固体物理学课件:ch1-s7

合集下载

固体物理知识总结PPT课件

固体物理知识总结PPT课件
惯用元胞、轴矢
三、常见晶体结构举例
致密度η(又称空间利用率)、配位数、密 堆积
1. 简单立方(sc) 配位数=6,惯用元胞包含格点数 = 1 惯用元胞包含格原子数 = 1
2. 面心立方(fcc) 配位数=12,惯用元胞包含格点数=4 惯用元胞包含格原子数 = 4
3.体心立方(bcc) 配位数=8,惯用元胞包含格点数=2 惯用元胞包含格原子数 = 2
1.决定散射的诸因素 (1)原子散射因子 (2)几何结构因子
2.衍射极大的条件(必要条件)
即当 k-k0=S=Gh 时,所有元胞间的
散射光均满足相位相同的加强条件,产生衍
射极大。
(反射球)
4.消光条件
第二章 晶体结合
一、原子的负电性
负电性=常数(电离能+亲和能)
电离能:让原子失去电子所必需消耗的能量
第四章 固体能带论 基本近似:绝热近似、单电子近似 一、固体电子的共有化和能带 二、布洛赫(Bloch)定理
1.布洛赫定理:表述及讨论 2. Bloch 定理的证明 3.布洛赫定理的一些重要推论 4.能态密度 三、近自由电子模型 1.索末菲(Sommerfeld)模型
(1)自由电子(半量子)模型
(2)自由电子费米(Femi)气模型 2.近自由电子模型
亲和能:处于基态的中性气态原子获得一个 电子所放出的能量
负电性大的原子,易于获得电子 负电性小的原子,易于失去电子 二、离子结合 三、共价结合 共价键的特性:饱和性、方向性 四、金属结合 五、范德瓦尔斯键结合 六、氢键结合
第三章 晶格振动
一、一维单原子晶格的振动
1. 物理模型 2.近似条件:近邻作用近似、简谐近似 3. 分析受力:牛顿方程 4. 定解条件―――玻恩-卡曼

固体物理第一章(3)(课堂PPT)

固体物理第一章(3)(课堂PPT)

1.2 一些晶格的实例
晶格:晶体中原子排列的具体形式称为晶体格子,简称晶格。 (1)晶体原子规则排列形式不同,则有不同的晶格结构; (2)晶体原子规则排列形式相同,只是原子间的距离不同, 则它们具有相同的晶格结构。
处理方法:把晶格设想成为原子球的规则堆积
一、正方堆积
把原子视为刚性小球,在二维平面内最 简单的规则堆积便是正方堆积;
20世纪开始,电子论有很大的发展,对固体的电学、磁性、 光学性质发展了理论,然而是较简单的。由于X射线的发现, 对原子结构有了很好的了解,并且用X射线研究了原子排列, 使得对原子如何结合成为晶体的认识大大深入了一步。量子力 学提高了经典的电子论,使得更深刻地理解固体的电学、磁学、 光学性质。此外,技术的发展大大利用了固体的性质。
任一个球与同一平面内的四个最近邻相 切。
原子球的正方堆积
二、简单立方堆积
正方排列层层重合堆积起来,就构成了简单立方结构
原子球的正方排列
简立方结构单元
没有实际的晶体具有简单立方晶格的结构,但是一些 复杂的晶格可以在简单立方晶格的基础上加以分析
三、体心立方堆积
把简单立方堆积的原子球均匀地散开一些, 而恰好在原子球空隙内能放入一个全同的原 子球,使空隙内的原子球与最近邻的八个原 子球相切,这就构成了体心立方堆积。
➢ 配位是的大小描述晶体中粒子排列的紧密程度:粒子排列越紧密,配位数越大。
一、BCC堆积的致密度
设晶格常数为a,粒子半径为r,则:
a2 2a2 4r2
a 4r 3
晶胞中含有2个粒子,则BCC结构的致密度:
2 4r3
Db
3 a3
0.68
二、FCC堆积的致密度
设晶格常数为a,粒子半径为r,则:

固体物理学课件

固体物理学课件

晶胞与原胞的关系
以立方晶系为例:
立方晶系:晶胞基矢互相垂直而且模相等,即 a b c 、 a b c
的晶格。立方晶系包括简单立方、体心立方、面心立方三种。 简单立方
取晶轴作为坐标轴,坐标轴单位矢量用 i , j , k 表示。 晶胞基矢: a ai , b aj , c ak a b c
例1:
基元 分子 分子 格点
分子
分子 点阵
基元周期性分布
例2: 基元 格点
基元周期性分布
点阵
晶格:格点在空间3个方向上的周期性排列形成与晶体几何特征相同、但没有
任何物理实质的三维空间网络,称为晶格或布拉菲格子(或布拉菲点阵)。
a3 a 2
a1
周期:某一方向上相邻两格点的距离。 基矢:从晶格中任意格点出发,沿空间任意三个不同方向的三个最小平移矢量。
,这种变换
称为对称操作。对称操作越多,晶体对称性越高。 2、晶体对称操作的数学表示及限制条件
由于格点与坐标一一对应,晶体的对称操作实际就是对晶体的坐标进行线性变换。
对称操作中应不改变晶体中任意两点间距离,对应的变换矩阵是正交变换矩阵。 变换:
,按照某一规律 ,在 中存在唯一的向量 与 对于集合 U 任意向量 U A 称为 的象, 称为 之对应,则这个对应的规律 A 就称为 U 的一个变换。 的原象,记为 A 。
a
Cs+和Cl-各自构成简单立方布拉菲晶格,沿立方体空间相互移动1/2对角线长度套 构形成氯化铯结构。其基元由相距1/2对角线长度的一个Cs+ 和Cl-组成,基元代表点 (格点)形成简单立方格子。

(完整PPT)固体物理学

(完整PPT)固体物理学

(a)理想石英晶体(b)人造石英晶体
属于同一品种的晶体,两个对应晶面之间的夹角 恒定不变,这一规律称为晶面角守恒定律。
显然,晶面之间的相对方位是晶体的特征因素, 因而常用晶面法线的取向来表征晶面的方位,而以 法线间夹角来表征晶面间的夹角(两个晶面法线间 的夹角是这两个晶面夹角的补角)。
二、晶体的基本性质
显然,WS 原胞也只包含一个格点,因此它与固 体物理学原胞的体积一样,也是最小周期性重复单 元。
3.晶格的周期性
* 一维布喇菲格子
一维布喇菲格子是由一种
原子组成的、无限周期性的 点列,所有相邻原子间的距
a
离均为周期为a,如图所示。
在一维情况下,原胞取原子及周围长度为 a 的区 域。重复单元的长度矢量称为基矢,通常用以某原 子为起点,相邻原子为终点的有向线段 a 表示。
1
2
3
原胞的体积为
a3
简立方体格子的原胞和基矢 选取,如图所示。
a3 ai a2 aj a2 ai a2
尽管由于生长条件的不同,会使同一晶体外型产 生一定的差异。但是对同一种晶体,相应两个晶面 之间的夹角却总是恒定的。即:每一种晶体不论其 外形如何,总具有一套特征性的夹角。
例如,对于石英晶体,在下图中所示的 mm 两面 间的夹角总是60º0' , mR 两面间的夹角总是38º13' , mr 两面间的夹角总是38º13' 。
点之间的距离。
三个基矢不要求相互正交, 且大小一般也不相同。并且, 对于同一个晶格,基矢的选择 也不是唯一的。
* 晶格平移矢量
若选择某一格点为坐标原点,则晶体中任一格点 的位置可以表示为
Rn n1a1 n2a2 n3a3 (ni 0,1,2,......)

《固体物理基础概论》PPT课件

《固体物理基础概论》PPT课件

组成晶态固体的粒子在空间周期性排列,具 有长程序,它的对称性是破缺的。
非晶体与晶体相反,其组成粒子在空间的 分布是完全无序或仅仅具有短程序,具有高度 的对称性。
准晶介于晶体和非晶体之间,粒子在空间 分布有序,但不具有周期性,仅仅具有长程的 取向序。
固体物理的研究对象以晶体为主。
准晶
2 . 固体物理学的基本任务:是企图从微观上 去解释固体材料的宏观物性,并阐明其规律。
到了期末,接近考试了,此时介绍晶体结合 、晶体缺陷等学生材内容和学时分配 第一章 金属自由电子费米气体模型(10学时) 第二章 晶体的结构 (19学时) 第三章 能带论 (23学时) 第四章 晶格振动 (10学时) 第五章 输运现象 (5学时) 第六章 晶体的结合、晶体缺陷和相图(5学时)
曼彻斯特大学最近公布的波纹式的石墨烯薄片示意图
Ultra-Thin Material
超导磁悬浮
Magnetic Domains by Magneto-optical Effect
包钴氧化铁 钡铁氧体
铁合金
CrO2
m
计算机的硬盘
计算机的硬盘
2007年诺贝尔 物理学奖---巨 磁电阻效应 (GMR)
4.基泰尔(C.Kittel 5th edition)著,杨顺华等 译,固体物理导论,科学出版社,1979
5.方可,胡述楠,张文彬 主编;固体物理学,重庆大 学出版社,1993
6.陈金福 主编 固体物理学—学习参考书 高等 教育出版社,1986 7.
8.阎守胜. 2000. 固体物理基础. 北京:北京大学 出版社
7.教学要求
1) 掌握金属自由电子模型的内容并学会利用该模型对 金属的电、热、光等物性进行分析; 2) 掌握晶体的结构特点、晶格的特征、晶体对称性 和分类、倒格子以及X射线衍射;

第三章 固体物理ppt课件

第三章  固体物理ppt课件

§2
三维晶格的振动
设实际三维晶体沿基矢a1、a2、a3方向的初基原胞数分 别为N1、N2、N3,即晶体由N=N1·N2·N3个初基原胞组成, 每个初基原胞内含s个原子。 一维情况下,波矢q和原子振动方向相同,所以只有纵波。 三维情况下,有纵波也有横波。
原则上讲,每支格波都描述了晶格中原子振动的一类运动 形式。初基原胞有多少个自由度,晶格原子振动就有多少种 可能的运动形式,就需要多少支格波来描述。
一个波矢为K的第S支模式处在第N个激发态,我们就说在晶 体中存在着N个波矢为K的第S支声子(因为给定了K与第S支模 式则ω可由色散关系唯一确定),在晶体中波矢为K的纵声学支 模式处于N激发态,我们就说晶体中有N个波矢为K的纵声学支 声子。
声子这个名词是模仿光子而来(因为电磁波也是一种简谐振 动)。声子与光子都代表简谐振动能量的量子。所不同的是光子 可存在于介质或真空中,而声子只能存在于晶体之中,只有当晶 体中的晶格由于热激发而振动时才会有声子,在绝对零度下,即 在0K时,所有的简正模式都没有被激发,这时晶体中没有声子, 称之为声子真空。声子与光子存在的范围不同,即寄居区不同。
每一组整数(L1,L2,L3 )对应一个波矢量q。将这些波矢在倒空 间逐点表示出来,它们仍是均匀分布的。每个点所占的“体积” 等于“边长”为(b1/N1)、(b2/N2)、(b3/N3)的平行六面体的 “体积”,它等于: b b b 3 1 2 N N N 1 N 2 3 式中Ω*是倒格子初原胞的“体积”,也就是第一 布里渊区的“体积”,而Ω*=(2π)3/Ω ,所以每个波 矢q在倒空间所占的“体积”为:
子的位移构成了波,这个波称之为格波,把寻求到的
运动方程的解带入运动方程就能找出ω 与q的关系即

固体物理学 ppt课件

固体物理学  ppt课件
第1章 晶体的结构
阐明晶体中原子排列的几何规律性
PPT课件
1
内 容
1.1 晶体的特征 1.2 空间点阵 1.3 晶格的周期性、基矢 1.4 密勒指数 1.5 倒格子 1.6 晶体的特殊对称性、对称操作 1.7 晶系、布喇菲原胞 1.8 密堆积、配位数 1.9 X射线衍射方程、反射球
PPT课件 2
1.1 晶体的特征
问题一 体心立方晶胞中含有几个原子? 原子引基矢。 问题二 体心立方原胞如何选取? 问题三 问题四
8 1 2 个原子 以体心原子为顶 8 点,分别向三个顶角
1 3 a1 a 2 a 3 a 原胞的基矢形式? 2
a1
k
a a 1 ( i j k ) 原胞体积? 2 a a 2 (i j k ) 2 a a 3 (i j k ) 2
1.3.3 三维情况
布喇菲格子:最小重复单元(原胞)只含有一个原子的晶格 复式格子:原胞中含有两个或两个以上原子的晶格
(1)三维布喇菲晶格原胞:是三边长等于各方向基矢, 结点为顶点的平行六面体。基矢(a1,a2 ,a3 )
a3 a2 a1
PPT课件
20

晶格周期性:设r为重复单元中任意一处的位矢
简立方(SC)
体心立方(BCC) 面心立方(FCC)
PPT课件
22
简立方(Simple Cubic,简称 SC )

三个基矢等长并且互相垂直。
a3
a a2

原胞与晶胞相同。
a1
a 1 ai a 2 aj a 3 ak
PPT课件
23
体心立方(Body Centered Cubic, 1 BCC)

固体物理第一讲 绪论PPT课件

固体物理第一讲 绪论PPT课件

70年代出现了高分辨电子显微镜点阵成像技术,
在于晶体结构的观察方面有所进步。近年来发展
的扫描隧道显微镜,可以相当高的分辨率探测表
面的原子结构。
• 晶体的结构以及它的物理、化学性质 同晶体结合的基本形式有密切关系。通常 晶体结合的基本形式可分成:离子键合、 金属键合、共价键合、分子键合(范德瓦耳 斯键合)和氢键合。根据X射线衍射强度分 析晶体的物理、化学性质,或者依据晶体 价电子的局域密度分布的自洽理论计算, 人们可以准确地判定该晶体具有何种键合 形式。
(二)、固体物理的发展史
几百万年前的石器时代,或者几万年前人类开
始冶炼金属、制造农具和刀箭的时代。通过炼金术, 人们了解了一些材料的颜色、硬度、熔化等性质, 并用之于绘画、装饰等。
1611年,开普勒就开始思考雪花为什么呈六角 形;
1843年法拉第曾惊奇地发现硫化银的电阻随着 温度的升高而下降;
阿拉克西曼德:万物是由无数的原始物质构成的。 阿拉克西美尼:万物的本质是空气。 赫拉克里特:万物的本质是火,火与其他物类的混合物,一
般都以我们可以感知气味的其他物类来命名,但是火本身 是不变的因素。 埃姆毕多克拉斯:万物是由水、气、火、土组成。
• 巴门尼德: 宇宙中只有一个永恒的存在,像一个充实的
固体物理学
第一讲 绪论
• 一:固体物理学 • 二:发展史 • 三:当前研究的热点和前沿 • 四:本课程的主要讲解内容 • 五、参考书籍
一:固体物理学
固体物理学是研究固体物质的物理 性质、微观结构、构成物质的各种粒 子的运动形态,及其相互关系的科学。 它是物理学中内容极丰富、应用极广 泛的分支学科。
融汇了力学、热力学与统计物理学、 电动力学、量子力学和晶体学等多学 科的知识。

固体物理导论教学课件

固体物理导论教学课件
为基矢。对于一个空间点阵,基矢的选择不是唯一的,可 以有多种不同的选择方式。
a2 0 a1
3. 原胞 ➢ 空间点阵原胞 • 空间点阵最小的重复单元 • 每个空间点阵原胞中只含有一个格点 • 对于同一空间点阵,原胞有多种不同的取法,但
原胞的体积均相等
原胞体积: va a1 a 2 a 3
➢ 晶格原胞=空间点阵原胞+基元
➢ Wigner-Seitz原胞(对称原胞)
体心立方的基矢和Wigner-Seitz原胞
面心立方基矢、原胞和Wigner-Seitz原胞
4. 晶格的分类
➢ 简单晶格:每个晶格原胞中只含有一个原子, 晶格中所有原子在化学、物理和几何环境 上都是完全等同的。
例:Na、Cu、Al等晶格均为简单晶格
倒格子原胞体积:
vab 8 3
b b1 b2 b3
Rl G n 2 h h为整数
研究到易点阵的意义
利用倒易点阵的概念可以很方便地导出晶体几何学中 各种重要关系
可以方便而形象地表示晶体衍射几何学 倒易矢量可以理解为波失
由倒易点阵基失所张的空间成为倒易空间, 可理解为状态空间(k空间)
bcc:
a1
a2
b
0
a
a3
a 1 b c a j k
12
2
a 1 c a a k i
22
2
a 1 a b a i j
32
2
a 1 a b c a i j k
12
2
a 1 a b c a i j k
22
2
a 1 a b c a i j k
§1.3 晶体的宏观对称性
一、点对称操作 ➢ 对称操作:若一个空间图形经过一空间操作 (线性变换),其性质复原,则称此 空间操作为对称操作——正交变换

《固体物理基础教学课件》第一章

《固体物理基础教学课件》第一章

半导体的电子状态
半导体中的电子能级结构
半导体中的电子能级结构与金属不同,存在一个带隙,使得半导 体在一定温度下只能部分电子成为自由电子。
半导体的导电性
半导转变为导体。
半导体的光电效应
当光照射在半导体上时,半导体吸收光子后,价带上的电子跃迁到 导带,产生光电流。
晶体结构
80%
晶体结构的特点
晶体结构是指固体物质内部的原 子或分子的排列方式,具有周期 性、对称性和空间群特征。
100%
常见的晶体结构
常见的晶体结构有金刚石型、氯 化钠型、闪锌矿型等,它们在外 观和性质上都有所不同。
80%
晶体结构的分类
晶体结构可以根据原子或分子的 排列方式和空间群进行分类,有 助于理解其物理和化学性质。
核聚变能源
在核聚变能源领域,固体物理中的 高温高压等极端条件下的物理性质 研究为实验设计和设备制造提供了 重要依据。
在信息技术领域的应用
集成电路
集成电路的制造依赖于固体物理 中的半导体理论和热力学原理, 从芯片设计到制造工艺的每一个 环节都离不开固体物理的理论支
持。
存储技术
随着信息技术的快速发展,存储 技术也在不断进步。固体物理中 的磁学和光学理论在磁存储和光
推动高新技术产业的进步
固体物理学在信息技术、新能源等领域中有着广泛 的应用,如半导体技术、太阳能电池等,为高新技 术产业的进步提供了重要支撑。
对其他学科的交叉促进作用
固体物理学与化学、生物学、地球科学等学科有着 密切的联系,通过与其他学科的交叉融合,可以促 进相关领域的发展和创新。
02
固体物质的结构
复合材料
通过研究复合材料的微观结构和物理性质,可以设计和制备具有优异 性能的复合材料,广泛应用于航空航天、汽车、体育器材等领域。

固体物理绪论ppt课件

固体物理绪论ppt课件
2. 金属的研究 —— 抽象出电子公有化的概念,再用单电 子近似的方法建立能带理论
3. 物质的铁磁性 —— 研究了电子与声子的相互作用,阐 明低温磁化强度随温度变化的规律
4. 超导的理论 —— 研究电子和声子的相互作用,形成库 柏电子对,库柏对的凝聚表现为超导电相变
六、固体物理学领域的一些重要进展 1. 人造材料、超晶格半导体、MBE、CVO等 2. 量子霍尔效应:电势差按量子变化而非连续变化 3. 降维效应:三维→二维→一维→零维(量子点) 4. 电荷密度波、自旋密度波 5. 无序:等效介质+微扰 6. 混合原子价 7. 3He的超流相(低温下流动无阻力) 8. 重整化群的方法(处理多体问题、相变、临界点等)
23. 生物物理(蛋白质、DNA等) 24. 软凝聚态物质(生物体、胶体、各种细小颗粒、沙堆
模型等) 25. 纳米材料 26. Bose-Einstein凝聚
……
《固体物理学》参考书目
1.《固体物理学》 —— 黄昆 韩汝琪,高等教育出版社
2. 《Introduction to Solid State Physics》Seventh Edition —— CHARLES KITTEKL, John Wiley
—— 费米发展了统计理论,为以后研究晶体中电子运动的 过程指出了方向
—— 20世纪三十年代,建立了固体能带论和晶格动力学
—— 固体能带论说明了导体与绝缘体的区别,并断定有 一类固体,其导电性质介于两者之间______半导体
—— 20世纪四十年代末,以诸、硅为代表的半导体单晶的 出现并制成了晶体三极管______ 产生了半导体物理
程序)(急冷方式获得)
16. 细小体系、团簇、C60、介观物理 17. 有机导体、高分子材料(具有掺杂导电性) 18. 非线性、非平衡、孤子、突变、湍流 19. 量子计算机,由量子态控制(传统计算机由0、1控制) 20. 超硬材料,如导电性极强的金刚石半导体,性能稳定、

固体物理学课件ppt

固体物理学课件ppt

凝聚态物理学:是从微观角度出发,研究由大量粒子 (原子、分子、离子、电子)组成的凝聚态的结构、 动力学过程及其与宏观物理性质之间的联系的一门学 科。
固体: 晶体、非晶体、准晶体
凝聚态物理研 究对象:
液体:
介于液态和固态之间的凝聚相:液氦、液晶、 熔盐、液态金属、电解液
稠密气体
绪论
一、固体物理学的研究对象
主要参考书
黄昆,韩汝琦.《固体物理》,高教出版社. Charles Kittel. Introduction to solid state
physics. (中文版第8版) 方俊鑫,陆栋. 《固体物理学》(上), 上海科
学技术出版社. 阎守胜.《固体物理基础》, 北京大学出版社.
凝聚态:由大量粒子组成,并且粒子间有 很强相互作用的系统。
研究固体结构及其组成粒子(原子、 离子、电子)之间的相互作用与运动 规律以阐明其性能与用途的学科。
固体的分类 ➢ 晶体:长程有序,呈对称性形状,固定熔点,各向
异性,平移和旋转对称性(2,3,4,6)。例如:
锗、硅 单晶
➢ 非晶体:短程有序性,无规则形状,无固定熔点。
例如:玻璃 橡胶
➢ 准晶体: 没有平移对称性,有旋转对称性(5次或 更高)
在晶格中取一个格点为顶点,以三个不共面的方向上的周 期为边长形成的平行六面体作为重复单元,这个平行六面体沿
三个不同的方向进行周期性平移,就可以充满整个晶格,形成 晶体,这个平行六面体即为原胞,代表原胞三个边的矢量称为
原胞的基本平移矢量,简称基矢。
a2 0 a1
固体物理学原胞(初基原胞)
1.原胞的分类 结晶学原胞(晶体学原胞,晶胞,单胞)
2. 布拉伐格子(空间点阵)(布拉菲格子) ➢布拉伐格子:一种数学上的抽象,是点在空间中周期性的规则排列。 ➢格点:空间点阵中周期排列的几何点。所有点在化学、物理和几
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定一个格子的布拉伐格子、或者确定一个点 阵的布拉伐点阵,其一般步骤是:首先判断这个点 阵中的阵点(或原子)是否完全相同,包括化学性 质和几何环境,找出点阵的基元和对应的布拉伐点 阵;然后,判断该点阵的类型,找出能够反映该点 阵对称性的最小的周期性结构单元,确定是14 种布 拉伐格子中的哪一种。
2
例如,对于边心立方,即除了立方体的上下底面之 外,其余4 个面都有面心阵点的立方体点阵,确定 该点阵的布拉伐格子时,首先分析得到该点阵的阵 点不是完全相同的,相邻两个面心阵点的几何环境 不同,并且面心阵点与立方体顶角上的阵点也不 同,边心立方体点阵中存在3种不同的阵点,即边心 立方体的基元由3个阵点组成,由此可得到边心立方 的布拉伐格子是简立方。
又例如,对于底心立方点阵,各阵点是完全相同 的,但是14种布拉伐格子中没有底心立方;由对称 性判断可知底心立方不属于立方晶系,而应属于四 角晶系,它是体积2倍于单胞的简单四角点阵,或者 说,底心立方点阵就是简单四角点阵,只是单胞选 取不正确、大了1倍,所以,底心立方的布拉伐格子 是简单四角。
3. 230个空间群(Space group)
七大晶系: (1)三斜晶系 Triclinic system (2)单斜晶系 Monoclinic system (3)正交晶系 Orthorhombic system (4)正方晶系 Tetragonal system (5)立方晶系 Cubic system (6)三角晶系 Trigonal system (7)六角晶系 Hexagonal system
两个对称元素的结合就会产生新的对称元素, 在七个晶系中把特征对称元素与基本对称元素进行 组合,就会产生32种不同的对称元素组合,这就是 32个点群。
晶胞参数的特征是各个晶系的宏观表现,是区 分七个不同晶系的必要条件但不是充分的条件, 只有特征对称元素是区分晶系的关键所在。
1
7大晶系晶格的关系----从立方晶系推演出其他晶系
七大晶系的特征,如P35表 1-1
七个晶系及其特征对称元素
晶系 特征对称元素 立方 4个按立方体的对角线取向的三重轴 六方 六重轴(平行于C轴)或六重反轴 四方 四重轴(平行于C轴)或四重反轴 三方 三重轴(平行互相垂直的对称面或三个互相垂直的二重轴 一个二重轴或对称面 无或仅有一个对称中心
晶体的宏观对称性是晶体在旋转、反演等对称操 作下保持不变的性质。晶体的宏观对称性讨论的是晶 体外部结晶多面体的对称性;晶体的宏观对称性不仅 表现在几何外形上,而且反映在晶体的宏观物理性质 中。由于晶体在宏观上占有一定空间,不可能有平移 对称操作,所以宏观的晶体对称群只能由点对称操作 组成;晶体的宏观对称性是在晶体原子的周期性排列 基础上产生的,同时晶体原子的周期性排列又使晶体 的宏观对称性受到严格的限制,使宏观的晶体对称群 只有32种,称为32种点群,决定了晶体的32种宏观对 称类型。
小结:
3
2. 14个布拉伐格子
有时为了获得较高的对称性,把原有晶胞 扩大,使成为带心的晶胞,由此在七个晶系中 可以得到14种不同的布拉伐格子,不带心的晶 胞称为简单晶胞(P),带心的称为复晶胞 (I,F,C)。
简单晶胞和复晶胞
简单晶胞
在选取复杂点阵
时,除了平行六面
体的顶点外,只能
(c)
在体心或面心有附
加阵点,否则将违
7 个晶系包含有14 种布拉伐格子。
1. 七大晶系
晶胞的三个基矢a b c沿晶体的对称轴或对称面 的法向,在一般情况下,它们构成斜坐标系。它们 间的夹角用 α 、β、 γ表示。即:
∠(a , b)= γ, ∠ (b, c )= α, ∠( a,c )= β
根据晶胞形状,也就是六个晶胞参数a、b、c , α、β、γ,以及晶胞中所容纳的特征对称元素,可以 把不同的晶胞分成七个类型,即七个晶系。
背空间点阵的周期
性,所以只能出现
这四类晶胞。
14 种布拉伐原胞
图 14种布拉维格子1--7 (1)简单三斜;(2)简单单斜;(3)底心单斜;(4)简单正交;(5) 底心正交;(6)体心正交;(7)面心正交
图 14种布拉维格子8--14
(8)简单四方;(9)体心四方;(10)六方;(11)简单三 方;(12)简单立方;(13)体心立方;(14)面心立方
§1-7 晶格的对称性
自然界中晶体多种多样、千变万化。晶体的宏 观对称性可以用32种点群来描述,由32 种点群描 述的晶体对称性,可以将晶体分为七大类,称为七 大晶系。每一个晶系具有一种类型的单胞基矢坐标 系,七大晶系对应着七种单胞基矢坐标系。
对称性相同的晶体可以具有不同的布拉伐格 子,即一个晶系中可以具有不止一种布拉伐格子,
相关文档
最新文档