热力学与统计物理系综理论61页PPT
热力学与统计物理 第九章 系综理论
1 p, q
10
如果系统含有多种粒子
1 Ni !h Ni ri
E H p , q E E
d
三、微正则分布的热力学量表达式 考虑一个孤立系统 A0 ,由 A 1, A 2 两个子系统构成, 两个子系统之间的作用较微弱。
1 N1, E1,V1 , 2 N2 , E2 ,V2 分别表示 A1, A2 系统的微观状态数
确定 空间中的一个曲面,称为能量曲面。 对于经典理论,在 空间中,一点代表代表着系统的 一个微观运动状态,随着时间的推移,这些微观运动状态
的代表点将在 相空间中构成一个连续的分布。 用 d dq1 dq f dp1 dp f 表示相空间中一个体积元, 则在 t 时刻,系统处在 d 内的概率可以表示为 p, q, t d
0 系统 A0 的微观状态数 E1, E2 1 E1 2 E2
令 A1 和 A2热接触,设在热接触中可以交换能量,但 不交换粒子数和改变体积。
也就是 E1, E2 可以改变,但
N1 , V1和N 2 ,V2 不改变。
11
E1 E2 E 0
0 E1, E 0 E1 1 E1 2 E 0 E1
f N i ri
i
那么,根据经典力学,系统在任意时刻的微观运 动状态可由在该时刻的 3
为了形象的描述系统的微观运动状态,以系统的 个广义坐标和相应的
f
f
个广义动量为直角坐标构成一个
空间,称为 (相)空间。
空间是 2 f 维的。
相空间中的一点 q1 q f , p1 p f 代表着系统的 一个微观运动状态,此点被称为系统微观运动状态的 代表点。 系统的微观运动状态随时间改变,代表点将在相
热力学与统计物理课件 统计物理部分 第四章 系综理论
为子相空间。
其中N个点对应相空间的关系可以这样考虑:相空间与相空间。
在某些条件下,发,用整个系统的广义坐标和广义动量所张开的空间来描述系统的状态,这个相空间称为μΓΓμΓμΓ处理粒子间有强相互作用这类问题,不能用分子(相空间,而要用系统(两者都表示一个运动状态,后者是前者的集合。
))相空间。
直接从整个系统状态出相空间的一个点;ΓNr 2Γ空间:以描述系统状态的广义坐标和广义动量为轴构成系统在某一时刻的运动状态,可用称为系统运动状态的代表点。
的笛卡尔坐标空间。
(此空间有个维数)空间中的一点表示,空间。
系统任意时刻的运动状态可以用维的空间就是上述提到的个广义坐标Nr f =二、两种统计平均(1)时间平均(2)系综平均比如在经典力学的范畴内,一个由N个粒子组成的,有相互作用的经典系统的自由度数目,r f f q q L 1f P P L 1f q q L 1f P P L 1f 2ΓΓΓ这样一个经典系统在任意时刻的运动状态可以由该时刻的,以及与之共轭的广义动量来描述。
以,构成的一点来描述,这即是运动状态的代表点。
当系统的运动状态随时间改变时,其代表点就在随时间变化从而划出一条轨道,这个轨道称为系统的相轨道。
为一个粒子的自由度,空间的空间中根据外部条件的不同可以将系综分为三类:(1)微正则系综:孤立系统N、E、V不变(2)正则系综:N、V、T不变,设想与大热源接触μ不变,设想与热源、粒子源接触。
(3)巨正则系综:V、T、之间的一个窄范围内,系统不可能有处在这个能量范围之外的微观状态。
在一宏观条件:孤立系统:N 、E 、V 保持不变(对连续问题,E 在一个能壳范围内)一、微正则分布:ρE E E Δ+E E E Δ+孤立系统的能量具有确定值,更精确地说能量在和和的微观状态数是大量的,而且每一个可能的微观状态出现的概率都相等,这称为等概率原理,即等几原理。
等概率原理:对于平衡态的孤立系统(属于同一能量和相同粒子数),系统的一切微观态出现的概率是相等的。
热力学和统计物理的课件
热力学和统计物理的研究对象和任务宏观物质系统:由大量微观粒子组成的气、液、固体。
存在无规则运动——热运动。
运动:机械运动,如:质点的运动,刚体的平动和转动。
热运动:大量微观粒子的无规则运动(例如花粉的运动),有规律性,自身固有的。
为什么研究热运动?它决定了热现象(物性和物态),影响物质的各种宏观性质,如:力、热、电磁、凝聚态(固、液、气)、化学反应进行的方向和限度。
热力学和统计物理学的任务?研究热运动规律及其对宏观性质的影响。
热力学与统计物理的研究方法热力学和统计物理学的任务相同,但研究方法不同。
1.宏观唯象理论——热力学2.微观本质理论——统计物理宏观的观点 即观察一个固体,液体,气体的特性。
如:密度、温度、压力、弹性、传热等,不涉及物质的原子结构。
微观的观点 由物质的原子性质着手,来研究物质的宏观性质。
热力学的基本逻辑体系以可测宏观物理量描述系统状态;例如气体:压强p 、体积V 和温度T实验现象 热力学基本定律 宏观物性 其结论可靠且具有普适性;结合实验才能得到具体物性;物质看成连续体系,不能解释宏观物理量涨落。
例如:焦耳定律、玻意耳定律、阿伏伽德罗定律, 推理演绎为热力学基本定律:第一、第二、第三定律及推论。
再推理演绎为卡诺热机性质,热辐射理论,相变理论,化学反应理论亥姆霍兹方程,能态方程,焓态方程等。
统计物理基本逻辑体系从微观结构出发,深入热运动本质,认为宏观物性是大量微观粒子运动性质的集体表现; 微观粒子力学量 宏观物理量 热力学基本定律归结为一条基本统计原理,阐明其统计意义,可解释涨落现象; 借助微观模型,可近似导出具体物性。
例如:认为微观粒子遵从力学定律:牛顿定律或量子力学。
经典的 量子的应用统计原理:最概然统计法 或 系综统计法 微观运动 通过假设 宏观性质 如:分子与壁碰撞时动量的变化→气体压力概念。
分子运动动能→气体温度 典型应用实例:导出理想气体的物态方程PV=RT 理想气体分子速度分布律 普朗克热辐射定律 大气压随高度的变化关系等@@@第一章 热力学的基本规律热力学 thermodynamics 平衡态热力学equilibrium thermodynamics 经典热力学classical thermodynamics §1.1 平衡态及其描述 重点掌握几个新概念 一 系统、外界和子系统热力学系统 由大量微观粒子组成的宏观物质系统 外界 与系统发生相互作用的其它物质 二 系统分类系统与环境关系一般很复杂,多种多样。
热力学与统计物理.ppt
违反热力学第二定律
第4页 共30页
大学物理
热力学第二定律并不意味着热不能完全转变为功
例:理想气体等温膨胀
T 0 其他影响
V 0
E 0
QA
T
不违反热力学第二定律
关键词:“无其他影响” 热完全转变为功,而且系统和外界均复原是不可能的。
第5页 共30页
热力学第二定律指出了热功转换的方向性 功 自发 热 100 % 转换 热 非自发 功 不能 100% 转换
大学物理
实际自发的热力学过程是不可逆的,总是沿着系统 热力学概率(无序性)增加的方向进行。
无序性减小的状态不是绝对不可能发生,而是发 生的可能性趋于零。
(猴子打字,恰好打出莎士比亚作品;狗与跳蚤 的故事……)
热力学第二定律是一个统计规律,对大量粒子 体系才有意义,对只含少数分子的系统不适用。
第20页 共30页
单向性:什么方向?
大学物理
功:与宏观定向运动相联系,有序运动 热:与分子无规则运动相联系
自 动
非 自 动
热传导 高温 低温 T 差别 无序性 自动
低温 高温 T 差别 无序性 非自动
自由膨胀 体积 可能位置 无序性 自动
体积 可能位置 无序性 非自动 真空 单向性:无序性增大的方向
所以,原过程不可逆。
造成不可逆的原因:存在摩擦
无摩擦,非静态进行
正向(快提)
m
Q1 A1
V2 PdV
V1
M RT ln V2
V1
T
第16页 共30页
逆向(快压)
大学物理
Q2 A2
V1 PdV
V2
M RT ln V2
热力学与统计物理学的建立PPT课件
• 在布莱克的帮助下,瓦特终于在1765年研制成了分离冷凝器,制成了一台“单动式蒸汽 机”。
• 1782年瓦特又将发动机从单动变为双动,可将汽缸的功率提高一倍。 • 1787年,瓦特又安装了离心式调速器,以保证发动机速度相对稳定。这样瓦特的双动旋转
第24页/共55页
五、焦耳对热功当量的测定
• 1849年6月21日,他通过法拉第把论文《论热的机械当量》送交皇家学会。在这篇论文 中,焦耳全面地整理了他用摩擦水、水银和铸铁的方法测量热功当量的实验结果,得出两 个重要结论:
• 第一,由物体的摩擦所产生的热量总是与消耗的力之量成正比; • 第二,要使一磅水(在真空中55F一60F时称量)的温度升高 1F,需要消耗相当于使
• 1851年,迈尔出版了《论热的机械当量》一文中,详细地阐述了热功当量的计算。
第22页/共55页
四、亥姆霍兹的工作
• 1847年,德国青年科学家亥姆霍兹(公元1821— 1894)提出了《论力的守恒》一文,总结出以下三 点结论:
• l.当自然界中的物体在既与时间无关、又与速度 无关的吸力和斥力的相互作用下,系统中活力和张力 的总和始终不变;所得到的功的最大值就是一个确定 的和有限的。
第11页/共55页
五、关于热之本性的研究
•第二,认为热是物体粒子的内部运 动。热质说的成功,使人们相信了 热质说是正确的学说,但是到了十 八世纪末,热质说受到了严重的挑 战。1798年,英国物理学家汤普森 (即伦福德伯爵,公元1753-1814) 在德国进行炮膛钻孔时,提出了大 量的热是从哪里来的这个问题。
第26页/共55页
第三节 热力学第二定律的建立
热力学统计物理_第一章_ppt课件
物质交换
系统
能量交换
孤立系统
仅有能量交换
系统
闭系
能量交换+物质交换
系统
物质交换
能量交换
开放系统
2. 平衡态:在不受外界的影响的条件下(孤立系统), 系统的宏观性质不随时间变化的状态。 不受外界影响,指系统不与外界进行能量和物质交换。
3. 关于平衡态的几点说明 (1)实际系统都要或多或少地受到外界影响,不受外 界影响的孤立系统,同质点模型、刚体模型、点电荷模 型和点光源模型一样都是一个理想化的概念;
(3)二者联系: 热力学对热现象给出普遍而可靠的结果,可以 用来验证微观理论的正确性; 统计物理学则可以深入热现象的本质,使热力 学的理论获得更深刻的意义。
第ห้องสมุดไป่ตู้章
热力学的基本规律
热力学是研究热现象的宏观理论——根据实验总结 出来的热力学定律,用严密的逻辑推理的方法,研 究宏观物体的热力学性质。 热力学不涉及物质的微观结构,它的主要理论基础 是热力学的三条定律。 本章的内容是热力学第一定律和热力学第二定律。
热平衡系统所具有的共同宏观性质
热平衡温度相同
T
p
A
B
T
p
2. 温度函数引入证明如下:
C
互为热平衡的两系统, 其状态参量不完全独立, A B 要被一定的函数关系所制约。 即热平衡条件为: F 若A与C达到热平衡: AC( pA,V A; p C,V C) 0 B与C达到热平衡:
F BC( p B,V B; p C,V C) 0
质的参量,如电场强度和磁场强度,极化强度和磁化
强度等,称为电磁参量。 2、状态参量的种类:力学参量、几何参量、化
学参量、电磁参量
热力学统计物理课件
第一章 热力学的基本规律
青岛科大数理学院
第一章 热力学的基本规律
第一章 热力学的基本规律
青岛科大数理学院
§1.1
热力学系统的平衡状态及其描述
一、系统、状态、平衡状态 1. 系统与外界(环境) 外界 我们关注系统的各种性 质,给予尽可能精确的描述。 而对外界只给出概括性描述。 系统与外界之间可能 交换能量或物质(粒子)。根 据不同的交换,区分系统为
第一章 热力学的基本规律 青岛科大数理学院
统计物理从宏观物质系统是由大量微观粒子所构成这一事 实出发,认为热现象是微观粒子热运动的宏观表现,而实际观 测到的宏观热力学量则是相应微观力学量的统计平均值。 两种研究方法存在着各自的优缺点,在实际研究中,需要 互为补充,相辅相成。 三.本课程的特点和要求 作为宏观理论与微观理论的结合,热力学与统计物理学 是一个比较好的例子。其中统计物理的部分与当代物理学前 沿的很多内容结合较紧。 学习中要把握好物理模型的构建,以及概念之间的相互关 系,重点领会其中的物理思想和物理方法。
昂尼斯气体方程
nR T n ⎛ n ⎞ p=( )[1 + B (T ) + ⎜ ⎟ C (T + V V ⎝V ⎠
2
]
其中 B(T)、C(T)、 … …分别称为第二、第三… …位力系数.
第一章 热力学的基本规律 青岛科大数理学院
2. 简单固体和液体 室温范围内系数 α 和 κ T 很小,可近似看作常数.
度变化指示温度。
10
0
3. 用水在1个标准大气压
下的冰点作摄氏零度。沸 点为100度。确定温标。
t = T − 273.15
第一章 热力学的基本规律 青岛科大数理学院
§1.3 物态方程
热力学统计物理_第五版_汪志诚_完整ppt课件
注意
1)理动态平衡。
2020/4/18
.
17
三、状态参量
定义:系统处于平衡态时,可以表征、描述系统状态的变量
状态参量
几何参量:体积 力学参量:压强 化学参量:摩尔数,浓度,摩尔质量 电磁参量:电场强度,电极化强度,磁场强度,磁化强度 热学参量:温度(直接表征热力学系统的冷热程度)
热力学第二定律 卡诺循环 热力学温标 克劳修斯等式和不等式 熵和热力学基本方程 理想气体的熵
热力学第二定律的数学 表达式
熵增加原理的简单应用 自由能和吉布斯函数
2020/4/18
.
13
§1. 1 热力学系统的平衡状态及其描述
一 、热力学系统(简称为系统)
定义:热力学研究的对象——宏观物质系统 系统分类: ⑴ 孤立系统:与外界没有任何相互作用的系统 ⑵ 封闭系统:与外界有能量交换,但无物质交换的系统 ⑶ 开放系统:与外界既有能量交换,又有物质交换的系统
处在平衡态的大量分子仍在作热运动,而且因 为碰撞,每个分子的速度经常在变,但是系统的宏 观量不随时间改变。
例如:粒子数
箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
2020/4/18
.
16
平衡态的特点
1)单一性( p , T 处处相等);
2)物态的稳定性—— 与时间无关; 3)自发过程的终点; 4)热动平衡(有别于力平衡).
2020/4/18
.
18
宏观量 表征系统宏观性质的物理量
如系统的体积V、压强P、温度T等,可直接测量 可分为广延量和强度量 广延量有累加性:如质量M、体积V、内能E等 强度量无累加性:如压强 P,温度T等
热力学与统计物理课件 统计物理部分 第一章 统计物理的基本概念
第一章统计物理的基本概念(The Fundamental Concepts of Statistical Physics)§1.1统计物理简介(Simple Introduction of Statistical Physics)历史:源于气体分子运动论(Kinetic Theory of Gases)1738年:第一个气体分子运动论模型由瑞士物理学家柏努利(Daniel Bernoulli)提出。
奥地利物理学家玻尔兹曼(Ludwig Bottzmann,1844~1906)、美国科学家吉布斯(J. Willard Gibbs,1839~1903)等人做了统计物理奠基性的工作,发展了统计系综理论,从而真正开创了统计物理的系统理论。
爱因斯坦(Einstein(1879~1955)), 普朗克(Planck (1858~1947))等发扬光大。
在20世纪(约1910年后)才被科学界广泛接受。
对这一事实确立起决定作用的是爱因斯坦的布朗运动的理论解释(1905年)和Jean Perrin (皮兰)的实验验证。
统计物理起源于气体分子运动论,分子运动论的主要思想有三点:(1)物质由大量原子、分子组成。
(2)原子、分子处于不断热运动中。
(3)原子、分子间有相互作用。
相互作用Æ有序热运动Æ无序这是一对矛盾。
热力学方法与统计物理方法的优缺点:热力学方法的优缺点:热力学以大量实验总结出来的几条定律为基础,应用严密的逻辑推理和严格的数学运算来研究宏观物体的热学性质以及和热现象有关的一切规律。
所以热力学的结果较普遍、可靠,但不能求特殊性质。
统计物理方法的优缺点:统计物理从物质的微观结构出发,考虑微观粒子的热运动,通过求统计平均来研究宏观物体的热学性质以及和热现象有关的一切规律。
所以统计物理方法可求特殊性质,但其可靠性依赖于结构的假设,计算较麻烦。
此二者体现了归纳与演译的不同应用,可互相补充。
华中科技大学热力学统计物理.ppt
平衡态
1、定义
一个系统与外界之间没有能量和物质的传递,系统的能量也 没有转化为其它形式的能量,系统的组成及其质量均不随时 间而变化,这样的状态叫做热力学平衡态。
2、说明
(1)平衡态是一个理想状态; (2)平衡态是一种动态平衡; (3)对于平衡态,可以用pV 图 上的一个点来表示。
p V
§1-2热力学第零定律或热平衡定律
Ⅰ Ⅱ Ⅲ
若Ⅰ~Ⅱ且Ⅱ~Ⅲ,则Ⅰ~Ⅲ.(表示处于热平衡如图1-2) 二、温度 温度是热力学系统特有的状态参量
p1 , V1 p2 ,V2 p3 ,V3
Ⅰ Ⅲ
p1 , V1 p3 ,V3
图1-2
F p1 ,V1 , p2 ,V2 0 (Ⅰ、,V2 0
(水的冰点的热力学温度)
(水的三相点的热力学温度)
关系式:T = t + T0 (这里t为摄氏温标)
§ 1.3 物态方程
平衡态下的热力学系统存在状态函数温度。物态方程给出温 度与状态参量之间的函数关系(简单系统)。
f ( p, V , T ) 0
在p、V、T 三个状态参量之间一定存在某种关系,即其中一 个状态参量是其它两个状态参量的函数,如 T=T(P,V) 1 物态方程相关的几个物理量: 体胀系数 积相对变化
pV nRT
ap T2
2、理想气体
在温度不太低(与室温相比)和压强不太大(与大气压相比)时,
Boyle-Mariotte定律 (1662) 等温过程中
pV=const
Avogadro定律(1811年):在同样的温度和压强下,相同
体积的气体含有相同数量的分子。在标准状态下,1摩尔任何 气体所占有的体积为22.4升。
本课程相关的基础内容
热力学与统计物理课件 热力学部分 第一章 热力学基本概念与基本定律
热力学﹒统计物理(Thermodynamics and statistical Physics)厦门大学物理系2007年2月参考书:1. 熊吟涛《热力学》2. M.W. Zemansky“Heat and Thermodynamics”3. 苏汝铿《统计物理学》4. F.Mandle“Statistical Physics”网上资源:/statisticalphysics/jpkc绪论(Preface)一、热力学与统计物理的研究对象、方法与特点研究对象:宏观物体热性质与热现象有关的一切规律。
方法与特点:热力学:较普遍、可靠,但不能求特殊性质。
以大量实验总结出来的几条定律为基础,应用严密逻辑推理和严格数学运算来研究宏观物体热性质与热现象有关的一切规律。
统计物理:可求特殊性质,但可靠性依赖于微观结构的假设,计算较麻烦。
从物质的微观结构出发,考虑微观粒子的热运动,通过求统计平均来研究宏观物体热性质与热现象有关的一切规律。
两者体现了归纳与演绎不同之处,可互为补充,取长补短。
二、热力学理论的发展(1)经典热力学1824年,卡诺(Carnot):卡诺定理1840’s,迈尔(Mayer)焦耳(Joule):第一定律:能量守恒定律1850’s克劳修斯(Clausius)1850年,开尔文(Kelvin)1851年:第二定律:熵增加原理能斯脱(Nernst):第三定律:不可能将物体的温度降到绝对零度。
经典热力学特点:a.不涉及时间与空间;b.以平衡态、准静态过程、可逆过程为模型。
因而:经典热力学→静热力学。
二、热力学理论的发展1930’s:(2)非平衡态热力学,分为a. 线性非平衡态热力学,翁萨格(Onsager)1968年,诺贝尔奖b. 非线性非平衡态热力学,普里果金(Prigogine)1977年,诺贝尔奖近年来:有限时间热力学工程热力学第一章热力学基本概念与基本定律(The Fundamental Concepts and Law of Thermodynamics)§1.1 平衡态、温度、物态方程(Equilibrium state, Temperature and Equation of State)一、平衡态:1.系统与外界:热力学系统(或简称体系或系统)是指一个宏观的系统,它一般由大量的微观粒子组成。
大学物理热力学(课件)
大学物理热力学(课件)大学物理热力学课件一、引言热力学是研究物质系统在温度、压力、体积等热力学参数变化时的宏观性质和行为的科学。
大学物理热力学课程旨在帮助学生理解热力学的基本概念、基本定律和基本方法,培养学生运用热力学知识解决实际问题的能力。
本课件将围绕热力学的基本原理、热力学第一定律、热力学第二定律、热力学第三定律和热力学状态方程等内容进行讲解。
二、热力学基本原理1.系综理论:热力学研究的是大量粒子的统计行为,系综理论是描述这些粒子行为的数学工具。
系综理论将系统划分为三个系综:微观系综、宏观系综和热力学系综。
2.状态量与过程量:热力学中,状态量是描述系统宏观状态的物理量,如温度、压力、体积等;过程量是描述系统在过程中变化的物理量,如热量、功等。
3.状态方程:状态方程是描述系统状态量之间关系的方程,常见的状态方程有理想气体状态方程、范德瓦尔斯方程等。
三、热力学第一定律1.定义:热力学第一定律是能量守恒定律在热力学领域的具体表现,表述为系统内能的增量等于热量与功的代数和。
2.表达式:ΔU=QW,其中ΔU表示系统内能的增量,Q表示系统吸收的热量,W表示系统对外做的功。
3.应用:热力学第一定律可以用于分析热力学过程中的能量转换和传递,如热机、制冷机等。
四、热力学第二定律1.定义:热力学第二定律是描述自然过程方向性的定律,表述为热量不能自发地从低温物体传递到高温物体。
2.表达式:ΔS≥0,其中ΔS表示系统熵的增量,熵是衡量系统无序程度的物理量。
3.应用:热力学第二定律可以用于分析热力学过程的可行性,如热机效率、制冷循环等。
五、热力学第三定律1.定义:热力学第三定律是描述绝对零度附近物质性质的特殊规律,表述为在绝对零度附近,完美晶体的熵趋于零。
2.表达式:S→0asT→0,其中S表示熵,T表示温度。
3.应用:热力学第三定律为低温物理学和制冷技术提供了理论依据。
六、热力学状态方程1.理想气体状态方程:pV=nRT,其中p表示压力,V表示体积,n表示物质的量,R表示理想气体常数,T表示温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
Байду номын сангаас
热力学与统计物理系综理论
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿