同济大学结构力学-力法

合集下载

结构力学教案--力法3

结构力学教案--力法3

15.3 力法的计算步骤和示例(二)一次超静定钢架【例】作图 (a)所示连续梁的内力图。

EI 为常数。

【解】(1) 选取基本结构 此结构为一次超静定梁。

将B 点截面用铰来代替,以相应的多余未知力X1代替原约束的作用,其基本结构如图 (b)所示。

(2) 建立力法方程 位移条件:铰B 两侧截面的相对转角应等于原结构B 点两侧截面的相对转角。

由于原结构的实际变形是处处连续的,显然同一截面两侧不可能有相对转动或移动,故位移条件为B 点两侧截面相对转角等于零。

由位移条件建立力法方程如下δ11X1+Δ1P=0(3) 计算系数和自由项 分别作基本结构的荷载弯矩图MP 图和单位弯矩图M1图,如图19.13(c)、(d)所示。

利用图乘法求得系数和自由项分别为(4) 求多余未知力 将以上系数和自由项代入力法方程,得(5) 作内力图 ① 根据叠加原理作弯矩图,如图 (e)所示。

② 根据弯矩图和荷载作剪力图,如图 (f)所示11212(11)233ll EI EIδ=⨯⨯⨯=21(32)48P P ql l EI+∆=-2112(32)0348(32)32l P ql l X EI EIP ql l X +-=+=15.3 力法的计算步骤和示例(三) 铰接排架【例】计算图 (a)所示排架柱的内力,并作出弯矩图。

【解】(1) 选取基本结构 此排架是一次超静定结构,切断横梁代之以多余未知力X1得到基本结构如图 (b)所示。

(2) 建立力法方程 δ11X1+Δ1P=0(3) 计算系数和自由项 分别作基本结构的荷载弯矩图MP 图和单位弯矩图M1图如图 (c)、(d)所示。

利用图乘法计算系数和自由项分别如下(4) 计算多余未知力 将系数和自由项代入力法方程,得解得X1=-5kN(5) 作弯矩图 按公式M=M1X1+MP 即可作出排架最后弯矩图如图 (e)所示。

13521760033X EI EI+=15.6 超静定结构的位移计算 一次超静定钢架用力法计算超静定结构,是根据基本结构在荷载作用和全部多余未知力共同作用下内力和位移应与原结构完全一致这个条件来进行的。

同济大学结构力学

同济大学结构力学
目前,加拿大多伦多电视塔高554米,但这一高度算上了天线。台北101大楼高508米,但屋顶高度仅 480米。此外,东京的胜美达通讯大楼即将动工,设计高度610米。迪拜塔2008年9月1日已达688米, 设计高度700米,传言812米,科威特打算建造1001米的标志性建筑。
金茂大厦421m
西尔斯大厦 442m
同济大学结构力学
学习方法 1、采用课堂讲课和自学教材相结合的方法,以讲课为主,有部分内容给大家自学,目的是培养大家自学的能 力。在自学过程中,不能理解的内容,大家可以相互讨论,当然也可将看不懂的问题和我一起探讨。 2、希望同学们应以讲课内容为主,作简单笔记,在学习理论、概念的同时,一定要作相当数量的习题,通过 手算的方法和技巧来掌握力学的概念以及分析和计算的方法。
几何特征:其横截面上两个方向的尺寸远小于长度。 典型形式:梁、刚架、拱和珩架。 (b)板壳结构——也称薄壁结构。 几何特征:其厚度远小于其余两个方向上的尺度。 典型形式:房屋建筑中的楼板、壳体屋盖及飞机和轮船的外 壳等。 (c)实体结构——也称三维连续体结构。 几何特征:结构的长、宽、高三个方向的尺寸大小相仿。 典型形式:重力式挡土墙、水工建筑中的重力坝等。
人类建筑师总想将摩天大楼越盖越高,美国有527米高的芝加哥西尔斯大厦,加拿大有553米高的多 伦多CN电视塔,阿联酋迪拜市正在建造一座高达807米的世界最高楼。然而这些摩天大楼和日本大成 建筑公司蓝图中的“X-Seed 4000”摩天巨塔相比,却全都是“小巫见大巫”。
美国“高层建筑及城市居住委员会”设定了4个衡量标准:最高一层地板的高度、最高一层屋顶的高度、 大厦尖顶的高度及大厦最高点的高度。
吉隆坡的双子塔452m
台北市的101大楼508m
芝加哥“螺旋之尖”摩天大楼的建设方案获得了政府批 准,“螺旋之尖”摩天大楼全高610米,建成后将是全 美最高的大楼,它也将是世界各大城市里高楼建筑的一 个典范。

结构力学- 力法

结构力学- 力法

0
X1 4X2
0
解方程得:
X1
1 15
ql 2
(
)
X2
1 60
ql2 (
)
3. 作内力图 1) 根据下式求各截面M值,然后画M图。
M M1X1 M2X2 MP
23
ql2 15
A
C
B
ql2 60
11ql 2 120
D M图
2) 根据M图求各杆剪力并画FQ图。
AB杆: MB 0
FQAB
26
2. 方程求解
q
B
C
ql 2 8
A
MP图
1P
1 E1I1
2 3
l
1 ql 2 8
1 2
ql3 ql3 24E1I1 24E2I2k
2P 0
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M1图
B
E1I1 l C
E2I2 l
X2=1
A
M 2图
1
27
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M1图
B
E1I1 l C
E2I2 l
X2=1
A
1 M2图
11
1 E1I1
1 2
1 l
2 3
1
1 E2 I 2
1 2
1
l
2 3
1
l l l E1I1 E2I2 l k 1 3E1I1 3E2I2 3 E1I1E2I2 3E2I 2 k
( E1I1 k) E2 I2
12
21
1 E2 I2
△iP—荷载产生的沿Xi方向的位移

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件
根据对称结构的受力特征,在对称或反对称荷载作用下,可以取半结构 计算,另外半结构的内力可通过对称或反对称镜像得到。
半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11

144 EI
,
1 p

1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向

13X 3 23X 3

1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0

结构力学力法ppt课件

结构力学力法ppt课件

EI E2I
2 E2I
2 M E 2 M d I x E 1 2 6 I 6 0 1 2 9 3 2 6 0 1 2 9 3 2 E 28 I80
力法
(4) 求多余未知力
18
将系数和自在项代入力法方程,并消去 EI 2 ,得
28X17X2 600 7X132X2 1600
假设X1知,根本体系就是一个静定构造。
怎样 求X1 呢?
力法
二、力法的根本方程
FP
位移条件:根本构造转 化为原构造的条件是:根 本构造在原有荷载和多余
A 原构造
未知力共同作用下,在去
掉多余约束处的位移应与
原构造中相应的位移相等。
A

1 0
根本体系

FP 当ΔB=Δ1=0
B
FB
B
X1 =><>=> FB
Δ1P
δ11——根本构造在X1=1单独作用下,B点沿X1方向 的位移。
1 11 10 力法根本方程
Δ11=δ11X1
δ1X 111P0
δ11和Δ1P都是静定的根本构造在知力作用下的位移,均可用“单位 荷载法〞求得。
力法
用图乘法计算δ11和Δ1P
பைடு நூலகம்δ11
X1=1
Fl
EI
2

B
Δ1P
l
X1=1
M1
MP图
5Fl3 0 48EI
X1
5 16
F
最后的弯矩图可按叠加原理由下式求得: MM1X1M
力法
Fl
EI
2
l
X1=1
M1
MP图
MA
l
5 16

结构力学——力法

结构力学——力法

几点注意:
① 一个无铰闭合框有三个多余约束,其超静定次数等于三。 ② 结构的超静定次数是确定不变的,但去掉多余约束的方式 是多种多样的。 ③ 在确定超静定次数时,要将内外多余约束全部去掉。
④ 在支座解除一个约束,用一个相应的约束反力来代替,在
结构内部解除约束,用作用力和反作用力一对力来代替。 ⑤ 只能去掉多余约束,不能去掉必要的约束,不能将原结构 变成瞬变体系或可变体系。
A
D
A
D
A
D

X1

二、关于基本方程的建立
先讨论两次超静定结构。
q C
FP A
12 22
q
B
C
FP A
B
X1
X2 FP
C
11 X1 B 21
A
基本体系之一
q C FP A B
1P 2P
q C X1 B X2
FP
C A
B X2
FP A
变形条件
Δ1 0 Δ2 0
基本体系之二
二、关于基本方程的建立
q
A l B l C A B
q
X1 X1
q
C
a)一次超静定结构 解:(1)确定基本未知量数目
b)基本体系
此连续梁外部具有一个多余约束,即n=1 (2)选择力法基本体系 (3)建立力法基本方程
Δ d11 X 1 Δ1P 0
(4)求系数d11和自由项1P 在基本结构(静定的简支梁)上分别作 M 1 图和MP图
q
EI
ql 2 8
9 q l2 128
q
EI
ql 2 2
比较可知,采取超静定结构降低了梁的最大 弯矩,提高了梁的强度。

第六章-力法(一) ,同济大学课件,朱慈勉版教材

第六章-力法(一) ,同济大学课件,朱慈勉版教材

§ 6-1 超静定结构的概念
超静定结构的求解方法
总体思想:同时考虑“变形、本构、平衡”。
平衡方程——力(或应力)的表达式 基本方程 本构(物理)方程——力与位移(或应力与应变)关系 几何方程——位移(或应变)的表达式
基本方程中的未知量既有力(或应力)也有位移(或应变),选择不
同类型的物理量作为基本未知量对应产生了三种不同的求解方法。 以力作为基本未知量,在自动满足平衡条件的基础上,将本构写成用 力表示位移的形式,代入几何方程求解,这时最终方程是以力的形式 表示的几何方程,这种分析方法称为力法(force method)。 以位移作为基本未知量,在自动满足几何方程的基础上,将本构写成 用位移表示力的形式,代入平衡方程,当然这时最终方程是用位移表 示的平衡方程,这种分析方法称为位移法(displacement method)。 如果一个问题中既有力的未知量,也有位移的未知量,力的部分考虑 位移约束和变形协调,位移的部分考虑力的平衡,这样一种分析方案 称为混合法(mixture method)。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§ 6-3 超静定次数和力法基本结构
注意的问题
超静定结构解除多余约束的方法有多种,对应的静定结构有多种形式,
但作为力法基本结构的静定结构必须几何不变。 X1 X2
X3
原结构 3次超静定
§ 6-3 超静定次数和力法基本结构
超静定次数的判别
切断一个单刚结点(相当于去掉两个线位移约束和一个角位移约束)
X1
X3
切断一个单刚
原结构
X2
基本结构
数学方法:计算结构体系的自由度,如果自由度小于零,说明体系是

结构力学——力法

结构力学——力法
X1 = 9ql / 20, X 2 = 3ql / 40
X1 X2
ql 2 / 40 M
∆1 = 0 ∆ 2 = 0 δ11 ⋅ X1 + δ12 ⋅ X2 + ∆1P = 0 δ21 ⋅ X1 +δ22 ⋅ X2 + ∆2P = 0
q
X1 = −3ql / 20, X 2 = −ql 2 / 40
将未知问题转化为 已知问题, 已知问题,通过消除已 知问题和原问题的差别, 知问题和原问题的差别, 使未知问题得以解决。 使未知问题得以解决。 这是科学研究的 基本方法之一。 基本方法之一。
二.力法的基本体系与基本未知量 力法的基本体系与基本未知量 超静定次数: 超静定次数: 多余约束个数.
若一个结构有N个多余约束,则称其为N次超静定结构. . 几次超静定结构? 几次超静定结构
X
= 3 ql / 8 ( ↑ )
⋅ X
+ M
P
ql
2
/ 2
l
MP
M1
力法步骤: 力法步骤: 1.确定基本体系 4.求出系数和自由项 确定基本体系 求出系数和自由项 2.写出位移条件 力法方程 写出位移条件,力法方程 5.解力法方程 写出位移条件 解力法方程 3.作单位弯矩图 荷载弯矩图 6.叠加法作弯矩图 作单位弯矩图,荷载弯矩图 作单位弯矩图 荷载弯矩图; 叠加法作弯矩图 练习 P EI l EI l 作弯矩图. 作弯矩图
M1
3 Pl 8 5 Pl 8
=0 δ 11 = 4l / 3EI ∆1P = − Pl 3 / 2 EI
X 1 = 3 P / 8(↑)
M = M1 ⋅ X 1 + M P
P
MP

结构力学-第五章-力法2

结构力学-第五章-力法2

§5-3 荷载作用下超静定结构的内力计算
D X 1 =1 F E G H
X2=1 F EI1 EI1 H EI 2 EI2 B C G
D E
F
G H
15 kN
EI3
8 A B 8 C
A 11.2
11.2
A
B
C
120 kN m

M 1 ( kN m)
M 2 ( kN(e) m)
M P ( kN m)
M1
B
4
A
M2
B
4
4
60 kN
D C
E
240
M p (kN m)
A
B
1 1 2 4800 Δ2 P 5 240 4 = EI 2 3 3EI
Δ1P 1 5 5400 240 ( 2 4 1) = EI 6 3EI
§5-3 荷载作用下超静定结构的内力计算
4、求多余未知力 将以上所得各位移系数和自由项代入力法典型方程即有
2l l ql 3 X1 X2 0 3EI 6 EI 24 EI l 2l X1 X2 0 思考:荷载作用下,超静定结构的 6 EI 3EI 反力与梁的刚度有关吗? 解得:
1 2 X 1 ql 15
X2
1 2 ql 60
得两次超静定的力法基本方程
b 基本体系
X1
A
X2
11 X 1 12 X 2 Δ1p 0 21 X 1 22 X 2 Δ2 p 0
ij —— 位移系数,为基本结构在单位力
Xj=1单独作用下沿Xi方向产生的位移;
§5-2 力法的基本概念
力法的典型方程

同济大学 朱慈勉版 结构力学 课后答案(下)

同济大学 朱慈勉版 结构力学 课后答案(下)

第六章 习 题6-1 试确定图示结构的超静定次数。

(a)(b)(c)(d)(e)(f)(g) 所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定去掉复铰,可减去2(4-1)=6个约束,沿I-I 截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定刚片I 与大地组成静定结构,刚片II 只需通过一根链杆和一个铰与I 连接即可,故为4次超静定(h)6-2 试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义? 6-3 试用力法计算图示超静定梁,并绘出M 、F Q 图。

(a) 解:上图=l1M p M01111=∆+p X δ其中:EIl l l l l l l EI l l l l EI 8114232332623232333211311=⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=δEIl F l lF l lF EI l pp p p817332322263231-=⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯=∆0817*******=-EIl F X EI l p p F X 211=p M X M M +=11l F p 61l F p 61 2l 3l 3 题目有错误,为可变体系。

+ lF 2 1=1M 图p Q X Q Q +=11p F 21p F 2(b) 解:基本结构为:l1Ml l 2Ml F p 21 p Ml F p 31⎪⎩⎪⎨⎧=∆++=∆++0022221211212111p p X X X X δδδδ p M X M X M M ++=2211p Q X Q X Q Q ++=22116-4 试用力法计算图示结构,并绘其内力图。

(a)l2l 2 l2l l 2Q 图12解:基本结构为:1Mp M01111=∆+p X δ p M X M M +=11(b)解:基本结构为:4a 2a4a4a3m6m 6m810810计算1M,由对称性知,可考虑半结构。

《结构力学》第七章力法

《结构力学》第七章力法
A点的位移
沿X1方向:
沿X2方向:
沿X3方向:
据叠加原理,上述位移条件可写成
原结构
基本结构
△1=
(7—2)
(a)
(b)
11
21、22、23和△2P ;
31、32、33和△3P 。
△2=21X1+22X2+23X3+△2P=0 △3=31X1+32X2+33X3+△3P=0
11X1
+12X2
+13X3
11X1+12X2+△1P=0 21X1+22X2+△2P=0 33X3+△3P=0
则 X3=0 。
这表明:对称的超静定结构,在对称的荷载作用下, 只有对称的多余未知力,反对称的多余未知力必为零。


a
a
P
P


P
P
MP图
(2)对称结构作用反 对称荷载
MP图是反对称的,故
2 .确定超静定次数的方法:
解除多余联系的方式通 常有以下几种:
(1)去掉或切断一根链杆,相当于去掉一个联系。


(2)拆开一个单铰,相当 于去掉两个联系。
用力法解超静定结构时,首先必须确定多余联系 或多余未知力的数目。




多余联系或多余未知力的个数。
多余未知力:
多余联系中产生的力称为多余未 知力(也称赘余力)。
此超静定结构有一个多余联 系,既有一个多余未知力。
此超静定结构有二个多余联 系,既有二个多余未知力。
返 回
*
3. 超静定结构的类型
(1)超静定梁; (2)超静定桁架; (3)超静定拱;

结构力学(第四章)-力法-2

结构力学(第四章)-力法-2

X1=1
M2
X2=1
P M3 X3=1
MP
P X1 X1=1
M2
X2
X3
M1
13 31 0
2 P 3 P 0
X2=1 P
X3=1
M3 MP
例2. 力法解图示结构,作M图. 解: 11 X 1 12 X 2 13 X 3 1 P 0 21 X 1 22 X 2 23 X 3 2 P 0 X X X 0 31 1 32 2 33 3 3P
X3
X 1 pl 2 / 8 X 2 Pl 2 / 8
11 22 l / 3EI 12 21 l / 6 EI 两端固支梁在竖向 1P 2 P Pl 2 / 16EI
荷载作用下没有水 平反力.
M M1 X1 M2 X 2 M P
l/2
P
MP
X1=1
Pl / 4
3 Pl / 8
M M1 X1 M P
M
P EI l/2 l/2 P
3 Pl / 32
解:
1 0
EI l X1
11 X1 1P 0
11 l 3 / 6 EI
1P 1 1 Pl 2 l ( l 2 EI 2 4 3 2 1 Pl l 11Pl 3 l ) 2 4 4 96EI
1 0
P
11 X1 1P 0
)
超静定结构位 移时,单位力可 加在任意力法 基本结构上.
1
ql 2 20
X1
M
Mi
X2
ql2 / 40
1 1 ql 2 2 A ( l 2 EI 2 20 3 2 ql 2 1 1 ql 3 l ) ( 3 8 2 80 EI

结构力学-第五章-力法4

结构力学-第五章-力法4

§5-7 最后内力图的校核
例: 试校核图示刚架的弯矩图其是否有误。
M C B
2M /5 C 3M /5 M /5
A
l
B
M
1
3M /5
B X1 = 1
EI= 常数
A l/ 2
M
2M /5
A
M1 图
解:(1)平衡条件校核。 取刚结点C 为隔离体,满足平衡条件。 (2)校核位移条件。 检验C 结点两个端面间的相对转角位移 Δ C 是否为零, 任取一基本结构作图M 1 ,令 M 1 与M 相图乘得: 2m m 1 1 l 3m 2 1 ml ml 5 5 Δ C [ 1 l 1] [ ]0 EI 2 2 5 3 2 EI 10 10
小 结


力法是求解超静定结构最基本的方法。力法的基本原 理是将原超静定结构中的多余约束解除,代之以相应的未 知约束反力。原结构就变成了在荷载及多余未知力作用下 的静定结构。这个静定结构称为原结构的基本体系 , 多余 未知力称为原结构的基本未知数。根据基本体系中多余未 知力作用点的位移应与原结构一致的条件,即多余约束处 的位移谐调条件,建立位移协调方程。这就是力法典型方 程。方程中的基本未知数是体系的多余未知力。这种以未 知力为基本未知数的求解超静定结构的方法就称为力法。 由于基本体系满足位移谐调条件 , 因此基本体系的内力 与变形便与原超静定结构完全一致。利用位移约束条件解 出多余未知力是力法的关键 , 求出多余未知力后便将超静 定问题转化为静定问题了。以后的计算便与静定结构的求 解完全一样。
§5-7 最后内力图的校核
结论:亦满足给定位移条件,原弯矩图是正确的。
X1 = 1
C B
A
也可取图悬臂刚架作基本结构,计算B点水平位 移△xB 是否为零。

《结构力学(第5版)》第7章 力法

《结构力学(第5版)》第7章  力法

§7-3 力法的基本概念
δ11—表示X1=1时,B点沿X1方向的位移,Δ11= δ11X1。
11 + 1P=0 可写为 11X1 Δ1P 0
力法基本方程
绘出基本结构在X1=1、荷载q作用下 的弯矩图,如图a、b。
11
1 EI
l2 2
2l 3
l3 3EI
Δ1P
1 EI
(1 3
l2 2
l)
ql 4 8EI
各内力图如图c、d。
基本体系
§7-5 力法的计算步骤和示例
计算系数和自由项。
11
5l 3 27 EI
Δ1P
7ql 4 216 EI
解得
X1
7 40
ql
叠加法作弯矩图 M M1 X1 M P
弯矩图如图e。
§7-6 对称性的利用
1、选取对称的基本结构
对称的意义:(1)结构的几何形状和支承情况对称 (2)各杆的刚度(EI、EA等)也对称
基本体系
典型方程为
11X1 12 X 2 13 X 3 Δ1P 0 21X1 22 X 2 23 X 3 Δ2P 0 31X1 32 X 2 33 X 3 Δ3P 0
各弯矩图如图c、d、e、f 。
因 M 3 0,FS3 0,FN1 FN2 FNP 0
故 13 31 0, 23 32 0,Δ3P 0
6次超静定
图a所示结构,在拆开单铰、切断链杆、切开刚结处后,得到图b所示静定结构 同一超静定结构,可以用不同方式去掉多余联系,如图c、d所示静定结构 对于有较多框格的结构,一个封闭无铰的框格,其超静定次数等于3。
21
16
9




《结构力学》第5章:力法

《结构力学》第5章:力法

03
对边界条件敏感
力法对边界条件的处理较为敏感, 边界条件的微小变化可能导致计 算结果的显著不同。
适用范围讨论
适用于线弹性结构
01
力法适用于线弹性结构,即结构在荷载作用下发生的
变形与荷载成正比,且卸载后能够完全恢复。
适用于静定和超静定结构
02 力法既适用于静定结构,也适用于超静定结构,但超
静定结构需要引入多余未知力和变形协调条件。
在传动系统的力学分析中,采用力法计算各部件的受力情况,
确保传动系统的正常运转。
案例分析与启示
力法应用广泛性
力法计算精确性
通过以上案例可以看出,力法在桥梁、建 筑和机械工程等领域具有广泛的应用价值 。
力法作为一种精确的计算方法,在解决超 静定问题方面具有显著优势。
力法在工程实践中的局限性
对未来研究的启示
《结构力学》第 力法典型方程及应用 • 力法计算过程与实例分析 • 力法优缺点及适用范围 • 力法在工程实践中应用 • 力法学习建议与拓展资源
01 力法基本概念与原理
力法定义及作用
力法是一种求解超静定结构的方法, 通过引入多余未知力,将超静定问题 转化为静定问题进行求解。
桁架结构应用
桁架结构由杆件组成,通过力法可以求解桁架结构中的多余未知力,进而分析 桁架的稳定性和承载能力。
组合结构应用
组合结构由不同材料或不同形式的构件组成,通过力法可以分析组合结构的内 力和变形,为结构设计提供优化建议。
复杂结构简化与力法应用
复杂结构简化
对于复杂结构,可以通过合理简化为静定结构或简单超静定结构,进而应用力法求解。
适用于简单和规则结构
03
对于简单和规则结构,力法能够较为方便地求解出结

《结构力学力法》课件

《结构力学力法》课件
解题步骤
力法的解题步骤包括构建基本体系、选择基本未知量、建 立线性方程组和求解线性方程组等。
力法的应用范围
静定结构和超静定结构的分析
01
力法可以用于分析静定结构和超静定结构的内力和位移,特别
是对于超静定结构的分析具有重要意义。
复杂结构的分析
02
对于复杂结构,如组合结构、多跨连续结构和空间结构等,力
法同样适用,能够提供有效的解决方案。
边界条件和支座反力的处理
03
力法能够方便地处理结构的边界条件和支座反力,使得问题得
到完整的解决。
力法的解题步骤
构建基本体系
首先需要将原结构拆分成若干个基本体系,以便 于应用力法公式。
建立线性方程组
根据力的平衡和变形协调条件,建立线性方程组 ,并求解该方程组以得到位移和内力。
《结构力学力法》ppt课件
目录
• 引言 • 力法的基本原理 • 力法的实际应用 • 力法的扩展知识 • 总结与展望
01
引言
结构力学的重要性
1
结构力学是土木工程学科中的重要分支,是研究 结构在各种力和力矩作用下的响应和行为的学科 。
2
结构力学对于工程结构的稳定性、安全性和经济 性具有重要意义,是工程设计和施工的基础。
缺点总结
力法需要预先设定结构的初始应力状态,有时难以确定。 力法对于非线性问题的处理能力有限,对于高度非线性结构可能需要
采用其他方法。 力法在处理复杂边界条件和连接时可能存在困难,需要特别注意。
力法在未来的应用前景
随着科技的不断进步和应 用需求的不断提高,力法 在未来的应用前景广阔。
随着新材料和新结构的出 现,力法将面临更多的挑 战和机遇。
力法的计算机实现

同济大学结构力学力法对称性

同济大学结构力学力法对称性

P/2 P/2
EA EA
+
Pa (× ) 28 P/2
EI=C
a
P
EA
P/2 P/2
P/2 M图 X1
0
EA 0
1 等 代 结 P/2 构
P/2
27
a
a a X1=1 P/2 P/2 基 本 体 系 X1
1、取基本结构; 2、力法方程:
δ 11 X 1+ 1P = 0
3、绘 M 1 , M P 求系数、 自由项 7a 3 5Pa 3 δ 11 = 1 P = 3EI 4 EI 4、解方程: X 1 = 1P = 15P δ 11 28
等代结构
6m
转到等代结构的计算
点击左键,一步步播放。结束播放请点“后退”。
q=23kN/m
C EI A
EI EI B 6m
D 6m q=23kN/m
X1
X2
↑↑↑↑↑↑↑
X1
X1
X1 =1
↑↑↑↑↑↑↑
用力法解 等待结构
X2 M1 基本体系 6 6
δ11X1+ δ12X2+1P=0 δ21X1+ δ22X2 +2P=0
C P 2EI P P 2EI EI C P EI
QC
QC
P P EI EI EIP源自等代结构 由于荷载是反对称的,故C截面只有剪力QC 当不考虑轴向变形时,QC对原结构的内力和变 形都无影响。可将其略去,取半边计算,然后 再利用对称关系作出另半边结构的内力图。
点击左键,一步步播放。结束播放请点“后退”。 重新播放请点 重新播放
1 P =
M1
3 3 3
M2
3
δ 11 X 1 + 1P = 0 δ 22 X 2 + 2 P = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l? 2
pl ) ? ( 2l 23
?
1? 3
l)? 2
?
5 pl 3 48 EI
1 1 l pl
pl 2
? 2P ?
EI
(? ? 22
)? 1? 2
8EI
? 3P ? 0
? 33 ? ? 13 ? ? 31 ? ? 23 ? ? 32 ? 0
4)将以上系数和自由项代入典型方程中
? l3
l2
5 pl 2
C
力法基本结构
力法方程 FyB ? 11 ? ? 1 p ? 0
?
A
Fp
B
? 1p
?
A
FyB ? 1B
? 11
C
力法基本未知量
FyB
?
?
? 1p
? 11
力法是以多余约束力为基本变量 C ? FyB
A
Fp
B
?
Fp
MB
?
MB ?1
? 11
?
Fp
? 1p
C
M ?B 11 ? ? 1 p ? 0
?M B
MB
第六章 力法
? §6-1 力法的基本概念 ? §6-2 超静定次数与力法基本结构 ? §6-3 力法原理与力法方程 ? §6-4 力法解超静定结构 ? §6-5 对称性的利用 ? §6-6 超静定结构的位移计算 ? §6-7 超静定结构的内力校核
§6-1 力法的基
本概念
A
Fp
B
C
?
A
Fp
FyB B
?
l3 24 EI
? 2p ? 0
7l
l
ql 3
12 EI X1 ? 8EI X 2 ? 24 EI ? 0
l
7l
8EI X1 ? 12 EI X 2 ? 0
M1 1
M2
q
Mp ql2 /8
X2 ? 1
1
?11 X 1 ? ?12 X 2 ? ? 1 p ? 0 ? 21 X 1 ? ? 22 X 2 ? ? 2 p ? 0
l
11
2
?11
?
? EI
? l ? 1? 2
3
基本结构
q X1
X2
D
? 1 ? 1 ? 1.5l ? 1? 2 ? 7l
2EI 2
3 12 EI
? ? 22
X1 ? 1
? 12
?
? 21
?
1 2 EI
?
1 ? 1.5l ? 1? 1 ?
2
3
l 8EI
? 1p
?
1 ? 2 ? l ? 1 ql 2 ? 1 EI 3 8 2
q
? 11 x1 ? ? 1P ? 0
A
(4)求系数与自由项。
? 11
?
1 EI
?1 ??2
?
1?
l
?
2 3
?
1???
?
2
?
2l 3EI
A
1 ? 2 ql 2 1 ?
ql 3
? 1P
?
EI
?? ?
? 3
8
?
l
?
2
? ?
?
2
?
? 12EI
B
C
X1 1X1 基本体系
B X1=1 X1=1
q
C
M
(5)解方程求多余未知力
A
例2 绘制连续梁弯矩图
X1
?
?
14 187
ql 2
X2
?
3 187
ql 2
MC
?
X2
?
3 ql 2 187
MB
?
X1
?
14 ?
3)计算系数和自由项,作出 M 1, M 2, M 3 , M P 。
式中:
? 11
?
1 EI
(1 ? l? l? 2
2 l) ? 3
l3 3EI
1
l
? 22 ? EI (l ? 1? 1) ? EI
? 12
?
? 21
?
?
1 EI
(l ? 2
l ? 1) ?
?
l2 2 EI
? 1P
?
?
1( 1 ? EI 2
?
?
? 1p
? 11
§6-2 超静定次数与力
法基本结构
X1
X2
X3
X4
4次超静定
X1 X1
2次超
X2
静定
X1
X2
X1 X2
X1 X3 X2
X4 X6 X5
X2X3 X1
X2
X3
X1
X2
X3
X1
X2 X3 X1
?3
?2
?3
?1
6.3力法原理与力法方程
1.力法原理
A
先取一个基本体系,然后让基 本体系在受力方面和变形方面 与EI
x 2 ? 48 EI
?0
? l2
l
pl 2
?? ?
2 EI
x 1 ? EI
x 2 ? 8 EI
?0
?
? ?
0
?
x3
?
0
?
0
5)解方程求多余未知力
? ??
x1
?
1 2
p
?
? ??
x
2
?
1 8
pl
例2 绘制连续梁弯矩图 (课本6-3)
q
A
EI
l
B
2 EI
1.5l
C
D
EI
4、解典型方程,求出各多余未知力; 5、多余未知力确定后,即可按照静定结构的方法绘出原结构的内力图。
二、例
例1:超静定梁
(a) 原结构
(b) 基本体系
解:1)解除多余约束,得到原结构的基本体系,见图(b)。 2)列出力法的典型方程。
?? 11 x 1 ? ? 12 x 2 ? ? 13 x 3 ? ? 1 P ? 0 ? 21 x 1 ? ? 22 x 2 ? ? 23 x 3 ? ? 2 P ? 0 ? 31 x 1 ? ? 32 x 2 ? ? 33 x 3 ? ? 3 P ? 0
q B
M图 P
X1M=1图
M ? M 1x ? M
1
P
q B
M图
3.举例
超静定结构由荷载产
用力法计算图所示两跨连续梁,作M图生。的内力与各杆q 刚度的相
解(2()选1)取确基定本超结静构定,次建数立n基=本1 体系。对的A比绝值对有值lE关无I ,关与。各B 杆EI l刚度 C
(3)建立力法方程。
ql 3
x1
?
?
? 1P
? 11
?
12EI 2l
?
ql 2 8
3EI
A
B
C
ql2 / 8
ql 2 / 8 qql2 / 8
M P
A
EI
B EI
C
M
§6-4 力法解超静定结构
一、计算步骤
1、确定基本未知量的数目; 2、作出基本体系;
即去掉结构的多余约束,得出一个静定的基本结构,并以多余未知力代替相应 的多余约束的作用;
A
2.力法方程
Δ1=δ11X1 + Δ1P=0
力法方程
力法的特点: 基本未知量——多余未知力; 基本体系——静定结构; 基本方程——位移条件
(变形协调条件)。
q
B

RB
q
B
当ΔB=Δ1=0
基本体系
X1
RB

×X1
+
q
δ11
X1 =1
Δ1P
计算系数与自由项
(1)绘制基本结构在荷载和 单位力作用时的弯矩图 (2)图乘计算系数和自由项
ql 2 / 2
A
? 11
?
1 EI
?1 ??2
?
l
?
l
?
2 3
l
? ??
?
l3 3EI
l
? 1P ?
1 EI
? ?? ?
1? 3
ql 2 ? l ? 2
3l 4
? ? ?
?
? ql4 8EI
解方程求多余未知力
绘制内力图
ql 4
x1
?
?
? 1P
? 11
?
8EI l3
?
3ql 8
3EI
ql 2 /8
A
3、建立力法的典型方程,求出系数与自由项;
根据基本体系在多余未知力和原有荷载共同作用下,在多余未知力作用点沿多余 未知力方向的位移与原结构中相应的多余约束处的位移相同的条件,建立力法的 典型方程。为此,需要:①作出基本结构的单位内力图和荷载内力图(或列出内 力的表达式);② 按照求位移的方法计算系数和自由项。
相关文档
最新文档