煤矿防雷接地规范

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤矿防雷中几个问题

从2003年开始对各自境内的煤矿陆续开展了防雷整改工作,到2005年底全省约70%的煤矿完成了防雷设施的安装及检测。然而,由于多种原因,造成整改过程中或整改完成后出现一些问题,如某些煤矿防雷装置投入使用后,在雷电天气过程中,电源避雷器、电气设备、电子地磅系统瓦斯检测系统一并被雷击损坏,造成不应当出现的重大经济损失。本文根据对事故了解的情况,针对小型煤矿在防雷装置设计、施工过程中出现的问题,介绍我们的一些看法,供设计、施工人员参考。

2技术规范

结合实际情况,正确理解和执行技术规范和规程的使用场合,是正确设计防雷装置的关键,在多数出现问题的地方,多是失误在上面两个方面。贵州的几乎所有小型煤矿地处山区,与移动基站类似,不同之处在于煤矿在山腰或山沟;煤矿地点人员较少,除下井矿工外,地面上仅有少数工作人员,地面设施主要有卷扬机、换气风机、瓦斯监测系统等。因此,根据实际情况,煤矿防雷装置设计、施工主要应参照下列技术规范: GB50057-94(2000)《建筑物防雷设计规范》、 GB7450-87《电子设备雷击保护导则》、 GB50054-95《低电压配电设计规范》,以及 99(03)D501—1 《建筑物防雷设施安装》、 03D501—4《接地装置安装》。

地面建筑物除炸药库可按一类防雷构筑物考虑外,其余建(构)筑物防雷类别应按第三类考虑。

考虑小型煤矿属于一个比较特殊行业,而且多在山中这样一个特殊地形环境,防雷措施设计还需依据《煤矿安全规程》相关规定,但在执行过程中由于技术人员使用的版本不一致,也会出现技术争论情况,如将“第九篇第六章—井下电气部分”接地要求错误用于地面电气接地要求,主要是技术人员使用简写本的《煤矿安全规程》而未使用完全版本的《煤矿安全规程》所致。

3 防雷措施设计出现的主要问题

煤矿开采场所,空气湿度相对大,地形、土质结构复杂,电阻率在500-2000Ω·m之间,雷电流泄放散流能力差,容易遭受雷击。煤矿动力电源基本都是架空线路,所以煤矿设备(配电柜、电器、绞车等)时常遭受雷击;排风口处风速快、排出的空气中含有大量的高浓度瓦斯、尘埃、氢气等,遭受雷电闪击后易引起瓦斯爆炸,造成重大安全事故;主井口地面金属轨道有利于直接雷电流导引闪击,可能导致雷电流引入矿井中引起瓦斯爆炸,2002年5月,我省习水县某煤矿发生的一起由于雷击引起200m深处爆炸事故。因此,我们认为防雷措施应加强直接雷击防护方面的考虑。

3.1 直击雷击防护

主要是井口和和小型炸药库的直击雷击防护。根据矿井口情况,设置一~二枝8---12 m高的独立避雷针,基本能对矿井口进行完全直击雷保护,从安全角度出发,避雷针接地电阻设计小于10Ω,针脚距针脚距离洞口边沿距离不小于3m,距离洞口人行道不小于3m。见图1、图2。

炸药库、雷管库直击雷防护,按照GB50057-94《建筑物防雷设计规范》第3.2.1条,必须安装单枝或多枝独立避雷针或架空避雷网,不能直接在炸药库上安装避雷带或避雷网格,库内严禁电缆线进出,避免感应雷击和雷电波侵入。

从了解的情况看,主要问题是:某些设计人员错误理解《煤矿安全规程》中井口部分轨道接地装置应采用“集中接地”条文,将避雷针接地装置与入井轨道接地装置相联,埋下可能发生跨步电压伤人事故隐患。《煤矿安全规程》中井口部分集中接地装置应是铁轨与进入矿井的电缆屏蔽层接地共用接地装置概念,不是与避雷针共用接地装置。

3.2 雷电波侵入防护措施

电源线路:矿山电源线路多采用两种供电系统,向井下供电电源为中性点不接地的IT系统,而且电压为660v50Hz高压交流电,通过双屏蔽层电缆送入矿井;矿井地面交流电源则为TN供电系统:380v/220v50Hz。同时电源线路上装有高灵敏度的RCD保护器(mA 级)。

电源线路出现问题最多的是设计人员未仔细进行现场考察,没有注意到矿山交流供电电压白天、晚上电压幅度差异较大而且供电电压为660v50Hz高压这两个特点,选取避雷器技术参数时,按照常规情况考虑,出现三相电源避雷器安装完成后,接通电源闸刀就跳闸或避雷器瞬间烧毁情况,不明情况的人还以为是避雷器质量不佳原因。针对煤矿这一特殊情况,设计人员在选取电源避雷器参数前,一定测试了解交流工作电压及电压波动范围情况,根据测试的参数向供货商特

别定做宽动态范围的SPD,以免出现重大事故。第一级避雷器通流容量不小于80kA,动作电压1000V—1500V,接地线截面积不小于10mm2,接地电阻不大于10Ω。电源线路最好采用二级或三级防护,向井下供电电缆在井口处金属外皮需作接地处理。

另一方面,小型矿山通常远离城区,从配电变压器到矿井区距离较远,而且电源线路均为没有绝缘胶皮的架空金属裸导线,易遭受直接雷击,设计人员基本未注意到这一特殊情况,因此运行过程中多次出现架空电源线路遭受直接雷击而造成避雷器、电气设备一并被击坏情况。

架空电源线路遭受直接雷击而产生的过电压,可由下式计算:

架空电源线路附近雷击时,线路出现雷电感应过电压数量可由下式计算:

:雷电流幅值,KA;S:雷击点与导线的距离,m;h:导线离地面的高度,m。

从上面两式可以看出,无论是雷电流直接击在架空电源线路上或附近地区闪击,线路上的雷电过电压脉冲幅度可以达上万伏,我们也就可以理解雷雨天气多次出现避雷器、电气设备一并被击坏情况了,这一情况类似高山移动基站某些重大雷击案例事故原因。

然而对电源线路全线架设避雷线成本过高,不过可以采取辅助措施,多次、逐级减小电源线路上到达矿井位置的雷击过电压脉冲能量。针对矿山电源线路供电系统特殊性,经过多次实践,采取如下辅助措施可以获得比较好的效果:架空电源线路入户前三杆(或线路全线隔杆)铁横担必须接地,同时在接地铁横担处对线路制作简易放电间隙,形

成多级衰减线路上雷电过电压;在土质较差的地方,接地电阻不易降低时,将电杆金属斜拉线一并连接。弱电信号线路

小型矿山的信号线路比较简单,主要有:瓦斯监测信号线路、电子地磅称重信号系统。线路应在地下电缆沟内穿金属管敷设,根据线路工作电压,安装符合要求的信号避雷器;其启动电压为工作电压的1.5倍,通流容量不小于10kA,接地线不小于6mm2。

对于电子地磅称重信号系统,由于其工作原理一直鲜有介绍,并且信号系统压力信号比较弱,信号避雷器制作也比较困难,所以一直只是在其电源线路上安装避雷器,而信号线路最多仅穿钢管敷设而已,故时有雷击事故发生;幸运的是:目前已有适合电子地磅称重信号系统的国产避雷器,参见图3。瓦斯监测信号系统防雷已有文章介绍,本文不再赘述。

3.3? 铁轨断接、接地

铁轨断接就是在铁轨入井口处串入绝缘段,预防直接雷电、雷电波沿铁轨入侵井洞内引起瓦斯爆炸,对每一根铁轨,在引入井(洞)之后,应至少选定三个自然接头,串入绝缘轨段,每个绝缘轨段长度不小于3cm。串入绝缘轨段的铁轨接头夹板、螺丝杆、帽,都要选用适当厚度的绝缘衬垫、套管、垫圈。绝缘段之间的距离,必须大于电机车、列车的总长度。两相邻绝缘段之间的铁轨与轨枕之间,必须加绝缘垫,保证轨~地之间绝缘良好,同时至少必须有一个绝缘轨段在井口内并保持干燥绝缘,否则会失去绝缘断接的作用。

铁轨接地洞外接地装置尽量沿洞口两边敷设,洞内部分接地装置距离

洞口不小于5m。

4.4静电防护

静电放电过程类似与雷电放电,只不过是一种微弱的雷电放电形式,当静电电流通过物体散放时,它在寻找一条对地阻抗低的通路使电位均衡而已,因此,设置相应保护措施,保证设备良好接地、地线连接良好就可完全避免静电放电造成的重大事故。

正常情况下人体的静电电压在500—1500V,使用交流电源的设备外壳,在使用过程中也会带有静电,特别在矿井中,有一定浓度的瓦斯,一旦出现静电放电,后果不堪设想。由于矿井内部设备接地、保护措施不属于项目考虑,故不予讨论。但如果使用电雷管时,电雷管库必须设置防静电装置和人体消静电装置,消静电装置接地电阻小于100Ω。

1.5小结

(1)进行煤矿防雷措施设计时,一定要仔细考察现场情况,在施工过程中发现存在不合理地方时,要及时反馈设计人员重新论证修改。设计规范主要以GB50057-94规范和《煤矿安全规程》相关规定为主,建筑物防雷按照第三类考虑,接地电阻建议提高为小于10Ω。

(2)如采用塔式避雷针,建议使用φ20元钢制作避雷针塔体,塔基础按照标准图集3D501—4《接地装置安装》中15m针高基础设计,避雷针用φ20×500mm规格材型,同时避雷针安装地点尽量避免在可能出现垮塌地点。

(3)即使在作了可靠轨道断接的情况下,井口避雷针接地建议采用

独立接地装置,最好不与主井口外地面轨道接地体连成综合接地体。(4)由于矿山采用高电压IT供电系统,最好架空电源线路每杆铁横担均接地并做简易放电间隙,多级衰减、逐级分流架空线路上超强的雷电过电压脉冲,尽量避免避雷器、电气设备一并被雷击损坏的现象出现。

参考文献

1煤矿安全规程?

2GB50057-94《建筑物防雷设计规范》

相关文档
最新文档