活动6】学生通过思考将一个实际问题转化为一个数学问题,将一个空间问题转化为平面问题,将一个平面问题转化为解三角形,通过操作3D模型将圆柱侧面展开,从而形象直观得到答案.【归纳总结】学生回顾前面的探究过程,小结解决问题的移是问题实现转化中的一个重要策略,联想到平移,其本质还是对“两点之间,线段最短”公理的深刻理解.同学们值得认真体会和积累.融合点:将平移作图和求最短路径结合起来.意图:【活动6】通过将圆柱侧面展平,把较复杂的最短路径问题转化为“两点之间,线段最短”问题.融合点:将曲面中的最短路径问题和平面问题的转化结合起来.意图:【归纳总结】让学生养成反思的好习惯,积有何收获和思考?七、巩固练习,适当拓展如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,求这个最小值.六、一试身手,分层检测专题:最短路径问题小测试A卷步骤是怎样的?借助了什么知识解决问题的?体现了什么数学思想?打开链接“专题:最短路径小测试A卷”完成基础题.累解决问题的方法,再次体会转化的数学思想.意图:通过“问卷星”分层检测,实时打分,可以及时反馈学生的掌握程度.融合点:将网络教学环境与满足不同学生发展的需求整合起来.意图:基础题是最短路径问题的简单应用,帮助学生巩固基础.A DEPB C专题:最短路径问题小测试B卷1.在平面直角坐标系中,有A(3,-2),B(4,2)两点,现另取一点C(1,n),当n=时,AC+BC的值最小.打开链接“专题:最短路径小测试B卷”完成提高题.意图:提高题是“最短路径问题”的升华,考查学有余力的同学掌握情况,并且在课件中有B卷配图,可以帮助有困难的学生借助动态图形降低难度.。
初中数学[最短路径问题]典型题型及解题技巧
![初中数学[最短路径问题]典型题型及解题技巧](https://img.taocdn.com/s3/m/8ef7c063fe4733687f21aa11.png)
初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。
这对于我们解决此类问题有事半功倍的作用。
理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。
教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。
考的较多的还是“饮马问题”。
知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
解:连接AB,线段AB与直线L的交点P ,就是所求。
(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E ,2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。
蚂蚁爬行最短路径问题深层剖析
![蚂蚁爬行最短路径问题深层剖析](https://img.taocdn.com/s3/m/9d078ee97cd184254b3535fd.png)
蚂蚁爬行最短路径问题深层剖析1如图,一个长方体长、宽、高分别为4cm ,3cm ,6cm ,一只蚂蚁从A 点出发到G 点处吃食物,(1)请你画出蚂蚁能够最快到达目的地的可能路径?(2)需要爬行的最短路程是多少?【分析】做此题要把这个长方体展开,把蚂蚁所走的路线放到一个平面内,根据两点之间线段最短使用勾股定理即可计算.但难点在于学生在分析时往往对问题思考不够全面,在分类讨论时出现漏解或思路不够清晰所花时间较长。
我们不妨这样来分析;把长方体的六个面分为上面,下面,左面,右面,前面,后面,那么经过点A 的面有三个,分别是前面,左面,下面;经过点G 的面有三个,分别是上面,右面,后面。
接下来分类讨论第1种情况:我们把前面和上面组成一个平面,画出展开图 连结AG ,则在Rt △ABG 中,使用勾股定理 则所走的最短路程是979422=+=AG ;第2种情况:我们把前面和右面组成一个平面,画出展开图连结AG ,则在Rt △ACG 中,使用勾股定理 则所走的最短路程是856722=+=AG ;第3种情况:如果把前面和后面组合在一起,发现它们是互相平行的两个面,蚂蚁不可能到达,舍去;第4种情况:如果把下面和上面组合在一起,它们也是互相平行的两个面,蚂蚁不可能到达,舍去;第5种情况:我们把下面和右面组成一个平面,画出展开图连结AG ,则在Rt △AFG 中,使用勾股定理则所走的最短路程是10931022=+=AG ;第6种情况:我们把下面和后面组成一个平面,画出展开图连结AG ,则在Rt △ABG 中,使用勾股定理则所走的最短路程是974922=+=AG ;第7种情况:我们把左面和上面组成一个平面,画出展开图连结AG ,则在Rt △AFG 中,使用勾股定理则所走的最短路程是10931022=+=AG ;第8种情况:如果把左面和右面组合在一起,它们也是互相平行的两个面,蚂蚁不可能到达,舍去;第9种情况:我们把左面和后面组成一个平面,画出展开图连结AG ,则在Rt △ACG 中,使用勾股定理 则所走的最短路程是856722=+=AG ;综上;虽然分析了9种情况,但3种情况舍去,在剩下的6种情况中………………………97=AG……………………85=AG……………………109=AG这6种情况中,虽然路径不同,但因为长方体的对称性,线段AG 的长度实际上共有3种不同结果。
最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册
![最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册](https://img.taocdn.com/s3/m/2b5877b85122aaea998fcc22bcd126fff6055d1d.png)
专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。
图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。
arcgis 最短路径 原理
![arcgis 最短路径 原理](https://img.taocdn.com/s3/m/c1f1832211a6f524ccbff121dd36a32d7375c707.png)
arcgis 最短路径原理
ArcGIS的最短路径分析原理基于图论和网络分析的概念。
最短路径分析是指从一个地理网络的起始点到目标点寻找最短路径的过程。
最短路径分析的算法通常使用最短路径算法,其中最常用的是Dijkstra算法和A*算法。
这些算法通过计算网络中每个节点的距离和路径来确定最短路径。
最短路径分析的基本原理如下:
1. 将地理空间数据转化为网络数据,通过将响应地理要素(如街道、河流等)转化为线状要素,节点表示要素连接点。
2. 通过计算网络中各节点之间的距离和连接关系,构建网络拓扑。
3. 根据用户指定的起始点和目标点,在网络上进行搜索,并计算每个节点的最短路径距离。
4. 使用最短路径算法来计算最短路径。
Dijkstra算法根据节点之间的距离和路径成本来计算最短路径。
A*算法在Dijkstra算法的基础上加入了启发函数,以增加搜索的效率。
5. 根据计算结果,生成最短路径线状要素,以可视化显示出从起始点到目标点的最短路径。
根据用户的需求和约束条件,最短路径分析还可以考虑其他因素,如拥堵、交通规则、权重等。
这些因素可以通过网络分析工具中设置的属性或权重来体现。
总的来说,ArcGIS的最短路径分析通过构建地理网络和应用
最短路径算法,找到从起始点到目标点的最短路径,并将结果可视化表示出来。
地理信息系统导论学习笔记(17)—最小耗费路径分析和网络分析
![地理信息系统导论学习笔记(17)—最小耗费路径分析和网络分析](https://img.taocdn.com/s3/m/4812d1f832d4b14e852458fb770bf78a65293a95.png)
地理信息系统导论学习笔记(17)—最小耗费路径分析和网络分析互助、共享、学习一共十八章(第一章绪论、第二章坐标系统、第三章矢量数据模型、第四章栅格数据模型、第五章GIS数据获取、第六章几何变换、第七章空间数据准确度和质量、第八章属性数据管理、第九章数据显示与地图编制、第十章数据探查、第十一章矢量数据分析、第十二章栅格数据分析、第十三章地形制图与分析、第十四章视域和流域、第十五章空间插值、第十六章地理编码和动态分段、第十七章最小耗费路径分析和网络分析、第十八章GIS模型与建模。
)本章概览最小耗费路径分析最小耗费路径分析的应用网络网络拼接网络分析本章介绍最小耗费路径分析和网络分析,两者都涉及运动和线性要素。
最小耗费路径分析是基于栅格的,且关注面较窄。
用耗费栅格定义通过每个像元所需的耗费,最小耗费路径分析能找到像元间的最小累积耗费路径。
最小耗费路径分析是很有用的,如经常作为一种分析工具,用于确定建设耗费最低(最理想)和环境影响最小的新建道路或管线。
网络分析要求矢量格式并已建立拓扑关系的网格。
地理信息系统导论学习笔记(3)最常见的网络分析可能是最短路径分析。
了解路径距离分析最小耗费路径分析介绍内容为:源栅格、耗费栅格、耗费距离量测、生成最小累积耗费路径、最小耗费路径分析的选项。
最小耗费路径分析所需要素包括:源栅格、耗费栅格、耗费距离量测和生成最小累积耗费路径的算法。
源栅格,源栅格定义了源像元。
源栅格中仅源像元有像元值,所有其他的像元都不赋值。
耗费栅格,耗费栅格定义了穿过每个像元的耗费或阻抗。
耗费栅格包含3个特征:1、每个像元的耗费通常是不同耗费的总和。
2、耗费可以是实际耗费也可以是相对耗费。
相对耗费可以分级,如分为1-5级,5为最高耗费等级。
3、耗费因素的权重由每个因素的相对重要性而定。
要组成一个耗费栅格,我们由编制和估算一个耗费变量表开始。
然后对每个耗费变量分别生成一个栅格,乘以每个耗费因素的权重,再用局部拟合运算将耗费栅格相加,其局部加和即是穿过每个像元所需的总耗费。
最短路径分析可行性分析
![最短路径分析可行性分析](https://img.taocdn.com/s3/m/77b9ed9677eeaeaad1f34693daef5ef7ba0d12d8.png)
最短路径分析可行性分析最短路径分析是一种在图形或网络中找到最短路径的技术。
这种分析方法可以应用于各种场景,如交通规划、GPS导航、电信网络、物流配送等。
在进行最短路径分析之前,我们需要先构建一个图形或网络模型,然后使用适当的算法来计算最短路径。
在进行最短路径分析之前,我们需要进行可行性分析。
可行性分析是评估和判断一个方法或决策是否可行、合理、可实施的过程。
对于最短路径分析,主要从技术可行性、经济可行性和社会可行性三个方面进行分析。
首先,技术可行性是指是否存在适当的技术和工具来进行最短路径分析。
对于小规模的网络或图形,如城市中的交通路网,使用常规算法如迪杰斯特拉或A*等算法可以很方便地求解最短路径问题。
对于大规模复杂的网络,如全球互联网或物流网络,需要使用更高级的算法和技术,如分布式计算、并行计算或机器学习等方法。
因此,在进行最短路径分析前,需要确认是否有合适的技术和工具来应用。
其次,经济可行性是指进行最短路径分析的成本是否可接受。
成本包括软件工具的费用、计算资源的费用、数据采集和处理的费用等。
通常情况下,最短路径分析需要依赖地理信息系统(GIS)等软件工具,这些工具通常需要支付一定的许可费用。
另外,进行最短路径分析可能需要大量的计算资源,包括计算机、服务器等,并且可能需要支付相应的电费、维护费用等。
此外,数据的采集和处理也需要相应的费用,如地理数据的采集和处理、电信数据的获取等。
因此,在进行最短路径分析之前,需要综合考虑是否有足够的经济资源来支持。
最后,社会可行性是指进行最短路径分析是否对社会有积极的影响。
最短路径分析常应用于交通规划、物流配送等领域,可以提高交通效率、减少交通拥堵、减少能源消耗等,对于城市和社会发展具有重要意义。
然而,最短路径分析可能会涉及个人隐私和数据安全等问题,例如GPS导航、电信网络分析可能会涉及个人位置信息、通信记录等敏感信息的收集和处理。
因此,在进行最短路径分析之前,需要充分考虑和解决相关的隐私和安全问题。
人教版八年级下册数学专题复习及练习(含解析):最短路径问题
![人教版八年级下册数学专题复习及练习(含解析):最短路径问题](https://img.taocdn.com/s3/m/24778a2bce2f0066f433226d.png)
专题13.4最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点川,万分别是直线2异侧的两个点,在2上找一个点G使CA^CB最短,这时点Q是直线』与初的交点.⑵求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条宜线的对称点, 连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点月,万分别是直线2同侧的两个点,在』上找一个点G使CA+CB最短,这时先作点〃关为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接EG、BC「、证明M -\-CB<AC f +C* 3 如下:证明:由作图可知,点万和万‘关于直线/对称,所以直线/是线段宓’的垂直平分线.因为点Q与C'在直线上,所以BC=B' G BC =B f r C f・在G 中,AB' <AC r +B f C ,所以AC+B' C<AC r +B f C ,所以AC+BC<AC f+C‘ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点「到直线上某点的距离和最小越个核心,所有作法都相同.利用轴对称解决最值问题应注意题目要球根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,「审题不淸导致答非所问.3.利用平移确左最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸「的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜而反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.Cy __-7 B5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.对点例题解析【例题1】在图中直线/上找到一点M使它到儿万两点的距离和最小.A【例题2】如图,小河边有两个村庄出B.要在河边建一自来水厂向川村与万村供水.(1)若要使厂部到心万村的距离相等,则应选择在哪建厂?(2)若要使厂部到川,万两村的水管最短,应建在什么地方?【例题3】如图,从川地到万地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到万地的路程最短?【例题4】如图所示,A, 3两点在直线2的两侧,在/上找一点G使点C到点月、万的距离之差最大.如JII练题1 •直线』左侧有两点只Q,试在直线上确左一点Q使得防%最短.2•如图,△月氏与△处关于某条直线对称,请画岀对称轴.A DC F3•如图,A.万为重庆市内两个较大的商圈,现需要在主要交通干道』上修建一个轻轨站只问如何修建,4•如图,四边形ABCD 中,ZBAD=120° , ZB=ZD=90°,在BC、CD ±分别找一点M、N,使Z\AMN 周长最小时,则ZAMN+ZANM的度数为()C. 110°D. 100°5•如图,两条公路0A. 0B相交,在两条公路的中间有一个汕库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运汕车从油库出发,经过一个加油站,再到另一个加汕站,最后回到汕库所走的路程最短.专题13.4最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点川,万分别是直线2异侧的两个点,在2上找一个点G使CA^CB最短,这时点Q是直线』与初的交点.⑵求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条宜线的对称点, 连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点月,万分别是直线2同侧的两个点,在』上找一个点G使CA+CB最短,这时先作点〃关为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接EG、BC「、证明M -\-CB<AC f +C* 3 如下:证明:由作图可知,点万和万‘关于直线/对称,所以直线/是线段宓’的垂直平分线.因为点Q与C'在直线上,所以BC=B' G BC =B f r C f・在G 中,AB' <AC r +B f C ,所以AC+B' C<AC r +B f C ,所以AC+BC<AC f+C‘ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点「到直线上某点的距离和最小越个核心,所有作法都相同.利用轴对称解决最值问题应注意题目要球根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,「审题不淸导致答非所问.3.利用平移确左最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸「的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜而反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.Cy __-7 B5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.对点例题解析【例题1】在图中直线/上找到一点M使它到儿万两点的距离和最小.A【答案】见解析。
Arcgis操作 实验十五:最短路径分析
![Arcgis操作 实验十五:最短路径分析](https://img.taocdn.com/s3/m/c69cc73e83c4bb4cf7ecd13a.png)
实验十五:最短路径分析一、实验目的1、掌握各种类型的最短路径分析;2、理解网络分析原理。
二、实验准备数据准备:City.mdb软件准备:ArcGIS Desktop9.x,ArcCatalog三、实验内容根据不同的要求,获得到达指定目的地的最佳路径,并给出路径的长度;找出距景点最近的某设施的路径。
1、在网络中指定一个商业中心,分别求出在不同距离、时间的限制下从家到商业中心的最佳路径;2、给定访问顺序,按要求找出从家出发,逐个经过访问点,最终到达目的地的最佳路径;3、研究阻强的设置对最佳路径选择的影响。
四、实验步骤启动ArcMap ,打开city. mdb ,双击city数据库,加载数据。
对点状要素place符号化:以HOME字段,1值为家,0值为商业中心。
具体步骤见操作视频:最短路径分析.exe图1 无权重参照的最短路径显示(1)无权重最佳路径的生成1)在网络分析工具条上,选择旗标工具,将旗标放在“家”和想要取得“商业中心”点上。
2)选择Analysis/Options命令,打开Analysis Options对话框,确认Weights和Weight Filter 标签项全部是None,这种情况下进行的最短路径分析是完全按照这个网络自身的长短来确定。
3)在Track Task文本框中选择Find path。
单击solve按钮。
显示最短路径(图1),这条路径的总成本显示在状态栏中。
(2)加权最佳路径生成1)在设施网络分析工具条下,点选旗标工具,将旗标分别放在“家”和想去的某个“商业中心”的位置上。
2)选择Analysis/Options命令,打开Analysis Options对话框(图2)进入Weights标签页,在边的权重上,全部选择长度权重属性。
图2 长度权重属性设置3)在Track Task文本枢中选择Find path,单击solve按钮,则以长度为比重的最短路径将显示出来(图3),这条路径的总成本显示在状态栏中。
初中数学最短路径问题(经典版)分析
![初中数学最短路径问题(经典版)分析](https://img.taocdn.com/s3/m/e8b14a2ec381e53a580216fc700abb68a882ad45.png)
初中数学最短路径问题(经典版)分析
初中数学最短路径问题的分析
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图中两结点之间的最短路径。
该问题可以分为四种形式:确定起点的最短路径问题、确定终点的最短路径问题、确定起点终点的最短路径问题和全局最短路径问题。
将军饮马”、“造桥选址”和“费马点”是最短路径问题的原型。
解决该问题需要涉及一些数学知识,如“两点之间线段最短”、“垂线段最短”、“三角形三边关系”、“轴对称”和“平移”。
该问题通常涉及角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴和抛物线等。
解题思路可以通过找对称点实现“折”转“直”,或者通过“三折线”转“直”等变式问题进行考查。
总之,初中数学最短路径问题是一个需要一定数学基础和思维能力的经典问题。
掌握解题思路和相关知识可以帮助学生更好地理解数学概念和培养数学思维。
最短路径算法与应用中的问题分析(史上最全路径算法总结)
![最短路径算法与应用中的问题分析(史上最全路径算法总结)](https://img.taocdn.com/s3/m/8ecc20f2700abb68a982fbd8.png)
二,任意权值的单源最短路径算法,解决上述问题 2.
1, 问题的描述: 给定一个有向带权图 D 与源点 v,各边上的权值为任意实数,要求找出从 v 出 发到 D 中其它各顶点的最短路径。 2, 算法的主要思想: 此种情况下我们可以用 Bellman-ford 算法。 当图中没有由带负权值的边组成的回 路时,有 n 个顶点的图中任意两个顶点之间如果存在最短路径,此路径最多有 n-1 条边。 Bellman-Ford 方法构造一个最短路径长度数组序列 dist1[u], dist2[u], …, distn-1[u],其中,dist n-1[u]是从源点 v 出发最多经过不构成带负长度边回路的 n-1 条边到达终点 u 的最短路径长度。算法的最终目的是计算出 dist
六,如果权值非负,求其总长最短的一条过全部节点的初级回路。解 决问题 7。
1,问题的描述: 给定一个正权完全图, 求其总长最短的哈密顿回路。 所谓的哈密顿回路便是无向 图中一条经过全部节点的初级回路。这个便是图论中非常经典的旅行商问题。 2,算法的主要思想: 解决旅行商问题的一种比较精确的求解方法是分支与界法。 分支与界法的基本思路是: 1, 首先将边权由小到大排序,初始界 d0 。 2, 在边权序列中依次选边进行深探,直到选取 n 条边,判断是否构成 H 回路, 若是, d0 d (s1) ,结束。 3, 继续深探, 依次删除当前 si 中的最长边, 加入后面第一条待选边, 进行深探, 如果它是 H 回路且 d( si ) d 0 ,则 d0 d ( si ) 作为界。 4, 退栈过程,不能再深探时需要退栈。如果栈空,结束,其最佳值为 d0。否则 如果新分支的 d( si ) d 0 ,继续退栈;若 d(si)<d0,转 3. 这种搜索过程是在不断的构造分支与确定界值。一旦确定了界值,则对大于等于 界值的分支不在搜索, 而且最后得到的界值就是问题的最佳解。但是在最坏的情 况下,该算法的时间复杂度是 O(n!)。因此在实际问题中,我们经常采用近似算 法求解问题的近似最优解,近似算法中比较好的是“便宜”算法。 便宜算法的基本思路: 初始化时 T=(1,1); S ={2,3, · · · ,n} T 是一个不断扩充的初级回路,最初是一个自环。首先我们选取 S 中与 T 距离最 近的节点 j。设(j,t)是相应的边,这时节点 j 或插入到回路 T 中 t 的前面或者 插入到其后面,这根据 j 插入后回路 T 长度增量的大小而定。即如果 ,则插入到 t 与 t1 之间,否则 w ( j ,t ) w ( j ,t 1) w( t ,t 1) w (j t , ) w (j t , 2 ) w t ( t, 2 ) 插入在 t 与 t2 之间。
最短路径数学建模案例及详解
![最短路径数学建模案例及详解](https://img.taocdn.com/s3/m/916cdf8d68dc5022aaea998fcc22bcd126ff4282.png)
最短路径数学建模案例及详解最短路径问题是数学建模中一个经典的问题,它在实际生活中有很多应用,例如网络传输、交通规划、物流配送等等。
下面我们以交通规划为例,来详细解析最短路径问题的数学建模过程。
问题描述:假设有一座城市,城市中有多个地点(称为节点),这些节点之间有道路相连。
我们希望找到两个节点之间的最短路径,即耗费时间最短的路径。
数学建模:1. 数据准备:a. 用图的方式表示这座城市和道路连接关系。
我们可以用一个有向图来表示,其中各个节点代表不同的地点,边表示道路,边的权重表示通过该道路所需的时间。
b. 节点间道路的时间数据。
这是一个关键的数据,可以通过实地调研或者其他数据收集手段获取,或者通过模拟生成。
2. 建立数学模型:a. 定义问题中的主要变量和约束条件。
- 变量:选择经过的边,即路径(也可以看作是边的集合)。
- 约束条件:路径必须是从起始节点到目标节点的有向路径,不允许重复经过节点。
b. 建立目标函数。
我们的目标是最小化路径上的时间,所以目标函数可以定义为路径上各边的权重之和。
c. 建立约束条件。
- 定义起始节点和目标节点。
- 定义路径必须从起始节点出发,到目标节点结束。
- 定义路径不能重复经过同一节点。
3. 解决模型:a. 利用最短路径算法求解,比如在有向图中,可以用Dijkstra 算法或者 Bellman-Ford 算法等。
4. 结果分析和验证:找到了最短路径后,我们可以对结果进行分析,比如查看路径上的具体节点和道路,以及路径的耗时。
我们还可以按照实际情况进行验证,比如通过实地考察或者其他数据对比来验证求解得到的路径是否合理。
总结:最短路径问题是一个常见的数学建模问题,在实际应用中有着广泛的应用。
通过数学建模,我们可以准确刻画问题,用数学方法求解,得到最优的结果。
在实际解决问题过程中,还需要对结果进行分析和验证,以保证结果的合理性和可行性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类号密级编号2015届本科生毕业论文题目基于AHP决策分析法和Dijkstra算法的最短路径学院资源与环境工程学院姓名杜玉琪专业地理科学学号20111040205指导教师王荣提交日期2015年5月8日原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。
学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。
除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。
本声明的法律责任由本人承担。
论文(设计)作者签名:指导老师签名:签名日期: 2013 年 5 月18 日目录0 引言 (3)1 研究区概况 (4)2.数据来源与研究方法 (4)2.1数据来源 (4)2.2研究方法 (5)2.2.1AHP决策分析方法 (5)2.2.2Dijkstra算法 (6)3实例分析 (7)3.1 基于AHP对3A级景区决策分析 (7)3.1.1层次结构模型的构造 (7)3.1.2模型计算过程 (8)3.1.3结果分析 (10)3.2基于Dijkstar算法对3A级景点旅游路线的设计 (10)3.2.1旅游路线模型构造 (10)3.2.2模型计算与分析 (13)4结语 (13)参考文献 (14)致谢 (15)基于AHP决策分析法和Dijkstar算法的最短路径分析——以天水市3A级旅游景点为例杜玉琪(天水师范学院资源与环境工程学院甘肃天水741000)摘要:随着西部旅游业的发展,旅游最佳路线的选择变得越来越重要。
本文运用AHP决策分析的方法进行综合评价分析天水市众多旅游景点中的麦积石窟、伏羲庙、玉泉观、南郭寺、大象山、武山水帘洞、清水温泉,这7个3A级景点各自的旅游价值。
再通过Dijkstar算法,对上述旅游景点的最短旅游路线的选择进行研究,最终为不同要求的游客提供出最佳的旅游路线。
关键字:AHP决策分析;Dijkstar算法;最短路径分析;天水市Based on the AHP decision analysis method and the analysis of Dijkstar algorithm of the shortest path——in tianshui 3 a-class tourist attractions as an example Abstract:With the development of the western tourism, tourism optimal route choice is becoming more and more important.This article applies the method of AHP decision analysis on comprehensive evaluation analysis of the numerous tourist attractions tianshui wheat product, yuquan view, nanguo temple grottoes, fu xi temple, the elephant, wushan waterfall cave, water hot springs, the seven aaa scenic spot tourism value. Again through the Dijkstra algorithm, the choice of the tourist attractions of the shortest travel route, finally for different requirements of the best travel route for tourists.Key words: Analytic hierarchy process; Dijkstar; Shortest path; tianshui city0 引言随着西部旅游业如火如荼的发展,天水市自驾旅游开始被越来越多的人选择。
自驾车旅游者追求以最少的花销走更远的路,看更优美的风景。
因此设计出一条多景点间距离最短(或费用,时间最少)的旅游线路是自驾车游客的现实需求[1]。
而对于旅游景点的评价及旅游线路的选择问题,是旅游学术界一直关注的课题。
众多学者所采用的方法,大体可归纳为主观定性评价和客观定量评价。
景点评价方法在我国开展的时间并不长,主要侧重定性描述,较缺乏定量模型研究。
定量评价方法分为单项评价和综合评价,综合评价的方法中的“多因素模糊评价法”是近些年发展起来的方法。
但由于旅游景点特征具有客观不确定性,在制定评价指标时要考虑到多重因素,不能较好的体现旅游者的不同旅游要求与可得性程度。
而AHP决策分析法既能体现定性评价中的旅游者可得性供给程度,也能得出的旅游资源评价指标体系中相关要素按隶属关系从而分为若干层次,再请有经验的专家对各层次各因素的相对重要性给出定量指标,最后利用数学方法综合其权值[2]。
为了体现天水历史文化和民俗风情,本文在旅游地选择问题上应用AHP决策分析的方法,最终选择出天水市3A级旅游景点中的7个旅游地。
以天水市7个景点旅游路线选择问题为例,通过Dijkstar 算法得出天水市自驾旅游的最佳路径。
1 研究区概况天水作为历史文化名城,位于甘肃省东南部,地处陕、甘、川三省交界,全境介于东经104°35′~106°44′、北纬34°05′~35°10′之间,市区平均海拔高度为1100米。
天水历史悠久,文化源深,人文荟萃相传华夏始祖伏羲氏诞生于此,因此又有“羲皇故里”之称[3]。
境内交通方便,旅游资源丰富,目前已形成了伏羲文化、秦文化、三国文化、明清建筑文化、民俗风情文化等多元文化景观,其中麦积山石窟作为我国四大石窟之一具有“东方雕塑馆”的美称,周边的风景兼具了江南水乡的秀美和北国山川的雄奇,是国务院公布的第一批风景名胜区。
天水人民自古就有祭拜伏羲的习俗,自1988年天水市恢复了公祭伏羲大典,连续多年举办的伏羲祭典,依然成为甘肃和天水重要的对外文化品牌,吸引了众多的海内外华人来天水寻根问祖,祭拜人文始祖。
2006年,太昊伏羲祭典荣列国务院首批国家级非物质文化遗产名录。
因此天水市旅游开发的潜力十分巨大。
2.数据来源与研究方法2.1数据来源首先从天水旅游统计月报中得到相关数据,并进行研究处理分析得出AHP 决策分析中的判断值;其次从goolge电子地图中得出各旅游景点间的最短距离和时间,通过比例尺转化得到旅游景点间具体路径权重值。
2.2研究方法2.2.1AHP 决策分析方法美国运筹学家T. L. Saaty 于20世纪70年代提出的analytic hierarchy process ,简称AHP 决策分析法,是一种决策者通过对复杂问题的决策思维过程模型化,数量化的方法[7]。
应用这种方法,可以把复杂问题划分成若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案重要性程度的权重从而为决策方案的选择提供依据[7]。
(1)AHP 决策分析方法的基本步骤:Step1:明确问题。
即弄清问题的范围,所包含的因素以及各因素之间的关系,以便尽量掌握充分的信息。
Step2:建立层次结构模型。
即将问题所含的要素进行分组,把每一组作为每一层,并将其按照最高层(目标层),若干中间层(准则层)和最低层(对象层)的次序排列起来。
Step3:构造判断矩阵。
判断矩阵表示针对上一层的某元素而言,评定该层次中各有关元素相对重要性程度的判断。
Step4:层次单排序。
其目的是对于上层次中的某元素而言,确定本层次与之有联系的各元素重要性次序的权重值。
Step5:层次总排序。
利用同一层次中所有层次单排序的结果,就可以计算针对上一层而言,本层次所有元素的重要性权重值。
层次总排序需要从上到下逐层按顺序进行,对于最高层而言,其层次单排序的结果也就是总排序的结果。
(2)AHP 决策分析的计算方法(和积法)Step1:将判断矩阵每一列归一化 1ijnkik b b b==∑ ()1,2,,i n = (1)Step2:对按列归一化的判断矩阵,再按行求和1ni i j j W b ==∑ ()1,2,,i n = (2)Step3:将向量12(,,,)T i n W W W W = 归一化:1ii nkk W W W==∑ ()1,2,,i n = (3)则12(,,,)T i n W W W W = 即为所求的特征向量。
Step4:计算最大特征根: m a x 1()nii iAW nW λ==∑(4) 式中:(AW)i 表示向量AW 的第i 个分量。
2.2.2Dijkstra 算法关于最短路径问题,目前所公认的最好的求解方法,是1959年由著名数学家E.W,Dijkstar 提出的标号法(Dijkstar 算法)[7]。
该方法在求解过程的每一个步骤中,都对网络图中的每一个顶点赋予一个相应的数,这个数就称之为该顶点的标号。
这个算法的优点是:首先,它可以求出起点到终点的最短路径及其长度;其次可以求出起点到任何一点的最短路径及其长度;更重要的是它不仅适用于求解有向图上的最短路径问题,而且同样也适用于求解无向图上的最短路径问题[7]。
(1)Dijkstar 算法原理Dijkstar 算法是计算从某个点到其余各个顶点的最短路径,是按照路径长度递增的次序产生最短路径的算法。
设G=(V ,A)是一个赋权有向图,即对于图中的每一条边e=(v i ,v j ),都赋予了一个权值w 。
在图G 中指定两个顶点,确定为起点和终点,不妨设v 1为起点,v k 为终点。
基本思路是:首先从v 1开始,给每一顶点标一个数,称为标号。
这些标号又进一步区分T 标号和P 标号两种类型。
其中,每一个顶点的T 标号表示 从起点v 到该点的最短路径长度的上界,这种标号为临时标号;P 标号表示从v 1到该点的最短路径长度,这种标号为固定标号。
在最短路径计算过程中,对于已经得到P 标号的顶点,不再改变其标号;对于没有标上P 标号的顶点,先给它一个T 标号;算法的每一步就是把顶点的T 标号逐步修改,将其变为P 标号[7]。
那么,最多经过k-1步,就可以求得从起点v 1到每一个顶点的最短路径及其长度。
(2)Dijkstar 算法的基本步骤Step 1:给v 1标上P 标号P(v 1)=0,对其余各点,均标上T 标号:()j V T =+∞ ()1j ≠ (5)Step 2:如果刚刚得到P 标号的点是v i ,那么,对于所有这样的点v j :(v i, v j )E ,而且v j 的标号是T 标号,将其T 标号修改为:min{T(v j ),P(v i )+w ij }。