高中数学必修5第三章不等式练习题含答案解析

合集下载

(完整版)必修五第三章不等式练习题(含答案),推荐文档

(完整版)必修五第三章不等式练习题(含答案),推荐文档

等式练习题 第一部分1.下列不等式中成立的是(7.在R 上定义运算 :xy x(1 y),若不等式(x a)(x a) 1对任意实数x 成立,贝U 实数a 的取值范围是().A. {a| 1 a 1}B .{a| 0 a 2}1 3 C {a| 1 a £} D.{a| 3 11-a -}2 28已知正实数x,y 满足x 2y4,则丄 4x 丄的最小值为y•9 .设x, y 为正实数,aJ x 22xy y ,bpjxy,c xy .试比较a 、c 的大小.A. b a C. D. a cB. b c a b ca c bA.若a 则ac 2 bc 2 .若 a b ,贝U a 2b 2 C.若aab b 21.若 a b 0,贝U -a2.已知a 1 3,b14,(A). c a3.已知a,b,c 满足c (B)3 5a b3 4,则a,b,c 的大小关系是()(C) b a c a 且ac 0,下列选项中不一定(D) c成立的是((A ) ab ac(B )(C) cb 2 ab 2(D) ac(a c) 04 .规定记号“O”表示一种运算,定义若1O k 2<3,则k 的取值范围为A . 1 k 1B aO b^/ab a (a , b 为正实数),5 .若a,b,c 为实数, 则下列命题正确的是(A.若a 则ac 2bc 2B.若a ab b 2C.若aD.若a 1bab6.设a0.5. I,b log 3,c log 4 2,则(6.226函数y = 3x + x^+1的最小值是()A.10 .已知不等式ax 2 5x 2 0的解集是M .(1)若2 M ,求a 的取值范围;(2)若 M x2x2,求不等式ax 2 5x a 2 10的解集.第二部分1.给出以下四个命题:1 12 2①若a>b ,则-<匚; ②若ac >bc ,则a>b ;a b ③若 a>|b|,则 a>b ; ④若 a>b ,则 a 2>b 2.其中正确的是(A.②④ B .②③ C .①② D ①③2.设 a , b € R, A. b -a>0 B若a -1 b|>0,贝U 下列不等式中正确的是( .a 3+ b 2<0)C . b + a>0D . a — b <0 3.在下列函数中,最小值是 2的是() A.x + 2 .y =尸(x >0)C. y = sin x + cscx , x € (0 ,ny )4. 已知log a (a 2+ 1)vlog a 2a<0,则a 的取值范围是( A. (0,1) B ・(扌,1)C. (0, 2)5. f (x) = ax 2+ ax - 1 在 R 上满足 f (x)<0, 则a 的取值范围是( )A. (-X, 0]B. (-X,- 4)C. (-4,0)D. (-4,0]B.C.6.41 17.设a>0, b>0.若{3是3与3的等比中项,则o +b 的最小值为( )A. 8D-4&已知当x>0时,不等式x 2— m)+ 4>0恒成立,则实数m 的取值范围是 9.已知 A = {x|x 2— 3x + 2<0},{x|x 2— (a + 1)x + a <0}.⑴若A B,求a 的取值范围; ⑵若B? A 求a 的取值范围1 910.已知x>0, y>0,且x + y = 1,求X + y 的最小值.11.已知a , b , c 都是正数,且a +b + c = 1.求证:(1 — a)(1 — b)(1 — c) >8abc. 证明•/ a 、b 、c 都是正数,且a +b + c = 1,•-1 — a = b + c 寸 bc>0, 1—b=a+c >2ac>0, 1 — c = a + b 寸 ab>0.••• (1 — a)(1 — b)(1 — C) •^Oc •2ab= 8abc.212.不等式 kx — 2x + 6kv0(k 工0).(1) 若不等式的解集为{x|x< — 3或x> — 2},求k 的值; (2) 若不等式的解集为R,求k 的取值范围.B. 4C. 11. D. 【解析】对于A ,若c 不成立;对于C,若a2. D 【解析】 参考答案 第一部分,显然ac 2b 0,则 a 2;故选Dbc 2不成立;对于B ,若b a 0,则a 2ab b 2b 2,所以C 错;对于D,若a b33 4 2 3. C 【解析】 1所以c 综上,所以答案为:D.Qa c, ac 0, 0,a (1) Qb c,a 0,ab ac;⑵ Q b a,0,0, c b 0 ;(3) Q c a,,Q ac 0, ac a0 ■⑷b a 且c 0, a 0, 0或b 0或b 0, cb 2和ab 2的大小不能确定,即C 选项不一定成立■故选C.4. A 【解析】根据题意1e k 2 1 k 2 3化简为k 2绝对值如下: 原不等式为 k 2k 2 0解得2 0时, 原不等式为 0成立,所以k k 2 0 ,对k 分情况去 k 1,所以0 k 原不等式为 k 2k 2 0,解得 1 k 2,所以1 综上, 5. B 【解析】对于 所以选择 A. 当c 0时, 0,所以1a 所以a b,故D 错,所以选b a两边同时除以 A, ab 故A 错;对于C, 不等式不成立, 11,故C 错;对于D,因为a b 0 , b因为a 1bB .6. A【解析】••• a 20.5, b log 3 , c log42 , 1>2 0.51log 3 >1, Iog 42= -b >a >c .故选: 27. C8. 1 【解析】【解析】根据题意化简不等式为(X a )(1 (X a)) 1,即 X 2 X(a 2 a 1) 0 对任意实数X 成立,所以根据二次恒成立 0,解得(当且仅当“X y 4”时,取“ ”),故最小值为1.39.a 2 X 22 2 2 22 2xy y 2, c 2X 22xy y 2c 2 a 2xy ;X 0, y0, xy 0,即 c a ;10. (1) a12 (2) X3 X 1【解析】(1)由2 M ,说明元素2满足不等式ax 2 5x 2 0,代入即可求出a的取值范围; (2)由M x2 X 2,2,2是方程ax 25x 20的两个根,由韦达定理即可求出a 2,代入原不等式解一元二次不等式即可;(1)v 2 M 2,二 a 2 5 2 20,••• a 2(2)v Mx1 X 2 ,••• 1,2是方程ax 2 5x 20的两个根,11 y X 8 yX y 1 4 5 25 21 / y X 4点 1 -1 8尸y4x A.由X 2y 4化为4x4 X 2 4x1 2x1 2xX 2y 4,因为o,y所以1 8所以 X + y = (x+ y)( 1+ 9) = y+ — + 10>2 ' 八 X y X y y 9x 1 9当且仅当x =—时,等号成立,又因为X +y = 1.所以当 x = 4, y = 12 时,(X + y) min = 16.•••由韦达定理得2 1/•不等式ax 2 5x a0即为:2x 2 5x 3 0其解集为X第二部分2.解析 由 a —|b|>0? |b|va? — a<b<a? a + b>0,故选 C.3.解析X 2y=- + -的值域为(一X,— 2] U [2,+X);X + 2 --- 1y〒=也〒 + k >2(X >0);1y = SinX + CSCX = SinX + 茹>2(0<Sin X <1);y = 7x + 7—x>2(当且仅当x = 0时取等号).7.解析 V s 是 3a 与 3b 的等比中项? 3a •3b= 3a + b= 3? a + b = 1, v a>0,b>0, /^ab1 1 a + b 1 1 「a +萨石=Ob ^ 1=4.411.解析因为 x>0, y>0, X + 9= 1,9X-—+ 10= 16. y。

(典型题)高中数学必修五第三章《不等式》测试题(答案解析)

(典型题)高中数学必修五第三章《不等式》测试题(答案解析)

一、选择题1.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,22.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .33.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .34.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .75.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.6.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .97.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-8.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .69.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a>10.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关二、填空题13.已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.14.设点(),P x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩,所表示的区域内(含边界),则目标函数4z x y =-的最大值是_________.15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.已知1,1,1,x y x y ≤⎧⎪≤⎨⎪+≥⎩当z x y =+取到最小值时,xy 的最大值为________.17.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________. 18.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 19.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________. 20.已知x ,y 是正数,121x y +=,则21x y xy ++的最小值为________. 三、解答题21.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米. 求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?22.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省?23.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式; (2)解不等式f(x)>2x +5.24.已知函数2()3f x x ax a =-++. (1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围. 25.(1)已知()2fx kx =+,不等式()3f x <的解集为()1,5-,不等式()1xf x ≥的解集为A .求集合A ;(2)解关于x 的不等式()2220ax a x +--≥. 26.已知圆22:4210C x y x y +---=. (1)求y 轴被圆C 所截得的线段的长;(2)过圆C 圆心的直线与两坐标轴在第一象限内围成的三角形面积为S ,求S 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 2.D解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.3.D解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344zy x =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).4.C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.C解析:C【解析】0,tan02x xπ<∴,()21cos28sinsin2x xf xx++=2222cos8sin28tan114tan4tan4 2sin cos2tan tan tanx x xx xx x x x x++===+≥⨯=,当且仅当1tan2x=时取等号,函数()21cos28sinsin2x xf xx++=的最小值为4,选C.6.C解析:C由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件5021010x yx yx+-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150xx y=⎧⎨+-=⎩,解得A(1,4),化目标函数z=x+2y﹣1为y1 222x z=-++,由图可知,当直线y1222x z=-++过A时,z有最大值为8.故选C.【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.7.D解析:D【分析】根据约束条件画出可行域,将问题转化为133zy x=-在y轴截距最大值的求解问题,利用数形结合的方式可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133z y x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大;由图象可知,当133zy x =-过点A 时,在y 轴截距最大, 由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.8.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x⎛⎫+=++=++≥+= ⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.9.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 10.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.11.D解析:D 【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围 【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立 即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立 令g (x )=mx 2-mx +m -5,对称轴为12x = 当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0 当m >0时,有g (x ) 开口向上且在[1,3]上单调递增 ∴在[1,3]上max ()(3)750g x g m ==-<,得507m <<综上,实数m 的取值范围为57m < 故选:D 【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围12.A解析:A 【分析】对M 与N 作差,根据差值的正负即可比较大小. 【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <.故选:A 【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.二、填空题13.9【分析】由已知结合基本不等式即可直接求解【详解】为正实数当且仅当时取等号即解得:或(舍去)当且仅当时取等号即的最小值是9故答案为:9【点睛】关键点点睛:本题主要考查了利用基本不等式求最值解题的关键解析:9 【分析】由已知结合基本不等式a b +≥,即可直接求解. 【详解】30a b ab +-+=,3a b ab ∴+=-,a b 为正实数,a b ∴+≥a b =时取等号,3ab ∴-≥30ab ∴-≥,即)310≥3≥1≤-(舍去),9ab ∴≥,当且仅当3a b ==时取等号,即ab 的最小值是9.故答案为:9 【点睛】关键点点睛:本题主要考查了利用基本不等式求最值,解题的关键是利用基本不等式将已的一元二次不等式,进而解不等式得解,考查学生的转化思想与运算能力,属于基础题.14.【分析】根据线性约束条件画出可行域将目标函数化为直线方程通过平移即可求得目标函数的最大值【详解】由题意作出可行域如图目标函数可化为上下平移直线数形结合可得当直线过点A 时z 取最大值由可得所以故答案为: 解析:163【分析】根据线性约束条件,画出可行域,将目标函数化为直线方程,通过平移即可求得目标函数的最大值.【详解】由题意作出可行域,如图,目标函数4z x y =-可化为4y x z =-,上下平移直线4y x z =-,数形结合可得,当直线过点A 时,z 取最大值,由2103x y x y -+=⎧⎨+=⎩,可得54,33A ⎛⎫ ⎪⎝⎭, 所以54164333max z =⨯-=. 故答案为:163. 【点睛】方法点睛:求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图,画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ; ②平移,将l 平行移动,以确定最优解所对应的点的位置;③求值,解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】作出可行域,令ytx=,OA OByk kx≤≤,所以7,313t⎡⎤∈⎢⎥⎣⎦,22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值.【详解】由43040x yx y-+=⎧⎨+-=⎩解得:13575xy⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A⎛⎫⎪⎝⎭,由140xx y=⎧⎨+-=⎩解得:13xy=⎧⎨=⎩,所以()1,3B,yx表示可行域内的点与原点连线的斜率,所以OA OByk kx≤≤,707513135OAk-==-,30310OBk-==-,令7,313ytx⎡⎤=∈⎢⎥⎣⎦,所以22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,1y tt=+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t=时,1713109213791y⎛⎫=+=⎪⎝⎭,当75t=时,1153233y⎛⎫=+=⎪⎝⎭,所以222x yxy+的最大值为53,故答案为:53. 【点睛】 思路点睛: 非线性目标函数的常见类型及解题思路: 1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的a c 倍; 2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)2222Ax By Cz Ax By C A B A B ++=++=+⋅+表示的是可行域内的点(),x y 到直线0Ax By C ++=的距离的22A B +倍.16.【分析】根据约束条件作出可行域将目标函数变形为通过平移可知当直线与直线重合时取得最小值再利用基本不等式求解即可【详解】作出已知不等式组所表示的平面区域如图所示:将目标函数变形为由图可知当直线与直线重解析:14【分析】根据约束条件作出可行域,将目标函数变形为y x z =-+,通过平移可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,再利用基本不等式求解即可.【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数z x y =+变形为y x z =-+,由图可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,此时1x y +=,所以21()24x y xy +≤=,当且仅当x y =且1x y +=,即12x y ==时等号成立. 所以xy 的最大值为14. 故答案为:14【点睛】 本题主要考查简单线性规划问题中的目标函数最值问题及基本不等式,解决线性规划问题的关键是正确地作出可行域,准确地理解目标函数的几何意义.17.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即 解析:3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122z y x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=.即目标函数521z x y =+-的最小值为3.故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.18.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定 解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案.【详解】0a >,0b >,且a ,1,b 依次成等差数列,∴2a b +=, ∴()411411414941(52)2222b a b a a b a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+⋅= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4b a a b =,即43a =,23b =,取等号, 故14a b +的最小值为92. 故答案为:92. 【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.19.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】 首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得; 【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y += 所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题. 20.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求 解析:89【分析】首先将题中已知条件转化,可得2x y xy +=,利用基本不等式可求得8xy ≥,之后应用不等式的性质求得结果.【详解】由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++,由121x y =+≥ 得8xy ≥,当且仅当24x y ==时取等号, 所以有1108xy <≤,19118xy <+≤,18191xy≥+, 所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号, 故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题. 三、解答题21.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式; (2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+;(2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()16991782917810029x x ⨯⎡⎤=-++≤-=⎢⎥+⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 22.铁盒底面的长与宽均为5cm 时,用料最省.【分析】法一:因为体积为350cm 高为2cm ,所以底面积是定值25,设长为xcm ,则宽为25x ,列出表面积结合基本不等式即可;法二:列出表面积后,利用求导函数的方法求最值. 【详解】解法1:设铁盒底面的长为xcm ,宽为25x ,则.. 表面积251002544425S x x x x=++⨯=++.. 2565≥=.. 当且仅当25x x=,即5x =时,表面积有最小值65. 所以这个铁盒底面的长与宽均为5cm 时,用料最省. 答:这个铁盒底面的长与宽均为5cm 时,用料最省.解法2:设铁盒底面的长为xcm ,宽为25x ,表面积为2ycm ,则. ()2510025444250y x x x x x=++⨯=++> 22210041004x y x x-'=-=.. 令2241000x y x-'==得,5x =.当()0,5x ∈时,0y '<,函数224100x y x-'=为减函数; 当()5,+∈∞x 时,0y '>,函数224100x y x-'=为增函数; 所以当5x =时,y 有最小值65.答:这个铁盒底面的长与宽均为5cm 时,用料最省.23.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x );(2) 利用一元二次不等式的解法即可得出.【详解】(1).设二次函数f (x )=ax 2+bx+c ,∵函数f (x )满足f (x+1)﹣f (x )=2x , ∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1 ∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0.化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1.∴原不等式的解集为()(),14,-∞-⋃+∞【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.24.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集.(2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题. 25.(1)[)1,2;(2)见解析【分析】(1)由题意得,23523k k ⎧-+=⎪⎨+=⎪⎩,由此可求得()2f x x =-+,代入后转化为一元二次不等式即可求出答案;(2)分类讨论法解不等式即可.【详解】解:(1)∵()2f x kx =+,不等式()3f x <的解集为()1,5-,∴方程23kx +=的解集为1,5, ∴23523k k ⎧-+=⎪⎨+=⎪⎩,解得1k =-, ∴()2f x x =-+,∴()112x x f x x ≥⇔≥-+()2102x x -⇔≤-()()12020x x x ⎧--≤⇔⎨-≠⎩, 解得12x ≤<,∴[)1,2A =;(2)∵()2220ax a x +--≥, ①当0a =时,原不等式化为220x --≥,解得1x ≤-; 当()2010a a x x a ⎛⎫≠∴-+≥ ⎪⎝⎭, ②当0a >时,原不等式化为()210x x a ⎛⎫-+≥ ⎪⎝⎭, 解得1x ≤-,或2x a≥; ③当0a <时,原不等式化为()210x x a ⎛⎫-+≤ ⎪⎝⎭, 1︒当21a =-即2a =-时,原不等式化为()210x +≤,解得1x =-; 2︒当21a<-即20a -<<时,解得21x a ≤≤-; 3︒当21a >-即2a <-时,解得21x a-≤≤; 综上:当2a <-时,原不等式的解集为21,x a⎡⎤∈-⎢⎥⎣⎦; 当2a =-时,原不等式的解集为{}1x ∈-;当20a -<<时,原不等式的解集为2,1x a ⎡⎤∈-⎢⎥⎣⎦; 当0a =时,原不等式的解集为(],1x ∈-∞-; 当0a >时,原不等式的解集为(]2,1,x a ⎡⎫∈-∞-+∞⎪⎢⎣⎭. 【点睛】本题主要考查一元二次不等式的解法,考查分式不等式的解法,考查转化与化归思想,考查分类讨论法,属于中档题.26.(1)2)4 【分析】(1)将0x =代入22:4210C x y x y +---=可得2210y y --=,将线段长为12y y -=和韦达定理相结合即可得出结果;(2)设:1(,0)x yl a b a b +=>,由直线过圆心可得211a b=+,利用基本不等式可得8ab ≥,最后根据三角形面积公式即可得出结果. 【详解】(1)设圆22:4210C x y x y +---=与y 轴的交点为()10y ,,()20,y , 将0x =代入22:4210C x y x y +---=可得2210y y --=, 即122y y +=,121y y ⋅=-,所以y 轴被圆C 所截得的线段的长为12y y -==(2)设:1(,0)x yl a b a b +=>,由于l 过(2,1)C ,∴211a b=+,利用基本不等式,得2118ab a b =+≥≥,∴142S ab =≥, 即S 的最小值为4, 此时4,2a b ==,:142x yl +=,即:240l x y +-= 【点睛】本题主要考查了直线截圆所得弦长问题,直线截距式的应用,利用基本不等式求最值,属于中档题.。

高中数学必修5第三章不等式练习题含答案解析

高中数学必修5第三章不等式练习题含答案解析

高中数学必修5第三章不等式练习题含答案解析人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x 的解集是( )A .{x |x ≥2}B .{x |x ≤2}C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2} 2.下列说法正确的是( )A .a >b ?ac 2>bc 2B .a >b ?a 2>b 2C .a >b ?a 3>b 3D .a 2>b 2?a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) ·4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<1}<="" p="">C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <="" d="" p="" ≤n="" .m="">2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件?x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-3.8.若关于x 的函数y =x +m 2x 在(0,+∞)的值恒大于4,则( )A .m >2B .m <-2或m >2C .-2<2<="" p="">D .m <-2 9.已知定义域在实数集R 上的函数y =f (x )不恒为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( )A .f (x )<-1B .-1<0<="" p="">C .f (x )>1D .0<1<="" p="">10.若x +23x -5<0,化简y =25-30x +9x 2-(x +2)2-3的结果为( )A .y =-4xB .y =2-xC .y =3x -4D .y =5-x二、填空题(本大题共5小题,每小题5分,共25分) 【11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.三、解答题(本大题共6小题,共75分) "16.(12分)已知a >b >0,c <="" -c="">b -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0.18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.、19.(12分)已知非负实数x ,y 满足?2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z =x +3y 的最大值.%20.(13分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元;…(3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元.经讨论有两种方案:①利用旧墙x m(0<="">必修5第三章《不等式》单元测试题(1.解析:原不等式化为x 2-2x ≥0,则x ≤0或x ≥2. 答案:D2.解析:A 中,当c =0时,ac 2=bc 2,所以A 不正确;B 中,当a =0>b =-1时,a 2=0(-1)2时,-2<-1,所以D 不正确.很明显C 正确.答案:C3.解析:当x =y =0时,3x +2y +5=5>0,所以原点一侧的平面区域对应的不等式是3x +2y +5>0,可以验证,仅有点(-3,4)的坐标满足3x +2y +5>0.答案:A4.解析:x -1x +2>1?x -1x +2-1>0?-3x +2>0?x +2<0?x <-2.答案:A -5.解析:M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0,所以M ≥N . 答案:B6.解析:在平面直角坐标系中,画出不等式组表示的平面区域,如下图中的阴影部分.则平面区域是△ABC . 答案:A7.解析:画出可行域如下图中的阴影部分所示.解方程组?x +y -3=0,x -2y =0.得A (2,1).由图知,当直线y=x -z 过A 时,-z 最大,即z 最小,则z 的最小值为2-1=1.>答案:A8.解析:∵x +m 2x ≥2|m |,∴2|m |>4. ∴m >2或m <-2. 答案:B9.解析:令x =y =0得f (0)=f 2(0),若f (0)=0,则f (x )=0·f (x )=0与题设矛盾.∴f (0)=1.又令y =-x ,∴f (0)=f (x )·f (-x ),、故f (x )=1f (-x ).∵x >0时,f (x )>1,∴x <0时,0<="">10.解析:∵x +23x -5<0,∴-2<5<="" p="">3.而y =25-30x +9x 2-(x +2)2-3=|3x -5|-|x +2|-3=5-3x -x-2-3=-4x .∴选A.答案:A二、填空题(填空题的答案与试题不符)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是__________.;解析:式子1kx 2+kx +1恒有意义,即kx 2+kx +1>0恒成立.当k ≠0时,k >0且Δ=k 2-4k <0,∴00恒成立,故0≤k <4,选C.答案:C12.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.解析:求原函数定义域等价于解不等式组x -2≥0,x -3≠0,4-x >0,解得2≤x <3或3<4.<="" p="">∴定义域为[2,3)∪(3,4).答案:[2,3)∪(3,4)13.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________. &解析:如下图中阴影部分所示,围成的平面区域是Rt △OAB .可求得A (4,0),B (0,4),则OA =OB =4,AB =42,所以Rt △OAB 的周长是4+4+42=8+4 2. 答案:8+42f (x )+f (y )≤0,f (x )-f (y )≥0的点(x ,y )所形成区域14.已知函数f (x )=x 2-2x ,则满足条件的面积为__________.解析:化简原不等式组(x -1)2+(y -1)2≤2,(x -y )(x +y -2)≥0,…所表示的区域如右图所示,阴影部分面积为半圆面积.答案:π 15.(2010·浙江高考)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.解析:由已知条件可得,七月份销售额为500×(1+x %),八月份销售额为500×(1+x %)2,一月份至十月份的销售总额为3860+500+2[500(1+x %)+500(1+x %)2],可列出不等式为4360+1000[(1+x %)+(1+x %)2]≥7000.令1+x %=t ,则t 2+t -6625≥0,即? ????t +115? ??t -65≥0.又∵t +115≥0,∴t ≥65,∴1+x %≥65,∴x %≥,∴x ≥20.故x 的最小值是20. 答案:20三、解答题(本大题共6小题,共75分) }16.(12分)已知a >b >0,c <="" -c="">b -d的大小.解:e a -c -eb -d =e (b -d )-e (a -c )(a -c )(b -d )=(b -a )+(c -d )(a -c )(b -d )e .∵a >b >0,c <0,<="" p="">∴a -c >0,b -d >0,b -a <0,c -d <0.又e <0,∴e a -c -e b -d >0.∴e a -c >eb -d.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0. ;解:(1)-x 2+2x -23>0?x 2-2x +23<0?3x 2-6x +2<0.Δ=12>0,且方程3x 2-6x +2=0的两根为x 1=1-33,x 2=1+33,∴原不等式解集为{x |1-33<1+3<="" p="">3}. (2)9x 2-6x +1≥0?(3x -1)2≥0. ∴x ∈R .∴不等式解集为R .18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0. 解:当m =-3时,不等式变成3x -3>0,得x >1;当-3<=""-m ]>0,得x >1或x <m< p="">m +3;当m <-3时,得1<m<="" p="">m +3.综上,当m =-3时,原不等式的解集为(1,+∞);当-3<="" -∞,m="" m="" p="" +3∪(1,+∞);当m="">1,m m +3.19.(12分)已知非负实数x ,y 满足?2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z =x +3y 的最大值.;解:(1)由x ,y 取非负实数,根据线性约束条件作出可行域,如下图所示阴影部分.(2)作出直线l :x +3y =0,将直线l 向上平移至l 1与y 轴的交点M 位置时,此时可行域内M 点与直线l 的距离最大,而直线x +y -3=0与y 轴交于点M (0,3).∴z max =0+3×3=9. 20.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.解:(1)y =g (t )·f (t ) #=(80-2t )·(20-12|t -10|) =(40-t )(40-|t -10|)=(30+t )(40-t ),0≤t <10,(40-t )(50-t ),10≤t ≤20.(2)当0≤t <10时,y 的取值范围是[1200,1225],在t =5时,y 取得最大值为1225;当10≤t ≤20时,y 的取值范围是[600,1200],在t =20时,y 取得最小值为600.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:¥(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元;(3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元.经讨论有两种方案:①利用旧墙x m(0<="">解:方案①:修旧墙费用为ax4(元),拆旧墙造新墙费用为(14-x )a2(元),其余新墙费用为(2x +2×126x -14)a (元),则总费用为y =ax 4+(14-x )a 2+(2x +2×126x -14)a =7a (x 4+36x -1)(0<="" 4+36x=""x =6,∴当且仅当x 4=36x 即x =12时,y min =35a ,方案②:利用旧墙费用为14×a 4=7a2(元),建新墙费用为(2x +252x -14)a (元),则总费用为y =7a 2+(2x +252x -14)a =2a (x +126x )-21 2a (x ≥14),可以证明函数x +126x 在[14,+∞)上为增函数,∴当x =14时,y min =. ∴采用方案①更好些.</m<>。

(好题)高中数学必修五第三章《不等式》测试(包含答案解析)

(好题)高中数学必修五第三章《不等式》测试(包含答案解析)

一、选择题1.设x ,y R +∈,1x y +=,求14x y+的最小值为( ). A .2B . 4C .8D .92.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .4 3.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .5.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-6.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<<D .42m -<<7.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9 B .94C .52D .28.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R9.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >n D .不确定10.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .211.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.14.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.15.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____.16.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 17.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .18.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.19.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 三、解答题21.已知函数()223f x x x =--+. (1)解不等式()0f x ≥;(2)若对任意实数x ,都有()3f x a x ≥-,求实数a 的取值范围.22.已知实数x ,y 满足不等式组204030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y =-的最值及相应的最优解.23.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.24.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.25.已知定义域在()0,∞+上的函数()f x 满足对于任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+,当且仅当1x >时,()0f x <成立.(1)设(),0,x y ∈+∞,求证()()y f f y f x x ⎛⎫=-⎪⎝⎭; (2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较x 1与x 2的大小; (3)若13a -<<,解关于x 的不等式()2110f x a x a ⎡⎤-+++>⎣⎦.26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D . 【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.2.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值, 又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.5.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.6.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案. 【详解】解:由于0x >,0y >,21x y +=, 所以()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立,故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.7.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.8.A解析:A【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.9.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥--24+=,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综 上可得m >n ,故选C .10.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.11.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以121212()12()()22233333x x x x x x f x f x -----+++⋅=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.14.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y x x y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.15.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题 解析:(],12-∞【分析】先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案.【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭, 当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.16.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10ak b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b a a b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b a a b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图. 由10y x y -=⎧⎨-=⎩ 可得点(1,1)B .当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=. 所以28282828()()1010218b a b a a b a b a b a b a b+=++=++≥+⨯=. 当且仅当2810,0b aa b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号.所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b aa b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 17.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.18.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.19.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围. 【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最解析:4 【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--. 所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B +的最小值为4. 故答案为:4 【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)5{|5}3x x -≤≤;(2) 5a ≤. 【解析】试题分析:(1) 零点分段法去绝对值,将()f x 表示成分段函数,由此解得解集为55,3⎡⎤-⎢⎥⎣⎦;(2)原不等式等价于23x x a -++≥恒成立.左边()23235x x x x -++≥--+=,故5a ≤.(1)1.当0x ≤时,()22322350f x x x x x x =--+=-++=+≥ 解得50x -≤≤2.当2x ≥时,()22322310f x x x x x x =--+=--+=-+≥ 解得无解3.当02x <<时,()223223350f x x x x x x =--+=--+=-+≥ 解得503x <≤综上可知不等式解集5{|5}3x x -≤≤(2)()3f x a x ≥-恒成立,即()23f x x x a =-++≥恒成立()23235x x x x -++≥--+=,故有5a ≤.22.在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解. 【详解】作出可行域,如图ABC 内部(含边界),由2=030x y x -+⎧⎨-=⎩得()3A ,5,由+4=030x y x -⎧⎨-=⎩得()31B ,,由2=0+40x y x y -+⎧⎨-=⎩得()13C ,,作直线:230l x y -=,向上平移直线l ,z 减小,当l 过点()3A ,5时,z 取得最小值23359⨯-⨯=-;向下平移直线l ,z 增大,当l 过点()31B ,时,z 取得最大值23313⨯-⨯=;所以目标函数23z x y =-在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题.23.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-. (2)由(1)可知3m =,则1a b +=,则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型. 24.(1)证明见解析;(2)1.【分析】(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据2a b ab +=,可得2ab a b =+≥1,进而求得1≥ab ,注意等号成立的条件,得到结果. 【详解】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥, ∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥ ∴1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1. 【点睛】该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.25.(1)证明见解析;(2)12x x >;(3)答案见解析 【分析】 (1)取yy x x=⋅,代入已知等式即可证得结果; (2)由()()12f x f x <,结合(1)中等式()()y f f y f x x ⎛⎫=-⎪⎝⎭,得到120x f x ⎛⎫< ⎪⎝⎭,再根据当且仅当1x >时,()0f x <成立得到121x x >,从而得到12x x >; (3)在已知等式中取特值1x y ==求出()10f =,由(2)可知函数f (x )在定义域()0,∞+上是减函数,在不等式()2110f x a x a ⎡⎤-+++>⎣⎦中,用()1f 替换0后利用函数的单调性脱掉“f ”,则不等式的解集可求. 【详解】(1)证明:∵()()()f xy f x f y =+,∴()()y f f x f y x ⎛⎫+=⎪⎝⎭, ∴()()y f f y f x x ⎛⎫=-⎪⎝⎭; (2)解:∵()()12f x f x <,∴()()120f x f x -<,又()()11220x f f x f x x ⎛⎫=-< ⎪⎝⎭,所以120x f x ⎛⎫< ⎪⎝⎭,∵当且仅当1x >时,()0f x <成立,∴当()0f x <时,1x >,∴121x x >,12x x >; (3)解:1x y ==代入()()()f xy f x f y =+得()()()111f f f =+,即()10f =, ∴()2110f x a x a ⎡⎤-+++>⎣⎦可得()()2111f x a x a f ⎡⎤-+++>⎣⎦,由(2)可知函数()f x 在定义域()0,∞+上是减函数,∴()20111x a x a <-+++<,当13a -<<时,()()22141230a a a a ∆=+-+=--<, 所以()2110x a x a -+++>恒成立;故只需满足()2111x a x a -+++<即()210x a x a -++<成立即可;即()()10x a x --<.当11a -<<时,1<<a x ;当1a =时,x ∈∅; 当13a <<时,1x a <<;综上可得:当11a -<<时,(),1x a ∈;当1a =时,x ∈∅;当13a <<时,()1,x a ∈ 【点睛】本题考查了函数单调性的定义,考查了含参一元二次不等式的求解.本题的关键是由已知不等式结合函数的单调性得含有参数的不等式.26.(1)25-;(2)6⎛⎫-∞ ⎪ ⎪⎝⎭,-. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或 ∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =-(2)∵不等式的解集为R ∴0k <且24240k ∆=-<∴k <∴k 的取值范围是(6-∞,- 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式 与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。

(好题)高中数学必修五第三章《不等式》测试题(含答案解析)

(好题)高中数学必修五第三章《不等式》测试题(含答案解析)

一、选择题1.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( ) A .12 B .45 C .92 D .4192.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4 B .[)0,4 C .()0,2 D .[)0,2 3.已知()()22log 1log 24a b -++=,则+a b 的最小值为( )A .8B .7C .6D .34.已知正实数a ,b 满足231a b +=,则12a b +的最小值为( ) A .15 B.8+C .16 D.8+5.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-6.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( )A .254B .499C .14425D .225497.设,x y 满足约束条件0{4312x y x x y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5 B .2,6 C .[]2,10D .[]3,11 8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9> 9.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( )A.B.C .6 D .8 10.已知0,0x y >>,且21x y +=,则xy 的最大值是( )A .14B .4C .18D .811.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.如果0a b >>,0t >,设b M a =,b t N a t +=+,那么( ) A .M N <B .M N >C .M ND .M 与N 的大小关系和t 有关二、填空题13.已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.14.若,0x y >满足35x y xy +=,则34x y +的最小值是___________.15.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.16.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________. 17.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.18.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 19.已知,x y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则目标函数z x y =-的最大值为_____.20.当x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩时,|2|x y a -≤恒成立,则实数a 的取值范围是________.三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集为(1,3)-,求,a b 的值;(2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省?23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-.(1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数()f x = (1)若()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,求实数a 的值; (2)若()f x 的定义域为R ,求实数a 的取值范围.25.已知a >0,b >0,a +b =3.(1)求11+2+a b的最小值; (2)证明:92+a b b a ab26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值;(2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值.【详解】作出可行域,如图ABC 内部(含边界), ()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min 2PM ==,(点M 到直线BC 的距离)∴()222x y +-的最小值是2922⎛= ⎝⎭.故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y b x a--:两点连线斜率, 2.B解析:B【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解.【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立,当0a =时,10>恒成立,满足题意,当0a ≠时,则2040a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4.故选:B.【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立.3.B解析:B【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值.【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦,所以,()()1216a b -+=且有10a ->,20b +>,由基本不等式可得()()128a b -++≥=,所以,7a b +≥, 所以(1)(2)16a b -+=,且10a ->,20b +>,当且仅当124a b -=+=时等号成立.因此,+a b 的最小值为7.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()121223888348a b a b a b a b a b ⎛⎫+=++=++≥+=+=+ ⎪⎝⎭仅当34b a b a =,即a b ==时等号成立,故12a b +的最小值为8+ 故选:D.【点睛】思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值; (3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.5.C解析:C【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可.【详解】画出约束条件所表示的平面区域,如图所示,由23z x y =-得到233z y x =-, 平移直线233z y x =-,当过A 时直线截距最小,z 最大, 由04100y x y =⎧⎨--=⎩ 得到5(,0)2A , 所以23z x y =-的最大值为max 523052z =⨯-⨯=, 故选C .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.C解析:C【分析】根据z 的最大值求得,a b 的关系式,结合点到直线的距离公式,求得22a b +的最小值.【详解】由2203260x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩. 画出可行域如下图所示,由于0,0a b >>,所以目标函数()0,0z ax by a b =+>>在点()4,3取得最大值4312a b +=.22a b +的最小值等价于原点到直线43120x y +-=的距离的平方,原点到直线43120x y +-=的距离为221212534-=+, 所以22a b +的最小值为212144525⎛⎫= ⎪⎝⎭. 故选:C【点睛】本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题. 7.D解析:D【分析】试题分析:作出不等式组0{4312x y x x y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.8.C解析:C【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围【详解】由()()()123f f f -=-=-可得184********a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<,故选C .【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.D解析:D【分析】 运用基本不等式2422422x y x y +≥=【详解】因为20,40x y >>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D.【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数; ②和(或积)为定值; ③等号取得的条件.10.C解析:C【分析】根据基本不等式求解即可得到所求最大值.【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C .【点睛】 运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;,0)2a b a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件. 11.D解析:D【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C ,平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12.A解析:A【分析】对M 与N 作差,根据差值的正负即可比较大小.【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <. 故选:A【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.二、填空题13.9【分析】由已知结合基本不等式即可直接求解【详解】为正实数当且仅当时取等号即解得:或(舍去)当且仅当时取等号即的最小值是9故答案为:9【点睛】关键点点睛:本题主要考查了利用基本不等式求最值解题的关键解析:9 【分析】由已知结合基本不等式a b +≥,即可直接求解. 【详解】30a b ab +-+=,3a b ab ∴+=-,a b 为正实数,a b ∴+≥a b =时取等号,3ab ∴-≥30ab ∴-≥,即)310≥3≥1≤-(舍去),9ab ∴≥,当且仅当3a b ==时取等号,即ab 的最小值是9.故答案为:9 【点睛】关键点点睛:本题主要考查了利用基本不等式求最值,解题的关键是利用基本不等式将已的一元二次不等式,进而解不等式得解,考查学生的转化思想与运算能力,属于基础题.14.【分析】化简得到结合基本不等式即可求解【详解】由满足可得则当且仅当时即时等号成立所以的最小值是故答案为:【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常 解析:5【分析】化简35x y xy +=,得到315x y +=,134(34)()531x y x y x y⋅+++=,结合基本不等式,即可求解. 【详解】由,0x y >满足35x y xy +=,可得315x y+=, 则311134(34)()(13123)55y x x y x y y x yx +=⋅++=++⨯11(13(1312)555≥⋅+=+=,当且仅当123y x x y =时,即21x y ==时等号成立,所以34x y +的最小值是5. 故答案为:5.【点睛】通过常数代换法利用基本不等式求解最值的基本步骤: (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求的最值的表达式相乘或相除,进而构造或积为定值的形式; (4)利用基本不等式求最值.15.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可. 【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B .代入目标函数z y x =-,得044z =-=-. 所以z y x =-的最小值是4-. 故答案为:4- 【点睛】方法点睛:线性规划问题解题步骤如下: (1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.16.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点 解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值. 【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++ ()6b cb c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.17.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.18.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题 解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()3199933366212b a a a b b a b a b a b a b a b ⎛⎫++=+++=++≥+⋅= ⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.19.【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则则表示直线在轴的截距的相反数根据图像知当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划 解析:2【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案. 【详解】如图所示:画出可行域和目标函数,z x y =-,则y x z =-,则z 表示直线在y 轴的截距的相反数,根据图像知当直线过点()2,0时,即2x =,0y =时,z 有最大值为2. 故答案为:2.【点睛】本题考查了线性规划问题,画出图像是解题的关键.20.【分析】先根据条件作出可行域然后求出的取值范围由恒成立即即可得出答案【详解】由满足作出可行域如图设则表示直线在轴上的截距的相反数则由得当直线过点时有最大值4当直线过点时有最小值所以所以故答案为:【点解析:)4,⎡+∞⎣ 【分析】先根据条件作出可行域,然后求出2z x y =-的取值范围,由|2|x y a -≤恒成立,即max |2|x y a -≤,即可得出答案.【详解】由x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩,作出可行域,如图.设2z x y =-,则2y x z =-,z 表示直线2y x z =-在y 轴上的截距的相反数.则()()1,0,1,3A C ,由27010x y x y +-=⎧⎨--=⎩,得()3,2B .当直线2y x z =-过点()3,2B 时,z 有最大值4,当直线2y x z =-过点()1,3C时,z 有最小值-1.所以|2|4x y -≤,所以4a ≤故答案为:[)4+∞,. 【点睛】本题考查简单的线性规划问题和恒成立求参数的问题,属于中档题.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16.【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值. 【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-,1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩.(2)由于()12f =,0a >,0b >, 则可知232a b +-+=, 得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b aa b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立,所以19a b +的最小值为16. 【点睛】易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值. 22.铁盒底面的长与宽均为5cm 时,用料最省. 【分析】法一:因为体积为350cm 高为2cm ,所以底面积是定值25,设长为xcm ,则宽为25x,列出表面积结合基本不等式即可;法二:列出表面积后,利用求导函数的方法求最值. 【详解】解法1:设铁盒底面的长为xcm ,宽为25x,则.. 表面积251002544425S x x x x=++⨯=++..2565≥=.. 当且仅当25x x=,即5x =时,表面积有最小值65. 所以这个铁盒底面的长与宽均为5cm 时,用料最省. 答:这个铁盒底面的长与宽均为5cm 时,用料最省. 解法2:设铁盒底面的长为xcm ,宽为25x,表面积为2ycm ,则. ()2510025444250y x x x x x=++⨯=++>22210041004x y x x -'=-=.. 令2241000x y x-'==得,5x =. 当()0,5x ∈时,0y '<,函数224100x y x -'=为减函数; 当()5,+∈∞x 时,0y '>,函数224100x y x -'=为增函数;所以当5x =时,y 有最小值65.答:这个铁盒底面的长与宽均为5cm 时,用料最省. 23.(1)2()2f x x =-,()g x x =;(2)答案见解析. 【解析】试题分析:(1)根据函数奇偶性的性质利用方程组法即可求f (x )和g (x )的解析式;(2)()()h x g x < 即()23130mx m x +--<,讨论当0m =时,当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m =,23x =-,比较1m与-3的大小,进行讨论; 试题(1)由题意()()22f x g x x x -+-=--,即()()22f x g x x x -=--,又()()22f x g x x x +=+-联立得()22f x x =-,()g x x =.(2)由题意不等式即()23130mx m x +--<,当0m =时,即30x --<,解得3x >-;当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m=,23x =-, 故当0m >时,易知13m >-,不等式的解为13x m-<<; 当0m <时,若13m >-,即13m <-时,不等式的解为3x <-或1x m>; 若13m =-,即13m =-时,不等式的解为3x ≠-; 若13m <-,即13m >-时,不等式的解为1x m<或3x >-; 综上所述,当13m <-时,不等式的解为1|3x x x m 或⎧⎫-⎨⎬⎩⎭;当103m -≤<时,不等式的解集为1|3x x x m ⎧⎫-⎨⎬⎩⎭或;当0m =时,不等式的解集为{}3x x -; 当0m >时,不等式的解集为1|3x x m ⎧⎫-<<⎨⎬⎩⎭. 点睛:本题主要考查根据奇偶性的定义利用方程组法求函数解析式及求含参的一元二次不等式解集;在讨论时从二次项系数等于0,不等于0入手,当不等于0时,往往先对式子进行因式分解得出对应二次方程的根,然后比较根的大小,讨论要不重不漏. 24.(1) 2a = (2) 7,19a ⎡⎤∈-⎢⎥⎣⎦【分析】(1)根据题意定义域为2,13⎡⎤-⎢⎥⎣⎦,可知不等式()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦,根据一元二次不等式解集与一元二次方程根的关系即可求解. (2)()f x 的定义域为R ,可知不等式()()221120a x a x ---+≥恒成立,然后讨论二次项系数,借助二次函数的性质即可求解. 【详解】解:(1)()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,即()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦, 故()()()()22210221*********a a a a a ⎧-<⎪⎪⎛⎫-⋅---+=⎨ ⎪⎝⎭⎪⎪---+=⎩,解得2a =;(2)()f x 的定义域为R ,即()()221120ax a x ---+≥恒成立,当210a -=时,1a =±,经检验只有1a =满足条件;当210a -≠时,()()222101810a a a ⎧->⎪⎨∆=---≤⎪⎩,解得7,19a ⎡⎫∈-⎪⎢⎣⎭, 综上,7,19a ⎡⎤∈-⎢⎥⎣⎦. 【点睛】本题主要考查函数的定义域、一元二次不等式的解法、一元二次不等式与二次函数的关系,综合性比较强. 25.(1)45;(2)证明见解析【分析】 (1)由所给等式得()215a b ++=,再利用基本不等式即可求得最小值;(2)利用()2222a b a b ++≥即可逐步证明.【详解】(1)3a b +=,()215a b ++∴=,且200a b +>>,,∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a bb aab,需证2292a b +≥,因为()222239222a b a b ++≥==, 所以92+a bb a ab ,当且仅当32a b ==时等号成立. 【点睛】本题考查条件等式求最值、基本不等式的应用,属于中档题.26.(1)25-;(2)6⎛⎫-∞ ⎪ ⎪⎝⎭,-. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或 ∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =-(2)∵不等式的解集为R ∴0k <且24240k ∆=-<∴k<-6∴k的取值范围是(-∞,【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。

(好题)高中数学必修五第三章《不等式》测试(有答案解析)

(好题)高中数学必修五第三章《不等式》测试(有答案解析)

一、选择题1.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .952.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+3.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.若,x y 满足条件11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-57.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .18.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,119.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-10.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+11.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( ) A.BC .1D .212.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .2二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.15.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 16.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.17.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.18.已知不等式24xa x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 19.已知0,0ab >>,且33+122a b =++,则2+a b 的最小值为______________.20.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 三、解答题21.设函数2()f x x ax b =-+.(1)若不等式()0f x <的解集是{23}xx <<∣,求不等式210bx ax -+<的解集; (2)当3b a =-时,()0f x ≥恒成立,求实数a 的取值范围.22.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围; (3)若函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (*x ∈N )名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫-⎪⎝⎭万元(0a >),剩下的员工平均每人每年创造的利润可以调高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?25.已知函数()245y x x x R =-+∈.(1)求关于x 的不等式2y <的解集;(2)若不等式3y m >-对任意x R ∈恒成立,求实数m 的取值范围. 26.已知函数()0f x m =≥恒成立.(1)求m 的取值范围;(2)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.2.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=, 则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭仅当34b a b a =,即3133,46a b -==时等号成立,故12a b +的最小值为843+ 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.3.A解析:A【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.A解析:A 【解析】作出不等式组11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫--- ⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解. 【详解】解:由2z x y =-得122z y x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小,420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.8.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.9.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D .【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.10.C解析:C【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y t t (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .4y ≥=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .11.D解析:D【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值.【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.B解析:B【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值.【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大,此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=.即目标函数z x y =+的最大值为4.故选:B .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B . 代入目标函数z y x =-,得044z =-=-.所以z y x =-的最小值是4-.故答案为:4-【点睛】方法点睛:线性规划问题解题步骤如下:(1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.【分析】由已知条件得出由得出可得出利用基本不等式可求得所求代数式的最小值【详解】已知实数均为正实数且可得所以可得令则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最 211- 【分析】由已知条件得出43y x =,2443z x x =-,由0z >得出03x <<,可得出71143x y x y t z t ++-=+-,利用基本不等式可求得所求代数式的最小值. 【详解】已知实数x 、y 、z 均为正实数,且3z x y +=,4z y x+=,可得34z y xy x xy =-=-,43y x ∴=,所以,2443z x x =-, ()2717134343343x x y x y x x z x x x +∴+-=-=---, ()24443033z x x x x =-=->,可得03x <<,令()30,3t x =-∈,则3x t =-, 所以,()()717171311143343433x y x y x t t z x t t ++-=-=--=+-≥=--.当且仅当2t =时,等号成立, 因此,x y x y z ++-的最小值为13-.故答案为:13-. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果.【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点 解析:10【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论.【详解】解:作出不等式组对于的平面区域如图:由32z x y =+,则322z y x =-+, 平移直线322z y x =-+, 由图象可知当直线322z y x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由20y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=,故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键. 17.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2【详解】根据题意得到如图可行域是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22z y x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a ++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值. 18.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解 解析:1[,)4+∞. 【分析】 利用基本不等式求得24x x +在[]1,3x ∈的最大值,即可求得实数a 的范围. 【详解】 因为[]1,3x ∈,则211444x x x x =≤=++,当且仅当4x x =时,即2x =等号成立, 即24x x +在[]1,3x ∈的最大值为14, 又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞. 故答案为:1[,)4+∞. 【点睛】 本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24x x +的最大值是解答的关键,着重考查推理与运算能力. 19.【分析】先利用基本不等式求得的最小值进而求得的最小值即可得到答案【详解】由题意设又由当且仅当时即时等号成立即的最小值为所以的最小值是故答案为【点睛】本题主要考查了利用基本不等式求最值问题其中解答中先解析:3【分析】先利用基本不等式求得(2)2(2)a b +++的最小值,进而求得2+a b 的最小值,即可得到答案.【详解】由题意,设26(2)2(2)z a b a b =++=+++, 又由()()3232336(2)6(2)[(2)2(2)]()992962222222a a b b a b a b a b a b +++++++⋅+=++≥+⨯=+++++++,当且仅当()326(2)=22a b a b ++++时,即22(2)a b +=+时等号成立, 即z 的最小值为962+,所以2+a b 的最小值是623+.故答案为623+.【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中先利用基本不等式求得(2)2(2)a b +++的最小值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.20.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大;联立1{4x x y =+=,可得13x y ,即()1,3A , 联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C ,故:13OC k =,3OA k =,∴133OP k ≤≤, 所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.三、解答题21.(1)13x x ⎧<⎨⎩或12x ⎫>⎬⎭;(2)62a -≤≤. 【分析】 (1)先由一元二次不等式的解集确定对应方程的根,再利用根与系数的关系即得结果; (2)开口向上的二次函数大于等于恒成立,只需限定判别式0∆≤,即解得参数范围.【详解】解:(1)因为不等式20x ax b -+<的解集是{}|23x x <<,所以 2 3x x ==,是方程20x ax b -+=的解 由韦达定理得: 5 6a b ==,, 故不等式210bx ax -+>为26510x x -+>,解不等式26510x x -+>得其解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭(2)当3b a =-时,2()30f x x ax a =-+-≥恒成立,则2Δ4(3)0a a =--≤,即24120a a +-≤,解得62a -≤≤,所以实数a 的取值范围为62a -≤≤.【点睛】二次函数2()f x ax bx c =++的恒成立问题的解决方法:(1)0a >时()0f x ≥在R 上恒成立等价于对应方程的判别式Δ0≤成立;(2)0a <时()0f x ≤在R 上恒成立等价于对应方程的判别式Δ0≤成立.22.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或12t -= 【分析】(1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值;(2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可.【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++,所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩ 因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=- 0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=,由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c ;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立, 32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =, 原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-.(3) 因为函数()()(21)3232x x g x t f =--⨯-有且仅有一个零点, 令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根,因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根,当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时, 2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根, 只有()21682102021t t t x t ⎧=+-=⎪⎨=>⎪-⎩对解得:12t -=, 综上:实数t 的取值范围为12t >或12t -=. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.23.(1)1;(2)9.【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a +=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值.【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<, 即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --,又不等式的解集为{|02}x x <<,所以2(2)2m --=,解得1m =;(2)由正实数a ,b 满足4a b mab +=,所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号,所以+a b 的最小值为9.【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1)最多调整500名员工从事第三产业;(2)(]0,5.【分析】(1)根据题意可列出()()10100010.2%101000x x -+≥⨯,进而解不等式求得x 的范围,确定问题的答案.(2)根据题意分别表示出从事第三产业的员工创造的年总利润和从事原来产业的员工的年总利润,进而根据题意建立不等式,根据均值不等式求得求a 的范围.【详解】(1)由题意,得()()10100010.2%101000x x -+≥⨯,即25000x x -≤,又0x >,所以0500x <≤,即最多调整500名员工从事第三产业;(2)从事第三产业的员工创造的年总利润为310500⎛⎫-⎪⎝⎭x a x 万元, 从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+ ⎪⎝⎭x x 万元, 则311010(1000)1500500x a x x x ⎛⎫⎛⎫-≤-+ ⎪ ⎪⎝⎭⎝⎭, 所以23500x ax -≤2110002500x x x +--, 所以221000500x ax x ≤++,即210001500x a x ≤++在(]0,500x ∈时恒成立,因为210004500x x+≥=, 当且仅当21000500x x =,即500x =时等号成立,所以5a ≤, 又0a >,所以05a <≤,所以a 的取值范围为(]0,5.【点睛】本题主要考查了基本不等式在求最值问题中的应用,考查了学生综合运用所学知识,解决实际问题的能力,属于常考题. 25.(1){|13}x x <<;(2)()24.,【分析】(1)利用一元二次不等式的解法求解即得;(2)根据不等式恒成立的意义,确定求函数245y x x =-+的最小值,并利用配方法求得最小值,将问题转化为解关于m 的简单的绝对值不等式,根据绝对值的意义即可求解.【详解】(1)由2y <得2430x x -+<,即13x <<,所以2y <的解集为{|13}x x <<;(2)不等式3y m >-对任意x R ∈恒成立3min m y ⇔-<,由()224521y x x x =-+=-+得y 的最小值为1, 所以31m -<恒成立,即131m -<-<,所以24m <<,所以实数m 的取值范围为()2,4.【点睛】本题考查不含参数的一元二次不等式的求解;考查不等式在实数集上恒成立问题,涉及二次函数的最值和简单绝对值不等式的求解,属基础题,难度一般.26.(1)4m ≤;(2)94. 【分析】(1)函数()0f x m =≥恒成立,即+130x x m +--≥恒成立,设函数()+13g x x x =+-,则()min m g x ≤,利用绝对值不等式的性质求得()min g x 即可得解;(2)由(1)可得21432a b a b +=++,然后利用基本不等式计算即可求得74a b +的最小值.【详解】(1)函数()0f x m =≥恒成立, 即+130x x m +--≥恒成立, 设函数()+13g x x x =+-,则()min m g x ≤, 又13(1)(3)4x x x x ++-≥+--=,即()g x 的最小值为4,所以4m ≤;(2)由(1)知4n =,正数a ,b 满足21432a b a b +=++, 所以()1217474432a b a b a b a b ⎛⎫+=++ ⎪++⎝⎭ ()()121622432a b a b a b a b ⎛⎫=++++⎡⎤ ⎪⎣⎦++⎝⎭ ()()222315432a b a b a b a b ++⎡⎤=++⎢⎥++⎣⎦54944+≥=, 当且仅当23a b a b +=+即3210b a ==时,等号成立, 所以74a b +的最小值为94. 【点睛】 本题考查绝对值不等式的应用,考查基本不等式的应用,考查逻辑思维能力和计算能力,属于常考题.。

高二数学人教A必修5练习及解析:3-2 一元二次不等式及其解法

高二数学人教A必修5练习及解析:3-2 一元二次不等式及其解法

∴a=2.
∴不等式
+1
2+1
+2
>1 可化为
>1,移项通分得 >0,
-1
-1
-1
∴(x+2)(x-1)>0,解得 x<-2 或 x>1.
∴所求解集为{x|x<-2 或 x>1}.
8.解关于 x 的不等式 2x2+ax+2>0.
解:对于方程 2x2+ax+2=0,其判别式 Δ=a2-16=(a+4)(a-4).
【解析】

1
由题意知,一元二次不等式 f(x)>0 的解集为x-1<x<2 .


而 f(10x)>0,
1
∴-1<10x<2,
1
解得 x<lg 2,即 x<-lg 2.
【答案】
D
二、填空题
6.(2015·广东高考)不等式-x2-3x+4>0 的解集为________.(用区间表示)
①当 a>4 或 a<-4 时,Δ>0,方程 2x2+ax+2=0 的两根为:
1
4
1
4
x1= (-a-√2 -16),x2= (-a+√2 -16).
∴原不等式的解集为
1
4
1
4
{ | < (--√2 -16)或 > (- + √2 -16)}.
②当 a=4 时,Δ=0,方程有两个相等实根,x1=x2=-1;
1
1
∴不等式 bx2-ax-1>0 的解集是(- 2 ,- 3).

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。

(典型题)高中数学必修五第三章《不等式》检测(含答案解析)

(典型题)高中数学必修五第三章《不等式》检测(含答案解析)

一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .953.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-14.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.5.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( ) A .2B .1CD .6.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9 B .94C .52D .27.不等式112x x ->+的解集是( ). A .{}|2x x <- B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R8.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >n D .不确定9.已知0,0x y >>,且21x y +=,则xy 的最大值是( )A .14B .4C .18D .810.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( ) A.BC .1D .211.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163 B .13C .2D .412.设,,a b c ∈R ,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b >二、填空题13.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.14.已知a ,b 为正实数,且4a +b ﹣ab +2=0,则ab 的最小值为_____.15.已知1,1,1,x y x y ≤⎧⎪≤⎨⎪+≥⎩当z x y =+取到最小值时,xy 的最大值为________.16.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.17.已知点(3,A ,O 是坐标原点,点(),P x y的坐标满足0200y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.18.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.19.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.20.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的3倍.若存在正实数x ,y 使得12(2)(1)AC AB AD x y=-+-成立,则x y +的最小值为___________. 三、解答题21.随着信息技术的发展,网络学习成为一种重要的学习方式,现某学校利用有线网络同时提供A 、B 两套校本选修课程.A 套选修课每次播放视频40分钟,课后研讨20分钟,可获得学分5分;B 套选修课每次播放视频30分钟,课后研讨40分钟,可获得学分4分.全学期20周,网络对每套选修课每周开播两次(A 、B 两套校本选修课程同时播放),每次均为独立内容.学校规定学生每学期收看选修课视频时间不超过1400分钟,研讨时间不得少于1000分钟.A 、B 两套选修课各选择多少次才能使获得学分最高,获得的最高学分是多少?22.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年). (1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)23.已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且24006,040()740040000,40x x R x x xx -<⎧⎪=⎨->⎪⎩,(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.24.已知定义在R 上的函数()()2232f x x x a x =+--+(其中a R ∈).(1)若关于x 的不等式()0f x <的解集为()2,2-,求实数a 的值; (2)若不等式()30f x x -+≥对任意2x >恒成立,求a 的取值范围. 25.若实数0x >,0y >,且满足8x y xy +=-. (1)求xy 的最大值; (2)求x y +的最小值26.已知F 1,F 2是椭圆C :22221x y a b+=(a >b >0)的左、右焦点,过椭圆的上顶点的直线x +y =1被椭圆截得的弦的中点坐标为3144P ⎛⎫⎪⎝⎭,. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 交椭圆于A ,B 两点,当△ABF 2面积最大时,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C ,250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.3.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】 作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.4.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 114tan 4tan 42sin cos 2tan tan tan x x x x x x x x x x++===+≥⨯=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.5.D解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2, ∴(a+b )(a+c )=2,又a ,b ,c 均为正实数,∴2a+b+c=(a+b )+(a+c ), 当且仅当a+b=a+c 时,即b=c 取等号. 故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.6.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.7.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.8.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥--24+=,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综 上可得m >n ,故选C .9.C解析:C 【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;,0)2a b a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.10.D解析:D 【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值. 【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D. 【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.B解析:B 【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案. 【详解】根据题意,正数x ,y 满足x +y =1,则2211x y y x +++=22(1)(1)11--+++y x y x=(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13[8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B . 【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题.12.D解析:D 【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.二、填空题13.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛解析:3+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭,又()1221233b a a b a b a b ⎛⎫++=+++≥+=+⎪⎝⎭2b a a b =时,等号成立,所以3k ≤+k 的最大值为3+故答案为:3+ 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.【分析】利用基本不等式转化为再利用换元法设转化为关于的一元二次不等式求的最小值【详解】当时等号成立设解得:或即的最小值为故答案为:【点睛】本题考查基本不等式一元二次不等式重点考查转化与变形计算能力属解析:10+【分析】利用基本不等式转化为20ab +≤0t =>,转化为关于t 的一元二次不等式,求ab 的最小值. 【详解】0,0a b >>,4a b ∴+≥=,当4a b =时等号成立,20ab ∴+≤,0t =>,2420t t -+≤,2420t t --≥,解得:2t ≥2t ≤-0t >,2t ∴≥+(2210ab ≥+=+ab ∴的最小值为10+故答案为:10+【点睛】本题考查基本不等式,一元二次不等式,重点考查转化与变形,计算能力,属于基础题型.15.【分析】根据约束条件作出可行域将目标函数变形为通过平移可知当直线与直线重合时取得最小值再利用基本不等式求解即可【详解】作出已知不等式组所表示的平面区域如图所示:将目标函数变形为由图可知当直线与直线重解析:14【分析】根据约束条件作出可行域,将目标函数变形为y x z =-+,通过平移可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,再利用基本不等式求解即可.【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数z x y =+变形为y x z =-+,由图可知当直线y x z =-+与直线1x y +=重合时,z 取得最小值,此时1x y +=, 所以21()24x y xy +≤=,当且仅当x y =且1x y +=,即12x y ==时等号成立. 所以xy 的最大值为14. 故答案为:14【点睛】本题主要考查简单线性规划问题中的目标函数最值问题及基本不等式,解决线性规划问题的关键是正确地作出可行域,准确地理解目标函数的几何意义.16.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得432a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 23θ=即可得解.【详解】设不等式()243cos 220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a ⎛⎫ ⎪⎝⎭,则a ,b 为方程()243cos 220x x θ-+=的两个根,1a ,1b为方程()224sin 210x x θ++=的两个根, 由韦达定理得43cos 2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=, 所以43cos 22sin 22θθ=-即tan 23θ=-, 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈, 所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.17.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题 解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围. 【详解】作出可行域,如图所示cos 23cos OA OP z OA AOP AOP OP⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 23cos 36z π==;当56AOP π∠=时,min 523cos 36z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-. 【点睛】本题考查简单的线性规划和向量的投影,属于中档题.18.1【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案【详解】画出不等式组对应的可行域如图所示由可得数形结合可得当直线过A 时直线在y解析:1 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【详解】画出不等式组对应的可行域,如图所示,由3z x y =-可得3y x z =-, 数形结合可得当直线3y x z =-过A 时,直线在y 轴上的截距最大,z 有最小值,联立1030x y x y -+=⎧⎨+-=⎩,解得A (1,2),此时z 有最小值为3×1﹣2=1. 故答案为:1【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.19.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a qb b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q . 故答案为:p q . 【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.20.【分析】由面积比得再利用三点共线可得出的关系从而利用基本不等式可求得的最小值【详解】如图设与交于点由得所以又三点共线即共线所以存在实数使得因为所以所以又因为所以当且仅当即时等号成立所以的最小值为故答【分析】由面积比得3BM MD =,再利用,,A M C 三点共线可得出,x y 的关系,从而利用基本不等式可求得x y +的最小值. 【详解】如图,设AC 与BD 交于点M ,由1sin 231sin 2ABC ADCAC BM AMBS BM S DM AC DM AMD ⋅∠===⋅∠△△得3BM MD =,所以1313()4444AM AB BM AB BD AB AD AB AB AD =+=+=+-=+,又,,A M C 三点共线,即,AM AC 共线,所以存在实数k 使得AC k AM =,因为12(2)(1)AC AB AD x y =-+-,所以11242314k xky ⎧-=⎪⎪⎨⎪-=⎪⎩,所以327x y +=,又因为0,0x y >>,所以13213215()()(5)57777y x x y x y x y x y ⎛++=++=++≥+= ⎝,当且仅当32y x x y =,即37x +=,27y =时等号成立.所以x y +的最小值为5267+. 故答案为:526+.【点睛】本题考查向量共线定理,考查基本不等式求最值,解题关键是利用平面向量共线定理得出,x y 的关系,然后用“1”的代换,凑配出定值,用基本不等式求得最小值. 三、解答题21.选择A 套选修课学习20次,B 套选修课学习20次,可以使获得最高学分为180分 【分析】设选择A 、B 两套课程分别为x 、y 次,z 为学分,根据题意列出线性约束条件404030140020401000,x y x y x y x y N+≤⎧⎪+≤⎪⎨+≥⎪⎪∈⎩,目标函数54z x y =+,作出可行域,即可求解. 【详解】设选择A 、B 两套课程分别为x 、y 次,z 为学分,则404030140020401000,x y x y x y x y N +≤⎧⎪+≤⎪⎨+≥⎪⎪∈⎩目标函数54z x y =+,二元一次不等式组等价于4043140250,x y x y x y x y N+≤⎧⎪+≤⎪⎨+≥⎪⎪∈⎩作出二元一次不等式组所表示的平面区域,即可行域,如图阴影部分.作直线:540l x y +=,直线l 沿可行域方向平移,当直线过M 点时,目标函数取得最大值.联立4314040x y x y +=⎧⎨+=⎩,解得2020x y =⎧⎨=⎩. 所以点M 的坐标为()20,20, 此时max 520420180Z =⨯+⨯=.所以选择A 套选修课学习20次,B 套选修课学习20次,可以使获得的学分最高,最高学分为180分. 【点睛】本题主要考查了利用线性规划解决实际问题,属于中档题. 22.(1)3. (2)5. 【解析】 试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论. 试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元,则由,可得∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出,∴二手车出售后,小张的年平均利润为,当且仅当时,等号成立∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大. 考点:根据实际问题选择函数类型, 基本不等式23.(1)2638440,04040000167360,40x x x W x x x ⎧-+-<⎪=⎨--+>⎪⎩;(2)当x =32时,W 取得最大值为6104万美元. 【分析】(1)利用利润等于收入减去成本,可得分段函数解析式; (2)分段求出函数的最大值,比较可得结论. 【详解】(1)利用利润等于收入减去成本,可得当040x <时,2()(1640)638440W xR x x x x =-+=-+-; 当40x >时,40000()(1640)167360W xR x x x x=-+=--+ 2638440,04040000167360,40x x x W x x x ⎧-+-<⎪∴=⎨--+>⎪⎩;(2)当040x <时,226384406(32)6104W x x x =-+-=--+,32x ∴=时,(32)6104max W W ==;当40x >时,40000400001673602167360W x x x x=--+-, 当且仅当4000016x x=,即50x =时,(50)5760max W W == 61045760>32x ∴=时,W 的最大值为6104万美元. 【点睛】本题考查分段函数模型的构建,考查利用均值不等式求最值,考查学生分析问题解决问题的能力,属于中档题. 24.(1)3;(2)[2,)-+∞ 【分析】(1)先因式分解得到()()()21=---⎡⎤⎣⎦f x x x a ,再根据关于x 的不等式()0f x <的解集为()2,2-,由12322+=-=-+x x a 求解.(2)将不等式()30f x x -+≥对任意2x >恒成立,根据2x >,转化为2452x x a x -+≥--求解. 【详解】(1)()()()()223221=+--+=---⎡⎤⎣⎦f x x x a x x x a ,因为关于x 的不等式()0f x <的解集为()2,2-, 所以1230+=-=x x a , 解得3a =(2)因为不等式()30f x x -+≥对任意2x >恒成立, 所以()()2245-≥--+a x x x 对任意2x >恒成立,因为2x >, 所以20x ->所以2452x x a x -+≥--,对任意2x >恒成立,而24512222-+⎛⎫-=--+≤- ⎪--⎝⎭x x x x x ,当且仅当 122x x -=-,即 3x =时,取等号, 所以 2a ≥-,所以a 的取值范围[2,)-+∞. 【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式恒成立问题,基本不等式的应用,还考查了转化求解问题的能力,属于中档题. 25.(1)4;(2)4. 【分析】(1)由于0x >,0y >,根据基本不等式得出8xy x y -=+≥不等式的解法,即可求出xy 的最大值;(2)根据题意,由0x >,0y >,根据基本不等式得出28()()2x y x y xy +-+=≤,通过解一元二次不等式,即可求出x y +的最小值. 【详解】解:(1)∵0x >,0y >,∴8xy x y -=+≥80xy +≤,即2)0≤,解得:02<,04xy ∴<≤(当且仅当2x y ==时取等号), ∴xy 的最大值为4.(2)∵0x >,0y >,28()()2x y x y xy +∴-+=≤, 即2()()802x y x y +-++≥, 整理得:2()()3204x y x y +++-≥, ∴()()840x y x y +++-⎡⎤⎡⎤⎣⎦⎦≥⎣,∴4x y +≥(当且仅当2x y ==时取等号), 所以x y +的最小值为4. 【点睛】本题考查基本不等式的应用,考查利用基本不等式求和的最小值和积的最大值,以及一元二次不等式的解法,考查转化思想和运算能力.26.(Ⅰ)23x +y 2=1;(Ⅱ)x ﹣y =0或x +y =0.【分析】(Ⅰ)根据直线椭圆的过上顶点,得b =1,再利用点差法以及弦中点坐标解得a 2=3,即得椭圆方程;(Ⅱ)先设直线l 方程并与椭圆方程联立,结合韦达定理,并以|F 1F 2|为底边长求△ABF 2面积函数关系式,在根据基本不等式求△ABF 2面积最大值,进而确定直线l 的方程. 【详解】(Ⅰ)直线x +y =1与y 轴的交于(0,1)点,∴b =1, 设直线x +y =1与椭圆C 交于点M (x 1,y 1),N (x 2,y 2), 则x 1+x 232=,y 1+y 212=,∴221122x y a b +=1,222222x y a b+=1, 两式相减可得21a (x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0, ∴()2121221212()y y b x x x x a y y -+=--+, ∴22b a- ⋅3212=-1, 解得a 2=3,∴椭圆C 的方程为23x +y 2=1.(Ⅱ)由(Ⅰ)可得F 1(,0),F 2,0),设A (x 3,y 3),B (x 4,y 4),可设直线l 的方程x =my l 的方程x =my 代入23x +y 2=1,可得(m 2+3)y 2﹣my ﹣1=0,则y 3+y4=y 3y 4213m -=+, |y 3﹣y 4|23m ==+, ∴212ABF S =|F 1F 2|⋅|y 3﹣y 4|=⋅|y 3﹣y 4|==≤=,=,即m =±1,△ABF 2面积最大,即直线l 的方程为x ﹣y =0或x +y =0.【点睛】本题考查椭圆标准方程、点差法、基本不等式求最值以及利用韦达定理研究直线与椭圆位置关系,考查综合分析与求解能力,属中档题.。

人教A版高中数学必修五本章练测:第三章不等式(含答案详解).docx

人教A版高中数学必修五本章练测:第三章不等式(含答案详解).docx

第三章不等式(数学人教实验A版必修5)7.已知函数f(x)=1,1,0,x xx x-+<0,⎧⎨-≥⎩则不等式x+(x+1)f(x+1)≤1的解集是()A.{x|-1≤x-1}B.{x|x≤1}C.{x|x-1}D.{x|1≤x-1}8. 设,且a b (a、b、),则M的取值范围是()A.,18B. [,1)C.[,)D.[8,+∞)9.对于满足等式x2+(y-1)2=1的一切实数x、y,不等式x+y+c≥0恒成立,则实数c的取值范围是()A.(-∞,0]B.+∞)C.-1,+∞)D.[1,+∞)10.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d 的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d 的取值不唯一11. 一个直角三角形的周长为2p,则其斜边长的最小值为()A.B.C.D.12.某市的一家报刊摊点,从报社买进一种晚报的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(按30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主应每天从报社买进( )份晚报. A.250 B.400C.300D.350二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.不等式2242x x+-≤12的解集为.14.函数y=1xa-(a>0,a≠1)的图像恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则1m+1n 的最小值为.15.若不等式x22a x a>0对x∈R恒成立,则关于t的不等式a2t1<a t22t3的解集为 .16.设x,y,z∈R,则最大值是 .三、解答题(解答应写出文字说明,证明过程或演算步骤,共74分)告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏目的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告版面的高与宽的尺寸(单位:cm )能使矩形广告的面积最小? 18.(12分)不等式(m 2-2m-3)x 2-(m-3)x-1<0对一切x ∈R 恒成立,求实数m 的取值范围.19.(12分)某人上午7时乘摩托艇以匀速 v km/h(4≤v ≤20)从A 港出发到距50 km 的B 港去,然后乘汽车以匀速w km/h(30≤w ≤100)从B 港向距 300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘摩托艇、汽车去所需要的时间分别是x h 、y h.若所需的经费p =100+3(5-y )+2(8-x )元,那么v ,w 分别为多少时,所需经费最少?并求出这时所花的经费.20.(12分)已知二次函数f(x)满足f(-2)=0,且2x≤f(x)≤242x+对一切实数x都成立.(1)求f(2)的值;(2)求f(x)的解析式;(3)设b n=1()f n,数列{b n}的前n项和为S n,求证:S n>43(3)nn+.21.(12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?22.(14分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时蔬菜的种植面积最大?最大种植面积是多少?第三章不等式(数学人教实验A版必修5)答题纸得分:一、选择题二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第三章 不等式(数学人教实验A 版必修5)参考答案一、选择题1.D 解析:∵ y 2x 是增函数,而0<b <a <1,∴ 1<2b <2a <2.2.D 解析:∵ t-s =a+2b-a-b 2-1=-(b-1)2≤0,∴ t ≤s .3.C 解析:不等式组表示的平面区域如图所示, 由34,34x y x y +=⎧⎨+=⎩得交点A 的坐标为(1,1),又B ,C 两点的坐标分别为(0,4),(0,43), 故S △ABC =12 (4-43)×1=43. 第3题答图 4.B 解析:特殊值法.令a =7,b =3,c =1,满足a >b >c >0,∴2log (11)1+>2log (31)3+>2log (71)7+. 5. A 解析:不等式组可化为 xy >0,x y >0,或 xy <0,x y <0,在平面直角坐标系中作出符合上面两个不等式组的平面区域,如图中的阴影部分所示, ∴ 不等式组(x y )(x y )>0,0 x2表示的平面区域为三角形. 第5题答图6.B 解析:取测试点(0,1)可知C ,D 错,再取测试点(0,-1)可知A 错,故选B.7.C 解析:依题意得10,10,(1)()1(1)1x x x x x x x x +<+≥⎧⎧⎨⎨++-≤++≤⎩⎩或,所以1,1,11x x x x ≥-⎧<-⎧⎪⇒⎨⎨∈≤≤⎪⎩⎩R 或x <-1或-1≤x-1 x-1,故选C. 8. D 解析:M≥9.C 解析:令x = cos θ,y =1+ sin θ,则-(x+y )=- sinθ-cos θ-1=sin (θ+π4)-1.∴ -(x+y )max-1.∵ x+y+c ≥0恒成立,故c ≥-(x+y )max-1,故选C.10.A 解析:因为a+b =cd =4,由基本不等式得a+b ≥ab ≤4.又cd ≤2()4c d +,故c+d ≥4,所以ab ≤c+d ,当且仅当a =b =c =d =2时,等号成立.故选A.11.A 解析:设直角三角形的一个锐角为θ,斜边长为c , 则根据题意得c (sin θ+cos θ+1)=2p , ∴ c =2sin cos 1p θθ++∵ π,当θ=π时,等号成立,∴ c,当此三角形为等腰直角三角形时,等号成立. ∴ 斜边c.故选A. 12. B 解析:若设每天从报社买进x (250≤x ≤400,x ∈N )份晚报,则每月共可销售(20x +10×250)份,每份可获利润0.10元,退回报社10(x -250)份,每份亏损0.15元,建立月利润函数f (x ),再求f (x )的最大值,可得一个月的最大利润.设每天从报社买进x 份晚报,每月获得的总利润为y 元,则依题意,得 y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400].∵ 函数y =0.5x +625在[250,400]上单调递增,∴ 当x =400时,y =825. 即摊主每天从报社买进400份晚报时,每月所获得的利润最大,最大利润为825元.13.{x |-3≤x ≤1} 解析:依题意x 2+2x-4≤-1 (x+3)(x-1)≤0 x ∈[-3,1]. 14.4 解析:由题意知A (1,1),∴ m+n-1=0,∴ m+n =1,∴1m +1n =(1m +1n )(m+n )=2+n m +mn≥2+=4. 15.(-2,2) 解析:由x 2-2ax +a >0对x ∈R 恒成立得Δ 4a 24a <0,即0<a <1, ∴ 函数y ax是R 上的减函数,∴ 2t 1>t22t3,解得-2<t <2.16.222 解析: x22y 2z222221 22xy z 2x 22y 2z21122xy z 2.17.解:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000.①广告版面的高为a+20,宽为2b+25,其中a >0,b >0.广告的面积S =(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b ≥18 500+=18 500+当且仅当25a =40b 时等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500.故广告版面的高为140 cm ,宽为175 cm 时,可使广告的面积最小. 18.解:若m 2-2m-3=0,则m =-1或m =3.当m =-1时,不合题意;当m =3时,符合题意.若m 2-2m-3≠0,设f (x )=(m 2-2m-3)x 2-(m-3)x-1,则由题意,得22230,230,m m m m m ∆2⎧--<⎨=[-(-3)]+4(--)<⎩ 解得-15<m <3.综合以上讨论,得-15<m ≤3.19.解:依题意得 4 50x 20,30 300y 100, 9 x y 14,x >0,y >0,考察z =2x +3y 的最大值,作出可行域,平移直线2x +3y =0, 当直线经过点(4,10)时,z 取得最大值38.故当v =12.5,w =30时所需要经费最少,此时所花的经费为93元. 20.(1)解:∵ 242()2+≤≤x x f x 对一切实数都成立,∴ 4≤f (2)≤4,∴ f (2)=4.(2)解:设f (x )=ax 2+bx+c (a ≠0).∵ f (-2)=0,f (2)=4,∴424,1,42024.a b c b a b c c a ++==⎧⎧⇒⎨⎨-+==-⎩⎩ ∵ ax 2+bx+c ≥2x ,即ax 2-x+2-4a ≥0,∴ Δ=1-4a (2-4a )≤0⇒(4a-1)2≤0,∴ a =14,c =2-4a =1,故f (x )=24x +x+1. (3)证明:∵ b n =1()f n =24(2)n +>4(2)(3)n n ++=4(12n +-13n +), ∴ S n =b 1+b 2+…+b n >4[(13-14)+(14-15)+…+(12n +-13n +)] =4×13-13n +=43(3)n +. 21.解:设投资人分别用x ,y 万元投资甲,乙两个项目,由题意,得10,0.30.1 1.8,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数为z =x+0.5y . 上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线l 0:x+0.5y =0,并作平行于直线l 0的一组直线x+0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的点M ,此时z 最大,这里点M 是直线x+y =10与直线0.3x+0.1y =1.8的交点. 第21题答图解方程组10,0.30.1 1.8,x y x y +=⎧⎨+=⎩得4,6,x y =⎧⎨=⎩此时,z =4+0.5×6=7(万元).∴ 当x =4,y =6时,z 取得最大值.答:投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大.22.解:设矩形温室的左侧边长为a m,后侧边长为b m,则ab=72,蔬菜的种植面积S=(a-4)(b-2)=ab-4b-2a+8=80-2(a+2b)≤80-(m2).当且仅当a=2b,即a=12,b=6时,S max=32.答:矩形温室的边长为6 m,12 m时,蔬菜的种植面积最大,最大种植面积是32 m2.。

(典型题)高中数学必修五第三章《不等式》测试(包含答案解析)(1)

(典型题)高中数学必修五第三章《不等式》测试(包含答案解析)(1)

一、选择题1.设0,0a b >>,若4a b +=.则49a b+的最小值为( ) A .254B .252 C .85D .1252.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .63.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-14.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .4 5.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .56.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,117.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .88.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3- 9.设a=3x 2﹣x+1,b=2x 2+x ,则( )A .a >bB .a <bC .a≥bD .a≤b10.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭11.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( ) A .514z ≤≤B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤12.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题13.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.14.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________.15.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.16.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.17.已知不等式24xa x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 18.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.19.已知11()2x x f x e e a --=++只有一个零点,则a =____________.20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围.22.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1. 23.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值. 24.已知函数2()(3)22f x x a x a b =+-+++,,a b ∈R .(1)若关于x 的不等式()0f x >的解集为{|4x x <-或2}x >,求实数a ,b 的值; (2)若关于x 的不等式()12f x b <+的解集中恰有3个整数,求实数a 的取值范围. 25.已知函数2()3f x x ax a =-++. (1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围. 26.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用“1”的代换凑配出定值后用基本不等式可得最小值. 【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当49b aa b =,即812,55a b ==时取等号.故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.3.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.4.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-,由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.6.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.7.C解析:C 【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18.故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.8.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.9.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.10.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值,由21010x yx y-+=⎧⎨+-=⎩,得1323xy⎧=⎪⎪⎨⎪=⎪⎩,即1(3A,2)3代入221z x y=--得125221333z=⨯-⨯-=-,故5[3z∈-,5)故选:D.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.11.B解析:B【分析】画出不等式组对应的平面区域,由,x y都取最大值得出z的最小值,当z取最大值时,点(),x y落在直线250x y+-=上,再结合基本不等式得出z的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y==时,112zx y=+取得最小值111442+=当点(),x y落在直线250x y+-=上时,112zx y=+取得最大值此时25x y+=,2225224x yxy+⎛⎫≤=⎪⎝⎭112542225x yzx y xy xy+∴=+==≥当且仅当2x y=,即55,24x y==时取等号,显然55,24⎛⎫⎪⎝⎭在可行域内即1524z≤≤故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.12.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.二、填空题13.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛解析:3+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭, 又()1221233b a a b a b a b ⎛⎫++=+++≥+=+⎪⎝⎭2b a a b =时,等号成立,所以3k ≤+k的最大值为3+故答案为:3+ 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件解析:9 【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值. 【详解】因为abx y xy ==,所以1a y x-=,1b x y -=,又1,1x y >>,所以10,10a b ->->,111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)52(1)4(1)59a b a b a b +=-+-+≥-⨯-+=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9. 故答案为:9. 【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【解析】作可行域如图则直线z=x+2y 过点A (20)时z 取最小值2点睛:线性规划的实质是把代数问题几何化即数形结合的思想需要注意的是:一准确无误地作出可行域;二画目标函数所对应的直线时要注意与约束条解析:【解析】作可行域,如图,则直线z=x+2y 过点A (2,0)时z 取最小值2.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解解析:1[,)4+∞.【分析】利用基本不等式求得24xx +在[]1,3x ∈的最大值,即可求得实数a 的范围. 【详解】因为[]1,3x ∈,则211444x x x x =≤=++,当且仅当4x x =时,即2x =等号成立, 即24xx +在[]1,3x ∈的最大值为14, 又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞.故答案为:1[,)4+∞.【点睛】本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24xx +的最大值是解答的关键,着重考查推理与运算能力.18.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000 【分析】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.19.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解 解析:1-【分析】 由函数11()2x x f x e e a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得111122x x x x e e e e ----+⋅≥=,得到22a -=,即可求解. 【详解】由题意,函数11()2x x f x ee a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解, 令()11x x g x e e --=+因为110,0x x ee -->>,所以()111122x x x x g x e e e e ----≥+⋅==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-. 故答案为:1-. 【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x+-的最值,进而即可得到结论. 【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x xx x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4.故答案为:4. 【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.(1)1或3;(2)02a <<. 【分析】(1)首先根据分段函数求得(0)1f =,然后根据2a与1的大小关系分类计算(1)f ,由(1)1f =求得a 值;(2)()0f x >恒成立,转化两个二次函数在某个区间上大于0恒成立,即当2x a<时,210x ax -+>恒成立和2x a≥时,230x ax +->恒成立,两者结合即得. 【详解】解:(1)因为0a >,所以20a>,从而()01f =. 当21>a即02a <<时,()()()01111f f f a ==-+=,解得1a =,符合; 当21a≤即2a ≥时,()()()01131f f f a ==+-=,解得3a =,符合. 所以a 的值为1或3.(2)因为()f x 的图象在x 轴的上方,所以对任意的x ∈R ,()0f x >恒成立. ①当2x a<时,210x ax -+>恒成立,其中0a >. 1︒ 当22a a <即02a <<时,则()2min 4024a af x f -⎛⎫==> ⎪⎝⎭,解得02a <<. 2︒ 当22a a ≥即2a ≥时,则224210f a a aa ⎛⎫=-⨯+≥ ⎪⎝⎭,解得02a <≤,所以2a =.所以02a <≤. ②当2x a≥时,230x ax +->恒成立,其中0a >. 则()2min22230f x f a a a a ⎛⎫⎛⎫⎛⎫==+⨯-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得02a <<.综上,02a <<. 【点睛】本题考查分段函数,考查不等式恒成立问题,解题关键是转化为二次函数大于0在某个区间上恒成立,结合二次函数知识易得. 22.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1,解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 23.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-.【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解. 【详解】(1)当2a =时,不等式为23440x x -++>, 所以23440x x --<,所以()23203x x ⎛⎫+-< ⎪⎝⎭,解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-,解得13m =,112a =-.【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.24.(1)1,12a b ==-;(2)[)(]3,410,11.【分析】(1)由一元二次不等式的解集与一元二次方程的根的关系,应用韦达定理可求得,a b ; (2)易得方程()12f x b =+的解为2x =和5x a =-,由一元二次不等式的解与一元二次方程的根的关系可得5a -的范围,从而得结论. 【详解】(1)因为函数2()(3)22,,f x x a x a b a b =+-+++∈R ,()0f x >的解集为{|4x x <-或2}x >,所以4-,2是方程2(3)220x x a a b +-+++=的两根. 由42(3)4222a a b -+=--⎧⎨-⨯=++⎩,解得112a b =⎧⎨=-⎩.(2)由()12f x b <+,得2(3)2100x a x a +-+-<.令2()(3)210h x x a x a =+-+-,则()()()[25h x x x a =---],所以()20h =.故()0h x <的解集中的3个整数只能是3,4,5或1-,0,1. 若解集中的3个整数是3,4,5, 则556a <-≤,得1011a <≤; 若解集中的3个整数是1-,0,1, 则251a -≤-<-,得34a ≤<. 综上,实数a 的取值范围为[)(]3,410,11.【点睛】本题考查解一元二次不等式,掌握一元二次不等式与一元二次方程、二次函数的关系是解题关键.25.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-. 【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集. (2)利用判别式列不等式,解不等式求得a 的取值范围. 【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题. 26.(1)3;(2)6b ≥-【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值; (2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围.【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x -≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.。

高中数学 第三章 不等式 3.2.1 一元二次不等式的解法课时作业(含解析)新人教A版必修5-新人教

高中数学 第三章 不等式 3.2.1 一元二次不等式的解法课时作业(含解析)新人教A版必修5-新人教

课时作业20 一元二次不等式的解法时间:45分钟——基础巩固类——一、选择题1.下列不等式中是一元二次不等式的是(C)A.a2x2+2≥0 B.1x2+x<3 C.-x2+x-m≤0 D.x3-2x+1>0 解析:选项A中,a2=0时不符合;选项B是分式不等式;选项D中,最高次数为三次;只有选项C符合.故选C.2.不等式6-x-2x2<0的解集是(D)解析:不等式变形为2x2+x-6>0,又方程2x2+x-6=0的两根为x1=32,x2=-2,所以不等式的解集为.故选D.3.设关于x的不等式(ax-1)(x+1)<0(a∈R)的解集为{x|-1<x<1},则a的值是(D) A.-2 B.-1C.0 D.1解析:根据题意可得,-1,1是方程(ax-1)(x+1)=0的两根,代入解得a=1.4.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足:x ⊙(x -2)<0的实数x 的取值X 围为( B )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析:x ⊙(x -2)=x (x -2)+2x +x -2<0⇒x 2+x -2<0⇒-2<x <1. 5.不等式x 2-|x |-2<0的解集是( A ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1}解析:令t =|x |,则原不等式可化为t 2-t -2<0,即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,得-2<x <2.6.已知方程2x 2-(m +1)x +m =0有两个不等正实根,则实数m 的取值X 围是( C ) A .{m |0<m ≤3-22或m ≥3+22} B .{m |m <3-22或m >3+22} C .{m |0<m <3-22或m >3+22} D .{m |m ≤3-22或m ≥3+22}解析:∵方程2x 2-(m +1)x +m =0有两个不等正实根,∴Δ=(-m -1)2-8m >0,即m 2-6m +1>0,解得m <3-22或m >3+2 2.再根据两根之和为m +12>0,且两根之积为m 2>0,解得m >0.综上可得,0<m <3-22或m >3+2 2.二、填空题7.函数f (x )=log 2(-x 2+x +12)的定义域为(-3,4).解析:由-x 2+x +12>0,得x 2-x -12<0,解得-3<x <4,所以定义域为(-3,4).8.不等式组⎩⎪⎨⎪⎧3x 2+x -2≥0,4x 2-15x +9>0的解集是{x |x >3或x ≤-1}.解析:由⎩⎪⎨⎪⎧3x 2+x -2≥0,4x 2-15x +9>0,得⎩⎨⎧x ≥23或x ≤-1,x >3或x <34,即x >3或x ≤-1,故不等式组的解集为{x |x >3或x ≤-1}.9.若关于x 的不等式组⎩⎪⎨⎪⎧x -1>a 2,x -4<2a 解集不是空集,则实数a 的取值X 围是-1<a <3.解析:依题意有⎩⎪⎨⎪⎧x >1+a 2,x <4+2a ,要使不等式组的解集不是空集,应有a 2+1<4+2a ,即a 2-2a -3<0,解得-1<a <3.三、解答题10.求下列不等式的解集. (1)-2x 2+x +12<0;(2)3x 2+5≤3x ; (3)9x 2-6x +1>0.解:(1)原不等式可以化为2x 2-x -12>0.∵方程2x 2-x -12=0的解是:x 1=1-54,x 2=1+54,∴原不等式的解集是{x |x <1-54或x >1+54}.(2)原不等式变形为3x 2-3x +5≤0. ∵Δ<0,∴方程3x 2-3x +5=0无解. ∴不等式3x 2-3x +5≤0的解集是∅.∴原不等式的解集是∅.(3)∵Δ=0,∴方程9x 2-6x +1=0有两个相等实根x 1=x 2=13,∴不等式9x 2-6x +1>0的解集为{x |x ≠13}.11.已知f (x )=x 2-⎝⎛⎭⎫a +1a x +1,(1)当a =12时,解不等式f (x )≤0;(2)若a >0,解关于x 的不等式f (x )≤0.解:(1)当a =12时,不等式为f (x )=x 2-52x +1≤0,∴⎝⎛⎭⎫x -12(x -2)≤0, ∴不等式的解集为(2)∵f (x )=⎝⎛⎭⎫x -1a (x -a )≤0, 当0<a <1时,有1a>a ,∴不等式的解集为当a >1时,有1a<a ,∴不等式的解集为当a =1时,不等式的解集为{x |x =1}.——能力提升类——12.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式f (a 2-4)>f (3a )的解集为( B )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:作出函数f (x )的图象,如右图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4.所以不等式的解集为(-1,4).13.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( A ) A .52B .72C .154D .152解析:由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2. 由(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,解得a =52.14.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是(-3,1)∪(3,+∞).解析:f (1)=12-4×1+6=3,不等式即为f (x )>3.①当x ≥0时,不等式即为⎩⎪⎨⎪⎧x 2-4x +6>3,x ≥0,解得⎩⎪⎨⎪⎧x >3或x <1,x ≥0,即x >3或0≤x <1;②当x <0时,不等式即为⎩⎪⎨⎪⎧x +6>3,x <0,解得-3<x <0.综上,原不等式的解集为(-3,1)∪(3,+∞). 15.已知函数y =ax 2+2ax +1的定义域为R . (1)求a 的取值X 围. (2)若函数的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)因为函数y =ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立. 当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1. 综上,0≤a ≤1. (2)因为函数的最小值为22, 所以y =ax 2+2ax +1的最小值为12,因此4a -4a 24a =12(a ≠0),解得a =12.于是不等式可化为x 2-x -34<0,即4x 2-4x -3<0,解得-12<x <32.故不等式x 2-x -a 2-a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <32.。

最新人教版高中数学必修5第三章《一元二次不等式的解法的应用》习题详解

最新人教版高中数学必修5第三章《一元二次不等式的解法的应用》习题详解

习题详解(课本第90页习题3.2)A 组1.(1)解:整理化简得4x 2-4x-15>0.因为Δ>0,方程3x 2-15x+12=0的解是 231-=x ,252=x ,所以不等式的解集是{x|x <23-或x >25}. (2)解:整理化简得4x 2-13<0.因为Δ>0,方程4x 2-13=0的解是2131=x ,2132=x ,所以不等式的解集是{x|213-<x <2132}. (3)解:整理化简得x 2-3x-10>0.因为Δ>0,方程x 2-3x-10=0的解是x 1 =-2,x 2=5,所以不等式的解集是{x|x <-2或x >5}.(4)解:整理化简得x 2-9x <0.因为Δ>0,方程x 2-9x=0的解是x 1=0,x 2=9,所以不等式的解集是{x|0<x <9}.2.(1)解x 2-4x+9≥0,因为Δ=-20<0,方程x 2-4x+9=0无实数根,所以不等式的解集是R.所以y=x 2-4x+9的定义域是R.(2)解-2x 2+12x-18≥0,即(x-3)2≤0,所以x=3.所以y=-2x 2+12x-18的定义域是{x|x=3}.3.{m|m <-3-22或m >-3+22}.4.R.5.解:设能够在2米以上的位置最多停留t 秒. 依题意,2212>gtvt -,即12t-4.9t 2>2.这里t >0,所以最大为2(精确到秒). 答:能够在2米以上的位置最多停留2秒.6.解:设每盏台灯售价x 元,则⎩⎨⎧--≥,400)]15(230[,15>x x x , 即15≤x <202152********=- (22-1),1520300=,所以售价满足15≤x <20. 第91页 习题3.2 B 组第4题解:设风暴中心坐标为(a ,b ),则a =3002,所以(3002)2+b 2<450,即-150<b <150,而2152********=- (22-1), 1520300=,所以经过215 (22-1)小时码头将受到风暴的影响,影响时间为15小时.B 组1.(1)4x 2-20x <25解集为∅.(2)(x-3)(x-7)<0解集为{x|-3<x <7}.(3)-3x 2+5x-4>0解集为∅.(4)x(1-x)>x(2x-3)+1解集为{x|31<x <1}. 2.由Δ=(1-m)2-4m 2<0,整理得3m 2+2m-1>0,因为方程3m 2+2m-1=0有两个实数根-1和31,所以m 1<-1或m 2>31,m 的取值范围是{m|m <-1或m >31}. 3.使函数f(x)=21 x 2-3x-43的值大于0的解集为{x|x <3-242或x >3+242}. 4.略.。

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案
A.[
答案: A 解析: 只需
1 2
x
)
1 ] 4 7 D.(−∞, − ) 2
B.(−∞,
f (x) min ⩾ g(x) min 即可.
4. 三位同学合作学习,对问题"已知不等式 xy ⩽ ax2 + 2y 2 对于 x ∈ [1, 2] , y ∈ [2, 3] 恒成立,求 a 的 取值范围"提出了各自的解题思路. 甲说:"可视 x 为变量,y 为常量来分析". 乙说:"寻找 x 与 y 的关系,再作分析". 丙说:"把字母 a 单独放在一边,再作分析". 参考上述思路,或自已的其它解法,可求出实数 a 的取值范围是 ( A.[1, +∞)
1. 若关于 x 的方程 9 x + (4 + a) ⋅ 3 x + 4 = 0 有解,则实数 a 的取值范围是 ( A.(−∞, −8) C.[−8, +∞)
答案: B 解析:
)Hale Waihona Puke B.(−∞, −8]D.(−∞, +∞)
由 9 x + (4 + a) ⋅ 3 x + 4 = 0,得 a = −3 x −
答案: B 解析:
)
D.[−1, 6]
B.[−1, +∞)
C.[−1, 4)
y y y 2 − 2( ) ,由 x ∈ [1, 2] , y ∈ [2, 3] ,x 、 y 构成正方形区域, 表示过 x x x y y 原点直线与正方形区域相交时直线的斜率的取值范围,则有 ∈ [1, 3] ,当 = 1 时, x x y y 2 − 2( ) 有最大值为 −1,则 a 的取值范围是 [−1, +∞) x x

高中数学 第三章 不等式 3.3 一元二次不等式及其解法练习(含解析)新人教B版必修5-新人教B版高

高中数学 第三章 不等式 3.3 一元二次不等式及其解法练习(含解析)新人教B版必修5-新人教B版高

3.3 一元二次不等式及其解法课时过关·能力提升1下列不等式中,解集是R的是()A.x2+2x+1>0B.√x2>0C.(13)x+1>0D.1x -2<1xx2+2x+1=(x+1)2≥0,所以选项A不正确;因为√x2=|x|≥0,所以选项B不正确;选项D中x≠0;因为(13)x>0,所以(13)x+1>1>0,x∈R,故选C.2已知2a+1<0,则关于x的不等式x2-4ax-5a2>0的解集是()A.{x|x>5a或x<-a}B.{x|x<5a或x>-a}C.{x|-a<x<5a}D.{x|5a<x<-a}2-4ax-5a2>0⇒(x-5a)(x+a)>0.∵a<-12,∴5a<-a.∴x>-a或x<5a.故选B.3已知不等式ax2+bx+c>0的解集为{x|-13<x<2},则不等式cx2+bx+a<0的解集为()A.{x|-3<x<12} B.{x|x<-3或x>12}C.{x|-2<x<13} D.{x|x<-2或x>13}:ax2+bx+c>0的解集为{x|-13<x<2}⇔3x2-5x-2<0⇔-3x2+5x+2>0.设a=-3k,b=5k,c=2k(k>0),则cx2+bx+a<0⇔2kx2+5kx-3k<0⇔2x2+5x-3<0⇔-3<x<12,故选A.方法二:由题意知a<0,且-x x =(-13)+2,x x =(-13)×2,即x x =-53,x x =-23,而cx 2+bx+a<0⇔x x x 2+x x x+1>0⇔-23x 2-53x+1>0⇔2x 2+5x-3<0⇔-3<x<12,故选A .4设f (x )={2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为()A.(1,2)∪(3,+∞)B.(√10,+∞)C.(1,2)∪(√10,+∞)D.(1,2)x<2时,令2e x-1>2,解得1<x<2.当x ≥2时,令log 3(x 2-1)>2,解得x ∈(√10,+∞).故x ∈(1,2)∪(√10,+∞).★5关于x 的方程x 2+(a 2-1)x+a-2=0的一根比1小,且另一根比1大的充要条件是()A.-1<a<1 B .a<-1或a>1 C.-2<a<1D.a<-2或a>1f (x )=x 2+(a 2-1)x+a-2,则它是开口向上的二次函数,方程的根即是函数与x 轴的交点的横坐标,因此只需f (1)<0,即1+a 2-1+a-2<0,故-2<a<1.6已知函数f (x )=√xx 2-6xx +(x +8)的定义域为R ,则实数k 的取值X 围为.2-6kx+(k+8)≥0恒成立,当k=0时,满足. 当k ≠0时,{x >0,x =(-6x )2-4x (x +8)≤0⇒0<k ≤1. ∴0≤k ≤1.7已知三个不等式①x 2-4x+3<0,②x 2-6x+8<0,③2x 2-9x+m<0,要使同时满足①和②的所有x 都满足③,则实数m 的取值X 围是.:由{x 2-4x +3<0,x 2-6x +8<0,解得2<x<3.③对于2<x<3恒成立,即m<-2x 2+9x 对x ∈(2,3)恒成立,所以m 只需满足小于函数-2x 2+9x 在区间(2,3)上的最小值,即当x=3时,最小值为9,但取不到最小值.所以m ≤9.方法二:{x 2-4x +3<0x 2-6x +8<0⇒{1<x <32<x <4⇒2<x<3.设f (x )=2x 2-9x+m.当x ∈(2,3)时,f (x )<0恒成立. 由二次函数的图象与性质,得{x (2)≤0,x (3)≤0,即{8-18+x ≤0,18-27+x ≤0,解得m ≤9.-∞,9]8已知f (x )是定义在R 上的奇函数,当x>0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为.f (x )为奇函数,且当x>0时,f (x )=x 2-4x ,所以f (x )={x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0,所以原不等式等价于{x >0,x 2-4x >x 或{x <0,-x 2-4x >x .由此可解得x>5或-5<x<0. 用区间表示为(-5,0)∪(5,+∞).-5,0)∪(5,+∞) ★9定义在(-3,3)内的奇函数f (x ),已知f (x )在其定义域内单调递减,且f (2-a )+f (1-a-a 2)>0,则实数a 的取值X 围是.f (x )为奇函数,∴f (2-a )>-f (1-a-a 2)=f (a 2+a-1). 又f (x )在(-3,3)上单调递减,∴{-3<2-x <3,-3<1-x -x 2<3,2-x <x 2+x -1,即{-1<x <5,-1-√172<x <-1+√172,x >1或x <-3.解得1<a<√17-12, 故实数a 的取值X 围为1<a<√17-12.1,√17-12) 10解关于x 的不等式ax 2-(a+1)x+1<0.当a=0时,原不等式化为-x+1<0,所以不等式的解集是{x|x>1}.(2)当a ≠0时,原不等式可化为a (x-1)(x -1x )<0. 若a<0,则(x-1)(x -1x )>0. 因为1x <1,所以原不等式的解集为{x |x <1x 或x >1};若a>0,原不等式化为(x-1)(x -1x )<0.①当1x <1,即a>1时,不等式的解集为{x |1x<x <1}.②当1x =1,即a=1时,不等式即为(x-1)2<0,显然不等式的解集为⌀. ③当1x>1,即0<a<1时,不等式的解集为{x |1<x <1x}.综上,原不等式的解集如下:当a<0时,解集为{x |x <1x 或x >1}; 当a=0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1x};当a=1时,解集为⌀;当a>1时,解集为{x|1x<x<1}.11设0<α<β,已知不等式ax2+bx+c>0的解集为(α,β),求不等式(a+c-b)x2+(b-2a)x+a>0的解集.,得a<0,α+β=-xx >0,αβ=xx>0.∴a<0,c<0,b>0,从而a+c-b<0.设(a+c-b)x2+(b-2a)x+a=0的两根为α',β',则有α'+β'=2x-xx+x-x =2x+x(x+x)x+xxx+x(x+x)=(x+1)+(x+1) (x+1)(x+1)=1x+1+1x+1,α'β'=xx+x-x =xx+xxx+x(x+x)=1x+1·1x+1.∴(a+c-b)x2+(b-2a)x+a=0的两根为1x+1,1 x+1.∵0<α<β,∴1x+1>1x+1>0.∴不等式(a+c-b)x2+(b-2a)x+a>0的解集为(1x+1,1x+1).★12若关于x的不等式4x+xx2-2x+3<2对任意实数x恒成立,某某数m的取值X围.:因为x2-2x+3=(x-1)2+2>0,所以不等式4x+xx2-2x+3<2同解于4x+m<2x2-4x+6,即2x2-8x+6-m>0.要使原不等式对任意实数x恒成立,只要2x2-8x+6-m>0对任意实数x恒成立.所以需要Δ<0,即64-8(6-m)<0.整理并解得m<-2.所以实数m的取值X围是(-∞,-2).方法二:由方法一,知要使4x+xx2-2x+3<2对任意实数x恒成立,只要2x2-8x+6-m>0恒成立即可.变形为m<2x2-8x+6.设h(x)=2x2-8x+6,要使m<2x2-8x+6恒成立,只要m<h(x)min.而h(x)=2x2-8x+6=2(x-2)2-2≥-2, 所以h(x)min=-2.所以m<-2.所以实数m的取值X围是(-∞,-2).。

2020年高中数学必修5 第3章 不等式课后习题练 《一元二次不等式解法》(含答案解析)

2020年高中数学必修5 第3章 不等式课后习题练 《一元二次不等式解法》(含答案解析)

第三章 不等式3.2 一元二次不等式及其解法第3课时 一元二次不等式解法(习题课)A 级 基础巩固一、选择题1.不等式(x-1)x +2≥0的解集是( )A .{x|x>1}B .{x|x ≥1}C .{x|x ≥1或x=-2}D .{x|x ≤-2或x=1}2.若集合A={x|ax 2-ax +1<0}=∅,则实数a 的值的集合是( )A .{a|0<a<4}B .{a|0≤a<4}C .{a|0<a ≤4}D .{a|0≤a ≤4}3.已知集合M=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +3x -1<0,N={x|x≤-3},则集合{x|x ≥1}等于( ) A .M ∩N B .M ∪N C .∁R(M∩N) D .∁R(M∪N)4.已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >12,则f(10x )>0的解集为( ) A .{x|x <-1或x >lg 2} B .{x|-1<x <lg 2}C .{x|x >-lg 2}D .{x|x <-lg 2}5.对任意a∈[-1,1],函数f(x)=x 2+(a-4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .1<x<3B .x<1或x>3C .1<x<2D .x<1或x>2二、填空题6.若不等式(a 2-1)x 2-(a-1)x-1<0的解集为R ,则实数a 的取值范围是________.7.已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a=________.8.关于x 的方程x 2m+x +m-1=0有一个正实数根和一个负实数根,则实数m 的取值范围是________. 三、解答题9.已知一元二次不等式(m-2)x 2+2(m-2)x +4>0的解集为R.求m 的取值范围.10.已知f(x)=-3x 2+a(6-a)x +3,解关于a 的不等式f (1)≥0.B 级 能力提升1.若实数α,β为方程x 2-2mx +m +6=0的两根,则(α-1)2+(β-1)2的最小值为( )A .8B .14C .-14D .-4942.有纯农药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的农药不超过容积的28%,则桶的容积的取值范围是________.3.已知关于x 的一元二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内, 另一根在区间(1,2)内,求m 的取值范围.答案解析A 级 基础巩固1.解析:(x-1)x +2≥0,所以⎩⎪⎨⎪⎧x -1≥0,x +2≥0或x=-2,⇒x ≥1或x=-2,故选C. 答案为:C ;2.解析:因为ax 2-ax +1<0无解,当a=0的显然正确;当a≠0时,则⎩⎪⎨⎪⎧a>0,Δ≤0⇒⎩⎪⎨⎪⎧a>0,a 2-4a≤0⇒0≤a ≤4.综上知,0≤a ≤4.选D. 答案为:D ;3.解析:因为M={x|-3<x<1},N={x|x ≤-3},所以M∪N ={x|x<1},故∁R(M∪N)={x|x≥1},选D.答案为:D ;4.解析:由题意知,一元二次不等式f(x)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <12.而f(10x )>0, 所以-1<10x <12,解得x <lg 12,即x <-lg 2. 答案为:D ;5.解析:f(x)=x 2+(a-4)x +4-2a>0,a ∈[-1,1]恒成立⇒(x-2)a +x 2-4x +4>0,a ∈[-1,1]恒成立.所以⎩⎪⎨⎪⎧(x -2)×(-1)+x 2-4x +4>0,(x -2)×1+x 2-4x +4>0,解得3<x 或x<1.选B. 答案为:B ;6.答案为:⎝ ⎛⎦⎥⎤-35,1;7.解析:由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax-1=0的根,所以a=-2. 答案为:-2;8.解析:若方程x 2m+x +m-1=0有一个正实根和一个负实根, 则有⎩⎪⎨⎪⎧m >0,m -1<0,或⎩⎪⎨⎪⎧m <0,m -1>0.所以0<m <1或∅. 答案为:(0,1);9.解:因为y=(m-2)x 2+2(m-2)x +4为二次函数,所以m≠2.因为二次函数的值恒大于零,即(m-2)x 2+2(m-2)x +4>0的解集为R.所以⎩⎪⎨⎪⎧m -2>0,Δ<0,即⎩⎪⎨⎪⎧m >2,4(m -2)2-16(m -2)<0,解得:⎩⎪⎨⎪⎧m >2,2<m <6. 所以m 的取值范围为{m|2<m <6}.10.解:f(1)=-3+a(6-a)+3=a(6-a),因为f(1)≥0,所以a(6-a)≥0,a(a-6)≤0,方程a(a-6)=0有两个不等实根a 1=0,a 2=6,由y=a(a-6)的图象,得不等式f(1)≥0的解集为{a|0≤a≤6}.B 级 能力提升1.解析:因为Δ=(-2m)2-4(m +6)≥0,所以m 2-m-6≥0,所以m≥3或m≤-2.(α-1)2+(β-1)2 =α2+β2-2(α+β)+2=(α+β)2-2αβ-2(α+β)+2=(2m)2-2(m +6)-2(2m)+2=4m 2-6m-10=4⎝ ⎛⎭⎪⎫m -342-494, 因为m≥3或m≤-2,所以当m=3时,(α-1)2+(β-1)2取最小值8.答案为:A ;2.解析:设桶的容积为x 升,那么第一次倒出8升纯农药液后,桶内还有(x-8)(x >8)升纯农药液,用水补满后,桶内纯农药液的浓度为x -8x.第二次又倒出4升药液, 则倒出的纯农药液为 4(x -8)x 升,此时桶内有纯农药液⎣⎢⎡⎦⎥⎤x -8-4(x -8)x 升. 依题意,得x-8-4(x -8)x≤28%·x. 由于x >0,因而原不等式化简为9x 2-150x +400≤0,即(3x-10)(3x-40)≤0.解得103≤x ≤403.又x >8,所以8<x≤403. 答案为:⎝⎛⎦⎥⎤8,403;3.解:设f(x)=x 2+2mx +2m +1,根据题意,画出示意图,由图分析可得,m 满足不等式组⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0.解得-56<m<-12.。

(压轴题)高中数学必修五第三章《不等式》测试题(含答案解析)(1)

(压轴题)高中数学必修五第三章《不等式》测试题(含答案解析)(1)

一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.已知2244x y +=,则2211x y +的最小值为( ) A .52B .9C .1D .943.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-5.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .16.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R7.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .88.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 9.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭10.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1bB .a 2>b 2C .21ac +>21b c + D .a |c |>b |c |11.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b > D .33a b >12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.14.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 15.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.18.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.19.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠. (1)若不等式()0f x >的解集为(1,3)-,求,a b 的值; (2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.23.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 24.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值. 25.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围. 26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x ⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.D解析:D 【分析】利用22222211111(4)4x y x y xy ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可. 【详解】画出约束条件所表示的平面区域,如图所示, 由23z x y =-得到233zy x =-, 平移直线233zy x =-,当过A 时直线截距最小,z 最大,由4100yx y=⎧⎨--=⎩得到5(,0)2A,所以23z x y=-的最大值为max523052z=⨯-⨯=,故选C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.6.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.7.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.8.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题9.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-,由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.10.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.11.D解析:D【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】 由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得 解析:612【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立, ∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C CC-==++++-,又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴()tan tan tan tan tan tan 1tan =21123A CA CC CA C -≤++-=.故答案为:12【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.15.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.17.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y xx y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.18.23【分析】先画出约束条件所表示的可行域结合图象确定目标函数的最优解代入最优解的坐标即可求解【详解】画出不等式组所表示的可行域如图所示可得交点又由解得目标函数可化为当直线过点C 时直线在轴上的截距最大解析:23 【分析】先画出约束条件所表示的可行域,结合图象确定目标函数的最优解,代入最优解的坐标,即可求解. 【详解】画出不等式组213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩所表示的可行域,如图所示,可得交点(0,1),(7,1)A B , 又由21211x y y x -=-⎧⎨-=⎩,解得(3,7)C ,目标函数2z y x =-可化为122zy x =+, 当直线122zy x =+过点C 时,直线在y 轴上的截距最大,此时目标函数取得最大值, 将C 代入直线320x y k +-=,解得23k =.故答案为:23【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出不等式组所表示的平面区域,结合图象得出目标函数的最优解是解答的关键,着重考查数形结合法,以及计算能力.19.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键 解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a qb b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q . 【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x+-的最值,进而即可得到结论. 【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x xx x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4.故答案为:4. 【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16.【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值. 【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-,1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩.(2)由于()12f =,0a >,0b >, 则可知232a b +-+=, 得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b aa b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立,所以19a b +的最小值为16. 【点睛】易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-.(2)由(1)可知3m =,则1a b +=, 则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型.23.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x=-在区间[]1,2上的最大值求解即可. 【详解】(1)由题意得()2102af x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤,解得44a -≤≤,∴实数a 的取值范围为[]4,4-. (2)由题意得[]21,2,122ax x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-. 【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >;(2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替. 24.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-.【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解. 【详解】(1)当2a =时,不等式为23440x x -++>, 所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-.【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.25.(1)3;(2)6b ≥- 【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围. 【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x-≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.26.(1)25-;(2)⎛-∞ ⎝⎭,. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =- (2)∵不等式的解集为R∴0k <且24240k ∆=-<∴6k <-∴k 的取值范围是(-∞, 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x 的解集是( )A .{x |x ≥2}B .{x |x ≤2}C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2} 2.下列说法正确的是( )2bc >2ac ⇒b >a .A 3b >3a ⇒b >a .C 2 b >2a ⇒b >a .B b >a ⇒2b >2a .D 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( )A .(-3,4)B .(-3,-4)C .(0,-3)D .(-3,2) 4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( )A .M >NB .M ≥NC .M <ND .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形 7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( ) A .1B .-1C .3D .-3 8.若关于x 的函数y =x +m2x在(0,+∞)的值恒大于4,则( )A .m >2B .m <-2或m >2C .-2<m <2D .m <-2 9.已知定义域在实数集R 上的函数y =f (x )不恒为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-1<f (x )<0 C .f (x )>1 D .0<f (x )<110.若x +23x -5<0,化简y =25-30x +9x2-(x +2)2-3的结果为( )A .y =-4xB .y =2-xC .y =3x -4D .y =5-x二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________. 三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0.18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z =x +3y 的最大值.20.(13分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元;元.a2的费用为的新墙1 m 的旧墙,用可得的建材建1 m 拆去(3) 经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边;②矩形厂房利用旧墙的一面长x ≥14.试比较①②两种方案哪个更好.必修5第三章《不等式》单元测试题2.≥x 或0≤x ,则0≥x 2-2x 原不等式化为解析:.1 答案:D,所以1=2b 0<=2a 时,1=-b 0>=a 中,当B 不正确;A ,所以2bc =2ac 时,0=c 中,当A 解析:.2正确.C 不正确.很明显D ,所以1-2<时,-21)->(22)-(中,当D 不正确;B 答案:C3.解析:当x =y =0时,3x +2y +5=5>0,所以原点一侧的平面区域对应的不等式是3x +2y +5>0,可以验证,仅有点(-3,4)的坐标满足3x +2y +5>0.答案:A2.-<x ⇔2<0+x ⇔>0-3x +2⇔1>0-x -1x +2⇔>1x -1x +2解析:.4 答案:A,0≥2a =3)-a 1)(-a (-3+2)-a (a 2=N -M :解析.5 所以M ≥N . 答案:B6.解析:在平面直角坐标系中,画出不等式组表示的平面区域,如下图中的阴影部分.则平面区域是△ABC .答案:A.由图知,当直(2,1)A 得⎩⎪⎨⎪⎧x +y -3=0,x -2y =0.画出可行域如下图中的阴影部分所示.解方程组解析:.7线y =x -z 过A 时,-z 最大,即z 最小,则z 的最小值为2-1=1.答案:A|>4.m2|∴,|m 2|≥m2x+x ∵解析:.8 ∴m >2或m <-2.答案:B,(0)2f =(0)f 得0=y =x 令解析:.9 若f (0)=0,则f (x )=0·f (x )=0与题设矛盾. ∴f (0)=1.又令y =-x ,∴f (0)=f (x )·f (-x ),.1f(-x)=)x (f 故 ∵x >0时,f (x )>1,∴x <0时,0<f (x )<1,故选D.答案:D-x 3-5=3-2|+x |-5|-x |3=3-(x +2)2-25-30x +9x2=y 而.53<x 2<-∴,<0x +23x -5∵解析:.10x -2-3=-4x .∴选A.答案:A二、填空题(填空题的答案与试题不符).__________的取值范围是k 恒有意义,则常数1kx2+kx +1,式子R ∈x .对于11 ∴,<0k 4-2k =Δ且>0k 时,0≠k 恒成立.当1>0+kx +2kx 恒有意义,即1kx2+kx +1式子解析: C.,选<4k ≤0恒成立,故1>0=1+kx +2kx 时,0=k ;而<4k 0< 答案:C ?.__________的定义域是4-x lg +x -2x -3=)x (f .函数12 解析:求原函数定义域等价于解不等式组⎩⎪⎨⎪⎧x -2≥0,x -3≠0,4-x>0,<4.x 3<或<3x ≤2解得 ∴定义域为[2,3)∪(3,4).答案:[2,3)∪(3,4)13.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.解析:如下图中阴影部分所示,围成的平面区域是Rt △OAB .可求得A (4,0),B (0,4),则OA =OB =4,.24+8=24+4+4的周长是OAB △Rt ,所以24=AB 24+8答案: 所形成区域的)y ,x (的点⎩⎪⎨⎪⎧f(x)+f(y)≤0,f(x)-f(y)≥0条件,则满足x 2-2x =)x (f .已知函数14面积为__________.解析:化简原不等式组 ⎩⎪⎨⎪⎧(x -1)2+(y -1)2≤2,(x -y )(x +y -2)≥0,所表示的区域如右图所示,阴影部分面积为半圆面积.答案:π15.(2010·浙江高考)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.,一月份至十2%)x +(1×500,八月份销售额为%)x +(1×500由已知条件可得,七月份销售额为解析:+(1+%)x +1000[(1+4360,可列出不等式为]2%)x +500(1+%)x +2[500(1+500+3860月份的销售总额为,0≥115+t ∵又0.≥⎝ ⎛⎭⎪⎫t -65⎝⎛⎭⎪⎫t +115,即0≥6625-t +2t 则,t =%x +1令7000.≥]2%)x ,65≥%x +1∴,65≥t ∴ ∴x %≥0.2,∴x ≥20.故x 的最小值是20.答案:20三、解答题(本大题共6小题,共75分)的大小.eb -d与e a -c ,比较<0e ,<0d <c ,>0b >a 已知)分(12.16 .e (b -a)+(c -d)(a -c)(b -d)=e(b -d)-e(a -c)(a -c)(b -d)=e b -d -e a -c 解: ∵a >b >0,c <d <0,∴a -c >0,b -d >0,b -a <0,c -d <0..eb -d >e a -c ∴>0.e b -d -e a -c ∴,<0e 又 17.(12分)解下列不等式:;>023-x 2+2x -(1) 0.≥1+x 6-2x (2)9 2<0.+x 6-2x 3⇔<023+x 2-2x ⇔>023-x 2+2x -(1)解: ,33+1=2x ,33-1=1x 的两根为0=2+x 6-2x 3,且方程12>0=Δ .}33+<1x <33-|1x {原不等式解集为∴ 0.≥21)-x (3⇔0≥1+x 6-2x (2)9 ∴x ∈R .∴不等式解集为R .>0.m +x 3)+m (2-2x 3)+m (的不等式:x ,试解关于2-<m 且R ∈m 已知)分(12.18 解:当m =-3时,不等式变成3x -3>0,得x >1;当-3<m <-2时,不等式变成(x -1)[(m +3)x;mm +3<x 或>1x ,得]>0m - .mm +3<x 1<时,得3-<m 当 综上,当m =-3时,原不等式的解集为(1,+∞);当时,原不等式的解集为3-<m ;当)∞,+(1∪⎝⎛⎭⎪⎫-∞,m m +3时,原不等式的解集为2-<m 3<-.⎝⎛⎭⎪⎫1,m m +3 ⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.满足y ,x 已知非负实数)分(12.19 (1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z =x +3y 的最大值.解:(1)由x ,y 取非负实数,根据线性约束条件作出可行域,如下图所示阴影部分.l点与直线M 位置时,此时可行域内M 轴的交点y 与1l 向上平移至l ,将直线0=y 3+x :l 作出直线(2)的距离最大,而直线x +y -3=0与y 轴交于点M (0,3).9.=3×3+0=max z ∴ 20.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价.)元10|(-t |12-20=)t (f ,价格近似满足)件(t 2-80=)t (g 的函数,且销售量近似满足)天(t 均为时间)元(格 (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.解:(1)y =g (t )·f (t )10|)-t |12-)·(20t 2-(80= =(40-t )(40-|t -10|)⎩⎪⎨⎪⎧(30+t)(40-t), 0≤t<10,(40-t)(50-t), 10≤t ≤20.= (2)当0≤t <10时,y 的取值范围是[1200,1225], 在t =5时,y 取得最大值为1225;当10≤t ≤20时,y 的取值范围是[600,1200],在t =20时,y 取得最小值为600.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126的厂房,工程条件是:2m (1)建1 m 新墙的费用为a 元;元;a4旧墙的费用为1 m 修(2) 元.a2的新墙的费用为1 m 的旧墙,用可得的建材建1 m 拆去(3) 经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边; ②矩形厂房利用旧墙的一面长x ≥14.试比较①②两种方案哪个更好.,)元(ax4用为:修旧墙费①方案解: ,)元(a2)x -(14拆旧墙造新墙费用为 ,)元(a 14)-2×126x+x (2其余新墙费用为 ,<14)x 1)(0<-36x+x 4(a 7=a 14)-2×126x +x (2+a 2)x -(14+ax 4=y 则总费用为 ,6=x 4·36x 2≥36x +x 4∵ ,a 35=min y 时,12=x 即36x=x 4当且仅当∴ 方案②: ,)元(7a2=a 4×14利用旧墙费用为 ,)元(a 14)-252x+x (2建新墙费用为 ,14)≥x (a 212-)126x +x (a 2=a 14)-252x +x (2+7a 2=y 则总费用为 上为增函数,)∞,+[14在126x+x 可以证明函数 .a 35.5=min y 时,14=x 当∴ ∴采用方案①更好些.。

相关文档
最新文档