中职数学第一学期期期末考试试卷及答案

合集下载

人教版中职数学期末试卷及答案

人教版中职数学期末试卷及答案

人教版七年级第一学期期末试卷(04)数学 姓 名-------(满分100分,考试时间100分钟)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内. 1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( )A .32 B .23 C .23- D .32- 3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -<4. 下面说法中错误的是( ).A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×1045. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ()A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6. 如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( )A .a <ab <2ab B .a <2ab <abC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( ) A .5x =15-3(x -1) B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1) 8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2nb图1 图2 从正南方向看 从正西方向看 第7题 第8题10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个 二、填空题:本大题共10小题,每小题3分,共30分. 11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.若2320a a --=,则2526a a +-= .15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果 是________________.18.一个角的余角比它的补角的32还少40°,则这个角为 度. 19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售, 售货员最低可以打___________折出售此商品20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

浙江省中职卓越联盟2023-2024学年高二上学期1月期末数学试卷(含答案)

浙江省中职卓越联盟2023-2024学年高二上学期1月期末数学试卷(含答案)

浙江省中职卓越联盟2023学年第一学期2022级期末考试数学试卷本试卷共三大题.全卷共4页.满分100分,考试时间90分钟。

注意事项:1.所有试题均须在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分.在试卷和草稿纸上作答无效。

2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。

3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。

4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的错涂、多涂或未涂均无分。

1.下列说法:(1)零向量是没有方向的向量;(2)单位向量的方向是任意的; (3)零向量与任意一个向量共线;(4)方向相同的向量叫平行向量 其中,正确说法的个数是( )A .0B .1C .2D .3 2.设x ∈R ,则“2x >22x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知两点(3,5),(2,1)A B −−,则与向量AB 同向的单位向量为( ) A .6161⎛⎝B .6161⎛ ⎝C .6161D .61614.某班有男生23人,女生15人,从中选一名同学为数学课代表,则不同的选法的种数为( ) A .345 B .23 C .15 D .38 5.若()2*P 56n n =∈N ,则5C n =( )A .21B .50C .56D .126 6.cos104cos16sin104sin16︒︒−︒︒的值为( ) A .12 B .12− C .3 D .37.抛物线220y x =的焦点到其准线的距离为( ) A .20 B .10 C .5 D .528.如图所示.在ABC △中、6BD DC =,则AD =( )A .1677AB AC + B .6177AB AC + C .1566AB AC + D .5166AB AC + 9.将(1)(2)(4)(5)x x x x −+−−展开,则3x 的系数等于( ) A .10− B .8− C .8 D .1010.已知中心在坐标原点,离心率为53的双曲线的焦点在x 轴上,则它的渐近线方程为( ) A .43y x =± B .45y x = C .43y x =− D .34y x =±1l .已知tan 2θ=,则cos 2θ=( )A .35− B .817 C .817− D .817−或81712.在ABC △中,已知3223a b c bc =+,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒13.美丽的新疆让不少旅游爱好者神往,某人计划去新疆旅游、在火焰山、喀纳斯村、卧龙满、观鱼台、阿克库勒湖、那仁草原、天山天池、赛里木湖、那拉提、葡萄沟这10个景点中选择4个作为目的地.已知天山天池必选,则不同的选法种数为( )A .210B .120C .84D .36 14.函数π3sin 6y x ⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .ππ2π,2π,22k k k ⎛⎫−+∈ ⎪⎝⎭Z B .(2π,2ππ),k k k +∈Z C .2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z D .π5π2π,2π,66k k k ⎛⎫−+∈ ⎪⎝⎭Z15.若地物线24y x =上的点M 到焦,点F 的距离为10,则M 到y 轴的距离为( ) A .10 B .9 C .8 D .716.二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为( )A .15−B .6−C .6D .1517.双曲线2212y x −=的离心率为( ) A 6 B .32 C .62D 318、已知圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,则p =( ) A .1 B .2 C .6 D .8二、填空题(本大题共6小题,每小题3分,共18分)19.已知向量(4,3),(,1)a b x ==,且a b ∥,则实数x 的值为__________.20.现有甲、乙、丙、丁在内的6名同学在比赛后站成一排合影留念,若甲、乙二人必须相邻,且丙、丁二人不能相邻,则符合要求的排列方法共有__________种.(用数字作答)21.设点12,F F 为椭圆22159x y +=的两个焦点,P 为椭圆上一点,则12PF F △的周长为__________. 22.若4sin 5α=−,且α是第三象限角,则2sin 2cos αα−=_________. 23.已知双曲线过点(2,3),渐近线方程为3y =±,则该双曲线的标准方程为__________.24.已知函数21()sin cos cos 2f x x x x =−+,则()f x 的最小值为__________. 三、解答题(本大题共7小题,共46分)解答时应写出必要的文字说明、证明过程或演算步骤.25.(本题6分)已知nx x ⎛ ⎝二项展开式中,二项式系数之和是64,求:(1)n 的值;(3分) (2)含3x 的项.(3分)26.(本题6分)已知α为第一象限角,且π3sin 25α⎛⎫−= ⎪⎝⎭,求: (1)sin 2cos 2αα−的值;(3分) (2)πtan 4α⎛⎫−⎪⎝⎭的值.(3分) 27(本题6分)设a 为实数,已知双曲线223:1x y C a −=与椭圆22215x y a+=有相同的焦点12,F F .(1)求a 的值;(2分)(2)若点P 在双曲线C 上,且12PF PF ⊥,求12F PF △的面积.(4分) 28(本题6分)已知函数2()2sin cos 12sin f x x x x =+−,求: (1)()f x 的最小正周期;(3分)(2)()f x 的最小值以及取得最小值时x 的集合(3分)29.(本题7分)已知抛物线2:2(0)C y px p =−>过点(1,2)A −. (1)求抛物线的方程,并求其准线方程;(3分)(2)过该抛物线的焦点,作倾斜角为135︒的直线,交抛物线于A ,B 两点,求弦AB 的长度.(4分)30.(本题7分)设椭圆2222:1(0)x y M a b a b+=>>的离心率与双曲线22:1E x y −=的离心率互为倒数,且椭圆的右顶点是抛物线2:8C y x =的焦点. (1)求椭圆M 的方程;(3分)(2)已知点(1,0)N ,若点P 为椭圆M 上任意一点,求||PN 的最值.(4分)31.(本题8分)如图所示,已知村庄B 在村庄A 的东北方向,且村庄A ,B 之间的距离是4(31)千米,村庄C 在村庄A 的西偏北15︒方向,且村庄A ,C 之间的距离是8千米.现要在村庄B 的北偏东30︒方向建立一个农贸市场D ,使得农贸市场D 到村庄C 的距离是到村庄B 3D 到村庄B ,C 的距离之和.浙江省中职卓越联盟2023学年第一学期2022级期末考试数学答案一、单项选择题(本大题共18小题,每小题2分,共36分)1.B 【解析】由零向量的定义及性质知,其方向任意,且与任意向量共线,方向相同或相反的两个非零向量称为平行向量,故(1)(2)(4)错误,(3)正确.故选B . 2.A 【解析】幂函数2y x =,当2x =±222,22,x x x =∴>⇒>∴“2x >22x >”的充分不必要条件.故选A .3.A 【解析】因为点(3,5),(2,1)A B −−,所以(5,6)AB =−,所以与AB 同向的单位向量为||6161AB AB ⎛= ⎝.故选A . 4.D 【解析】由分类加法计数原理可知,共有231538+=种选法.故选D .5.C 【解析】2P (1)56n n n =−=,即2560n n −−=,解得8n =或7n =−(舍),则558C C 56n ==.故选C .6.B 【解析】()1cos104cos16sin104sin16cos 10416cos1202︒︒−︒︒=︒+︒=︒=−.故选B . 7.B 【解析】因为220p =,所以10p =,抛物线220y x =的焦点到其准线的距离为10.故选B . 8.A 【解析】661()777AD AB BD AB AC AB AC AB =+=+−=+.故选A . 9.B 【解析】(1)(2)(4)(5)x x x x −+−−展开式中含3x 的系数为12458−+−−=−.故选B .10.A 【解析】由已知可设双曲线的标准方程为22221(0,0)x y a b a b −=>>.由已知可得53c e a ==,所以53c a =,则2222169b c a a =−=,所以43b a =,所以双曲线的渐近线方程为43b y x x a =±=±.故选A . 11.A 【解析】因为tan 2θ=,所以22222222cos sin 1tan 3cos 2cos sin cos sin 1tan 5θθθθθθθθθ−−=−===−++.故选A . 12.D 【解析】由2223a b c bc =++,变形为2223b c a bc +−=,22232b c a bc +−∴=,3cos A ∴=而A 为三角形内角,150A ∴=︒.故选D .13.C 【解析】因为天山天池必选,所以从另外9个景点中选3个的选法有39C 84=种.故选C .14.C 【解析】由πππ2π2π,262k x k k −≤+≤+∈Z ,得2ππ2π,2π,33x k k k ⎛⎫∈−+∈ ⎪⎝⎭Z ,即函数的单调递增区间为2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z .故选C . 15.B 【解析】由已知得抛物线的焦点(1,0)F ,准线方程1x =−,设点()00,M x y .由题意可知,||10MF =,00||1102pMF x x ∴=+=+=,09x ∴=,即M 到y 轴的距离为9.故选B . 16.D 【解析】因为二项式621x x ⎛⎫− ⎪⎝⎭的展开式通项为66316621C (1)C rr r r r rr T x x x −−+⎛⎫=−=− ⎪⎝⎭,令630r −=,则2r =,所以二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为226(1)C 15−=.故选D .17.D 【解析】由双曲线方程2212y x −=得1,2a b ==21123c b e a a ⎛⎫==+=+= ⎪⎝⎭D .18.C 【解析】圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,32p∴−=,解得6p =±.又0,6p p >∴=.故选C .二、填空题(本大题共6小题,每小题3分,共18分)19.43【解析】因为向量(4,3),(,1)a b x ==,且a b ∥,所以4130x ⨯−=,即43x =.20.144【解析】根据题意,分2步进行分析:①将甲、乙看成一个整体,与甲、乙、丙、丁之外的两人全排列,有2323P P 12=种情况; ②排好后,有4个空位,在其中任选2个,安排丙、丁,有24P 12=种情况. 则有1212144⨯=种排法.21.10【解析】根据题意,12PF F △的周长为226410a c +=+=. 22.35(或填0.6)【解析】因为4sin 5α=−,且a 是第三象限角,所以23cos 1sin 5αα=−−=−,所以2224333sin 2cos 2sin cos cos 25555ααααα⎛⎫⎛⎫⎛⎫−=−=⨯−⨯−−−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.23.2213y x −=【解析】渐近线方程为3,y x =±∴设双曲线的方程为22(0)3y x λλ−=≠,代入点(2,3),1λ∴=,∴双曲线的标准方程为2213y x −=. 24.22−因为2111cos 212π()sin cos cos sin 22222224x f x x x x x x +⎛⎫=−+=−+=− ⎪⎝⎭,所以当πsin 214x ⎛⎫−=− ⎪⎝⎭时,函数()f x 有最小值,最小值为22−. 三、解答题(本大题共7小题,共46分)25.解:1)由二项式定理可知,在nx x ⎛⎝展开式中,264n =, 2分所以6n =. 1分(2)由二项式定理可知,在6x x ⎛− ⎝展开式中,第1r +项为3662166C C (2)rr r r r r r T x xx −−+⎛=⋅⋅=⋅−⋅ ⎝, 令3632r −=,则2r =, 1分 所以6x x ⎛ ⎝展开式中含3x 的项为22336C (2)60x x ⋅−=. 2分26.解:(1)α为第一象限角,且3cos 5α=,24sin 1cos 5αα∴=−=, 1分 ()231sin 2cos 22sin cos 12sin 25ααααα∴−=−−=. 2分 (2)sin 4tan cos 3ααα==, 1分πtan tan πtan 114tan π41tan 71tan tan 4ααααα−−⎛⎫∴−=== ⎪+⎝⎭+. 2分 27.解:(1)根据题意,显然0a >,且双曲线C 的焦点在x 轴上, 故235a a +=−,即220a a +−=,即(2)(1)0a a +−=,解得2a =−或1a =,又因为0a >,所以1a =. 2分(2)由(1)可得双曲线C 的方程为2213y x −=, 如图所示,设其左、右焦点分别为12,F F ,故可得12(2,0),(2,0)F F −.根据双曲线的对称性,不妨设点P 在双曲线C 的左支上,设1PF x =.由双曲线定义可得212PF PF −=,即22PF x =+. 1分 又因为12F PF △为直角三角形,所以2221212PF PF F F +=,即22(2)16x x ++=,即22260,26x x x x +−=+=, 2分 故12F PF △的面积()211(2)2322S x x x x =+=+=. 1分 28.解:(1)2π()2sin cos 12sin sin 2cos 2224f x x x x x x x ⎛⎫=+−=+=+ ⎪⎝⎭, 1分∴函数()f x 的最小正周期2ππ2T ==. 2分 (2)π()22,24f x x A ⎛⎫=+= ⎪⎝⎭min ()2f x ∴=−, 2分此时ππ3π22π,π428x k x k +=−∴=−, ∴()f x 取得最小值时x 的集合为3ππ8x x k k ⎧⎫=−∈⎨⎬⎩⎭Z ,. 1分 29.解:(1)22(0)y px p =−>过点(1,2)A −,24p ∴=,即2p =, 1分 ∴抛物线的方程为24y x =−, 1分准线方程为1x =. 1分(2)由(1)知,抛物线的焦点为(1,0)F −,则直线:(1)AB y x =−+,设点()()1122,,,A x y B x y , 1分 由2(1),4y x y x=−+⎧⎨=−⎩得2610x x ++=, 由韦达定理可知,12126,1x x x x +=−=, 1分212||1AB k x ∴=+−()2121224x x x x =+−2364=−242=8=. 2分30.解:(1)由题意可知,双曲线22:1E x y −=2, 抛物线2:8C y x =的焦点为(2,0), 则椭圆M 的离心率222c e a ===, 1分 由2222,22a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,得2,2,2a c b === 故椭圆M 的方程为22142x y +=. 2分 (2)设点P 的坐标为()00,x y ,则()2200012242x y x +=−≤≤, ()()()222220000011||1122122PN x y x x x =−+=−+−=−+ 2分 因为022x −≤≤,所以当02x =时,||PN 取得最小值,即min ||1PN =;当02x =−时,||PN 取得最大值, 即max ||3PN =. 2分31.解:由题意可得434,8,120,3AB AC BAC CD BD =−=∠=︒=. 在ABC △中,由余弦定理可得2222cos BC AB AC AB AC BAC =+−⋅∠, 则222131)]8284(31)962BC ⎛⎫=−+−⨯⨯⨯−= ⎪⎝⎭, 2分 故46BC =即村庄B ,C 之间的距离为6 1分 在ABC △中,由正弦定理可得sin sin BC ACBAC ABC=∠∠, 则38sin 22sin 246AC BAC ABC BC ⨯∠∠===,从而45ABC ∠=︒, 故村庄C 在村庄B 的正西方向. 2分 因为农贸市场D 在村庄B 的北偏东30︒的方向,所以120CBD ∠=︒.在BCD △中,由余弦定理可得2222cos D BC BD BC BD CBD =+−⋅∠,因为3CD BD =,所以2223(46)46BD BD BD =++,解得46BD =122CD = 2分 故46122BD CD +=即农贸市场D 到村庄B ,C 的距离之和为(46122)+千米. 1分。

中职数学第一学期期期末考试试卷及答案

中职数学第一学期期期末考试试卷及答案

职业技术学院第一学期期末考试试卷A 卷姓名 班级 成绩 一、选择题(每题3分,合计30分)1、设集合M ={1,2,4,8},N ={x |x 是2的倍数},则M ∩N 等于( ) A .{2,4} B .{1,2,4} C .{2,4,8} D .{1,2,8}2、设f (x )=⎩⎪⎨⎪⎧x +3x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .163、若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( ) A .增函数且f(x)>0 B .增函数且f(x)<0 C .减函数且f(x)>0 D .减函数且f(x)<04、f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( ) A .增函数 B .减函数 C .有增有减 D .增减性不确定5、设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N ∩(∁U M )等于( ) A .{1,3} B .{1,5} C .{3,5} D .{4,5}6、sin 600°+tan 240°的值是( )A .-32 B.32C .-12+ 3 D.12+ 37、已知点P ⎝⎛⎭⎪⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π48、已知tan α=34,α∈⎝⎛⎭⎪⎫π,32π,则cos α的值是( )A .±45 B.45 C .-45 D.359、不等式1x <12的解集是( )A .(-∞,2)B .(2,+∞)C .(0,2)D .(-∞,0)∪(2,+∞)10已知a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .c (b -a )>0 C .ab 2>cb 2 D .ac (a -c )<0 二、填空题(每题3分,共计15分)1、若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围为________.2、经过10分钟,分针转了________度.3、若log 2(log x 9)=1,则x =________.4、已知集合A ={x |x ≤2},B ={x |x >a },如果A ∪B =R ,那么a 的取值范围是5、函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为________. 三、判断题(每题2分,共计6分)1、所有个子高的同学能构成一个集合 ( )2、所有的函数都具有奇偶性 ( )3、空集只有一个真子集即它本身 ( ) 四、解答题(共计49分)1、求不等式-6x 2-x +2≤0的解集(6分)2、已知函数f (x )=x +2x -6,(1)点(3,14)在f (x )的图象上吗? (2)当x =4时,求f (x )的值;(3)当f (x )=2时,求x 的值.(12分)3、已知函数⎩⎨⎧--=112x x y 11x x ≥< (12分)(1)求()f x 的定义域。

数学试卷及参考答案(中职)

数学试卷及参考答案(中职)

2019~2020 学年度第一学期《数学》期末考试试卷(A)姓名: 专业班级: 学号:(注意事项:本试卷总共 3 大题,满分 100 分,请考生在答题纸上作答)一、选择题(每题 3 分,共 45 分)下列选项中只有 1 个正确答案,请将正确答案的选项写在答题纸上。

1. A= { 1, 2, 3, 4, 5}, B= {2, 4, 6}求 A∩B= ( )A {2}B {4}C {1,2,3,4,5,6}D {2,4}2. 不等式 x +3>5 的解集为( )A (1, +∞)B (2, +∞)C (3, +∞)D (4, +∞)3.不等式 x 2 ≤0 的解集是( )A ФB RC { x ︱ x≤0}D { x ︱ x =0}4.下列函数中与 Y =3X 表示同意函数的是( )A y=3 ︱ x ︱ By= (3x) 2 C y= 3x 2x D S=3t5.在指数函数 y=ɑx 中,ɑ的取值范围是( A ɑ>1 B ɑ>0 C ɑ>0 且ɑ≠16.在函数 y=-2X+3 图像上的点是( ) ) D 0<ɑ<1A (1, -1)B (1, 1)C (0, -3)D ( -1, 1 )7.若点 (2,3) 在函数 y=ɑx 图像上, 则下列四点中一定在函数 y=log 的图像上的点是 ( )A (3, 2)B (2, 3)C (2, 2)D (3, 3 )8.若log 0.6<0,则ɑ的取值范围是( )A ɑ>0 且ɑ≠1B ɑ>1C 0<ɑ<1D ɑ>09.y= 必过点是( )A (1, 0)B (0, 1)C (0, 0)D (1, 1)11. 时钟从 2 时走到 3 时 30 分,分针旋转了( )A 450B -450C 5400D -540012. 已知ɑ是锐角,则 2ɑ是( )A 第一象限的角C 小于 1800 的正角13. 19π6角是( )A 第一象限的角C 第三象限的角B 第二象限的角D 不小于直角的正角B 第二象限的角D 第四象限的角14.y= 正弦函数的定义域为( )sinA (0, 2 π)B (00, 3600 )C RD Ф15.奇函数关于( )对称A y 轴B x 轴C 原点D 中心二、填空题(每题 2 分,共 20 分)请将正确的答案写在答题纸上。

中职数学 2023-2024学年河南省中等职业学校职教高教联合体高一(上)期末数学试卷

中职数学 2023-2024学年河南省中等职业学校职教高教联合体高一(上)期末数学试卷

2023-2024学年河南省中等职业学校职教高教联合体高一(上)期末数学试卷一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分)A .{-2,-1,0,1,2}B .{0,1,2}C .{-1,0,1,2}D .{0,1}1.(2分)已知集合A ={-1,0,1},B ={x |-3<x <3,x ∈N },则A ∪B =( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2分)“a 2=a ”是“a >0”的( )√A .[0,2]B .(0,2)C .(-∞,0)∪(2,+∞)D .(-∞,0]∪[2,+∞)3.(2分)不等式x 2-2x ≥0的解集为( )A .(-∞,-1)B .(-1,+∞)C .(-∞,0)D .(0,+∞)4.(2分)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x ),则实数x 的取值范围为( )A .(0,1)B .(-1,1)C .(-1,0)D .(-1,1]5.(2分)函数f (x )=1−x 21+x+(x -1)0的定义域为( )√A .第一象限B .第二象限C .第三象限D .第四象限6.(2分)2022°角的终边在( )A .15B .16C .20D .247.(3分)若数列1,a ,b ,10为等差数列,则2a +b 的值为( )8.(2分)直线3x -y +1=0的倾斜角为( )√A .30°B .150°C .60°D .120°A .10B .24C .60D .1209.(2分)本届冬奥会短道速滑2000米混合接力由武大靖、任子威等五名运动员参赛,若武大靖滑最后一棒(第四棒),则不同出赛方案总数为( )A .2B .2C .1D .3210.(2分)如图所示,O 为边长为1的正六边形ABCDEF 的中心,则|OA +OC |=( )→→√√A .223B .-223C .-223或223D .-23或2311.(3分)已知sinα=13,α∈(π2,π),则cos (π-α)的值为( )√√√√A .若a >b ,则ac 2>bc 2B .若a >b >0,则1a >1b C .若a <b <0,则ba>a bD .若a >b ,1a>1b,则a >0,b <012.(3分)对于实数a ,b ,c ,下列各选项正确的是( )A .π2B .πC .2πD .4π13.(3分)函数y =sinxcosx +1的最小正周期是( )A .B .C .D .14.(3分)一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出这列火车的速度变化情况的是( )15.(3分)从甲、乙、丙、丁四人中任选两人参加问卷调查,则甲被选中的概率是( )二、填空题(本大题共7小题,每小题4分,共28分)A .13B .12C .23D .34A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面16.(3分)设α,β为两个平面,则下列各选项可以推出α∥β的是( )A .1B .3C .83D .3217.(3分)椭圆x 22+y 2m=1的焦点在y 轴上,离心率为12,则m 的取值为( )√A .y 2=8x B .y 2=4x C .y 2=±8x D .y 2=±4x18.(3分)已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24−y 22=1上,则抛物线的方程为( )A .[3,+∞)B .(-∞,-3]C .[-3,3]D .(-∞,-3]∪[3,+∞)19.(3分)点M (x ,y )在圆x 2+(y -2)2=1 上运动,则yx的取值范围是( )√√√√√√A .12B .81C .27D .12020.(3分)已知衡量病毒传播能力的最重要指标叫做传播指数RO ,它指的是在自然情况下(没有外力介入,同时所有人都没有免疫力),一个感染到某种传染病的人,会把疾病传染给多少人的平均数。

中职数学(上)期末考试试题

中职数学(上)期末考试试题

.中职数学(上)期末考试试题(100分)一.选择题(每小题3分,共30分)1.下列说法中,正确的是( )A.第一象限的角一定是锐角B.锐角一定是第一象限的角C.小于︒90的角一定是锐角D.第一象限的角一定是正教2.函数x x f 3)(=,则=)2(f ( )A. 6B. 2C. 3D. -63.设集合{}41|<<=x x M ,{}52|<<=x x N 则=N M I ( )A.{}|15x x <<B.{}|24x x ≤≤C.{}|24x x <<D.{}2,3,44.︒-60角终边在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.下列对象不能组成集合的是( )A. 不大于8的自然数B. 很接近于1的数C. 班上身高超过1.8米的同学D. 班上数学小测试得分在85分以上的同学6.下列关系正确的是( )A. 0∈∅B. 0=∅C. 0∉∅D. {}0=∅7.一元二次不等式260x x -->的解集是( )A.()2,3-B.()(),23,-∞-+∞UC.[]2,3-D.(][),23,-∞-+∞U. 8.下列函数中,定义域为R 的函数是( )A.y =B.13y x =- C.21y x =+ D.21y x =9.在函数21y x =-的图像上的点是( ) A.()0,1- B. ()1,3- C. ()2,0- D. ()1,210.如果ac bc >,那么( )A. ab > B. a b < C. a b ≥ D. a 与b 的大小取决于c 的符号二.填空题(第1-7题,每空3分;第8题,每空2分,共46分)1.写出与︒30终边相等的角的集合|{β=S },Z k ∈.2.用集合的形式写出中国古代的四大发明 .3.集合{}31|≤≤-x x 用区间表示为 .4.设集合{}1,2,3,4A =,集合{}3,4,5,6B =,则A B =I ; A B =U .5.用符号“>”或“<”填空: (1)34 56; (2)34- 56-. 6.用符号“∈”、“∉”、“ Ü ”或“ Ý ”填空:(1)a{}a ; (2){},,a b c {},,,a b c d . 7.函数11y x =+的定义域为(用区间表示) . 8.在空格内填上适当的角度或弧度:. 三.简答题(共24分)1.解一元二次方程:2430x x -+=.(4分)(提示:要写出解题过程)2.已知一段公路的弯道半径为30m ,转过的圆心角为60°,求该弯道的长度l . (提示:弧长公式为lr α=⋅,π取3.14,结果精确到0.1m )(7分)3.已知函数 ()221,3,x f x x +⎧=⎨-⎩0,0 3.x x ≤<≤ (1)求()f x 的定义域;(4分) (2)求()()()2,0,3f f f -的值.(9分)参考答案:一.选择题1.B2.A3.C4.D5.B6.C7.B8.C9.A 10.D二.填空题1.30360k β=︒+⋅2.{印刷术,造纸术,指南针,火药}3.[]1,3-4.{}3,4;{}1,2,3,4,5,65.(1)< (2)>6.(1)∈ (2) Ü7.()(),11,-∞--+∞U8.1.解法一:(公式法) ()22444134b ac ∆=-=--⨯⨯=.()4242212x --±±===⨯, 即14232x +==,24212x -==解法二:(因式分解)()()130x x --= 令1030x x -=⎧⎨-=⎩,得1213x x =⎧⎨=⎩ 2.解:603π︒=, 301010 3.1431.43l r m παπ==⨯==⨯=g答:该弯道的长度为31.4m 3.解:(1)()f x 的定义域为(](](],00,3,3-∞=-∞U(2)()()22213f -=⨯-+=-;()02011f =⨯+=;()23336f =-=-。

中职一年级上学期数学期末试卷

中职一年级上学期数学期末试卷

中职一年级上学期数学期末试卷高一年级数学期末试卷班级姓名成绩一、单项选择题(本大题共14小题,每小题7分,共98分)1. 集合},{b a M =, },{c b N =,则N M U 等于()A }{bB },{b aC },{c bD },,{c b a2.设{}a M =,则下列写法正确的是()。

A .M a = B.M a ∈ C.M a ? D .a ?≠M3、设全集为R ,集合{|15}A x x =-<≤,则 =A C U ()A.{|1}x x ≤-B.{|5}x x >C.{|1}{|5}x x x x <-≥D.{|1}{|5}x x x x ≤->4、已知{}2<=x x A ,则下列写法正确的是()。

A .A ?0 B.{}A ∈0 C.A ∈φ D.{}A ?05、设全集{}6,5,4,3,2,1,0=U ,集合{}6,5,4,3=A ,则U C A =()。

A .{}6,2,1,0 B.φ C. {},5,4,3 D. {}2,1,06、已知集合{}3,2,1=A ,集合{}7,5,3,1=B ,则=?B A ()。

A .{}5,3,1 B.{},3,2,1 C.{}3,1 D. φ 7、已知集合{}20<<=x x A ,集合{}31≤<=x x B ,则=?B A ()。

A.{}30<<=x x A B.{}30≤<=x x B C.{}21<<=x x B D.{}30<<=x x B 8.1x =是=1x 的()A 充分不必要条件错误!未找到引用源。

B 必要不充分条件错误!未找到引用源。

C 充要条件错误!未找到引用源。

D 既不充分也不必要条件9、不等式| 3-2x |<1的解集为A (-1,2)B (1,2)C ),2()1,(+∞?-∞D ),2()1,(+∞?--∞10.不等式240x -<的解集为()A ()(),22,-∞-+∞错误!未找到引用源。

(完整)中职高一(上)期末数学试卷A3.docx

(完整)中职高一(上)期末数学试卷A3.docx

职业中专期末试卷(一到四章 )一、选择题( 2 分× 18=36 分,选择题答案请写上面表格中,谢谢配合!)1. 若 A∪B=A, 则 A∩ B 为()A. AB. BC.?D. A或 B2. 不等式 |3x-12|≤9 的整数解的个数是()A. 7B. 6C. 5D. 43.(-a 2) 3的运算结果是()A. a 5B.-a5C.a6D.-a6)4. 如果全集 U=R,A={x|2 < x≤ 4},B={3,4},则 A∩ ( CB)等于(UA.(2,3)∪(3,4 )B.(2,4)C.(2,3)∪(3,4]D. ( 2,4]5.已知集合 A={x|x >2} ,B={x|x > a}, 若 A B ,则 a 的范围为()A.a =2B.a≤2C.a≥ 2D.a≠26.函数 y=2x2-8x+9的最小值是()A. 0B. 1C. 7D. 97.若 x∈[3,5 ),那么式子 3-x 的值一定是()A. 正数B.负数C.非负数D.非正数8.某商品零售价 2006 年比 2005 年上涨 25%,欲控制 2007 年比 2005年只上涨10%,则 2007 年应比 2006 年降价()A.15%B.12%C.10%D.50%9. 已知 a< b<0, 那么一定有()b a b112A.a >b B.0<a<1 C.a<b D.ab< b110. 函数 y=x+x-2 (x >2) 的最小值为()A.4B.3C.2D.12-x11.函数 y= lgx的定义域是()A.[-2,2]B.(0,2)C.(0,2]D.(0,1)∪ (0,2]12.函数 y=lg(x 2-2x-3)的单调递增区间为()A.(3,+∞ )B.(-∞,-1)C.(1,+∞)D.(-∞,1)13.集合 A B 是 A B=A的( )A. 充分但非必要条件B.必要但非充分条件C. 充分必要条件D.既非充分又非必要条件14.已知关于 x 的方程 x2+ ax-a=0 有两个不等的实数根,则()A.a < -4 或 a>0B.a ≥ 0C.-4<a<0D. a>-415.若f2则 f ()的值为()(x+1)=x+3x+5,0A. 3B. 5C.2D.-116.已知 f (x)=x2+ bx+ c 的对称轴为直线 x= 2,则 f(1),f(2),f(4)的大小关系是()A. f(2)< f(1)< f(4)B. f(1)< f(2)< f(4)C. f(2)< f(4)< f(1)D. f(4)< f(2)< f(1)17.下列具有特征 f(x 1· x2)=f(x 1) +f(x 2) 的函数是()A.f(x)=2xB.f(x)=2xC.f(x)=2+xD.f(x)=log x218.设 f(x) 是( - ∞, +∞)上的奇函数, f(x+2)=-f(x),当 0≤x≤1 时,f(x)=x, 则 f(7.5)=()A. -1.5B. -0.5C.0.5D.1.5二、填空题( 3 分× 8=24 分)19.满足条件 {1,2,3}M {1,2,3,4,5,6}的集合的个数是20. 比较大小: 2x 2+5x-3_______ x 2+5x-4. 21. 已知 f (1)=3, f (n+1)=2 f (n)+n, nN +,则 f (4)=_______.22. 函数 f (x)=lg(x 2-kx+k) 无论 x 取何值均有意义,则 k 的取值范围为 _______________.23. 已知 f(x) 是奇函数,且 f(2)=3, 则 f(-2)=________.24. 二次函数 y=ax2+ bx +c (a <0) 与 x 轴的两个交点为( -2,0 ),( 2,0 ) , 则 不 等 式 ax 2 + bx + c > 0 的 解 集 是_____________________. 25. 已知 f (x +1)=x2+ 1,则 f (x )=_____________________.xx 226.求值log 2 1 ( 2 1 ) =_________________. 三、解答题(本题共 8 小题,共 60 分)27. ( 6 分)写出集合 P={1,2,3} 的所有子集。

中职中专职一年级数学期末考卷

中职中专职一年级数学期末考卷

中职中专职一年级数学期末考卷一、选择题(每题5分,共25分)1. 下列哪个数是实数?A. √1B. 3.14C. log2(3)D. 4/02. 已知集合A={1, 2, 3, 4, 5},集合B={2, 4, 6, 8},则A∩B 的结果是?A. {1, 3, 5}B. {2, 4}C. {1, 2, 3, 4, 5, 6, 8}D. 空集3. 若a=3,b=2,则a+b的值是?A. 5B. 5C. 6D. 64. 已知函数f(x)=2x+1,则f(3)的值是?A. 6B. 7C. 8D. 95. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 圆二、填空题(每题5分,共25分)1. 已知等差数列{an}的公差为2,首项为1,则第10项的值为______。

2. 若两个角的和为90°,其中一个角为30°,则另一个角的度数为______。

3. 已知三角形ABC,AB=5,BC=8,AC=10,则三角形ABC的周长为______。

4. 一辆汽车以60km/h的速度行驶,行驶了3小时,则汽车行驶的路程为______。

5. 在平面直角坐标系中,点A(2, 3)关于原点的对称点坐标为______。

三、解答题(每题10分,共50分)1. 解方程:2x 5 = 32. 已知函数f(x) = x² 2x + 1,求f(x)在x=2时的函数值。

3. 计算下列各式的值:(1)(3²)³(2)4² × 2³(3)9 ÷ 3 + 2²4. 在直角三角形ABC中,∠C=90°,AB=10,BC=6,求AC的长度。

5. 已知数列{an}的通项公式为an = 2n + 1,求前5项的和。

四、应用题(每题20分,共40分)1. 某商店举行打折活动,原价为200元的商品,打8折后售价为多少元?2. 一辆汽车行驶了200公里,前一半路程的平均速度为60km/h,后一半路程的平均速度为80km/h,求全程的平均速度。

中职数学 2023-2024学年浙江省中职高一(上)期末联考数学试卷

中职数学 2023-2024学年浙江省中职高一(上)期末联考数学试卷

2023-2024学年浙江省中职高一(上)期末联考数学试卷一、选择题(本大题20个小题,每小题3分,共60分)A .A ∩B ={2}B .A ∩B =∅C .A ∪B ={1,3,4,5}D .A ∪B ={2,3,4,5}1.(3分)已知集合A ={1,2,3},B ={2,4,5},则( )A .(-∞,-1)∪(3,+∞)B .(-∞,-1)C .(3,+∞)D .(-1,3)2.(3分)不等式|x -1|>2的解集是( )A .(1,+∞)B .[1,+∞)C .[1,2)D .[1,2)∪(2,+∞)3.(3分)函数f (x )=x −1+1x −2的定义域为( )√A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(3分)设a ,b ∈R ,则“ab 2>0”是“a >0”的( )A .27B .-27C .27或-27D .81或-365.(3分)在等比数列{a n }中,a 1+a 2=1,a 3+a 4=9,则a 4+a 5=( )A .AD =14a +34bB .AD =13a +23bC .AD =34a +14bD .AD =23a +13b6.(3分)如图,在△ABC 中,D 为BC 上一点,且BD =3DC ,设AB =a ,AC =b ,则AD 用a 和b 表示为( )→→→→→→→→→→→→→→→→→A .第一象限角一定不是负角7.(3分)下列命题中正确的是( )B.小于90°的角一定是锐角C.钝角一定是第二象限角D.第一象限角一定是锐角A.(-∞,-3]B.[-3,+∞)C.(-∞,5]D.[5,+∞)8.(3分)已知函数f(x)=x2+2(a-1)x+2在[4,+∞)上是增函数,则实数a的取值范围是( )A.B.C.D.9.(3分)如图所示为函数f(x)=ax+b的图象,则函数g(x)=x2+ax+b的图象可能为( )A.30B.48C.120D.6010.(3分)某班将5名同学分配到甲、乙、丙三个社区参加劳动锻炼,每个社区至少分配一名同学,则甲社区恰好分配2名同学共有( )种不同的方法.A.3x+2y=0B.x+y+1=0C.2x-3y=0或x+y+1=0D.3x+2y=0或x+y+1=011.(3分)过点P(2,-3)且在两坐标轴上截距相等的直线方程为( )A.52−πB.−32C.−12D.1212.(3分)计算(3−π)0−(18)13=( )A.p假q假B.“p或q”为真C.“p且q”为真D.p假q真13.(3分)已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下列判断正确的是( )A .f (1)<f (5)<f (-3)B .f (5)<f (-3)<f (-1)C .f (-3)<f (-1)<f (5)D .f (-1)<f (-3)<f (5)14.(3分)已知f (x )是R 上的偶函数,在(-∞,0]上单调递增,则下列不等式成立的是( )A .2B .3C .e 3-1D .e 2-115.(3分)设函数f (x )=V Y Y W Y Y X e x +2,x <3log 2(x 2−1),x ≥3则f (0)的值为( )A .x =12B .x =−12C .y =12D .y =−1216.(3分)抛物线y 2=-2x 的准线方程为( )A .9B .12C .15D .1817.(3分)二项式(x −1x)6的展开式中的常数项为( )√A .4B .5C .8D .1018.(3分)已知实数x ,y 满足不等式组V Y YW Y Y X x −1≥0y −2≥0x +y −5≤0,则z =2x +y 的最大值为( )A .一定存在直线l ,l ⊂α且l 与AB 异面B .一定存在直线l ,l ⊂α且l ⊥ABC .一定存在平面β,AB ⊂β且β⊥αD .一定存在平面β,AB ⊂β且β∥α19.(3分)已知经过圆柱O 1O 2旋转轴的给定平面α,A ,B 是圆柱O 1O 2侧面上且不在平面α上的两点,则下列判断不正确的是( )A .3B .2C .2+1D .3+120.(3分)已知O 为坐标原点,点F 是双曲线C :x 2a2−y 2b2=1(a >0,b >0)的左焦点,过点F 且倾斜角为30°的直线与双曲线C 在第一象限交于点P ,若(OF +OP )•FP =0,则双曲线C 的离心率为( )→→→√√√√二、填空题(本大题5个小题,每小题4分,共20分)三、解答题(本大题5个小题,每小题8分,共40分)21.(4分)某公司生产甲、乙两种产品的数量之比为5:3,现用分层抽样的方法抽出一个样本,已知样本中甲种产品比乙种产品多6件,则甲种产品被抽取的件数为.22.(4分)已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为.23.(4分)已知圆的方程为x 2+y 2-kx -2y -k 2=0,则当该圆面积最小时,圆心的坐标为.24.(4分)已知椭圆x 225+y 216=1与双曲线x 2m−y 25=1有共同的焦点,则m =.25.(4分)已知指数函数f (x )=a x (a >0且a ≠1)在区间[2,3]上的最大值是最小值的2倍,则a =.26.(8分)已知函数f (x )=log a x (a >0且a ≠1)的图像过点(4,2).(1)求a 的值;(2)求不等式f (1+x )<f (1-x )的解集.27.(8分)班上每个小组有12名同学,现要从每个小组选4名同学组成一支代表队,与其他小组进行辩论赛.(1)每个小组的代表队有多少种选法?(2)如果每支代表队还必须指定1名队长,那么每个小组的代表队有多少种选法?(3)如果每支代表队还要分别指定第一、二、三、四辩手,那么每个小组的代表队有多少种选法?28.(8分)已知函数f (x )=2sin (ωx −π6)−1(ω>0)的周期是π.(1)求f (x )的单调递增区间;(2)求f (x )在[0,π2]上的最值及其对应的x 的值.29.(8分)如图,正三棱柱ABC -A 1B 1C 1,AB =2,AA 1=1,M 为棱BC 的中点.(1)证明:A 1B ∥平面AMC 1;(2)证明:平面AMC 1⊥平面BCC 1B 1.30.(8分)在平面直角坐标系xOy 中,椭圆E :x 2a2+y 2b2=1(a >b >0)的左顶点到右焦点的距离是3,离心率为12.(1)求椭圆E 的标准方程;(2)斜率为2的直线l 经过椭圆E 的右焦点,且与椭圆E 相交于A ,B 两点.已知点P (-3,0),求PA •PB 的值.√→→。

中职数学(上)期末考试试题word版本

中职数学(上)期末考试试题word版本

中职数学(上)期末考试试题中职数学(上)期末考试试题(100分)一.选择题(每小题3分,共30分)1.下列说法中,正确的是( )A.第一象限的角一定是锐角B.锐角一定是第一象限的角C.小于︒90的角一定是锐角D.第一象限的角一定是正教2.函数x x f 3)(=,则=)2(f ( )A. 6B. 2C. 3D. -63.设集合{}41|<<=x x M ,{}52|<<=x x N 则=N M I ( )A.{}|15x x <<B.{}|24x x ≤≤C.{}|24x x <<D.{}2,3,44.︒-60角终边在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.下列对象不能组成集合的是( )A. 不大于8的自然数B. 很接近于1的数C. 班上身高超过1.8米的同学D. 班上数学小测试得分在85分以上的同学6.下列关系正确的是( )A. 0∈∅B. 0=∅C. 0∉∅D. {}0=∅7.一元二次不等式260x x -->的解集是( )A.()2,3-B.()(),23,-∞-+∞UC.[]2,3-D.(][),23,-∞-+∞U8.下列函数中,定义域为R 的函数是( )A.y =13y x =- C.21y x =+ D.21y x =9.在函数21y x =-的图像上的点是( )A. ()0,1-B.()1,3- C. ()2,0- D. ()1,210.如果ac bc >,那么( )A. a b >B. a b <C. a b ≥D. a 与b 的大小取决于c 的符号二.填空题(第1-7题,每空3分;第8题,每空2分,共46分) 1.写出与︒30终边相等的角的集合|{β=S },Z k ∈.2.用集合的形式写出中国古代的四大发明 .3.集合{}31|≤≤-x x 用区间表示为 .4.设集合{}1,2,3,4A =,集合{}3,4,5,6B =,则A B =I ; A B =U .5.用符号“>”或“<”填空: (1)34 56; (2)34- 56-. 6.用符号“∈”、“∉”、“ Ü ”或“ Ý ”填空:(1)a {}a ; (2){},,a b c {},,,a b c d .7.函数11y x =+的定义域为(用区间表示) . 8.在空格内填上适当的角度或弧度:三.简答题(共24分)1.解一元二次方程:2430x x -+=.(4分)(提示:要写出解题过程)2.已知一段公路的弯道半径为30m ,转过的圆心角为60°,求该弯道的长度l . (提示:弧长公式为lr α=⋅,π取3.14,结果精确到0.1m )(7分)3.已知函数 ()221,3,x f x x +⎧=⎨-⎩0,0 3.x x ≤<≤ (1)求()f x 的定义域;(4分)(2)求()()()2,0,3f f f -的值.(9分)参考答案:一.选择题1.B2.A3.C4.D5.B6.C7.B8.C9.A 10.D二.填空题1.30360k β=︒+⋅2.{印刷术,造纸术,指南针,火药}3.[]1,3-4.{}3,4;{}1,2,3,4,5,65.(1)< (2)>6.(1)∈ (2) Ü7.()(),11,-∞--+∞U8.1.解法一:(公式法) ()22444134b ac ∆=-=--⨯⨯=()42422212b x a --±-±===⨯, 即14232x +==,24212x -==解法二:(因式分解)()()130x x --= 令1030x x -=⎧⎨-=⎩,得1213x x =⎧⎨=⎩ 2.解:603π︒=, 301010 3.1431.43l r m παπ==⨯==⨯=g 答:该弯道的长度为31.4m 3.解:(1)()f x 的定义域为(](](],00,3,3-∞=-∞U(2)()()22213f -=⨯-+=-;()02011f =⨯+=;()23336f =-=-。

中职数学上册期末试卷

中职数学上册期末试卷

中职数学上册期末试卷一、选择题(每题2分,共20分)1、下列哪个选项不是数学中的基本运算?A.加法B.减法C.除法D.乘法2、下列哪个图形不是对称图形?A.矩形B.圆形C.三角形D.五角形3、下列哪个函数不是连续函数?A. y = x^2B. y = sin xC. y = e^xD. y = |x|4、下列哪个命题是正确的?A.若a > b,则ac > bcB.若a = b,则ac = bcC.若ac > bc,则a > bD.若ac < bc,则a < b5、下列哪个级数是收敛的?A. 1 + 2 + 3 +...B. 1 - 2 + 3 - 4 +...C. 1 + 2 + 2 + 3 + 3 +...D. 1 - 2 + 3 - 4 +... + n - (n+1)二、填空题(每题3分,共30分)6、一个三角形的三个内角分别为A、B、C,若A + B + C = 180度,则A = ______。

61、若函数f(x)在x = a处可导,则lim(x→a) f'(x)存在等于______。

611、下列哪个矩阵是正定的?A. [1, 2; 2, 4]B. [1, -2; -2, 4]C. [1, -2; -2, 1]D. [1, -2; -2, -1]6111、对于任意实数x和y,都有______。

若函数f(x)在区间[a, b]上连续,且f(a)f(b)<0,则函数f(x)在此区间上至少有一个零点。

中职数学期末试卷一、选择题(每题2分,共20分)1、在下列数列中,哪个是等差数列?()A. 1,3,5,7,9B. 1,2,3,4,5C. 0,2,4,6,8D. 1,4,9,16,252、下列哪个函数是线性函数?()A. y=2xB. y=3x+5C. y=x^2D. y=2x^33、在下列四个几何图形中,哪个是轴对称图形?()A.平行四边形B.三角形C.圆形D.正方形4、下列哪个方程是一元二次方程?()A. 3x-5=10B. 2x^2+3x-5=0C. 4y-8=0D. x+y=105、在下列三个数中,哪个数是无理数?()A. π/3B. 0C. -2023D. √9二、填空题(每题3分,共30分)6、一个等边三角形的边长为6厘米,它的周长是____厘米。

2023年《中职数学》期末考试试卷及参考答案(卷)

2023年《中职数学》期末考试试卷及参考答案(卷)

2023年《中职数学》期末考试试卷及参考答案(卷)注意事项- 考试时间:2小时- 试卷满分:100分- 答案应在答题卡上完成,答题纸不计分- 答案应写清楚题号和选项,如有涂改需及时擦去并重新填写选择题从每小题的四个选项中,选出正确的答案,并将其填写到答题卡上。

1. 下列四个数中,最大的是()A. 2/3B. 0.7C. 0.875D. 9/102. 一张圆桌的直径是80 cm,现在要把它分成一半,每个半圆的面积是多少?A. 400π cm²B. 200π cm²C. 160π cm²D. 80π cm²3. 如果一根长方体的棍子高12 cm,下底边宽4 cm,上底边宽8 cm,试问这个棍子的体积是多少 cm³?A. 240 cm³B. 256 cm³C. 192 cm³D. 384 cm³4. 下列二次方程的解中,-2不是其解的是()A. 3x² - 5x + 2 = 0B. x² + 4x - 4 = 0C. 2x² + 4x - 2 = 0D. 5x² - 4x - 2 = 05. 如果一条长方形铁丝,长30 cm,宽12 cm,我们沿着长度为30 cm的方向剪下一段,请问这段铁丝的长度是多少 cm?A. 24 cmB. 30 cmC. 12 cmD. 18 cm解答题将下列问题的解答写在答题纸上。

1. 某商店打折出售某款T恤,原价为480元,现在打8折,折后价格是多少元?2. 已知正方形ABCD的边长为6 cm,那么它的面积是多少平方厘米?3. 某校图书馆共有10本书,现在进了5本新书,这个图书馆现在有多少本书?4. 一个正方体的体积是64 cm³,边长是多少厘米?5. 某班级有30名同学,其中女生占总人数的3/10,男生有多少人?以上就是2023年《中职数学》期末考试试卷及参考答案,祝各位同学取得优异的成绩!。

中职上学期期末数学试卷

中职上学期期末数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,正数是()A. -2.5B. 0C. -1/3D. 2.52. 已知函数f(x) = 3x - 4,若f(2) = 2,则x的值为()A. 2B. 4C. 6D. 83. 下列图形中,中心对称图形是()A. 等腰三角形B. 等边三角形C. 正方形D. 矩形4. 下列各式中,等式正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^25. 若sinα = 1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/26. 下列函数中,一次函数是()A. y = x^2 + 3B. y = 2x + 1C. y = √xD. y = 3/x7. 在直角坐标系中,点P(-2, 3)关于原点的对称点是()A. (2, -3)B. (-2, -3)C. (2, 3)D. (-2, 3)8. 下列各式中,根式正确的是()A. √-9 = 3B. √9 = -3C. √16 = 4D. √-16 = -49. 若a > b > 0,则下列不等式成立的是()A. a^2 > b^2B. a^2 < b^2C. a^3 > b^3D. a^3 < b^310. 下列图形中,平行四边形是()A. 等腰梯形B. 矩形C. 等边三角形D. 等腰三角形二、填空题(每题5分,共50分)11. 若a = 3,b = -2,则a + b = _______,ab = _______。

12. 若sinθ = 1/2,则cosθ的值为 _______。

13. 在直角三角形ABC中,∠C = 90°,AC = 6,BC = 8,则AB = _______。

中等职业学校数学期末考试试题(上册)

中等职业学校数学期末考试试题(上册)

《数学》科期末考试试卷班级_______姓名__________学号______成绩_________一.选择题(4分×12=48分)1. -1-1=(A)0 (B)-1 (C)-22 .已知角α为第一象限的角,则 -α为(A)第一象限(B)第四象限(C)第一或第四象限3.设A=(2,5),B=[3,6),则A∩B(A)(2,5)(B)[3,5)(C)[3,6)4. 已知f(x)=2x+1.则f(2)=(A)1 (B)3 (C)55.-50°角的终边在(A)第二象限(B)第三象限(C)第四象限6.下列各函数中,在(0,+∞)内为减函数的是______(A)y=2-5x (B)y=2x(C)y=5+x7.函数y= f(x)是奇函数,f(2)=3,则f(-2)=(A)-2 (B)3 (C)-38.下列关系正确的是(A)-5∈N (B)2∈Q (C)π∈R9.与330°角终边相同的角是(A)-60°(B)-30°(C)-330°10.下列各函数中,在R上为偶函数的是(A)y=3x-2 (B)y=2x-1 (C)y=2x-2x -111.集合{x︱2<x≤3}用区间表示为(A)(2,3] (B)[2,3] (C)(2,3)12.点P(2.-3)关于y轴的对称点的坐标为(A)(2,3)(B)(-2,3)(C)(-2,-3)二.填空题(4分×5=20分)13. 角度和弧度的互化:180°= 90°=π/2 = π/3 =14.设f(x)=3x-1,则f(1)= ,f(2)=15.用符号“∈”,“∉”填空:0 φ 0 {0}16. 已知f(x)=8x-1,则f(3)=17. 已知A={1,2,3,4,5},B={2,5,6},则A∩B =三. 判断对错(3分×5=15)18.锐角都是第一象限()19. 第一象限的角都是锐角()20. φ={0} ()21. f(x)=6x是偶函数()22. 若a > b,则ac > bc ()四. 解答题23.已知集合A={1,2,3,5,7},集合B={2,4,6,8},求A∩B, A∪B. (5分)24.画角:30°,390°,-330°标明旋转方向. (5分)25.已知函数的表达式为f(x)= 2x-1(x∈R),求f(1),f(2),f(3). (7分)。

中职高一数学期末试卷及答案

中职高一数学期末试卷及答案

中职高一数学期末试卷及答案一、选择题(本大题共12小题,每小题5分,共60分)1. 下面哪些是平面三角形中的充要条件?A.两个内角相加等于180° B.三条边的长度均相等C.任意两边之和大于第三边 D.三条边都大于零答案:D2. 已知二次函数y=αx2+βx+γ中,α>0,当x<-2时,y取得最大值。

那么此函数抛物线的顶点是()A.M(2,α+2β+γ) B.M(-2,α+2β+γ) C.M(2,-α+2β+γ) D.M(-2,-α+2β+γ)答案:B3. 将函数y=2x2+2x-2的图象沿x轴的正方向平移1个单位后,其图象上的一点P的坐标是( )A.(0,-1) B.(0,2) C.(1,2) D.(1,-1)答案:C4. 若a,b,c,d是函数f(x)的四个不同零点,根据中心对称原理可知f(a+b+c+d)的值为()A.2(a+b+c+d) B.0 C.-2(a+b+c+d) D.不能确定答案:B5. 用概率统计法求积分∫ 10-x2 dx,积分范围为[0,2]时错误的说法是()A.分组时组数为2 B.随机选取的点的数目为3C.用反几何转换法求积分 D.可以将整个空间划分为n段答案:C二、填空题(本大题共7小题,每小题5分,共35分)6. 若y=3x2+2x的导数dy/dx=3_______2x+2 。

答案:*7. 椭圆C:x2/9+y2/4=1的长轴长等于_______6 。

答案:√8. 设函数f(x)=2x2+3x+1,f(-1)= ______3 _______ 。

答案:59. 下列说法哪一项是错误的?______方程x2/9+y2/4=1表示的椭圆的全部焦点都在椭圆上 _____。

答案:方程x2/9+y2/4=1表示的椭圆的全部焦点都在椭圆上10. 若y=f(x)是函数f(x)的图象,则把y轴向下平移2个单位得到的图象为_______f(x)-2 _________。

中职数学第一学期期期末考试试卷及答案

中职数学第一学期期期末考试试卷及答案

2017级财务管理专业第一学期期末考试试卷A 卷姓名 班级 成绩一、选择题(每题3分,合计30分) 1、设A =}{22x x -<<,}{1B x x =≥,则AUB =( ) A .}{12x x ≤< B .{2x x <-或2x >C .}{2x x >- D .{2x x <-或}2x > 2、一元二次方程042=+-mx x 有实数解的条件是m ∈( )A.]()[∞+-∞-,44,B.()4,4-C.()()+∞-∞-,44,D.[]4,4-3、不等式31x ->的解集是 A.()2,4 B.()(),24,8-∞+ C.()4,2--D.()(),42,-∞--+∞4、设函数(),f x kx b =+若()()12,10f f =--=则 A.1,1k b ==- B.1,1k b =-=-C.1,1k b =-= D.1,1k b ==5、已知函数⎩⎨⎧--=112x x y 11x x ≥< 则()2f f =⎡⎤⎣⎦ A.0 B.1 C.2D.56、下列各函数中,既是偶函数,又是区间(0,8)+内的增函数的是A.y x = B.3y x = C.22y x x =+ D.2y x =-7、函数()f x =的定义域是A.{}22x x -<<B.{}33x x -<<C.12x x -<<D.{}13x x -<<8、下列实数比较大小,正确的是 ( )A a >-aB 0>-aC a <a+1D -61<-419、如果不等式x2-4x+m+1<0无解,则m的取值范围是 ( )A m≥4B m≤4C m≤3D m≥3 10、函数y=-x2的单调递减区间是( )A (-∞,0)B [0,+∞)C (-∞,+∞)D [-1,+∞)二、填空题(每题3分,共计15分)1、指数式3227()38-=,写成对数式为2、 对数式31log 3,27=-写出指数式3、=0600sin 的值为4、不等式x 2-2x+1>0的解集为5、设U={绝对值小于4的整数},A={0,1,2,3},则 C U A三、判断题(每题2分,共计6分)1、所有个子高的同学能构成一个集合 ( )2、所有的函数都具有奇偶性 ( )3、空集只有一个真子集即它本身 ( ) 四、解答题(共计49分)1、 解关于x 的不等式:32-<+mx ()0≠m (6分)2、设全集为R,A={}41<-x x ,B={}022≥-x x x ,求A ∩B ,A ∪B , A ∩B C U .(12分)3、已知函数⎩⎨⎧--=112x x y 11x x ≥< (12分)(1)求()f x 的定义域。

上海中职一年级数学第一学期期末考卷答案

上海中职一年级数学第一学期期末考卷答案

上海中职一年级数学第一学期期末考卷答案1、在0°~360°范围中,与868°终边相同的角是()[单选题] *148°(正确答案)508°-220°320°2、36、下列生活实例中, 数学原理解释错误的一项是( ) [单选题] *A. 从一条河向一个村庄引一条最短的水渠, 数学原理: 在同一平面内, 过一点有且只有一条直线垂直于已知直线(正确答案)B. 两个村庄之间修一条最短的公路, 其中的数学原理是:两点之间线段最短C. 把一个木条固定到墙上需要两颗钉子, 其中的数学原理是: 两点确定一条直线D. 从一个货站向一条高速路修一条最短的公路, 数学原理: 连结直线外一点与直线上各点的所有线段中, 垂线段最短.3、20.水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()[单选题] *A.(+3)×(+2)B.(+3)×(﹣2)(正确答案)C.(﹣3)×(+2)D.(﹣3)×(﹣2)4、41、将一个三角形纸片剪开分成两个三角形,这两个三角形不可能是()[单选题]* A.都是锐角三角形(正确答案)B.都是直角三角形C.都是钝角三角形D.是一个直角三角形和一个钝角三角形5、16.5-(-3)-2的计算结果为()[单选题] *A.3B.4C.0D.6(正确答案)6、300°用弧度制表示为()[单选题] *5π/3(正确答案)π/62π/32π/57、19.如果温度上升1℃记作℃,那么温度下降5℃,应记作()[单选题] *A.+5℃B.-5℃(正确答案)C.+6℃D.-6℃8、在0°~360°范围中,与-120°终边相同的角是()[单选题] *240°(正确答案)600°-120°230°9、44.若a+b=6,ab=4,则a2+4ab+b2的值为()[单选题] *A.40B.44(正确答案)C.48D.5210、10.如图是丁丁画的一张脸的示意图,如果用表示左眼,用表示右眼,那么嘴的位置可以表示成().[单选题] *A.(1,0)B(-1,0)(正确答案)C(-1,1)D(1,-1)11、两个有理数相加,如果和小于每一个加数,那么[单选题] *A.这两个加数同为负数(正确答案)B.这两个加数同为正数C.这两个加数中有一个负数,一个正数D.这两个加数中有一个为零12、40.若x+y=2,xy=﹣1,则(1﹣2x)(1﹣2y)的值是()[单选题] * A.﹣7(正确答案)B.﹣3C.1D.913、下列运算正确的是()[单选题] *A. a2+a2=a?B. a?﹣a3=a2C. a2?a2=2a2D. (a?)2=a1?(正确答案)14、17、已知点P,且是方程的解,那么点P在()[单选题] *A. 第一象限B. 第二象限(正确答案)C. 第三象限D. 第四象限15、20、在平面直角坐标系中有点A,B,C,那么△ABC是()[单选题] *A. 等腰三角形B. 等边三角形C. 直角三角形(正确答案)D. 等腰直角三角形16、33、点P(-5,-7)关于原点对称的点的坐标是()[单选题] *A. (-5,-7)B. (5,7)(正确答案)C. (5,-7)D. (7,-5)17、8.修建高速公路时,经常把弯曲的公路改成直道,从而缩短路程,其道理用数学知识解释正确的是()[单选题] *A.线段可以比较大小B.线段有两个端点C.两点之间,线段最短(正确答案)D.过两点有且只有一条直线18、下列计算正确是()[单选题] *A. 3x﹣2x=1B. 3x+2x=5x2C. 3x?2x=6xD. 3x﹣2x=x(正确答案)19、8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示图形,则∠BFD的度数是( ) [单选题] *A.15°(正确答案)B.25°C.30°D.10°20、24.不等式x-3>5的解集为()[单选题] *A. x > 1B. x > 2(正确答案)C. x > 3D. x > 421、23.将x-y-6=0改写成用含x的式子表示y的形式为()[单选题] *A. x=y+6B. y=x-6(正确答案)C. x=6-yD. y=6=x22、北京、南京、上海三个民航站之间的直达航线,共有多少种不同的飞机票?()[单选题] *A、3B、4C、6(正确答案)D、1223、29.若(2,a)和(3,b)是直线y=x+k上的两点,那么这两点间的距离为()[单选题] *A.8B.10C.√2(正确答案)D.224、计算-(a-b)3(b-a)2的结果为( ) [单选题] *A. -(b-a)?B. -(b+a)?C. (a-b)?D. (b-a)?(正确答案)25、函数f(x)=-2x+5在(-∞,+∞)上是()[单选题] *A、增函数B、增函数(正确答案)C、不增不减D、既增又减26、下列说法正确的是[单选题] *A.带“+”号和带“-”号的数互为相反数B.数轴上原点两侧的两个点表示的数是相反数C.和一个点距离相等的两个点所表示的数一定互为相反数D.一个数前面添上“-”号即为原数的相反数(正确答案)27、35.若代数式x2﹣16x+k2是完全平方式,则k等于()[单选题] *A.6B.64C.±64D.±8(正确答案)28、8.数轴上一个数到原点距离是8,则这个数表示为多少()[单选题] *A.8或﹣8(正确答案)B.4或﹣4C.8D.﹣429、5.如图,点C、D是线段AB上任意两点,点M是AC的中点,点N是DB的中点,若AB=a,MN=b,则线段CD的长是()[单选题] *A.2b﹣a(正确答案)B.2(a﹣b)C.a﹣bD.(a+b)D.30、16.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高时,气温变化记作,那么气温下降时,气温变化记作()[单选题] *A.-10℃(正确答案) B.-13℃C.+10℃D.+13℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017级财务管理专业第一学期期末考试试卷A 卷
姓名 班级 成绩 一、选择题(每题3分,合计30分)
1、设A =}{22x x -<<,}{1B x x =≥,则AUB =( )
A .}{12x x ≤<
B .{2x x <-或2x >
C .}{2x x >-
D .{2x x <-或}2x > 2、一元二次方程042=+-mx x 有实数解的条件是m ∈( ) A.]()[∞+-∞-,44, B.()4,4- C.()()+∞-∞-,44, D.[]4,4- 3、不等式31x ->的解集是
A.()2,4 B.()(),24,8-∞+ C.()4,2-- D.()(),42,-∞--+∞ 4、设函数(),f x kx b =+若()()12,10f f =--=则 A.1,1k b ==- B.1,1k b =-=- C.1,1k b =-= D.1,1k b == 5、已知函数⎩

⎧--=112x x y 1
1x x ≥< 则()2f f =⎡⎤⎣⎦ A.0 B.1 C.2 D.5
6、下列各函数中,既是偶函数,又是区间(0,8)+内的增函数的是 A.y x = B.3y x = C.22y x x =+ D.2y x =- 7
、函数()f x =
的定义域是
A.{}22x x -<< B.{}33x x -<< C.12x x -<< D.{}13x x -<< 8














( )
A a >-a
B 0>-a
C a <a+1
D -6
1
<-4
1
9、如果不等式x2-4x+m+1<0无解,则m的取值范围是
( )
A m≥4
B m≤4
C m≤3
D m≥3 10、函数y=-x2
的单调递减区间是
( )
A (-∞,0)
B [0,+∞)
C (-∞,+∞)
D [-1,+∞) 二、填空题(每题3分,共计15分)
1、指数式32
27
()38
-=
,写成对数式为
2、 对数式3
1
log 3,27
=-写出指数式 3、=0600sin 的值为
4、不等式x 2-2x+1>0的解集为
5、设U={绝对值小于4的整数},A={0,1,2,3},则 C U A 三、判断题(每题2分,共计6分)
1、所有个子高的同学能构成一个集合 ( )
2、所有的函数都具有奇偶性 ( )
3、空集只有一个真子集即它本身 ( )
四、解答题(共计49分)
1、 解关于x 的不等式:32-<+mx ()0≠m (6分)
2、设全集为R,A={}41<-x x ,B={}022≥-x x x ,求A ∩B ,A ∪B , A ∩B C U .(12分)
3、已知函数⎩⎨
⎧--=1
12x x y 1
1x x ≥< (12分) (1)求()f x 的定义域。

(2)作出函数()f x 的图像,并根据图像判断函数()f x 的奇偶性。

4、不等式|x+a |≤b 的解集是{x |-1≤x ≤5},求a ,b 的值。

(10分)
5、计算下列各式(9分) 1、已知3tan =α,求.cos ,sin αα
2、()()0000150cos 300tan 60cos 45tan -+-*+
参考答案
解答题
1、
2、
3、
图像略
4

5、
1
、2、。

相关文档
最新文档