(完整版)极限与连续

合集下载

高等数学 第二章 极限与连续

高等数学 第二章 极限与连续

§1. 数列的极限1. lim 0,,..||n n n x a N s t n N x a εε+→∞=⇔∀>∃∈>−< 时,成立2. 性质:收敛数列必有界、极限必唯一!§2. 函数的极限lim ()0,0,..|()|x f x A X s t x X f x A εε→∞=⇔∀>∃>>−<时,成立lim ()lim ()x x f x f x A →−∞→+∞⇔==00lim ()0,0,..|()|x x f x A s t x x f x A εδδε→=⇔∀>∃>−<−<时,成立00lim ()lim ()x x x x f x f x A −+→→=⇔=§3. 极限的性质极限的四则运算法则、复合运算法则、局部保号性§4. 无穷小与无穷大1. 定义:若lim ()x f x →=A ,则称x → 时()f x 为无穷小2. 性质:① 有限个无穷小的和(积)仍为无穷小;② 常数与无穷小的乘积仍为无穷小;③ 有界函数与无穷小的乘积仍为无穷小.3. 无穷小与无穷大的关系: 同一极限过程中,无穷小与无穷大互为倒数.4. 无穷小的比较:若α和β为自变量同一变化趋势下的无穷小量,① 若lim 0x αβ→= ,称α是比β高阶的无穷小,记为()αβ= . ② 若lim x C αβ→= ,(),称0C ≠α和β为同阶无穷小. ③ 若lim 1x αβ→= ,称α和β为等价无穷小,记为α~β.5. 等价无穷小代换定理:若1αα∼,1ββ∼,则11limlim x x ααββ→→= . 常用的等价无穷小结论:时,0x →sin x x ∼,arcsin x x ∼,tan x x ∼,arctan x x ∼, 1x e x −∼,ln(1)x x +∼,a x a x ln ~1−,21cos /2x x −∼,(1)1x x αα+−∼.§5. 极限的存在准则1. 夹逼准则:若,且()()()g x f x h x ≤≤lim ()lim ()x x g x h x A →→== ,则lim ()x f x A →=. 特别的:若,且n n n z x y ≤≤A z y n n n n ==∞→∞→lim lim ,则A x n n =∞→lim2. 单调有界收敛准则:若{}n x 单调增且有上界(或单调减且有下界),则lim n n x →∞必存在. 重要极限结论(1型):∞()1lim 1()x x x e ϕϕ→⎛⎞+=⎜⎟⎝⎠,其中lim ()x x ϕ→=∞§6. 连续函数及其性质1. 函数的连续性定义:若)()(lim 00x f x f x x =→,则()f x 在点连续. 0x 0lim 0x y Δ→⇔Δ=,其中)()(00x f x x f y −Δ+=Δ. 000lim ()()lim ()x x x x f x f x f x −+→→⇔==(即00()()()f x f x f x −+==). 结论:初等函数在定义区间内连续!2. 间断点:如果在处不连续,则称在处间断.)(x f 0x )(x f 0x 间断的分类:第一类间断点:左、右极限都存在的间断点左、右极限 相等的为可去间断点;左、右极限不相等的为跳跃间断点;第二类间断点:左、右极限至少有一个不存在的间断点.注:分段函数在分段点处极限、连续性的讨论!3. 闭区间上连续函数的性质:最值定理:若()[,]f x C a b ∈,则()f x 在[,上一定能取得最值.]a b 介值定理:设()[,]f x C a b ∈,分别是,m M ()f x 在[,上的最值,若常数C 满足:,则至少存在一点]a b m C M <<(,)a b ξ∈,使()f C ξ=.零点定理:若()[,]f x C a b ∈,且()()0f a f b <,则至少存在一点(,)a b ξ∈,使()0f ξ=. (常用于证明方程根的存在性)。

(完整版)赵树嫄微积分第四版第二章极限与连续

(完整版)赵树嫄微积分第四版第二章极限与连续

x从右侧无限趋近x0 , 记作x x0 (或x x0 0 ) .
左极限:
0, 0,使当x0 x x0时, 恒有 | f ( x) A | .
记作 lim f ( x) A 或 x x0
f ( x0 0) A .
x0
x0
x
左极限:
0, 0,使当x0 x x0时, 恒有 | f ( x) A | .
定义无限接近于无限增大时sinlimsinlim为中心线直线图形完全落在以函数lim不存在arctanlim不存在lim的一条水平渐近线就是那么的距离趋于零这时我们称直线lim的一条水平渐近线就是那么为常数二自变量趋于有限点处时函数的极限问题
第二章 极限与连续
本章介绍极限的概念、性质和运算法则,以及与极 限概念密切相关的,并且在微积分运算中起重要作 用的无穷小量的概念和性质。此外还给出了两个极 其有用的重要极限。随后,运用极限引入了函数的 连续性概念,它是客观世界中广泛存在的连续变化 这一现象的数学描述,微积分学中讨论的函数主要 是连续函数。
x
x
故 lim ex 不存在. x
o
x
一条伸展到无穷远的曲线 y f ( x) ,当点P( x, f ( x)) 沿 曲线无限远离原点时,点 P 到直线 y A 的距离趋于零, 这时我们称直线 y A 是曲线 y f ( x) 的水平渐近线.
如果 lim f ( x) A 或 lim f ( x) A ( A 为常数),
性质2 有界性
对于数列{an } ,如果存在常数 M 0 ,使对一切 n,有
| an | M , 则称数列{an } 是有界的。
定理2 收敛的数列必定有界。 注1 有界性是数列收敛的必要条件,不是充分条件。

极限和连续的总结

极限和连续的总结
( x) [lim f ( x)]
极限存在性定理 两个重要极限
(1)
sin x lim 1 x 0 x 1 x lim (1 ) e x x
(2)
1 n lim (1 ) e n n
lim ( 1 x ) e x0
x x0 x x0
( x , x ) \ { x } 内 恒 有 f ( x) g ( x) , 则
0 0 0
A B.
00:38
二、极限的四则运算法则
定理(四则运算法则)设
lim f ( x) A , lim g ( x) B ,

法则 1
法则 2
法则 3
lim f ( x) g ( x) lim f ( x) lim g ( x) A B
第一类间断点 第二类间断点
左右极限至少有一 个不存在
00:38
第 一 类 间 断 点 第 二 类 间 断 点
y
y 可去型
y 跳跃型
o
x0
x
o y
x0
x
o
x0
x
o
x 振荡型
无穷型
(1)基本极限
(2)分子、分母分解因式,约去趋于 x→∞ 零但不等于零的因子 (3)分子分母同除以高次幂(39页例6)
(4)分子、分母有理化(39页例5) (5)利用两个重要极限公式求极限
(1)间断点分类:
第一类间断点: 及 若 若 第二类间断点: 均存在 , 称 称
x0 为可去间断点 . x0 为跳跃间断点 .

中至少一个不存在 ,
若其中有一个为 , 称
x0 为无穷间断点 . x0 为振荡间断点 .

函数的极限与连续

函数的极限与连续
x →∞
lim (ቤተ መጻሕፍቲ ባይዱx 3 5 x 2 + 1)
5 1 lim (3 + 3 ) x →∞ x x = 3 犯了什么错误? = 4 3 lim (8 + 3 ) 8 n →∞ x x
第一章 函数的极限与连续
由上题可知,当am ≠ 0, bn ≠ 0, m和n为非负整数时有 am b 当n = m am x m + am 1 x m 1 + + a0 n lim = 0 当n > m n 1 x →∞ b x n + b + + b0 n n 1 x ∞ 当n < m 当分子和分母为数列形式时此方法也适应
y = sin (1 + x + x 2 ) + cos x, y = sin x 3x
它们都是初等函数.
第一章 函数的极限与连续
2、极限的概念 、
(1)案例引入极限思想 案例引入极限思想 中国古代数学家刘徽在《九章算术注》中创造了“割圆术”来计算圆周率π的 方法。刘徽注意到圆内接正多边形的面积小于圆面积,且当边数屡次加倍时, 正多边形的面积增大,边数愈大则正多边形面积愈接近圆的面积。“割之弥 细,所失弥少。割之又割以至于不可割则与圆合体而无所失矣”。这几句话 明确表明了刘徽的思想:当内接正多边形的边数n越大,多边形就越贴近圆周, 也就是说当正多边形的边数n无限增大时,正多边形的周长就是圆周长。根据 这一思想如何来计算圆周率π的近似值?理论根据何在?写出你的推导过程。 刘徽的思想中体现了极限的思想,也就是说极限是研究事物发展变化趋势的 重要工具。下面我们将具体研究极限的概念。
函数f ( x)为x → x0 ( x → ∞)时的无穷小量,简称无穷小, 记作 lim f ( x) = 0 lim f ( x) = 0

极限与连续知识点总结

极限与连续知识点总结

极限与连续知识点总结在高等数学中,极限与连续是非常重要的基础概念,它们贯穿了整个数学分析的学习过程。

下面,我们就来对极限与连续的相关知识点进行一个系统的总结。

一、极限的概念极限是指当自变量无限趋近于某个值时,函数值无限趋近于一个确定的常数。

例如,对于函数$f(x) =\frac{x^2 1}{x 1}$,当$x$趋近于 1 时,$f(x)$的极限为 2。

这是因为通过化简$f(x) = x + 1$,当$x$趋近于1 时,$f(x)$趋近于 2。

极限的定义有多种形式,常见的有$\epsilon \delta$定义。

二、极限的计算1、代入法对于一些简单的函数,如果在极限点处函数有定义且连续,直接将极限点代入函数即可计算极限。

2、因式分解法当分子分母有公因式时,可以通过因式分解约去公因式来计算极限。

3、有理化法对于含有根式的式子,可以通过有理化来消除根式,从而计算极限。

4、利用重要极限常见的重要极限有:$\lim_{x \to 0} \frac{\sin x}{x} = 1$,$\lim_{x \to \infty} (1 +\frac{1}{x})^x = e$。

5、洛必达法则当遇到分子分母同时趋近于 0 或无穷大的情况,可以使用洛必达法则,对分子分母分别求导来计算极限。

三、无穷小与无穷大1、无穷小如果函数$f(x)$在某个变化过程中极限为 0,那么称$f(x)$为该变化过程中的无穷小。

例如,当$x \to \infty$时,$\frac{1}{x}$是无穷小。

2、无穷大如果在某个变化过程中,函数的绝对值无限增大,那么称该函数为无穷大。

例如,当$x \to 0$时,$\frac{1}{x^2}$是无穷大。

无穷小与无穷大之间有着密切的关系:在同一变化过程中,无穷大的倒数是无穷小,非零无穷小的倒数是无穷大。

四、极限的性质1、唯一性极限如果存在,则一定是唯一的。

2、有界性如果函数在某个区间上有极限,那么在该区间上一定有界。

极限与连续性

极限与连续性

极限与连续性在数学领域中,极限和连续性是两个重要的概念,它们在各个数学分支中都有着广泛的应用。

本文将对极限和连续性的定义、性质以及它们之间的关联进行探讨。

一、极限的定义和性质1.1 极限的定义在数学中,当一个函数的自变量趋近于某一值时,函数的取值也会趋近于一个特定的值。

这个特定的值就称为函数的极限。

对于函数 f(x),当 x 趋近于 a 时,如果存在常数 L,使得对于任意给定的正数ε,都存在一个正数δ,满足当 0 < |x-a| < δ 时有 |f(x)-L| < ε,那么我们说函数 f(x) 在 x= a 处的极限是 L。

1.2 极限的性质极限有一些重要的性质,包括唯一性、局部性和四则运算法则。

(1)唯一性:一个函数在某一点的极限是唯一的,即使通过不同的途径趋近于该点,极限仍然是相同的。

(2)局部性:函数在某一点的极限与该点附近的函数值相关,与整个函数曲线在其他地方的行为无关。

(3)四则运算法则:如果两个函数 f(x) 和 g(x) 在某一点的极限都存在,那么它们的和、差、积和商的极限也将存在,并具有相应的性质。

二、连续性的定义和性质2.1 连续性的定义连续性是指函数在其定义域上的无间断性。

当函数在某一点的极限与该点的函数值相等时,我们称函数在该点连续。

对于函数 f(x),如果对于任意给定的 x=a,有f(a)=lim┬(x→a)⁡〖f(x)〗,那么我们说函数 f(x) 在 x=a 处是连续的。

2.2 连续性的性质连续函数具有以下性质:(1)连续函数与四则运算:如果两个函数 f(x) 和 g(x) 在某一点连续,那么它们的和、差、积和商也将在该点连续。

(2)复合函数的连续性:如果函数 g(x) 在 x=a 处连续,而函数 f(x) 在 g(a) 处连续,则复合函数 f(g(x)) 在 x=a 处连续。

(3)闭区间上的连续函数:如果函数 f(x) 在闭区间 [a, b] 上连续,且在开区间 (a, b) 上可导,则在开区间 (a, b) 上 f(x) 的极限存在。

高等数学D 第2章极限与连续

高等数学D 第2章极限与连续

14
2.2 函数极限的思想和定义
一.函数在一点的极限
定义 设函数 y f (x) 在点a的某去心邻域内
有定义. 如果 x 足够接近 a 但不等于a, 使函数
y 的值可以任意地接近数 A ,
则称x a时函数f ( x)有极限A, 记作 lim f ( x) A, 或 f ( x) A( x a).
趋势下, f ( x)有极限, 则极限值必唯一.
定理2 夹逼准则
y
g(x)
如果 g( x) f ( x) h( x), 且
f(x)
lim g( x) A, lim h( x) A, A
xa
xa
则 lim f ( x) A xa
注 当x 时此准则亦成立. o
h(x)
a
x
1 )n, n
现证明数列{xn}单调增加 且有界.
按牛顿二项公式,有
xn

(1
1 )n n

1 n 1!
1 n

n(n 1) 2!

1 n2

n(n 1)(n n!
n 1)
1 nn
11 1 (1 1 ) 1 (1 1 )(1 2 )(1 n 1).
即 1 sin x 1 x 1 tan x
2
22
26
sin x x tan x, 即 cos x sin x 1,
x
上式对于 x 0也成立. 2
limcos x 1, 又lim1 1, 夹逼定理
x0
x0
sin x lim 1
x0 x
2! n
n! n n

第1章 函数极限与连续 §1.8 连续函数的性质

第1章  函数极限与连续 §1.8 连续函数的性质

提示: 令 ( x ) f ( x a ) f ( x ) ,
则 ( x ) C [0 , a ] , 易证
(0) (a ) 0
作业
P49 / 2 ; 3 ; 5
解 本题是求初等函数的极限, 因 x 1是定义区间内的点, 故
e 2 x ln(3 2 x ) e 21 ln(3 2 1) lim arcsin x arcsin1 x 1

2e
2

.
高等数学 第1章 函数极限与连续 函数 极限与连续
1.8 连续函数的性质
ln( e n x n ) ( x 0) 的连续性. 例1.8.4 讨论函数 f ( x ) lim n n
1.8 连续函数的性质
内容小结
设 f ( x ) C [a , b] , 则
1. f ( x ) 在 [a , b]上有界; 2. f ( x ) 在 [a , b]上达到最大值与最小值; 3. f ( x ) 在 [a , b]上可取最大与最小值之间的任何值;
4. 当 f (a ) f (b) 0 时, 必存在 (a , b) ,使 f ( ) 0.
高等数学 第1章 函数 极限与连续
1.8 连续函数的性质
思考与练习
1. 任给一张面积为 A 的纸片(如图), 证明必可将它
一刀剪为面积相等的两片.
提示: 建立坐标系如图.
y
S ( )
则面积函数 S ( ) C[ , ]
因 S ( ) 0 ,
S ( ) A
o

x
故由介值定理可知:
由此可知f ( x ) sin x 2在( ,)不是一致连续的.

高等数学极限与连续

高等数学极限与连续

定义 4 如果当 x无限接近于定值 x0( x可以不等于 x0) 时,函数 f (x)无限接近于一个确定的常数 A,则称常数 A 为
函数 f (x)当 x趋向于 x0(记为 x x0)时的极限,记为
lim
xx0
f
(x)
A(或当 x
x0 时,
f
(x)
A).
3 左极限与右极限 定义 5 如果当 x x0时,函数 f (x)无限接近于一个确
x0
1 2
sin
x 2
x 2
2
=
1 2
lim
x0
sin x
x 2
2
=
1 2
1
1 2
.
2
18
2. 第二个重要极限 lim(1 1)x e x x
数e 是一个无理数,其前八位是e 2 .7 1 8 2 8 1 8 .
注意:第二个重要极限特点: (1)它是1 型; (2)形式必须一致,即 lim (1 1 )x或
的函数值,即
lim
xx0
(
an
xn
an1xn1
a1x a0 )=an x0n an1x0n1
a1x0 a0.
13
例2
求lim x2
x2 3x 2 x2 x 2
.
解析:
lim
x2
3x
2
=
lim( x
x2
1)( x
2)
=
lim( x
x2
1)
1
.
x2 x2 x 2 lim(x 1)(x 2) lim(x 1) 3
lim f (x) A (或当 x 时, f (x) A). x
极限lim f (x) A表示的是自变量 x的绝对值无限增 x

函数极限和连续知识点总结

函数极限和连续知识点总结

函数极限和连续知识点总结一、函数极限1.1 函数极限的定义在数学中,我们常常要研究函数在某一点的“趋于”某一值的情况。

这种趋向的性质称为函数的极限。

在正式介绍函数极限的定义之前,我们先来看一个例子。

例:设函数f(x)=2x+3,当x趋于2时,f(x)的取值如下:当x向2的左侧靠近时,f(x)的取值逐渐减小,但始终没有超过7;当x向2的右侧靠近时,f(x)的取值逐渐增加,但始终没有超过7。

这种情况下,我们会说f(x)当x趋近2时“趋近7”,即f(x)的极限是7。

现在,我们来正式介绍函数极限的定义。

定义:设函数f(x)在点x=a的某个去心邻域内有定义,如果存在常数A,对于任意给定的正实数ε,总存在另一正实数δ,使得当0<|x-a|<δ时,都有|f(x)-A|<ε成立。

那么常数A 叫做函数f(x)当x趋于a时的极限,记作lim┬(x→a)⁡〖f(x)〗=A1.2 函数极限的性质在函数极限的研究中,我们需要了解一些极限的性质,其中最重要的包括以下几点:(1)唯一性:如果极限存在,那么这个极限是唯一的;(2)有界性:如果函数在某点的极限存在,那么该函数在该点附近必定有界;(3)性态:如果一个函数在某点的左极限和右极限都存在,且相等,那么函数在该点一定有极限;(4)夹逼准则:如果函数在某点的左右两极限都趋于同一值L,且有另外一个函数g(x)与f(x)相夹,且g(x)的极限也趋于L,那么f(x)的极限也趋于L。

1.3 常见函数的极限在函数极限的研究中,有一些常见的函数的极限是需要我们掌握的。

这些函数包括:(1)多项式函数的极限:当x趋于某个常数时,多项式函数的极限等于该常数的某个幂次的项系数;(2)指数函数和对数函数的极限:当x趋于正无穷时,指数函数的极限为正无穷;当x 趋于0时,对数函数的极限为负无穷;(3)三角函数的极限:当x趋于某些特定值时,三角函数的极限存在,且具有特定的值。

1.4 函数极限的求解方法在求解函数极限的过程中,可以使用以下几种方法:(1)直接代入法:即直接将x的值代入函数中,求出随着x的变化,函数的取值情况;(2)因子分解法:将一个不定式进行因式分解,从而更好地求出函数的极限;(3)洛必达法则:在求解不定式极限问题时,可以使用洛必达法则来简化问题,从而更好地求解函数的极限;(4)泰勒展开法:对于一些复杂的函数,可以使用泰勒展开公式来求解函数的极限。

极限与连续知识点总结

极限与连续知识点总结

极限与连续知识点总结一、关键信息1、极限的定义名称:极限定义:当自变量趋近于某个值时,函数值趋近于一个确定的常数。

2、极限的性质名称:极限的性质内容:唯一性、局部有界性、局部保号性等。

3、连续的定义名称:连续定义:函数在某点的极限值等于该点的函数值。

4、连续的条件名称:连续的条件内容:左右极限存在且相等,并等于该点的函数值。

5、间断点的分类名称:间断点的分类内容:可去间断点、跳跃间断点、无穷间断点、振荡间断点。

二、极限的定义11 数列的极限对于数列{an},如果存在常数 A,当 n 无限增大时,an 无限趋近于 A,则称 A 为数列{an} 的极限,记作lim(n→∞) an = A。

111 函数的极限设函数 f(x) 在点 x0 的某一去心邻域内有定义,如果当 x 无限趋近于 x0 时,函数 f(x) 的值无限趋近于一个确定的常数 A,则称 A 为函数f(x) 当 x 趋近于 x0 时的极限,记作lim(x→x0) f(x) = A。

112 单侧极限左极限:lim(x→x0-) f(x) = A,表示 x 从 x0 的左侧无限趋近于 x0 时,f(x) 趋近于 A。

右极限:lim(x→x0+) f(x) = A,表示 x 从 x0 的右侧无限趋近于x0 时,f(x) 趋近于 A。

三、极限的性质12 唯一性若极限lim(x→x0) f(x) 存在,则极限值唯一。

121 局部有界性如果lim(x→x0) f(x) 存在,则存在 x0 的某一去心邻域,使得 f(x) 在该邻域内有界。

122 局部保号性若lim(x→x0) f(x) = A > 0(或 A < 0),则存在 x0 的某一去心邻域,使得在该邻域内 f(x) > 0(或 f(x) < 0)。

四、极限的运算13 四则运算若lim(x→x0) f(x) 和lim(x→x0) g(x) 都存在,则:lim(x→x0) f(x) ± g(x) =lim(x→x0) f(x) ± lim(x→x0) g(x)lim(x→x0) f(x) · g(x) =lim(x→x0) f(x) · lim(x→x0) g(x)lim(x→x0) f(x) / g(x) =lim(x→x0) f(x) /lim(x→x0) g(x)(lim(x→x0) g(x) ≠ 0)131 复合函数的极限设函数 y = fg(x) 是由函数 u = g(x) 和 y = f(u) 复合而成,若lim(x→x0) g(x) = u0,lim(u→u0) f(u) = A,且当x ≠ x0 时,g(x) ≠ u0,则lim(x→x0) fg(x) = A。

高等数学第-讲极限与连续PPT课件

高等数学第-讲极限与连续PPT课件
高等数学第-讲极限与连续ppt 课件

CONTENCT

• 极限概念与性质 • 连续概念与性质 • 极限与连续关系 • 典型例题解析 • 练习题与答案解析
01
极限概念与性质
极限定义及存在条件
极限定义
当自变量的某个变化过程(如$x to x_0$或$x to infty$)中,函数 $f(x)$无限接近于某个常数$A$,则称$A$为函数$f(x)$在该变化过 程中的极限。
Cantor定理:若函数在 闭区间[a,b]上连续,则 它在[a,b]上一致连续。
Lipschitz条件:若存在 常数K,使得对任意 x1,x2∈I,都有|f(x1)f(x2)|≤K|x1-x2|,则称 f(x)在区间I上满足 Lipschitz条件。满足 Lipschitz条件的函数一 定一致连续。
练习题3
求极限 lim(x→1) (x^2-1)/(x-1)。
答案解析
通过运用极限的运算法则、等价无穷小替换等方法,可以求出以上极限的值。
判断函数连续性练习题及答案解析
01
02
03
04
练习题1
判断函数 f(x)={x^2, x>0; 0, x≤0n(1/x) 在 x=0 处是否连续。
若函数f(x)在其定义域内单调且连续,则其反函数f1(x)在其对应域内也单调且连续。
初等函数连续性
初等函数在其定义域内是连续的,即在其定义域内的每一点都满 足连续的定义。
初等函数包括幂函数、指数函数、对数函数、三角函数、反三角 函数以及由这些函数经过有限次四则运算和复合运算所得到的函 数。
03
极限与连续关系
练习题3
判断函数 f(x)=e^x 在 R 上的 连续性。

(完整版)大一高数第一章函数、极限与连续

(完整版)大一高数第一章函数、极限与连续

(完整版)⼤⼀⾼数第⼀章函数、极限与连续第⼀章函数、极限与连续由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为⾃然科学的中⼼问题.与之相适应,数学在经历了两千多年的发展之后进⼊了⼀个被称为“⾼等数学时期”的新时代,这⼀时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究⽐“形”更重要,以积极的态度开展对“⽆限”的研究,由常量数学发展为变量数学,微积分的创⽴更是这⼀时期最突出的成就之⼀.微积分研究的基本对象是定义在实数集上的函数.极限是研究函数的⼀种基本⽅法,⽽连续性则是函数的⼀种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍⾼等数学的⼀些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作⽤的⽆穷⼩量的概念和性质.此外,还给出了两个极其重要的极限.随后,运⽤极限的概念引⼊函数的连续性概念,它是客观世界中⼴泛存在的连续变化这⼀现象的数学描述.第⼀节变量与函数⼀、变量及其变化范围的常⽤表⽰法在⾃然现象或⼯程技术中,常常会遇到各种各样的量.有⼀种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这⼀类量叫做变量;另⼀类量在考察过程中保持不变,它取同样的数值,我们把这⼀类量叫做常量.变量的变化有跳跃性的,如⾃然数由⼩到⼤变化、数列的变化等,⽽更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何⼀个数.变量取值范围常⽤区间来表⽰.满⾜不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ,即 ,{|}a b x a x b =≤≤;满⾜不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即(,){|}a b x a x b =<<;满⾜不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即(,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤左开右闭区间与右开左闭区间统称为半开半闭区间,实数a ,b 称为区间的端点.以上这些区间都称为有限区间.数b a -称为区间的长度.此外还有⽆限区间:(){|}x x -∞+∞=-∞<<+∞=R ,,(,{|}b x x b -∞=-∞<≤??,(,){|}b x x b -∞=-∞<<, ){|}a x a x +∞=≤<+∞??,, (){|}a x a x +∞=<<+∞,,等等. 这⾥记号“-∞”与“+∞”分别表⽰“负⽆穷⼤”与“正⽆穷⼤”.邻域也是常⽤的⼀类区间.设0x 是⼀个给定的实数,δ是某⼀正数,称数集:{}00|x x δxx δ-<<+为点0x 的δ邻域,记作0(,)U x δ.即(){}000,|U x δx x δx x δ=-<<+称点0x 为该邻域的中⼼,δ为该邻域的半径(见图1-1).称{}00(,)U x δx -为0x 的去⼼δ邻域,记作0(,)x δoU ,即{}00(,)|0U x δx x x δ?=<-<图1-1下⾯两个数集(){}000,|U x δx x δx x ?-=-<<,(){}000,|U x δx xx x δ?+=<<+,分别称为0x 的左δ邻域和右δ邻域.当不需要指出邻域的半径时,我们⽤0()U x ,0()x oU 分别表⽰0x 的某邻域和0x 的某去⼼邻域,(),x δ-oU ,(),U x δ?+分别表⽰0x 的某左邻域和0x 的某右邻域.⼆、函数的概念在⾼等数学中除了考察变量的取值范围之外,我们还要研究在同⼀个过程中出现的各种彼此相互依赖的变量,例如质点的移动距离与移动时间.曲线上点的纵坐标与该点的横坐标,弹簧的恢复⼒与它的形变,等等.我们关⼼的是变量与变量之间的相互依赖关系,最常见的⼀类依赖关系,称为函数关系.定义 1 设A ,B 是两个实数集,如果有某⼀法则f ,使得对于每个数x A ∈,均有⼀个确定的数y B ∈与之对应,则称f 是从A 到B 内的函数.习惯上,就说y 是x 的函数,记作()y f x = ()x A ∈其中,x 称为⾃变量,y 称为因变量,()f x 表⽰函数f 在x 处的函数值.数集A 称为函数f 的定义域,记为()D f ;数集{}()|(),f A y y f x x A B ==∈?称为函数f 的值域,记作()R f .从上述概念可知,通常函数是指对应法则f ,但习惯上⽤“() ,y f x x A =∈”表⽰函数,此时应理解为“由对应关系()y f x =所确定的函数f ”.确定⼀个函数有两个基本要素,即定义域和对应法则.如果没有特别规定,我们约定:定义域表⽰使函数有意义的范围,即⾃变量的取值范围.在实际问题中,定义域可根据函数的实际意义来确定.例如,在时间t 的函数()f t 中,t 通常取⾮负实数.在理论研究中,若函数关系由数学公式给出,函数的定义域就是使数学表达式有意义的⾃变量x 的所有可以取得的值构成的数集.对应法则是函数的具体表现,它表⽰两个变量之间的⼀种对应关系.例如,⽓温曲线给出了⽓温与时间的对应关系,三⾓函数表列出了⾓度与三⾓函数值的对应关系.因此,⽓温曲线和三⾓函数表表⽰的都是函数关系.这种⽤曲线和列表给出函数的⽅法,分别称为图⽰法和列表法.但在理论研究中,所遇到的函数多数由数学公式给出,称为公式法.例如,初等数学中所学过的幂函数、指数函数、对数函数、三⾓函数与反三⾓函数都是⽤公式法表⽰的函数.从⼏何上看,在平⾯直⾓坐标系中,点集()(){(,)|,}x y y f x x D f =∈称为函数()y f x =的图像(如图1-2所⽰).函数()y f x =的图像通常是⼀条曲线,()y f x =也称为这条曲线的⽅程.这样,函数的⼀些特性常常可借助于⼏何直观来发现;相反,⼀些⼏何问题,有时也可借助于函数来作理论探讨.现在我们举⼀个具体函数的例⼦.图1-2例1求函数y . 解要使数学式⼦有意义,x 必须满⾜> ,240,10x x ?-≥??-??即 >2,1.x x ?≤由此有 12x <≤,因此函数的定义域为(12??,.有时⼀个函数在其定义域的不同⼦集上要⽤不同的表达式来表⽰对应法则,称这种函数为分段函数.下⾯给出⼀些今后常⽤的分段函数.例2 绝对值函数<,0,,0.x x y x x x ≥?==?-? 的定义域()()D f =-∞+∞,,值域()[0,)R f =+∞,如图1-3所⽰. 例3 符号函数<>1,0,sgn 0,0,1,0x y x x x -??===的定义域()()D f =-∞+∞,,值域()11{0}R f =-,,,如图1-4所⽰.图1-3 图1-4例4 最⼤取整函数y x =,其中x 表⽰不超过x 的最⼤整数.例如,113??-=-,00=,12??=??,π3=等等.函数y x =的定义域()()D f =-∞+∞,,值域(){}R f =整数.⼀般地,y x n ==,1n x n ≤<+,120,,n =±±L ,,如图1-5所⽰.图1-5在函数的定义中,对每个()x D f ∈,对应的函数值y 总是唯⼀的,这样定义的函数称为单值函数.若给定⼀个对应法则g ,对每个()x D g ∈,总有确定的y 值与之对应,但这个y 不总是唯⼀的,我们称这种法则g 确定了⼀个多值函数.例如,设变量x 与y之间的对应法则由⽅程2225x y +=给出,显然,对每个55[,]x ∈-,由⽅程2225x y +=可确定出对应的y 值,当5x =或5-时,对应0y =⼀个值;当55(,)x ∈-时,对应的y 有两个值.所以这个⽅程确定了⼀个多值函数.对于多值函数,往往只要附加⼀些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分⽀.例如,由⽅程2225x y +=给出的对应法则中,附加“0y ≥”的条件,即以“2225x y +=且0y ≥”作为对应法则,就可以得到⼀个单值分⽀()2125y g x x ==-;附加“0y ≤”的条件,即以“2225x y +=且0y ≤” 作为对应法则,就可以得到⼀个单值分⽀22()25y g x x ==--.关系的,如⾼度为⼀定值的圆柱体的体积与其底⾯圆半径r 的关系,就是通过另外⼀个变量其底⾯圆⾯积S 建⽴起来的对应关系.这就得到复合函数的概念.定义2 设函数()y f u =的定义域为()D f ,函数()u g x =在D 上有定义,且()()g D D f ?.则由下式确定的函数()()y f g x =,x D ∈称为由函数()y f u =与函数()u g x =构成的复合函数,记作()()()()y f g x f g x =?=,x D ∈,它的定义域为D ,变量u 称为中间变量.这⾥值得注意的是,D 不⼀定是函数()u g x =的定义域()D g ,但()D D g ?.D 是()D g 中所有使得()()g x D f ∈的实数x 的全体的集合.例如,()y f u u ==, ()21u g x x ==-.显然,u 的定义域为(),-∞+∞,⽽()(0,)D f =+∞.因此,11,D -=,⽽此时1()0,R f g =.两个函数的复合也可推⼴到多个函数复合的情形.例如, log a µxu y x a ==()10a a >≠且可看成由指数函数u y a =与log a u µx =复合⽽成.⼜形如()log ()()()a v x u x v x y u x a ==()0u x >()10a a >≠且的函数称为幂指函数,它可看成由wy a =与()log ()a w v x u x =复合⽽成. ⽽y =可看成由y =sin u v =,2v x =复合⽽成.例5 设()1xf x x =+()1x ≠-,求()()()f f f x解令()y f w =,()w f u =,()u f x =,则()()()f f f x 是通过两个中间变量w 和u 复合⽽成的复合函数,因为()111121x x x x uxw f u u x ++====+++,12x ≠-;()2121,1131x x x x wxy f w w x ++====+++13x ≠-,所以 ()()()31x f f f x x =+,111,,23x ≠---.定义3 设给定函数()y f x =,其值域为()R f .如果对于()R f 中的每⼀个y 值,都有只从关系式()y f x =中唯⼀确定的x 值与之对应,则得到⼀个定义在()R f 上的以y 为⾃变量,x 为因变量的函数,称为函数()y f x =的反函数,记为()1x fy -=.从⼏何上看,函数()y f x =与其反函数()1x f y -=有同⼀图像.但⼈们习惯上⽤x 表⽰⾃变量,y 表⽰因变量,因此反函数()1xf y -=常改写成()1y f x -=.今后,我们称()1y f x -=为()y f x =的反函数. 此时,由于对应关系1f-未变,只是⾃变量与因变量交换了记号,因此反函数()1y fx -=与直接函数()y f x =的图像关于直线y x =对称,如图 1 - 6所⽰.图1-6值得注意的是,并不是所有函数都存在反函数,例如函数2y x =的定义域为()-∞+∞,,值域为,但)0+∞??,对每⼀个()0y ∈+∞,,有两个x 值即1x =和2x =因此x 不是y 的函数,从⽽2y x =不存在反函数.事实上,由逆映射存在定理知,若f 是从()D f 到()R f 的⼀⼀映射,则f 才存在反函数1f -.例6 设函数(1)1xf x x +=+ ()1x ≠-,求()11f x -+.解函数()1y f x =+可看成由()y f u =,1u x =+复合⽽成.所求的反函数()11y f x -=+可看成由()1y fu -=,1u x =+复合⽽成.因为()11x u f u x u-==+,0u ≠,即1u y u -=,从⽽,()11u y -=-, 11u y=-,所以 ()111y f u u-==-,因此 ()1111,01(1)f x x x x-+==-≠-+.三、函数的⼏种特性1. 函数的有界性设函数()f x 在数集D 上有定义,若存在某个常数L ,使得对任⼀x D ∈有()f x L ≤(或()f x L ≥),则称函数()f x 在D 上有上界(或有下界),常数L 称为()f x 在D 上的⼀个上界(或下界);否则,称()f x 在D 上⽆上界(或⽆下界).若函数()f x 在D 上既有上界⼜有下界,则称()f x 在D 上有界;否则,称()f x 在D 上⽆界.若()f x 在其定义域D f ()上有界,则称()f x 为有界函数.容易看出,函数()f x 在D 上有界的充要条件是:存在常数M>0,使得对任⼀x D ∈,都有()f x M ≤.例如,函数sin y x =在其定义域()-∞+∞,内是有界的,因为对任⼀()x ∈-∞+∞,都有sin 1x ≤,函数1y x=在()10,内⽆上界,但有下界. 从⼏何上看,有界函数的图像界于直线y M =±之间.2. 函数的单调性设函数()f x 在数集D 上有定义,若对D 中的任意两数12,x x 12()x x <,恒有()()12f x f x ≤ [或()()12f x f x ≥],则称函数()f x 在D 上是单调增加(或单调减少)的.若上述不等式中的不等号为严格不等号,则称为严格单调增加(或严格单调减少)的.在定义域上单调增加或单调减少的函数统称为单调函数;严格单调增加或严格单调减少的函数统称为严格单调函数.如图1-7所⽰.图1-7例如,函数()3f x x =在其定义域()-∞+∞,内是严格单调增加的;函数()cos f x x =在π0,()内是严格单调减少的.从⼏何上看,若()y f x =是严格单调函数,则任意⼀条平⾏于x 轴的直线与它的图像最多交于⼀点,因此()y f x =有反函数.3. 函数的奇偶性设函数()f x 的定义域()D f 关于原点对称(即若()x D f ∈,则必有()x D f -∈.若对任意的()x D f ∈,都有()()f x f x -=-[或()()f x f x -=],则称()f x 是()D f 上的奇函数(或偶函数).奇函数的图像对称于坐标原点,偶函数的图像对称于y 轴,如图1-11所⽰.图1-8例7 讨论函数()(ln f x x =的奇偶性. 解函数()f x 的定义域()-∞+∞,是对称区间,因为()(lnln f x x ??-=-= (()ln x f x =-+=-所以,()f x 是()-∞+∞,上的奇函数. 4. 函数的周期性设函数()f x 的定义域为()D f ,若存在⼀个不为零的常数T ,使得对任意()x D f ∈,有x T D f ±∈()(),且f x T f x +=()(),则称()f x 为周期函数,其中使上式成⽴的常数T 称为()f x 的周期,通常,函数的周期是指它的最⼩正周期,即:使上式成⽴的最⼩正数T T (如果存在的话).例如,函数sin f x x =()的周期为π2;()tan f x x =的周期是π. 并不是所有函数都有最⼩正周期,例如,狄利克雷(Dirichlet )函数为数为⽆数10 ,) (,x D x x ?=??有理,理.任意正有理数都是它的周期,但此函数没有最⼩正周期.四、函数应⽤举例下⾯通过⼏个具体的问题,说明如何建⽴函数关系式.例8 ⽕车站收取⾏李费的规定如下:当⾏李不超过50千克时,按基本运费计算.如从上海到某地每千克以0.15元计算基本运费,当超过50千克时,超重部分按每千克0.25元收费.试求上海到该地的⾏李费y (元)与重量x (千克)之间的函数关系式,并画出函数的图像.解当500x <≤时,150.y x =;当50x >时,1552550.00.(0)y x =?+-. 所以函数关系式为:0.15, 050;7.50.25(50),50.x x y x x <≤?=?+->?这是⼀个分段函数,其图像如图1-9所⽰.图1-9例9 某⼈每天上午到培训基地A 学习,下午到超市B ⼯作,晚饭后再到酒店C 服务,早、晚饭在宿舍吃,中午带饭在学习或⼯作的地⽅吃.A B C ,,位于⼀条平直的马路⼀侧,且酒店在基地与超市之间,基地与酒店相距3km ,酒店与超市相距5km ,问该打⼯者在这条马路的A 与B 之间何处找⼀宿舍(设随处可找到),才能使每天往返的路程最短. 解如图1-10所⽰,设所找宿舍D 距基地A 为x (km ),⽤f x ()表⽰每天往返的路程函数.图1-10当D 位于A 与C 之间,即30x ≤≤时,易知()()8823222f x x x x x =++-+-=-(),当D 位于C 与B 之间,即38x ≤≤时,则()882312()()0.f x x x x x =++-+-=+ 所以22,03;()102,38.x x f x x x -≤≤?=?+≤≤?这是⼀个分段函数,如图1-11所⽰,在30,上,()f x 是单调减少,在38,上,()f x 是单调增加.从图像可知,在3x =处,函数值最⼩.这说明,打⼯者在酒店C 处找宿舍,每天⾛的路程最短.图1-11五、基本初等函数初等数学⾥已详细介绍了幂函数、指数函数、对数函数、三⾓函数、反三⾓函数,以上我们统称为基本初等函数.它们是研究各种函数的基础.为了读者学习的⽅便,下⾯我们再对这⼏类函数作⼀简单介绍.1. 幂函数函数µy x = (µ是常数)称为幂函数.幂函数µy x =的定义域随µ的不同⽽异,但⽆论µ为何值,函数在()0+∞,内总是有定义的. 当0µ>时,µy x =在)0+∞??,上是单调增加的,其图像过点0,0()及点()1,1,图1-12列出了12µ=,1µ=,2µ=时幂函数在第⼀象限的图像. 当0µ<时,µy x =在()0+∞,上是单调减少的,其图像通过点()1,1,图1-13列出了12µ=-,1µ=-,2µ=-时幂函数在第⼀象限的图像.图1-12 图1-132. 指数函数函数x y a =(a 是常数且10a a >≠,)称为指数函数.指数函数x y a =的定义域是()-∞+∞,,图像通过点()10,,且总在x 轴上⽅. 当时1a >,x y a =是单调增加的;当10a <<时,x y a =是单调减少的,如图1-14所⽰.以常数e 271828182.=L 为底的指数函数e x y =是科技中常⽤的指数函数.图1-143. 对数函数指数函数x y a =的反函数,记作log a y x =(a 是常数且10,a a >≠),称为对数函数.对数函数log a y x =的定义域为()0+∞,,图像过点()1,0.当1a >时,log a y x =单调增加;当10a <<时,log a y x =单调减少,如图1-15所⽰.科学技术中常⽤以e 为底的对数函数e log y x =,图1-15它被称为⾃然对数函数,简记作ln y x =.另外以10为底的对数函数1log 0y x =,也是常⽤的对数函数,简记作g l y x =.4. 三⾓函数常⽤的三⾓函数有正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =,余切函数 cot y x =,其中⾃变量x 以弧度作单位来表⽰.它们的图形如图1-16,图1-17,图1-18和图1-19所⽰,分别称为正弦曲线,余弦曲线,正切曲线和余切曲线.图1-16图1-17正弦函数和余弦函数都是以π2为周期的周期函数,它们的定义域都为(),-∞+∞,值域都为1,1-.正弦函数是奇函数,余弦函数是偶函数.图1-18 图1-19由于πcos sin 2x x ??=+ ??,所以,把正弦曲线sin y x =沿x 轴向左移动π2个单位,就获得余弦曲线cos y x =.正切函数sin tan cos xy x x==的定义域为()21{|(),}D f x x x n n =∈≠+R ,整为数. 余切函数cos cot sin xy x x==的定义域为 ()π{,}D f x x x n n =∈≠R |,整为数.正切函数和余切函数的值域都是()-∞+∞,,且它们都是以π为周期的函数,且都是奇函数.另外,常⽤的三⾓函数还有正割函数sec y x =;余割函数cscy x =.它们都是以π2为周期的周期函数,且1sec cos x x=; 1csc sin x x =.5. 反三⾓函数常⽤的反三⾓函数有反正弦函数 arcsin y x = (如图1-20);反余弦函数 arccos y x = (如图1-21);反正切函数 arctan y x = (如图1-22);反余切函数arccot y x = (如图1-23).它们分别称为三⾓函数sin y x =,cos y x =,tan y x =和cot y x =的反函数.这四个函数都是多值函数.严格来说,根据反函数的概念,三⾓函数sin y x =,cos y x =,tan y x =和cot y x =在其定义域内不存在反函数,因为对每⼀个值域中的数y ,有多个x 与之对应.但这些函数在其定义域的每⼀个单调增加(或减少)的⼦区间上存在反函数.例如,sin y x=在闭区间,22ππ??-上单调增加,从⽽存在反函数,称此反函数为反正弦函数arcsin x 的主值,记作y =arcsin x .通常我们称arcsin y x =为反正弦函数.其定义域为11,-,值域为,22ππ??-.反正弦函数arcsin y x =在11,-上是单调增加的,它的图像如图1-20中实线部分所⽰. 类似地,可以定义其他三个反三⾓函数的主值arccos arctan ,y x y x ==和arccot y x =,它们分别简称为反余弦函数,反正切函数和反余切函数.反余弦函数arccos y x =的定义域为1,1-,值域为π0,,在1,1-上是单调减少的,其图像如图1-21中实线部分所⽰.反正切函数arctan y x =的定义域为(),-∞+∞,值域为ππ22??-,,在()-∞+∞,上是单调增加的,其图像如图1-22中实线部分所⽰.反余切函数arccot y x =的定义域为()-∞+∞,,值域为π0,(),在()-∞+∞,上是单调减少的,其图像如图1-23中实线部分所⽰.图1-20 图1-21图1-22 图1-23六、初等函数由常数和基本初等函数经有限次四则运算和复合运算得到并且能⽤⼀个式⼦表⽰的函数,称为初等函数.例如,23sin4y x x =+,(ln y x =+,3arctan22sin 1xy x x =+等等都是初等函数.分段函数是按照定义域的不同⼦集⽤不同表达式来表⽰对应关系的,有些分段函数也可以不分段⽽表⽰出来,分段只是为了更加明确函数关系⽽已.例如,绝对值函数也可以表⽰成y x =1,,()0,x a f x x a ? 也可表⽰成1()12f x ? = ??.这两个函数也是初等函数.七、双曲函数与反双曲函数1. 双曲函数双曲函数是⼯程和物理问题中很有⽤的⼀类初等函数.定义如下:双曲正弦 sh e e 2x xx --= ()x -∞<<+∞,双曲余弦 ch e e 2x xx -+= ()x -∞<<+∞,双曲正切 th e e e e sh ch x xx x+ ()x -∞<<+∞,其图像如图1-24和图1-25所⽰图1-24 图1-25.双曲正弦函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内单调增加.双曲余弦函数的定义域为()x -∞<<+∞,它是偶函数,其图像通过点()10,且关于y 轴对称,在(),0-∞内单调减少;在()0+∞,内单调增加. 双曲正切函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内是单调增加的.由双曲函数的定义,容易验证下列基本公式成⽴.()sh sh ch ch sh x y x y x y ±=±,()ch ch ch sh sh x y x y x y ±=±,sh22sh ch x x x =,2222ch2ch sh 12sh 2ch 1x x x x x =+=+=-,22ch sh 1x x -=.2. 反双曲函数双曲函数的反函数称为反双曲函数,sh y x =,ch y x =和th y x =的反函数,依次记为反双曲正弦函数 a rsh y x =,反双曲余弦函数 arch y x =,反双曲正切函数 a rth y x =.反双曲正弦函数a rsh y x =的定义域为()-∞+∞,,它是奇函数,在()-∞+∞,内单调增加,由sh y x =的图像,根据反函数作图法,可得a rsh y x =的图像,如图1-26所⽰.利⽤求反函数的⽅法,不难得到(a rsh ln y x x ==+.反双曲余弦函数arch y x =的定义域为)1+∞??,,在)1+∞??,上单调增加,如图1-27所⽰,利⽤求反函数的⽅法,不难得到(arch ln y x x ==.图1-26 图1-27反双曲正切函数a rtanh y x =的定义域为11()-,,它在11()-,内是单调增加的.它是奇函数,其图像关于原点(00),对称,如图1-28所⽰.容易求得a rth 1ln 1xy x x+==-.第⼆节数列的极限⼀、数列极限的定义定义1 如果函数f 的定义域()*{}D f N ==L ,,,123,则函数f 的值域()(){}**|f N f n n N =∈中的元素按⾃变量增⼤的次序依次排列出来,就称之为⼀个⽆穷数列,简称数列,即()()()12,,f f f n L L ,,.通常数列也写成12,n x x x L L ,,,,并简记为{}n x ,其中数列中的每个数称为⼀项,⽽()n x f n =称为⼀般项.对于⼀个数列,我们感兴趣的是当n ⽆限增⼤时,n x 的变化趋势.我们看下列例⼦:数列 12,,,,231nn +L L (1-2-1) 的项随n 增⼤时,其值越来越接近1;数列 2462 n L L ,,,,, (1-2-2)的项随n 增⼤时,其值越来越⼤,且⽆限增⼤;数列 1111(1)0,n n-+-L L ,,,, (1-2-3)的各项值交替地取1与0;数列 ()11111,,,,,23n n---LL (1-2-4) 的各项值在数0的两边跳动,且越来越接近0;数列 2222L L ,,,,, (1-2-5)各项的值均相同.在中学教材中,我们已知道极限的描述性定义,即“如果当项数n ⽆限增⼤时,⽆穷数列{}n x 的⼀般项n x ⽆限地趋近于某⼀个常数a (即n x a -⽆限地接近于0),那么就说a 是数列{}n x 的极限”.于是我们⽤观察法可以判断数列{}1n n -,1(1)n n -??-,{}2都有极限,其极限分别为1,20,.但什么叫做“n x ⽆限地接近a ”呢?在中学教材中没有进⾏理论上的说明.我们知道,两个数a 与b 之间的接近程度可以⽤这两个数之差的绝对值b a -来度量.在数轴上b a -表⽰点a 与点b 之间的距离,b a -越⼩,则a 与b 就越接近,就数列(1-2-1)来说,因为111n x n n-=-=,我们知道,当n 越来越⼤时,1n 越来越⼩,从⽽n x 越来越接近1.因为只要n ⾜够⼤, 11n x n-=就可以⼩于任意给定的正数,如现在给出⼀个很⼩的正数1100,只要n 100>即可得11100n x -<,11120,0,n =L如果给定110000,则从10001项起,都有下⾯不等式1110000n x -<成⽴.这就是数列1n n x n-=12 (,,)n =L ,当n →∞时⽆限接近于1的实质.⼀般地,对数列{}n x 有以下定义.定义2 设{}n x 为⼀数列,若存在常数a 对任意给定的正数ε(⽆论多么⼩),总存在正整数N ,当n N >时,有不等式n x a ε-<即(,)n x U a ε∈,则称数列{}n x 收敛,a 称为数列{}n x 当n →∞时的极限,记为lim n n x a →∞=或n x a →()n →+∞.若数列{}n x 不收敛,则称该数列发散.定义中的正整数N 与ε有关,⼀般说来,N 将随ε减⼩⽽增⼤,这样的N 也不是唯⼀的.显然,如果已经证明了符合要求的N 存在,则⽐这个N ⼤的任何正整数均符合要求,在以后有关数列极限的叙述中,如⽆特殊声明,N 均表⽰正整数.此外,由邻域的定义可知,()n x U a ε∈,等价于n x a ε-<.我们给“数列{}n x 的极限为a ”⼀个⼏何解释:将常数a 及数列123,,,,,n x x x x L L 在数轴上⽤它们的对应点表⽰出来,再在数轴上作点a 的ε邻域,即开区间(,)a εa ε-+,如图1-29所⽰图1-29因两个不等式 ||n x a ε-<, n a εx a ε-<<+等价,所以当n N >时,所有的点n x 都落在开区间(,)a εa ε-+内,⽽只有有限个点(⾄多只有N 个点)在这区间以外.为了以后叙述的⽅便,我们这⾥介绍⼏个符号,符号“?”表⽰“对于任意的”、“对于所有的”或“对于每⼀个”;符号“?”表⽰“存在”;符号“{}ax m X ”表⽰数集X 中的最⼤数;符号“{}min X ”表⽰数集X 中的最⼩数.数列极限lim n n x a →∞=的定义可表达为:lim n n x a →∞=0ε??>,?正整数N ,当n N >时,有n x a ε-<.例1 证明 1lim 02n n →∞=.证 0ε?>(不防设1ε<),要使11022nn ε-=<,只要21nε>,即ln ln21/n ε>(). 因此,0ε?>,取ln /ln21N ε= ???,则当n N >时,有102n ε-<.由极限定义可知1lim 02n n →∞=. 例2 证明π1lim cos04n n n →∞=. 证由于ππ111cos 0cos 44n n n n n -=≤,故0ε?>,要使π1cos 04n εn -<,只要1εn <,即1n ε>.因此,0ε?>,取1N ε??=,则当n N >时,有π1cos 04n εn -<.由极限定义可知π1lim cos 04n n n →∞=. ⽤极限的定义来求极限是不太⽅便的,在本章的以后篇幅中,将逐步介绍其他求极限的⽅法.⼆、数列极限的性质定理1(惟⼀性)若数列收敛,则其极限惟⼀. 证设数列{}n x 收敛,反设极限不惟⼀:即lim n n x a →∞=,lim n n x b →∞=,且a b ≠,不妨设a b <,由极限定义,取2b a ε-=,则10N ?>,当1n N >时,2n b ax a --<,即 322n a b a bx -+<<,(1-2-6) 20N ?>,当2n N >时,2n b ax b --<,即322n a b b ax +-<<, (1-2-7) 取{}12m ,N ax N N =,则当n N >时,(1-3-6),(1-3-7)两式应同时成⽴,显然⽭盾.该⽭盾证明了收敛数列{}n x 的极限必惟⼀.定义3 设有数列{}n x ,若存在正数M ,使对⼀切12,,n =L ,有n x M ≤,则称数列{}n x 是有界的,否则称它是⽆界的.对于数列{}n x ,若存在常数M ,使对12n =L ,,,有n x M ≤,则称数列{}n x 有上界;若存在常数M ,使对12,,n =L ,有n x M ≥,则称数列{}n x 有下界.显然,数列{}n x 有界的充要条件是{}n x 既有上界⼜有下界. 例3 数列{}211n +有界;数列{}2n 有下界⽽⽆上界;数列{}2n -有上界⽽⽆下界;数列{}11nn --()既⽆上界⼜⽆下界.定理2(有界性)若数列{}n x 收敛,则数列{}n x 有界.证设lim n n x a →∞=,由极限定义,0ε?>,且1ε<,0N ?>,当n N >时,1||n x a ε-<<,从⽽<1n x a +.取{}12m 1,,,,N M ax a x x x =+?,则有n x M ≤,对⼀切123,,,n =L ,成⽴,即{}n x 有界.定理2 的逆命题不成⽴,例如数列{}1()n -有界,但它不收敛.定理3(保号性)若lim n n x a →∞=,0a >(或0a <),则0N ?>,当n N >时,0n x >(或0n x <).证由极限定义,对02aε=>,0N ?>,当n N >时,2n a x a -<,即322n a x a <<,故当n N >时,02n ax >>.类似可证0a <的情形.推论设有数列{}n x ,0N ?> ,当n N >时,0n x > (或0n x <),若lim n n x a →∞=,则必有0a ≥ (或0a ≤).在推论中,我们只能推出0a ≥ (或0a ≤),⽽不能由0n x > (或0n x <)推出其极限(若存在)也⼤于0(或⼩于0).例如10n x n=>,但1lim lim 0n n n x n →∞→∞==.下⾯我们给出数列的⼦列的概念.定义4 在数列{}n x 中保持原有的次序⾃左向右任意选取⽆穷多个项构成⼀个新的数列,称它为{}n x 的⼀个⼦列.在选出的⼦列中,记第1项为1n x ,第2项为2n x ,…,第k 项为k n x ,…,则数列{}n x 的⼦列可记为{}k n x .k 表⽰k n x 在⼦列{}k n x 中是第k 项,k n 表⽰k n x 在原数列{}n x 中是第k n 项.显然,对每⼀个k ,有k n k ≥;对任意正整数h ,k ,如果h k ≥,则h k n n ≥;若h k n n ≥,则h k≥由于在⼦列{}k n x 中的下标是k ⽽不是k n ,因此{}k n x 收敛于a 的定义是:0ε?>,0K ?>,当k K >时,有k n x a ε-<.这时,记为lim k n k x a →+∞= .定理4 lim n k x a →∞=的充要条件是:{}n x 的任何⼦列{k n x }都收敛,且都以a 为极限. 证先证充分性.由于{}n x 本⾝也可看成是它的⼀个⼦列,故由条件得证. 下⾯证明必要性.由lim n k x a →∞=,0ε?>,0N ?>,当n N >时,有n x a ε-<.今取K N =,则当k K >时,有k K N n n n N >=≥,于是k n x a ε-<.故有lim k n k x a →∞=.定理4⽤来判别数列{}n x 发散有时是很⽅便的.如果在数列{}n x 中有⼀个⼦列发散,或者有两个⼦列不收敛于同⼀极限值,则可断⾔{}n x 是发散的.例4 判别数列{}*πsin ,8n n x n N =∈的收敛性.解在{}n x 中选取两个⼦列:{}*8πsin ,8k k N ∈,即{}πππ8168sin ,sin ,sin ,888k ; ()*164πsin ,8k k N +??∈,即()ππ16420sin ,sin ,88k ??+??. 显然,第⼀个⼦列收敛于0,⽽第⼆个⼦列收敛于1,因此原数列{}πsin 8n 发散.三、收敛准则定义5 数列{}n x 的项若满⾜121n n x x x x +≤≤≤≤≤L L ,则称数列{}n x 为单调增加数列;若满⾜121n n x x x x +≥≥≥≥≥L L ,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成⽴时,则分别称{}n x 是严格单调增加和严格单调减少数列.收敛准则单调增加有上界的数列必有极限;单调减少有下界的数列必有极限. 该准则的证明涉及较多的基础理论,在此略去证明.例5 证明数列11nn ??+?? ??收敛.证根据收敛准则,只需证明11nn ??+?? ??单调增加且有上界(或单调减少且有下界).由⼆项式定理,我们知道1221111(1)1n n n n n n nx C C C n n n n =+=++++L 11112112111(1)(1)(1)(1)(1)(1)2!3!!n n n n n n n n -=++-+--++---L L ,11211111211111(1)111(1)(1)n n n n n n n x C C C n n n n +++++++=+=++++++++L 1111211(1)(1)(1)2!13!11n n n =++-+--++++L1121(1)(1)(1)!111n n n n n -+--++-+++L 112(1)(1)(1)(1)!111n n n n n +--++-++++L ,逐项⽐较n x 与1n x +的每⼀项,有1n n x x +<,1,2,.n =L这说明数列{}n x 单调增加,⼜111112!3!!n x n <+++++L 211111222n <+++++L。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 极限与连续本章教学内容本章介绍了数列极限与函数极限的概念、基本知识和基本理论以及函数连续性的基本知识.微积分是一门以变量(函数等)作为研究对象、以极限方法作为基本研究手段的数学学科,无论是微分学、积分学、还是无穷级数问题都需以极限为工具进行研究,整个微积分学就是建立在极限论的基础之上的.连续性是函数的一个重要的分析性质,本章运用极限引入函数连续性的概念.在微积分学中讨论的函数,主要是连续型的函数,它有许多良好的性质,它是本课程的主要研究对象.教学思路1. 学习微积分的一个直接的重要的目的是掌握研究函数的微观性态和宏观性态的方法.这一点无论对学术研究能力的培养还是对研究生入学应试,都是非常重要的.当然,学习微积分的目的还有其更重要的另外一面,那就是培养和训练思维与思考问题的模式,掌握学习未知世界的方法与技巧,不管你将来是否从事数学及其相关学科,如能达到上述境界,则必会长期受益.2.极限的思想、概念与方法是分析数学问题的基本工具和语言.数列极限和函数极限都是高等数学重要的基础,但相对而言,前者是训练和培养极限思维模式的基础.对数列极限的有关概念和方法,站到较高台阶上去思考,将有助于全部微积分内容的学习.因此,极限的基本概念要讲透,使学生能接受并理解其深刻的内涵.要使学生会熟练地求极限.可让学生适当地多做一些练习题.3.用“N -ε”、“δε-”语言定义极限不能省略,不要求学生会做有关的习题,但要领会,以便理解有关的定理的证明.4.函数的连续性作为承上(极限理论与方法)启下(微分、积分概念)的重要环节,它是用极限等工具研究函数局部性质与整体性质的开始.函数在一点处连续的概念描述了函数的局部性质,而在一个区间上的连续性则描述了一个函数的整体性质.也可以说前者涉及的是函数微观性态,而后者则是刻画函数的宏观性态,并且,二者互相渗透,相辅相成.闭区间上连续函数的性质只作介绍,其证明略去.5.本章重点是极限定义与其等价性描述,极限的性质及运算,以及若干重要结论构成的知识层次.学好本章内容,对掌握微积分全部内容与技巧有着重要的影响作用.6.本章新概念多、难点多,又处于学生从初等数学跃上高等数学台阶的转型时期,很不习惯.因此,本章内容讲授完成后可安排一次习题课.教学安排本章教学时数为14学时,课时分配如下:§2.1数列的极限2学时§2.2 函数的极限 2学时§2.3变量的极限,§2.4无穷大量与无穷小量 2学时§2.5极限的运算法则 2学时§2.6两个重要的极限 2学时§2.7函数的连续性 2学时习题课 2学时教学目标理解数列的极限、函数的极限及函数的左、右极限的概念.了解有界变量的概念,了解变量有极限与有界的关系.了解无穷大量、无穷小量的概念及二者之间的关系.了解极限存在的两个准则.熟练掌握极限的运算法则、无穷小量的性质、两个重要极限以及利用函数的连续性求函数极限的方法.理解函数连续的概念,会判断函数在某点的连续性.掌握讨论简单分段函数连续性的方法.理解初等函数在其定义域内都是连续的结论.理解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值与最小值定理、介值定理及其零值性推论)及其简单应用.§2.1 数列的极限教学内容:数列的极限,包括数列极限的概念,数列极限的N -ε定义,数列极限的几何意义等.教学重点:数列极限的概念及数列极限的证明.教学难点:利用“N -ε”定义证明极限.教法建议:1.建立极限概念时,可先从一些简单直观、容易接受的实例(如“一尺之棰,日取其半”、“刘徽割圆”等)出发,建立数学模型,引入并形成极限概念.2.在此基础上,分三步引入极限定义:第一步,先讲描述性定义;第二步,用距离、绝对值为工具,对描述性定义中的话逐一地抽象,用数学语言(四个不等式)来表示,提炼出数列极限的N -ε定义;第三步,对数列极限的N -ε定义给出几何解释,辅之以草图,对ε、N 等作补充说明,加深印象.3.引入定义以后,可用简单的例子介绍用N -ε定义证明数列极限的论证方法,其关键是“由0>∀ε去找)(εN ”,并总结出使用N -ε方法的四个步骤:1o 0>∀ε,令ε<-||A y n ;2o 据ε<-||A y n ,分析并推出)(εϕ>n (含ε的式子);3o 取)]([εϕ=N (整数部分);4o 用N -ε定义叙述并下结论.应给学生指出:前三步是分析找N ;第四个步骤综合才是正式的证明.这种分析加综合的叙述方式的优点是思路清晰,N 不是一眼就能看出来的,所以要先分析找N ,不要把它与综合的证明混淆起来了.4.对于N -ε论证法,不要要求过高,这里只是让学生见识一下就可以了,随着后续内容的学习和多次运用N -ε论证法证题,使学生逐步加深体会、理解并接受.§2.2 函数的极限教学内容:函数的极限,包括当∞→x 时函数)(x f 的极限,当0x x →时函数)(x f 的极限,左极限与右极限,函数极限的性质等.教学重点:当0x x →时函数)(x f 的极限.教学难点:函数极限的δε-定义.教法建议:1.讲授“当∞→x 时函数)(x f 的极限”时,可以从数列极限的N -ε定义出发,结合几何图形,引出当∞→x 时函数)(x f 的极限的M -ε定义.2.通过两个实例引出当0x x →时函数)(x f 的极限的δε-定义,注意讲清在这个过程中变量x 的变化过程以及相应的函数)(x f 的变化过程.3.从0x x →的不同方式引出左极限、右极限的定义.4.教材中关于函数极限的三个定理:定理2.1(当0x x →时函数)(x f 的极限存在的充分必要条件);定理2.2(局部保号性定理);定理2.3(局部保不等式性定理)的内容要求学生能熟记,证明只要能接受即可.定理2.1在证明极限不存在时更为方便.注意定理2.2,定理2.3的条件与结论中关于等号的讨论.§2.3 变量的极限,§2.4 无穷大量与无穷小量教学内容:变量的极限,无穷大量,无穷小量,无穷大量与无穷小量的关系,无穷小量的阶等.教学重点:无穷小量的概念及其运算性质.教学难点:无穷小量概念的理解.教法建议:1.在复习∞→n 时数列的极限,∞→x 时函数的极限,0x x →时函数的极限的基础上概括出一般变量极限的定义.讲解过程中要特别注意对“总有那么一个时刻”的概括.这一定义只有对两种变量、三种过程都适用的情况下才能使用.2.对“变量在某一时刻后有界不一定有极限”除课本上的例子外,还可补充以下两例:(1)x x f 1sin )(=在0=x 附近有界,但xx 1sin lim 0→不存在; (2)x x f sin )(=在),(∞+-∞内有界,但x x sin lim ∞→不存在. 3.讲授无穷大量与无穷小量的概念时要注意:无穷大量和无穷小量是相对某一极限过程而言,离开极限过程,不能直接称某一变量为无穷大量或无穷小量;无穷大量和无穷小量都是一个变量,不能认为是一个非常大或非常小的数.4.无穷小量的运算性质:定理2.5, 定理2.6及其推论今后经常用到,要求学生能熟练掌握.5.无穷小量阶的比较,本次课只要学生能接受基本概念,以后再逐步熟悉,并能用于求极限即可.§2.5极限的运算法则教学内容:极限的运算法则,包括极限的加、减、乘、除四则运算法则及其推论,利用变量极限的运算法则求一些变量的极限等.教学重点:利用变量极限的四则运算法则求一些变量的极限.教学难点:极限的加、减运算法则(定理2.8)的证明,求未定式极限的技巧.教法建议:1.极限的四则运算法则及其推论的证明不要求学生掌握,关键是通过本节的例题要求学生能熟练正确地利用变量极限的四则运算法则求一些变量的极限.2.例1,例2是直接利用法则求多项式函数的极限.3.例3利用了无穷小量与无穷大量的关系求分式的极限.4.例4、例5、例6总结出求有理函数极限的规律.5.例7、例8开始接触利用初等变形求未定式极限,这里只要让学生认识∞∞,00两种未定式极限即可,初等变形的各种方法可通过作业、习题课再去逐步学习、掌握.6.例9是分段函数.分段函数在分段点处的极限,要分别计算左、右极限,看它们是否相等.§2.6 两个重要的极限教学内容:极限存在的两边夹准则、单调有界准则,1sin lim 0=→xx x ,e n n n =+∞→)11(lim 或e xx x =+∞→)11(lim ,利用两个重要极限求极限等. 教学重点:两个重要极限及利用两个重要极限求极限.教学难点:两个重要极限的证明及其应用.教法建议:1.本节课中两个准则是为证明两个重要极限服务的.在证明两个重要极限时要向学生讲清楚用准则证明极限的步骤与方法,以便今后能正确运用准则证明极限.2.利用两个重要极限,可以求许多00型三角函数式的极限与∞1型幂指函数式的极限,这两个公式在下一章中建立导数公式等方面也有重要的作用.3.公式 1sin lim 0=→xx x 可推广成 1)()(sin lim 0)(=→x x x ϕϕϕ,其中)(x ϕ的单位是弧度,分子、分母中的)(x ϕ必须完全相同,当0x x →时,必须0)(→x ϕ(即为00型未定式). 4.公式e x x x =+∞→)11(lim 可推广成 e x x x =+→)(10)()](1[lim ϕϕϕ,要注意:括号内的式子必须分离出含1的项,剩下的项)(x ϕ必须与指数部分互为倒数,当0x x →时,必须0)(→x ϕ(即为∞1型幂指未定式).§2.7 函数的连续性教学内容:函数改变量,函数)(x f y =在点0x 处连续,函数)(x f y =在区间],[b a 上连续,函数的间断点,连续函数的运算法则,闭区间上连续函数的性质,利用函数连续性求函数的极限.教学重点:函数连续性的概念,利用函数连续性求函数的极限.教学难点:函数的间断点,闭区间上连续函数的性质.教法建议:1.本次课的教学内容中知识点较多,对以后微积分课程内容的学习影响也较大,但大部分知识点仅作课堂讲解,只要求学生了解,而不要求学生会证明,因此,教师在课堂教学中安排要紧凑、重点应突出.2.为了加深对函数连续性概念的理解,可以简要地列出函数在一点处连续的几种等价的定义.(1)用增量定义:0lim 0=∆→∆y x ; (2)用极限定义:)()(lim 00x f x f x x =→; (3)用δε-定义:0>∀ε,0>∃δ,当δ<-||0x x 时,总有ε<-|)()(|0x f x f ; (4)用左、右极限推出:)()(lim )(lim )()(0000x f x f x f x C x f x x x x ==⇔∈-+→→.3.注意区分函数极限与连续性的δε-定义中,不等式δ<-<||0a x 与δ<-||a x 的不同点,前者不管)(x f 在a x =处有无定义,均可研究其极限;而后者连续性要求)(x f 在点a x =处必须有定义.4.分段函数的间断点只可能在分段点处.可增加函数间断点分类的内容.5.初等函数的的连续性、闭区间上连续函数的连续性不要求学生知道证明,但要求学生能熟悉它们的内容,并能运用这些性质证明一些简单的命题.习 题 课教学内容:本章知识系统复习.教学重点:函数极限与连续的概念,求极限的方法.教学难点:求未定式极限的方法.教法建议:1.本次课不仅是对第二章极限与连续内容的系统复习,还应在复习的基础上使学生加深对本章基本概念的理解、能系统清晰地掌握本章有关知识与方法.2.本章所学极限过程有:∞→n ,∞→x ,+∞→x ,-∞→x ,0x x →,0x x +→,0x x -→共七种;各种极限结果有:A (有限数)含0(无穷小),∞(无穷大),∞+与∞-共五种,将它们搭配有35种极限形式.课堂上可适当选择一些用N -ε,δε-定义表示,其余的可留给学生课后去练习,以加深对极限概念的理解.3.求(证)极限的方法很多,第四章还要讲用洛必达法则去求(证)极限.本章概括为用初等方法去求(证)极限,可归为以下几种方法:(1)利用极限的定义和性质求(证)极限;(2)利用两个重要极限求极限;(3)利用两个重要准则求(证)极限;(4)用极限的运算法则和初等变形法求未定式极限;(5)进行无穷小量的比较,用等价无穷小代换或无穷小性质求极限;(6)用函数的连续性求(证)极限.4.两个重要极限以及利用两个重要极限求极限是学习的重点之一,为加深学生对它们的理解,并会熟练运用它们求极限,可补充以下例题随堂练习:0sin lim =∞→x x x ; 1sin sin lim 1=→x x x ; 0sin lim =∞→n n n ; nm nx mx x =→sin sin lim 0; 11sin lim =∞→n n n ; 0sin lim =∞→n x n ; ⎪⎩⎪⎨⎧=∞≠=→.0,,0,sin sin lim 0000x x x n x n x xe =+→ααα10)1(lim ; ab c bx x e x a =++∞→)1(lim ;ab c be a =++→ααα)1(lim 0. 5.未定式极限,有00、∞∞、∞⋅0、∞-∞、∞1、00和0∞等类型,这里00和∞∞是最基本的两种,其它的可经过适当的变换化为这两种未定式极限.本章主要要求学生能熟练掌握用分解因式、乘以共轭因式法求前两种未定式极限.6.一般常用的等价无穷小有:当0→x 时,1~)1ln(~arctan ~arcsin ~tan ~sin ~-+x e x x x x x x ,2~cos 12x x -, x x αα~1)1(-+, )1,0(ln ~1≠>-a a a x a x .第 二 章 测 评 题一 选择题1.数列n nn x n cos +=的极限是( ).A .0 B. 1 C. -1 D. 不存在2. 设⎩⎨⎧>+≤-=1,31,)(x x x x x f ,⎩⎨⎧>-≤=1,121,)(3x x x x x g ,则)]([lim 1x g f x →( ). A .等于1- B. 等于1 C. 等于4 D. 不存在 3. =-+++∞→)2122321(lim 222n n n n n ( ).A. 0B. ∞C. 21D. 14.设121)(11++=-x x e e x f ,则)(lim 0x f x →( ).A .是∞ B. 不存在 C. 是0 D. 是215.已知0>a ,=--+-+→22lim a x ax a x a x ( ).A. 1B. 0C.a 21 D. a 21 6. =+--→23)1sin(lim 21x x x x ( ). A. 0 B. ∞ C. 1 D. -17.当0→x 时,αx 与23sin x 为等价无穷小量的充分条件是=α( ).A. 2B. 3C. 5D. 68.下列结果错误的是( ).A .e x x x =++∞→2)11(lim B. e xx x =-∞→)11(lim C. e x x x x =+-→22120)1(lim D. e x x x =--→120)1(lim9. 函数⎪⎩⎪⎨⎧>+<=0,20,2sin )(x x x x x x f 在分段点0=x 处( ).A .函数有定义且极限存在 B. 函数无定义极限亦不存在C. 极限存在且且连续D. 极限存在但不连续10. 函数nn x x x f 211lim )(++=∞→,讨论)(x f 的间断点, 其结论为( ). A. 不存在间断点 B. 存在间断点1-=xC. 存在间断点0=xD. 存在间断点1=x二 填空题11.已知当∞→x 时,b ax x x x f --++=11)(2为无穷小量,则=a ,=b .12.=-+→xx x x 20tan 3sin )121(lim . 13. 已知21)1(lim =-∞→x x x a ,则=a . 14. =-→x x x 111lim .15.函数65||ln )(2-+=x x x x f 的全部间断点共有 个,它们是 .16.设函数⎪⎪⎩⎪⎪⎨⎧<≤<+≤+=x xb x x x a x x f 1,10,10,)(2 在定义区间内连续,则=a ,=b .三 计算题17.设141151312-+++=n x n ,求n n x ∞→lim . 18.求)]11()311)(211[(lim 222n n ---∞→ .19.求)(lim x x x x x --+∞→.20.求xx x x x 530sin 2)cos 1(sin lim+-→.21.求⎪⎭⎫⎝⎛+++++++++∞→n n n n n n n n n 2222211lim . 22.求xx x e x 20)(lim +→.23.设tt t x x f 21lim )(⎪⎭⎫⎝⎛+=∞→,求)2(ln f . 24.求xx x sin 30)21(lim +→.25.判断函数111)(--=x x ex f 的间断点,并说明间断点的类型.26.求⎪⎪⎩⎪⎪⎨⎧>=<+=-0,0,00,sin )(12x e x x x x xx f x 的连续区间.四 证明题27.利用夹逼准则证明112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 28.设函数)(x f ,)(x g 在],[b a 上连续,且)()(a g a f >,)()(b g b f <.证明:在),(b a 内至少存在一点ξ,使得)()(ξξg f =成立. 29.证明方程0cos sin =-x x x 在)23,(ππ内至少有一实根. 30.证明方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +.第二章测评题参考答案一 选择题1. B2. D3. C4. B5. C6. D7. D8. B9. D 10. D二 填空题11.1=a ,1-=b 12. 3 13. 2ln =a 14. 1-e 15. 共有3个,它们是6-=x ,0=x ,1=x 16. 1=a ,2=b三 计算题 17.解 ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=121121513131121n n x n ⎪⎭⎫ ⎝⎛+-=121121n , 21lim =∞→n n x . 18.解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-22211311211n⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=n n 1111311311211211 ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n 11311211 •⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-n 11311211 ⎝⎛=23•34•45•…•1-n n •⎪⎭⎫+n n 1• ⎝⎛21•32•43•…•12--n n •⎪⎭⎫-n n 121+=n •nn n 211+= . 所以 2121lim )]11()311)(211[(lim 222=+=---∞→∞→n n nn n .19.解 )(lim x x x x x --+∞→xx x x x x -++=+∞→2lim111112lim=-++=+∞→xx x .20.解 因0→x 时,x x ~sin ,33~sin x x ,2~cos 12x x -故 xx x x x 530sin 2)cos 1(sin lim+-→52322limx x x x x ⋅+⋅=→221221lim 0=+=→x x . 21.解 利用夹逼准则有∑∑∑===++≤++≤++ni ni ni n n ii n n in n n i 1212121即 )1(2)1()2(21212+++≤++≤++∑=n n n n i n n i n n ni而 21)2(21lim=++∞→n n n , 21)1(2)1(lim 2=+++∞→n n n n n所以 ⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n 22212111lim 21=. 22.解 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=+→→→x x x xx x x xx x e x e ex e e x 22020201lim 1lim )(lim22021lim e e x e x x e xe x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛+=→•412e e =.23.解 x xx tt t t e x t t x x f 22211lim )1(lim )(=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛+=+=∞→∞→4)2(ln 2ln 2==e f . 24.解 xx x x xx x x sin 312210sin 30)21(lim )21(lim ⋅⋅→→+=+6616sin 210])21[(lim e e x xx x x ==+=⨯⋅→.25.解 )(x f 在1=x 及0=x 处无定义,是函数的间断点. 因 111lim 11=--→-x x x e,011lim 11=--→+x x x e,所以1=x 处是)(x f 的跳跃间断点.∞=--→111limx x x e, 所以0=x 处是)(x f 的无穷间断点.26.解 0<x 时,)1(sin )(+=x x xx f ,1-≠x .0=x 时,111sin lim sin lim )(lim 020=+⋅=+=---→→→x x x xx x x f x ox x , 0lim )(lim 1==-→→++xx x ex f)(lim 0x f x →不存在,所以)(x f 在0=x 处不连续.0>x 时,)(x f 连续. 综上所述,)(x f 在1-=x 及0=x 点不连续.因此,)(x f 的连续区间为),0()0,1()1,(∞+--∞- .四 证明题27.证 利用夹逼准则有11211122222+<++++++<+n n nn n n nn n而 1lim2=+∞→nn n n , 11lim2=+∞→n nn所以 112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 28.证 令)()()(x g x f x F -=,则)(x F 在闭区间],[b a 上连续,且0)()()(>-=a g a f a F ,0)()()(<-=b g b f b F .由介值定理可知,在),(b a 内至少存在一点ξ,使0)(=ξF ,即0)()(=-ξξg f ,于是有)()(ξξg f =.29.证 令x x x x f cos sin )(-=,则)(x f 在闭区间]23,[ππ上连续,且0cos sin )(>=-=πππππf ,0123cos 2323sin )23(<-=-=ππππf . 由介值定理,至少存在一点)23,(ππξ∈,使0)(=ξf ,即方程0cos sin =-x x x 在)23,(ππ内至少有一个实根.30.证 令x b x a x f -+=sin )(,则)(x f 在),(∞+-∞上连续,且0)0(>=b f ,0]1)[sin()()sin()(≤-+=+-++=+b a a b a b b a a b a f .当01)sin(=-+b a 时,b a +就是方程的一个正根.当01)sin(<-+b a 时,0)(<+b a f ,由介值定理,至少存在一点),0(b a +∈ξ,使0)(=ξf .综上所述,方程)0,0(sin >>+=b a b x a x 至少有一个不超过b a +的正根.。

相关文档
最新文档