相似三角形模型分析大全

合集下载

模型05 相似三角形中的常见五种基本模型(解析版)-中考数学解题大招复习讲义

模型05 相似三角形中的常见五种基本模型(解析版)-中考数学解题大招复习讲义

模型探究相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型五、手拉手相似模型例题精讲考点一、A字相似模型【例1】.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.变式训练【变式1-1】.如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若,则=.解:∵,∴,∵DE∥BC,∴△ADE∽△ABC,∴,故答案为.【变式1-2】.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM并延长,交BC的延长线于D,则=__________.解:如图,过C点作CP∥AB,交DE于P,∵PC∥AE,∴△AEM∽△CPM,∴=,∵M是AC的中点,∴AM=CM,∴PC=AE,∵AE=AB,∴CP=AB,∴CP=BE,∵CP∥BE,∴△DCP∽△DBE,∴==,∴BD=3CD,∴BC=2CD,即=2.【变式1-3】.如图,在△ABC中,点D在边AB上,AD=9,BD=7.AC=12.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)若AF=8,求AE的长度.解:(1)∵AD=9,BD=7,AC=12,∴AB=AD+BD=16,∵==,==,∴=,∵∠BAC=∠CAD,∴△ACD∽△ABC;(2)由(1)可知,△ACD∽△ABC,∴∠ABE=∠ACF,∵AE平分∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,即=,∴AE==.考点二、8字与反8字相似模型【例2】.如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求的值解:∵AG∥BD,∴△AFG∽△BFD,∴=,∵,∴CD=BD,∴,∵AG∥BD,∴△AEG∽△CED,∴.变式训练【变式2-1】.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.【变式2-2】.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.14解:如图,∵四边形ABCD是平行四边形,∵EA∥BC,∴△AEF∽△CBF,∵AE=DE=AD,CB=AD,∴====,∴AF=AC,EF=BF,=S△ABC,∴S△ABF=S△ABF=×S△ABC=S△ABC,∴S△AEF=2,∵S△AEF=6S△AEF=6×2=12,故选:C.∴S△ABC【变式2-3】.如图,锐角三角形ABC中,∠A=60°,BE⊥AC于E,CD⊥AB于D,则DE:BC=1:2.解:如图,∵在△ADC中,∠A=60°,CD⊥AB于点D,∴∠ACD=30°,∴=.又∵在△ABE中,∠A=60°,BE⊥AC于E,∴∠ABE=30°,∴=,∴=.又∵∠A=∠A,∴△ADE∽△ACB,∴DE:BC=AD:AC=1:2.故答案是:1:2.考点三、AX型相似模型(A字型及X字型两者相结合)【例3】.如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为()A.6B.9C.12D.13.5解:∵点D和E分别是边AB和AC的中点,∴O点为△ABC的重心,∴OB=2OE,=2S△DOE=2×1=2,∴S△BOD=3,∴S△BDE∵AD=BD,=2S△BDE=6,∴S△ABE∵AE=CE,=2S△ABE=2×6=12.故选C.∴S△ABC变式训练【变式3-1】.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,=1,则S△ABC=24.若S△EFG解:方法一:∵DE是△ABC的中位线,∴D、E分别为AB、BC的中点,如图过D作DM∥BC交AG于点M,∵DM∥BC,∴∠DMF=∠EGF,∵点F为DE的中点,∴DF=EF,在△DMF和△EGF中,,∴△DMF≌△EGF(AAS),=S△EGF=1,GF=FM,DM=GE,∴S△DMF∵点D为AB的中点,且DM∥BC,∴AM=MG,∴FM=AM,=2S△DMF=2,∴S△ADM∵DM为△ABG的中位线,∴=,=4S△ADM=4×2=8,∴S△ABG=S△ABG﹣S△ADM=8﹣2=6,∴S梯形DMGB=S梯形DMGB=6,∴S△BDE∵DE是△ABC的中位线,=4S△BDE=4×6=24,∴S△ABC方法二:连接AE,∵DE是△ABC的中位线,∴DE∥AC,DE=AC,∵F是DE的中点,∴=,∴==,=1,∵S△EFG=16,∴S△ACG∵EF∥AC,∴==,∴==,=S△ACG=4,∴S△AEG=S△ACG﹣S△AEG=12,∴S△ACE=2S△ACE=24,故答案为:24.∴S△ABC【变式3-2】.如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB的长;(2)求FG的长.解:(1)∵EG∥AD,∴△BAD∽△BEF,∴=,即=,∴EB=3.(2)∵EG∥∥BC,∴△AEG∽△ABC,∴=,即=,∴EG=,∴FG=EG﹣EF=.【变式3-3】.如图,已知AB∥CD,AC与BD相交于点E,点F在线段BC上,,.(1)求证:AB∥EF;:S△EBC:S△ECD.(2)求S△ABE(1)证明:∵AB∥CD,∴==,∵,∴=,∴EF∥CD,∴AB∥EF.(2)解:设△ABE的面积为m.∵AB∥CD,∴△ABE∽△CDE,∴=()2=,=4m,∴S△CDE∵==,=2m,∴S△BEC:S△EBC:S△ECD=m:2m:4m=1:2:4.∴S△ABE模型四、子母型相似模型【例4】.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.证明:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠PDB=120°,∵∠APB=120°,∴∠APC+∠BPD=60°,∵∠CAP+∠APC=60°∴∠BPD=∠CAP,∴△ACP∽△PDB;(2)由(1)得△ACP∽△PDB,∴,∵△PCD是等边三角形,∴PC=PD=CD,∴,∴CD2=AC•BD.变式训练【变式4-1】.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.D.解:在△ABP和△ACB中,∠BAP=∠CAB,∴当∠ABP=∠C时,满足两组角对应相等,可判断△ABP∽△ACB,故A正确;当∠APB=∠ABC时,满足两组角对应相等,可判断△ABP∽△ACB,故B正确;当时,满足两边对应成比例且夹角相等,可判断△ABP∽△ACB,故C正确;当时,其夹角不相等,则不能判断△ABP∽△ACB,故D不正确;故选:D.【变式4-2】.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC+∠BDC=180°,AD=2,CD=4,则AB的长为()A.3B.4C.D.2解:∵∠ABC+∠BDC=180°,∠ADB+∠BDC=180°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABC∽△ADB,∴,∵AD=2,CD=4,∴,∴AB2=12,∴AB=2或﹣2(不合题意,舍去),故选:D.【变式4-3】.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI==2.故答案是2.模型五、手拉手相似模型【例5】.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为.解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案为:.变式训练【变式5-1】.如图,在△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE.求证:(1)△BAC∽△DAE;(2)△BAD∽△CAE.证明:(1)∵∠BAC=∠DAE,∠ABC=∠ADE.∴△BAC∽△DAE;(2)∵△BAC∽△DAE,∴,∴,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.【变式5-2】.如图,点D是△ABC内一点,且∠BDC=90°,AB=2,AC=,∠BAD=∠CBD=30°,AD=.解:如图,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴=,∵AC=,∴BM=3,在Rt△ABM中,AM===,∴AD=AM=.【变式5-3】.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k的式子表示)解:如图中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=,故答案为:.实战演练1.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.C.D.解:A、∵EF∥AB,∴=,∵DE∥BC,∴=,∴=,故A正确,B、易知△ADE∽△EFC,∴=,∴=,故B正确.C、∵△CEF∽△CAB,∴=,∴=,故C正确.D、∵DE∥BC,∴=,显然DE≠CF,故D错误.故选:D.2.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD===,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.3.如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE∥HC ∥GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?()A.CF B.FD C.BE D.EC解:∵AH=8,HG=5,GD=4,∴AD=8+5+4=17,∵四边形ABCD为菱形,∴BC=CD=AD=17,∵AE∥HC,AD∥BC,∴四边形AECH为平行四边形,∴CE=AH=8,∴BE=BC﹣CE=17﹣8=9,∵HC∥GF,∴=,即=,解得:DF=,∴FC=17﹣=,∵>9>8>,∴CF长度最长,故选:A.4.如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP 交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.18解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴=2,∴EM=2BC=2×6=12,即EP+BP=12.故选:C.5.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′等于()A.B.2C.D.解:过D作DE⊥BC于E,则BE=AD=2,DE=2,设B′C=BC=x,则DC=x,∴DC2=DE2+EC2,即2x2=28+(x﹣2)2,解得:x=4(负值舍去),∴BC=4,AC=,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴∴△A′CA∽△B′CB,∴,即∴AA′=,故选:A.6.如图,已知,△ABC中边AB上一点P,且∠ACP=∠B,AC=4,AP=2,则BP=6.解:∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴AC2=AP•AB,即AB=AC2÷AP=16÷2=8,∴BP=AB﹣AP=6.7.如图,在▱ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是36.解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,=4,=()2=,∵S△AEF=36,故答案为36.∴S△BCE8.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8.解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.9.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=.解:∵将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,∴BD=AB,BC=BE,∠ABD=∠CBE,∠DEB=∠ACB,∴∠D=∠BAC=∠BAD=(180°﹣∠ABD),∴∠BEC=(180°﹣∠CBE),∴∠D=∠BEC,∵∠ABC=∠DBE=90°,∴∠DEB+∠BEC=90°,∴∠AEC=90°,∵∠AGB=∠EGC,∴∠ACE=∠ABE,∵在Rt△ABC中,AB=3,BC=4,∴AC=DE=5,过B作BH⊥DE于H,则DH=AH,BD2=DH•DE,∴DH==,∴AD=,∴AE=DE﹣AD=,∴sin∠ABE=sin∠ACE===,故答案为:.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=30°,在Rt△ACD中,∠ACD=90°,∠DAC=30°,AC=6,∴CD=2,在Rt△ACB中,∠ACB=90°,∠BAC=60°,AC=6,∴BC=6,∴BD=BC﹣CD=4,∵DE∥CA,∴,∴DE=4;(2)如图,∵点M是线段AD的中点,∴DM=AM,∵DE∥CA,∴,∴DF=AG,∵DE∥CA,∴,∴,∵BD=4,BC=6,DF=AG,∴.11.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC 于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求ME的长.解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,∵=,AF=2,∴,解得x=,∴BE=BF=,∵=,且CE=AF,∴==,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴,∴=,且∠ACB=∠ACB∴△ABC∽△MEC∴∠CAB=∠CME=∠ACB∴ME=CE=212.[问题背景](1)如图①,已知△ABC∽△ADE,求证:△ABD∽△ACE.[尝试应用](2)如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,①填空:=1;②求的值.(1)证明:如图①,∵△ABC∽△ADE,∴∠BAC=∠DAE,=,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,=,∴∠BAD=∠CAE,∴△ABD∽△ACE.(2)解:①如图②,∵∠DAE=90°,∠ADE=30°,∴DE=2AE,∴AD===AE,∵=,∴AD=BD,∴AE=BD,∴=1,故答案为:1.②如图②,连接CE,∵∠BAC=∠DAE=90°,∠ABC=∠ADE,∴△BAC∽△CAE,∴=,∴=,∵∠BAD=∠CAE=90°﹣∠CAD,∴△BAD∽△CAE,∴∠ABC=∠ACE,∴∠ADE=∠ACE,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴=,由①得AD=AE,AD=BD,∴==,∴BD=CE,∴AD=×CE=3CE,∴=3,∴=3,∴的值是3.13.如图,在正方形ABCD中,AB=4,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于点M、N,连接EN、EF.(1)求证:△ABN∽△MBE;(2)求证:BM2+ND2=MN2;(3)①求△CEF的周长;②若点G、F分别是EF、CD的中点,连接NG,则NG的长为.(1)证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=90°,∴∠ABD=∠ADB=45°,∴∠ABN=∠MBE=45°,∠BME=∠ABD+∠BAM=45°+∠BAM,∵∠EAF=45°,∴∠BAN=∠EAF+∠BAM=45°+∠BAM,∴∠BAN=∠BME,∴△ABN∽△MBE.(2)证明:如图1,将△ADN绕点A顺时针旋转90°得到△ABH,连接MH,∴∠BAH=∠DAN,AH=AN,HB=ND,∵∠MAN=∠EAF=45°,∴∠MAH=∠BAH+∠BAM=∠DAN+∠BAM=45°,∴∠MAH=∠MAN,∵AM=AM,∴△MAH≌△MAN(SAS),∴MH=MN,∵∠ABH=∠ADN=45°,∴∠MBH=∠ABD+∠ABH=90°,∴BM2+HB2=MH2,∴BM2+ND2=MN2.(3)解:①如图2,将△ADF绕点A顺时针旋转90°得到△ABK,∴AK=AF,∠BAK=∠DAF,BK=DF,∠ABK=∠ADF=90°,∴∠ABK+∠ABE=180°,∴点K、点B、点E在同一条直线上,∵∠EAK=∠BAE+∠BAK=∠BAE+∠DAF=45°,∴∠EAK=∠EAFM,∵AE=AE,∴△EAK≌△EAF(SAS),∴EK=EF,∴BE+DF=BE+BK=EK=EF,∵CB=CD=AB=4,∴CE+EF+CF=CE+BE+DF+CF=CB+CD=4+4=8,∴△CEF的周长是8.②如图2,∵F是CD的中点,∴CF=DF=CD=2,∵∠C=90°,∴CF2+EF2=CE2,∵EF=BE+DF=BE+2,CE=CB﹣BE=4﹣BE,∴22+(4﹣BE)2=(BE+2)2,解得BE=,∴EF=+2=,∵∠MBE=∠MAN=45°,∠BME=∠AMN,∴△BME∽△AMN,∴=,∴=,∴∠AMB=∠NME,∴△AMB∽△NME,∴∠NEM=∠ABM=45°,∴∠ENF=∠MAN+∠NEM=90°,∵G是EF的中点,∴NG=EF=×=,故答案为:.14.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴在Rt△ABM中,AM===2,∴AD=.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的数量关系BG=DE及所在直线的位置关系BG⊥DE;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),则线段BG、线段DE的数量关系=及所在直线的位置关系BG ⊥DE;(3)在第(2)题图5中,连接DG、BE,且a=4,b=3,k=,直接写出BE2+DG2的值为.解:(1)①猜想:BG ⊥DE ,BG =DE ;故答案为:BG =DE ,BG ⊥DE ;②结论成立.理由:如图2中,∵四边形ABCD 和四边形CEFG 是正方形,∴BC =DC ,CG =CE ,∠BCD =∠ECG =90°,∴∠BCG =∠DCE ,∴△BCG ≌△DCE (SAS ),∴BG =DE ,∠CBG =∠CDE ,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG ⊥DE .(2)∵AB =a ,BC =b ,CE =ka ,CG =kb ,∴==,又∵∠BCG =∠DCE ,∴△BCG ∽△DCE ,∴∠CBG =∠CDE ,==,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG⊥DE.故答案为:=,BG⊥DE.(3)连接BE、DG.根据题意,得AB=4,BC=3,CE=2,CG=1.5,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+16+2.25+4=.。

相似三角形模型分析大全(非常全面,经典)

相似三角形模型分析大全(非常全面,经典)

相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.ACDEB相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

求证:∠=︒GBM 90GMF EHDCBA5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DCB上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高,△ABC和△BDE的面积分别是27和3,DE=62,求:点B到直线AC的距离。

相似三角形模型分析报告大全

相似三角形模型分析报告大全

第一部分 相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行)(三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.ACDEB相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

相似三角形模型分析大全

相似三角形模型分析大全

.第一部分相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景.(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1、已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例2、已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.点评:本题考查了等腰三角形的性质、等腰三角形三线合一定理、平行线的性质、相似三角形的判定和性质.关键是能根据所证连接CE 相关练习:1、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:OE OA OC ⋅=2.2、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.3、已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED解答:证明:(1)∵CE⊥AB于E,BF⊥AC于F,∴∠AFB=∠AEC,∠A为公共角,∴△ABD∽△ACE(两角对应相等的两个三角形相似).(2)由(1)得AB:AC=AD:AE,∠A为公共角,∴△ADE∽△ABC(两边对应成比例且夹角相等的两个三角形相似)(3)∵△ADE∽△ABC∴AD:AB=DE:BC又∵∠A=60°∴BC=2ED共享型相似三角形1、△ABC是等边三角形,D、B、C、E在一条直线上,∠DAE=120,已知BD=1,CE=3,,求等边三角形的边长. DECD如图∵△ABC 是等边三角形 ∴∠ABC=∠BAC=∠ACB=60° 又∵DBCE 在一条直线上∴∠ADB+∠DAB=∠CAE+∠AEC=∠ABC=60° ∵∠DAE=120°∴∠DAB+∠CAE=∠DAE-∠BAC=120°-60°=60° 由上可知∠ADB=∠CAE ,∠DAB=∠CAE ∴△DAB ∽△AEC∵三角形相似对应边成比例 ∴BD /AC=AB /CE ∵BD=1,CE=3 ∴AB=AC=√32、已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°.求证:(1)△ABE ∽△ACD ; (2)CD BE BC ⋅=22.C A解答:证明:(1)在Rt △ABC 中, ∵AB=AC ,∴∠B=∠C=45°. (1分)∵∠BAE=∠BAD+∠DAE ,∠DAE=45°,∴∠BAE=∠BAD+45°.(1分)而∠ADC=∠BAD+∠B=∠BAD+45°,(1分)∴∠BAE=∠CDA.(1分)∴△ABE∽△DCA.(2分)(2)由△ABE∽△DCA,得.(2分)∴BE•CD=AB•AC.(1分)而AB=AC,BC2=AB2+AC2,∴BC2=2AB2.(2分)∴BC2=2BE•CD.(1分)点评:此题考查了相似三角形的判定和性质,特别是与勾股定理联系起来综合性很强,难度较大.一线三等角型相似三角形例1:如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°(1)求证:△BDE∽△CFD(2)当BD=1,FC=3时,求BE证明:(1)∵△ABC是等边三角形∴∠B=∠C=60°∵∠EDF=60°∴∠CDF+∠EDB=180°-∠EDF=120°∠BED+∠EDB=180°-∠B=120°∴∠CDF=∠BED∵∠B=∠C∴△BDE相似△CFD2、∵BD=1∴CD=BC-BD=6-1=5∵△BDE相似△CFD∴BE/CD=BD/CFBE/5=1/3 BE=5/3例2、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足∠BPC =∠A . ①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.CBADCBA D解答:解:(1)∵ABCD 是梯形,AD ∥BC ,AB=DC . ∴∠A=∠D∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A ∴∠ABP=∠DPC , ∴△ABP ∽△DPC ∴,即:解得:AP=1或AP=4.(2)①由(1)可知:△ABP ∽△DPQ ∴,即:,∴(1<x <4).②当CE=1时,AP=2或.点评:本题结合梯形的性质考查二次函数的综合应用,利用相似三角形得出线段间的比例关系是求解的关键.例3:如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长1.证明:∵AB=CD.∴梯形ABCD 为等腰梯形,∠B=∠C;又∠EMF=∠B,则:∠CMF=180度-∠EMF-∠BME=180度-∠B-∠BME=∠BEM. ∴⊿CMF ∽⊿BEM,MF/EM=CM/BE=BM/BE. ∵MF/EM=BM/BE;∠EMF=∠B. ∴△MEF ∽△BEM.2.解:当BM=BE=3时:MF/ME=BM/BE=1,则MF=ME.∴EF ∥BC;又BE=3=AB/2.故EF 为梯形的中位线,EF=(AD+BC)/2=9/2; 当ME=BM=3时:∠MEB=∠B=∠C=∠FMC.连接DM.BM=BC/2=3=AD,又BM 平行BM,则四边形ABMD 为平行四边形. ∴∠DMC=∠B=∠FMC,即F 与D 重合,此时EF=CD=6. 3.解:∵EF ⊥CD;∠CFM=∠BME=∠EFM. ∴∠EFM=45°=∠BME.作EG ⊥BM 于G,则EG=GM;作AH ⊥BM 于H.BH=(BC-AD)/2=3/2,AH=√(AB ²-BH ²)=3√15/2. 设EG=GM=X,则BG=3-X.BG/BH=EG/AH,(3-X)/(3/2)=X/(3√15/2),X=(45-3√15)/14. BE/BA=EG/AH,即BE/6=[(45-3√15)/14]/(3√15/2),BE=(6√15-6)/7.练习:如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N , (1)写出图中与BEF ∆相似的三角形; (2)证明其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (4)若1AE =,试求GMN ∆的面积.一线三直角型相似三角形例:已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,(1)求y 关于x 的函数关系式,并写出x 的取值范围。

相似三角形12种基本模型证明

相似三角形12种基本模型证明

相似三角形12种基本模型证明相似三角形是指拥有相同形状但不同大小的三角形。

在三角形中,如果它们的对应角度相等,那么它们就是相似三角形。

相似三角形一般用比例关系表示。

下面是相似三角形12种基本模型的证明:1. AAA相似模型如果两个三角形的三个角分别相等,则它们是相似的。

证明:三角形的三个角之和为180度。

如果两个三角形的三个角分别相等,那么它们的三个角和也相等,即这两个三角形的三个角和相等,因此它们是相似的。

2. AA相似模型如果两个三角形中有两个对应角相等,则它们是相似的。

证明:假设两个三角形的对应角分别为A和A’,B和B’,C和C’。

由于A和A’相等,B和B’相等,那么它们的第三个对应角C和C’也必须相等。

因此,这两个三角形的三个角分别相等,它们是相似的。

3. SSS相似模型如果两个三角形的三条边分别成比例,则它们是相似的。

证明:假设两个三角形的三条边为a, b, c和a’, b’, c’。

由于它们是成比例的,即a/a’= b/b’= c/c’,那么它们的三边比例相等,即它们是相似的。

4. SAS相似模型如果两个三角形中有两条边成比例,且夹角相等,则它们是相似的。

证明:假设两个三角形的两条边为a, b和a’, b’,夹角为C和C’。

由于它们是成比例的,即a/a’= b/b’,那么它们的三边比例相等。

又由于它们的夹角相等,即C = C’,因此它们是相似的。

5. ASA相似模型如果两个三角形中有两个角相等,且它们对应的两条边成比例,则它们是相似的。

证明:假设两个三角形的两个对应角分别为A和A’,B和B’,且对应的两条边分别为a, a’和b, b’。

由于它们的两条边成比例,即a/a’= b/b’,那么它们的三边比例相等。

又由于它们的两个角相等,即A = A’,因此它们是相似的。

6. HL相似模型如果两个三角形中有一条边和一条斜边分别成比例,且这两条边夹角相等,则它们是相似的。

证明:假设两个三角形的一条边为b,斜边为c,且夹角为C,另一个三角形的一条边为b’,斜边为c’,且夹角为C’。

初二 超经典相似三角形模型分析大全

初二  超经典相似三角形模型分析大全

相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GA BCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形:例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NBACDEB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

求证:∠=︒GBM 90GMF EHDCA5.已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.ABPD E双垂型:1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=62,求:点B 到直线AC 的距离.C共享型相似三角形:1、△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE=︒120,已知BD=1,CE=3,,求等边三角形的边长.2、已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°.求证:(1)△ABE ∽△ACD ; (2)CD BE BC ⋅=22.CA一线三等角型相似三角形:例1:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD(2)当BD =1,FC =3时,求BE例2:(1)在ABC ∆中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出函数的定义域;(2)正方形ABCD 的边长为5(如下图),点P 、Q 分别在直线..CB 、DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ 。

(完整版)相似三角形模型分析大全(精).doc

(完整版)相似三角形模型分析大全(精).doc

第一部分相似三角形知识要点大全知识点 1. .相似图形的含义把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读 :( 1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.( 2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.( 3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.例 1.放大镜中的正方形与原正方形具有怎样的关系呢?分析:要注意镜中的正方形与原正方形的形状没有改变. 解:是相似图形。

因为它们的形状相同,大小不一定相同.例 2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角 80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是 100°的两个等腰三角形,其中一定是相似图形的是_________( 填序号 ) .解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形, 而圆、正多边形、 顶角为 100°的等腰三角形的形状不唯一, 它们都相似. 答案:②⑤⑥.知识点 2.比例线段对于四条线段 a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a c(或a:b=c:d )那么这四条线段叫做成比例线段,简称比例线段.bd解读 :( 1)四条线段 a,b,c,d成比例,记作a c(或 a:b=c:d ),不能写成其他形式,即比例线段b d有顺序性.( 2)在比例式a c(或 a:b=c:d )中,比例的项为 a,b,c,d,其中 a,d 为比例外项, b,c 为比例内项, dbd是第四比例项.( 3)如果比例内项是相同的线段,即a bb或 a:b=b:c ,那么线段 b 叫做线段和的比例中项。

c(4) 通常四条线段 a,b,c,d 的单位应一致,但有时为了计算方便, a 和 b 统一为一个单位,c 和d 统一为另一个单位也可以,因为整体表示两个比相等.例 3.已知线段 a=2cm, b=6mm, 求 a. b分析:求a即求与长度的比,与的单位不同,先统一单位,再求比.b例 4.已知 a,b,c,d成比例,且 a=6cm,b=3dm,d= 3dm ,求 c 的长度.2分析:由 a,b,c,d成比例,写出比例式a:b=c:d ,再把所给各线段a,b,,d统一单位后代入求c .知识点 3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读 :( 1)正确理解相似多边形的定义,明确“对应”关系. ( 2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例 5.若四边形 ABCD 的四边长分别是 4, 6,8, 10,与四边形 ABCD 相似的四边形 A 1B 1C 1D 1 的最大边长为 30,则四边形 A 1B 1C 1D 1 的最小边长是多少?分析:四边形 ABCD 与四边形 A 1B 1C 1D 1 相似,且它们的相似比为对应的最大边长的比,即为1,再根据相似3多边形对应边成比例的性质,利用方程思想求出最小边的长. 知识点 4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读 :( 1)相似三角形是相似多边形中的一种;( 2)应结合相似多边形的性质来理解相似三角形; ( 3)相似三角形应满足形状一样,但大小可以不同; ( 4)相似用“∽”表示,读作“相似于” ;( 5)相似三角形的对应边之比叫做相似比.注意 :①相似比是有顺序的,比如△ABC ∽△ A 1B 1C 1,相似比为 k, 若△ A 1B 1C 1∽△ABC ,则相似比为1。

相似三角形的基本模型归纳总结

相似三角形的基本模型归纳总结

相似三角形的基本模型归纳总结
相似三角形是指拥有相似的形状但大小不同的三角形。

在相似三角形中,对应角度相等,而对应边长之间存在比例关系。

以下是一些基本的相似三角形模型:
1. 比例模型:在两个相似三角形中,对应边长之比相等。

例如,若∆ABC与∆DEF相似,则有AB/DE = BC/EF = AC/DF。

2. 三角形高度模型:在两个相似三角形中,对应高度之比等于对应边长之比。

例如,若∆ABC与∆DEF相似,则有h_1/h_2 = AB/DE = BC/EF = AC/DF,其中h_1和h_2分别为∆ABC和
∆DEF的高度。

3. 角平分线模型:在两个相似三角形中,对应角的平分线所延伸的比例相等。

例如,若∆ABC与∆DEF相似,角A和角D相等,则有BD/CE = AB/DE = AC/DF。

4. 底角模型:在两个相似三角形中,底角对应相等。

例如,若∆ABC与∆DEF相似,并且∠A = ∠D,则有∠B = ∠E和∠C
= ∠F。

5. 周长模型:在两个相似三角形中,对应边长之比等于相似三角形的周长比。

例如,若∆ABC与∆DEF相似,则有
(A+B+C)/(D+E+F) = AB/DE = BC/EF = AC/DF。

这些是常见的相似三角形模型,可以根据具体问题选择适合的模型进行求解。

但需要注意的是,在相似三角形中,只有形状
相似,而边长比例相等,因此,对于三角形中角度的求解通常更加重要。

初二--超经典相似三角形模型分析大全

初二--超经典相似三角形模型分析大全

相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GA BCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形:例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NBACDEB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

求证:∠=︒GBM 90GMF EHDCA5.已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.ABP D E双垂型:1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=62,求:点B 到直线AC 的距离。

相似三角形中的常见五种基本模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

相似三角形中的常见五种基本模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型探究相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型五、手拉手相似模型考点一、A 字相似模型【例1】.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .➢变式训练 【变式1-1】.如图,在△ABC 中,DE ∥BC ,AH ⊥BC 于点H ,与DE 交于点G .若,则= .例题精讲【变式1-2】.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM 并延长,交BC的延长线于D,则=__________.【变式1-3】.如图,在△ABC中,点D在边AB上,AD=9,BD=7.AC=12.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)若AF=8,求AE的长度.考点二、8字与反8字相似模型【例2】.如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求的值➢变式训练【变式2-1】.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.【变式2-2】.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.14【变式2-3】.如图,锐角三角形ABC中,∠A=60°,BE⊥AC于E,CD⊥AB于D,则DE:BC=.考点三、AX型相似模型(A字型及X字型两者相结合)【例3】.如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为()A.6B.9C.12D.13.5➢变式训练【变式3-1】.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,若S△EFG=1,则S△ABC=.【变式3-2】.如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB的长;(2)求FG的长.【变式3-3】.如图,已知AB∥CD,AC与BD相交于点E,点F在线段BC上,,.(1)求证:AB∥EF;(2)求S△ABE:S△EBC:S△ECD.模型四、子母型相似模型【例4】.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.➢变式训练【变式4-1】.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.D.【变式4-2】.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC+∠BDC=180°,AD=2,CD=4,则AB的长为()A.3B.4C.D.2【变式4-3】.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB 的最小值为.模型五、手拉手相似模型【例5】.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为.➢变式训练【变式5-1】.如图,在△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE.求证:(1)△BAC∽△DAE;(2)△BAD∽△CAE.【变式5-2】.如图,点D是△ABC内一点,且∠BDC=90°,AB=2,AC=,∠BAD=∠CBD=30°,AD=.【变式5-3】.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k的式子表示)实战演练1.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.C.D.2.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:3.如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE∥HC ∥GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?()A.CF B.FD C.BE D.EC4.如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP 交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.185.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′等于()A.B.2C.D.6.如图,已知,△ABC中边AB上一点P,且∠ACP=∠B,AC=4,AP=2,则BP=.7.如图,在▱ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是.8.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.9.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.11.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC 于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求ME的长.12.[问题背景](1)如图①,已知△ABC∽△ADE,求证:△ABD∽△ACE.[尝试应用](2)如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,①填空:=;②求的值.13.如图,在正方形ABCD中,AB=4,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于点M、N,连接EN、EF.(1)求证:△ABN∽△MBE;(2)求证:BM2+ND2=MN2;(3)①求△CEF的周长;②若点G、F分别是EF、CD的中点,连接NG,则NG的长为.14.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的数量关系BG=DE及所在直线的位置关系BG⊥DE;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a ≠b,k>0),则线段BG、线段DE的数量关系=及所在直线的位置关系BG ⊥DE;(3)在第(2)题图5中,连接DG、BE,且a=4,b=3,k=,直接写出BE2+DG2的值为.。

相似三角形模型分析大全(精)

相似三角形模型分析大全(精)

第一部分相似三角形知识要点大全知识点1..相似图形的含义把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.例1.放大镜中的正方形与原正方形具有怎样的关系呢?分析:要注意镜中的正方形与原正方形的形状没有改变.解:是相似图形。

因为它们的形状相同,大小不一定相同.例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号).解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a cb d=(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.解读:(1)四条线段a,b,c,d成比例,记作a cb d=(或a:b=c:d),不能写成其他形式,即比例线段有顺序性.(2)在比例式a cb d=(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比例内项,d是第四比例项.(3)如果比例内项是相同的线段,即a bb c=或a:b=b:c,那么线段b叫做线段和的比例中项。

(4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等.例3.已知线段a=2cm, b=6mm, 求ab.分析:求ab即求与长度的比,与的单位不同,先统一单位,再求比.例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=32dm,求c的长度.分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少?分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比,即为13,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边的长. 知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种; (2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同; (4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比.注意:①相似比是有顺序的,比如△ABC ∽△A 1B 1C 1,相似比为k,若△A 1B 1C 1∽△ABC ,则相似比为1k。

(完整版)相似三角形模型分析大全(非常全面-经典)

(完整版)相似三角形模型分析大全(非常全面-经典)

相似三角形模型分析大全1、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(6)双垂型:2、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展B一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:.OE OA OC ⋅=2例2:已知:如图,△ABC 中,点E 在中线AD 上, .ABC DEB ∠=∠求证:(1); (2).DA DE DB ⋅=2DAC DCE ∠=∠ACDEB例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:.EG EF BE ⋅=2相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:.FC FB FD ⋅=22、已知:AD 是Rt△ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME∽△NMD; (2)ND =NC·NB23、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。

求证:EB·DF=AE·DB⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。

4.在∆ABC中,AB=AC,高AD与BE交于H,EF BCGBM90求证:∠=︒5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高A(第25题图)求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=6,求:点B 到直线AC 的距离。

相似三角形典型模型及例题

相似三角形典型模型及例题

1:相似三角形模型一:相似三角形判定的基本模型(一)A字型、反A字型(斜A字型)(平行)(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:(五)一线三直角型:三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

(六)双垂型:二:相似三角形判定的变化模型一线三等角的变形一线三直角的变形2:相似三角形典型例题(1)母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

相似三角形模型分析大全(精)

相似三角形模型分析大全(精)

(第 25 题图)
双垂型
1、如图,在△ABC 中,∠A=60°,BD、CE 分别是 AC、AB 上的高 求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED
word 范文
A
E D
B
C
.
2、如图,已知锐角△ABC,AD、CE 分别是 BC、AB 边上的高,△ABC 和△BDE 的面积分别是 27 和 3,DE=6 2 ,
求:点 B 到直线 AC 的距离。
A
E
B
D
C
共享型相似三角形 1、△ABC 是等边三角形,D、B、C、E 在一条直线上,∠DAE=120 ,已知 BD=1,CE=3,,求等边三角形的边
长.
A
D
B
C
E
word 范文
.
2、已知:如图,在 Rt△ ABC 中,AB=AC,∠DAE=45°.
求证:(1)△ ABE∽△ ACD;
例 1.放大镜中的正方形与原正方形具有怎样的关系呢? 分析:要注意镜中的正方形与原正方形的形状没有改变. 解:是相似图形。因为它们的形状相同,大小不一定相同. 例 2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角 80°的两个等腰三角 形;⑤两个正五边形;⑥有一个内角是 100°的两个等腰三角形,其中一定是相似图形的是_________(填 序号). 解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三 角形都属于形状不唯一的图形,而圆、正多边形、顶角为 100°的等腰三角形的形状不唯一,它们都相似.答 案:②⑤⑥. 知识点 2.比例线段
角形是相似三角形的特殊情况。若两个三角形全等,则这两个三角形相似;若两个三

相似三角形的九大模型

相似三角形的九大模型

相似三角形的九大模型相似三角形是几何学中一类重要的图形,它具有一些独特的性质和模型。

这些模型可以用来解决各种实际问题,从简单的长度关系到复杂的空间结构。

本文将介绍相似三角形的九大模型,并给出相应的例子和应用场景。

相似三角形是指两个三角形形状相同,大小成比例。

相似三角形的对应边成比例,对应角相等。

相似三角形还有一些其他的性质,例如,相似三角形的中线、角平分线、高的比等于它们的相似比。

平行线模型:两个三角形分别在两条平行线上,它们的对应边平行且成比例。

这种模型经常用于解决一些与长度和角度相关的问题。

共顶点模型:两个三角形有一个共同的顶点,且它们的对应边成比例。

这种模型常用于证明两个三角形相似,以及求解一些角度问题。

角平分线模型:一个三角形的角平分线将这个三角形分成两个小的相似三角形。

这种模型可以用于证明两个三角形相似,以及求解一些角度问题。

平行四边形模型:一个平行四边形被它的两条对角线分成四个小的相似三角形。

这种模型可以用于解决一些与面积和长度相关的问题。

位似模型:一个相似变换将一个三角形映射到另一个三角形,这种变换称为位似变换。

这种模型可以用于解决一些与长度、角度和面积相关的问题。

旋转模型:一个三角形绕着它的一个顶点旋转一定的角度后得到另一个三角形,这两个三角形是相似的。

这种模型可以用于解决一些与角度和长度相关的问题。

镜像模型:一个三角形沿一条直线翻折后得到另一个三角形,这两个三角形是相似的。

这种模型可以用于解决一些与长度和角度相关的问题。

传递模型:如果一个三角形与另一个三角形相似,那么这个三角形的每一个部分都与另一个三角形的对应部分相似。

这种模型可以用于解决一些与长度和角度相关的问题。

扩展模型:如果一个三角形与另一个三角形相似,那么这个三角形的每一个部分都与另一个三角形的对应部分成比例。

这种模型可以用于解决一些与长度和角度相关的问题。

相似三角形的九创作者是几何学中一类重要的模型,它们具有广泛的应用价值。

相似三角形模型分析和典型例题讲解大全good

相似三角形模型分析和典型例题讲解大全good

第一部分 相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行)(三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC D E B2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的基本模型
(一)A 型、反A 型(斜A 型)
A
B
C
D
E
(平行)
C
B
A D
E
(不平行)
自己在《课堂精练》中找几道相应的题目。

例1:(2008湘潭市) 如图,已知D 、E 分别是的△ABC 的AB 、 AC 边上的点,DE ∥BC ,且△ADE 与四边形DBCE 的面积比为1:8,那么AE :AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 2
例2:(2008江苏盐城)如图,D 、E 两点分别在△ABC 的边AB 、 AC 上,DE 与BC 不平行,当满足 条件(写出一个即可)时,△ADE ∽△ACB .
(二)X 型 蝴蝶型
J O
A
D
B
C
A
B C
D
(平行)(8字型) (不平行)(蝴蝶型)
自己在《课堂精练》中找几道相应的题目。

例1:如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形.
(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明.
例2:(2013•内江)如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且
AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )
A . 2:5
B . 2:3
C . 3:5
D . 3:
2
例3:(哈尔滨)在平行四边形ABCD 中,E 为直线CD 上一点,DE=2CE ,F 是AD 的中点,连接EF 交BD 交于点P ,则DP :PB=____________ (三)共边共角型 母子型
A
B
C
D
C
A
D
自己在《课堂精练》中找几道相应的题目。

课本P90第4题:已知:如图,在Rt △ABC 中,AB=AC ,∠DAE=45°. 求证:(1)△AB E ∽△ACD ; (2)BC 2=2BE ×CD
E
D
C
A
B
例:在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D,BC=3,AB=5,写出其中的一对相似三角
形 _______________;并写出它的面积比
(四)一线三等角模型: 以等腰三角形(等腰梯形)或者等边三角形为背景
包括“三垂直”模型:
例1:(2013·天津)如图所示,在边长为9的正三角形ABC 中,BD =3,∠ADE =60°,
则AE 的长为
例1图 例2图
例2:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD (2)当BD =1,FC =3时,求BE
例3:在△ABC 中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.
①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;
②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出x 的取值范围;
例4:正方形ABCD 的边长为5(如
下图),点P 、Q 分别在直线..CB 、直线..DC 上(点P 不与点C 、点B 重合),且保持
︒=∠90APQ .当1=CQ 时,求出线段BP 的长.
例5:已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.
(1)如果P 为AD 上的一点,满足∠BPC =∠A .求AP 的长.
A
B
C
D
C
A
D
B E
F
A
B
C
D
A
B
C
D
A
B C
备用图
A
B
C
P
Q
A
B
C
备用图
C D A B P
(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么
①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出x 的取值范围;
②当CE =1时,写出AP 的长.
C
B
A
D
C
B
A D
例6:如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠. (1) 求证:△ABD ∽△DCE ;
(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出x 的取值范围; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.
E B
C
A
D
P
例7:已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,求y 关于x 的函数关系式,并写出x 的取值范围。

例8:如图所示,在矩形AOBC 中,点A 的坐标是﹙-2,1﹚,点C 的纵坐标是4,则B,C 两点的坐标分别是( )
A.3
2
,3,,423⎛⎫⎛⎫- ⎪ ⎪⎝
⎭⎝

B .3
1
,3,,422⎛⎫⎛⎫- ⎪ ⎪⎝
⎭⎝

C.77
2
,,,4423⎛⎫⎛⎫
- ⎪ ⎪⎝
⎭⎝

D.771
,,,4422⎛⎫⎛⎫- ⎪ ⎪⎝
⎭⎝

例9:在平面直角坐标系中,点C ﹙-3,0﹚,点A,B 分别在x 轴,y 轴的正半轴上,且
满足2310OB OA -+-=.
(1)求点A ,点B 的坐标.
(2)是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.
例10、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在
两坐标轴上,点C 为(-1,0).如图所示,B 点在抛物线y=21x 2+2
1
x-2图象上,过点
B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BD
C ≌△COA ;
(2)求BC 所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P ,使△ACP 是以
AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.
(五)燕尾型
G
A B C E
F
D
E
A B C
例1:已知:如图,AF.AB=AE.AC 求证:△ADB ∽△AEC
例2:如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED (六)旋转型:(由A 字型旋转得到)
A
B
C
D
E
《课堂精练》91页第8题。

例:(2008扬州)如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,
连结BC、DE相交于点F,BC与AD相交于点G.
(1)试判断线段BC、DE的数量关系,并说明理由
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?
(七)山字型
例:(2013·乌鲁木齐)如图所示,AB∥GH∥CD,点H在BC上,A C与BD交于点
G,AB=2,CD=3,则GH的长为 .
(八)金字塔模型沙漏模型
①AD AE DE AF
AB AC BC AG
===;
②22
::
ADE ABC
S S AF AG
=
△△。

例1:如图,DE∥BC,若AD=3,BD=2,AG⊥BC,交DE于F,,则AG:AF= :,
计算线段长度,常见的圆中相似情形如下:
P
O
C
D
B
A
如图,在Rt△ABC中∠C=90°,放置边长分别为4、6、x的三个正方形,则x的值为__
如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为___(先求梯形的上
下底)
如图直角三角形中,三个正方形的边长分别为a,b,c,请证明:b=a+c。

相关文档
最新文档