信号与系统第三章ppt课件

合集下载

信号与系统第三章PPT课件

信号与系统第三章PPT课件
③ 在任何单个周期内,只有有限个第一类间断点, 且在间断点上的函数值为有限值。
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运

1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为

信号与线性系统分析-(第四版)第三章

信号与线性系统分析-(第四版)第三章

(2) 特解 yp(k) p(2)k,k 0
p(2)k 4 p(2)k1 4 p(2)k2 2k
p 4 p(2)1 4 p(2)2 1
p
1 4
特解
yp
(k)
1 4
(2)k
(3) 全解
y(k
)
(C1k
C2
)(2)k
1 4
(2)k,k
0
根据初始条件
1 y(0) C2 4 0
1 y(1) 2C1 2C2 4 2 1
y(k) 4 y(k 1) 4 y(k 2) f (k) 已知初始条件y(0)=0,有y(1)= - 1,激励 f (k) 2k , k 0。
求方程的全解。
解: (1) 齐次解 特征方程
齐次解
2 4 4 0 特征根 1 2 2
yh(k) (C1k C2 )(2)k 代入差分方程
10cos(0.5 k)
P Q 1
yp (k) cos(0.5 k) sin(0.5 k)
2 cos(0.5 k )
4
y(k) yh (k) yp (k)
C1
1 2
k
C2
1 3
k
2 cos(0.5 k )
4
y(0) C1 C2
2 cos( ) 0
4
y(1) C1 C2 2 cos(0.5 ) 1
y(2) 3 y(1) 2 y(0) f (2) 2
y(3) 3y(2) 2y(1) f (3) 10
y(4) 3 y(3) 2 y(2) f (4) 10
便于计算机求解
二、差分方程的经典解
LTI系统的数学模型:n阶常系数线性差分方程
y(k) an1 y(k 1) a0 y(k n) bm f (k) bm1 f (k 1) b0 f (k m)

信号与系统复习课件全

信号与系统复习课件全

(2) (b)计算零状态响应:
yzs [k ]
n
x[n]h[k
n]
u[k
]
3(
1 2
)
k
2( 1 ) k 3
u[k
]
n
u[n]
3(
1 2
)kn
2( 1 ) k n 3
u[k
-
n]
k n0
3(
1 2
)k
n
2( 1 ) k n 3
k 3(1 )kn k 2(1)kn
n0 2
CLTI系统数学模型——线性常系数微分方程,冲
激响应h(t);系统函数H(s);频率响应特性H( jw)
H (s) Yzs (s) X (s)
LT
h(t) H(s)
H ( j) H (s) |s j (系统稳定)
FT
h(t) H(j )
26
DLTI系统数学模型——线性常系数差分方程;冲
激响应h(n);系统函数H(z);频率响应特性H(ejw).

yzi[k ]
C1
(
1 2
)k
C2
(
1 )k 3
,k
0
代入初始条件,有:
y[1] 2C1 3C2 0
y[2] 4C1 9C2 1 C1 1/ 2, C2 1/ 3

yzi[k ]
1 2
(1)k 2
1 3
( 1 ) k ,k 3
0
= ( 1 )k1 (1)k1,k 0
2
3
17
n0 3
[ 3 3(1)k (1)k ]u[k] 23
完全响应: y[k] yzi[k] yzs[k]
[ 1 7 (1)k 4 (1)k ]u[k]

《信号与系统》第三章习演示课件

《信号与系统》第三章习演示课件

k0 k 1
yt1 8 cos2t
3
Problem Solution
H j
2
1
3 0 3
图2
Chapter 3
Problem Solຫໍສະໝຸດ tion例 已知图1所示连续时间系统中输入信号 xt ,t2k k 两个子系统的频率响应 H1 和j H分2 别j如 图2和图3
所示。试求该系统的输出信号 y 。t
ak 0 k18
Chapter 3
Problem Solution
3.34 Consider a continuous-time LTI system hte4t Find the Fourier series representation of the output yt
for each of the following inputs :
sin 0t
c o s0 t L H j0 c o s 0 t H j0 s i n 0 t L H j0 s i n 0 t H j0
Chapter 3
Problem Solution
Consider an LTI system S with impulse response ht sint
(a)xttn n
(bx)t1ntn n
(c) xt is the periodic wave depicted in Figure P3.34
1/ 2 1 xt
-2 -1
0
1
2
t
Chapter 3
Problem Solution
例 研究图1所示的连续时间系统,其中 h1 t sin3tt, H1 j 和 H2 j的波形如图2所示。

信号与系统 第3章-3

信号与系统 第3章-3

解 若直接按定义求图示信号的频谱,会遇到形如te-jωt的繁 复积分求解问题。而利用时域积分性质,则很容易求解。 将f(t)求导,得到图 3.5-5(b)所示的波形f1(t),将f1(t)再求导, 得到图 3.5-5(c)所示的f2(t), 显然有
第3章 连续信号与系统的频域分析
f 2 (t ) = f (t ) = f " (t )
ω )为各频率点
上单位频带中的信号能量,所以信号在整个频率范围的全部
W = ∫ G (ω )dω
0

式中
G (ω ) =
1
π
F ( jω )
2
第3章 连续信号与系统的频域分析 表 3.2 傅里叶变换的性质
第3章 连续信号与系统的频域分析
3.6 周期信号的傅里叶变换
设f(t)为周期信号,其周期为T,依据周期信号的傅里叶级数分 析, 可将其表示为指数形式的傅里叶级数。即
f ( −t ) ↔ F ( − jω )
也称为时间倒置定理 倒置定理。 倒置定理
第3章 连续信号与系统的频域分析
若已知f(t) ↔ F(jω ),求f(at - b)的傅立叶变换。
此题可用不同的方法来求解。 解 此题可用不同的方法来求解。
第3章 连续信号与系统的频域分析
(2) 先利用尺度变换性质,有 先利用尺度变换性质,
第3章 连续信号与系统的频域分析 2. 时移性 时移性 若f(t) ←→ F(jω), 且t0为实常数(可正可负),则有
f ( t − t0 ) ↔ F ( jω ) e
此性质可证明如下
− jω t 0
F [ f (t − t 0 )] = ∫− ∞ f (t − t 0 )e 令τ = t − t 0

信号与线性系统分析--第三章

信号与线性系统分析--第三章
信号与线性系统分析
第三章 离散系统的时域分析
本章概述
离散时间域的方程求解
连续时间域 时间函数 微分方程 卷积积分 离散时间域 离散序列 差分方程 卷积求和
求解方法
迭代法 经典法 卷积法
连续时间信号、连续时间系统
连续时间信号
f(t)是连续变化的t的函数,除若干不连续点之外 对于任意时间值都可以给出确定的函数值。函数 的波形一般具有平滑曲线的形状,一般也称模拟 信号
f (n) .... f (1) (n 1) f (0) (n) f (1) (n 1) ...
i
f (i) (n i)
f(k ) f(2) f(-1) f(1) f(0) … 1 2 i f(i) … k

可推出:离散系统的零状态响应
y zs (n)
m
f (m) (n m)

单位阶跃序列
与阶跃函数的不同?
延时的单位阶跃序列
用单位样值序列来表示
u( n) ( n) ( n 1) ( n 2) ( n 3) (n k )
k 0
( n) u(n) u( n 1)
题目中 y0 y1 0 ,是激励加上以后的,不是初始状 态,需迭代求出 y 1, y 2 。
n 1 y1 3 y0 2 y 1 2u 1 2 u 0
0
0 0 2 y1 2 1 1
1 y 1 2
n0
y0 3 y 1 2 y 2 2 u 0 2 u 1
0 1
0 3 y 1 2 y 2 1
y 2 5 4
将初始状态代入方程求系数

信号课件第三章傅里叶变换

信号课件第三章傅里叶变换
• 从本章起,我们由时域分析进入频域分析,在频域分析中, 首先讨论周期信号的傅里叶级数,然后讨论非周期信号的 傅里叶变换。傅里叶变换是在傅里叶级数的基础上发展而 产生的,这方面的问题统称为傅里叶分析。
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1

信号与系统第3章,甘俊英

信号与系统第3章,甘俊英

(n) u(n) u(n 1) u(n)
u(n) (n) (n 1) (n 2) L (n m) m0
n
或 u(n) (k) k
3.矩形序列 1, 0 n N 1
RN (n) 0, n 0
RN (n) 1
0 1 2 N 1
n
N表示矩形序列的长度, RN (n) 还可以表示为
是连续正弦信号 xa (t) 的角频率,称为模拟域频率。
Ts
2 f
fs
又称为归一化频率。
3.2.4 序列的周期性
对于所有 n 值,若存在一个最小正整数 N ,满足
x(n) x(n N) 则称序列 x(n)为周期序列,最小周期为 N
下面讨论正弦序列 x(n) Asin(n ) 的周期性。
x(n N) Asin[(n N) ] Asin(n N )
RN (n) u(n) u(u N )
4.实指数序列 x(n) an , n
通常,单边实指数序列应用更广。单边实指数序列定义为
an , n 0 x(n)

0, n 0
x(n) anu(n)
a 1 ,序列是发散的。 a 0 序列的所有样值都为正值
a 1 ,序列是收敛的
a 0 序列正、负摆动
(n) 是一个确定的物理量,在 n 0时取值为1 ,在其它非零的
离散时间点上取值为零
(t) 不是一个物理量,只是一个数学抽象。
任何序列都可以用一些延迟的单位取样序列的加权和来表示,即
x(n) x(k) (n k) k
【例3-2-6】已知序列x(n) 如图所示,利用单位取样序列 (n) 写出
x(n
1)
(
1 2
)n
1

信号与系统第3章傅里叶变换

信号与系统第3章傅里叶变换

*本章要点
1.利用傅立叶级数的定义式分析周期信号的离散谱。 2.利用傅立叶积分分析非周期信号的连续谱。 3.理解信号的时域与频域间的关系。 4.用傅立叶变换的性质进行正逆变换。 5.掌握抽样信号频谱的计算及抽样定理
将信号表示为不同频率正弦分量的线性组合意义
1.从信号分析的角度 将信号表示为不同频率正弦分量的线性组合,为不同信号之 间进行比较提供了途径。
发展历史
•1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导 理论时发表了“热的分析理论”,提出并证明了将周期函数展 开为正弦级数的原理,奠定了傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去, 得到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具 体问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广 阔的前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换 法具有很多的优点。 •“FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
一.三角函数形式的傅里叶级数
1.正交三角函数集
三角函数系1, cos x,sin x, cos 2x,sin 2x,..., cos nx,sin nx,...
在区间[-π,π]上正交,是指在三角函数系中任何不同的两个函 数的乘积在区间的积分等于零,即
cosnxdx 0(n 1,2,3,...)
傅里叶生平
1768年生于法国 1807年提出“任何周期信号
都可用正弦函数级数表示” 1829年狄里赫利第一个给出
收敛条件 拉格朗日反对发表 1822年首次发表“热的分析
理论”中

信号与系统第3章 傅里叶变换

信号与系统第3章  傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2

2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1

信号与系统PPT全套课件

信号与系统PPT全套课件

T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。

信号与系统第三章

信号与系统第三章
T

内,对于有限带宽信号类来说是一个完备的正交 函数集。这里
sin x S a ( x) x
称为抽样函数。
15
诸燕平
2015年春
X
信号与系统—signals and systems
3.2 周期信号的傅里叶级数分析

三角函数的傅里叶级数 指数形式的傅里叶级数 函数的对称性与傅里叶系数的关系
设f1(t)和f2(t)是定义在(t1, t2)区间上的两个实变函数
(信号),若在(t1, t2)区间上有

t2
t1
f1 (t ) f 2 (t )dt 0
则称 f1(t)和f2(t) 在(t1, t2)内正交。
8
诸燕平
2015年春
X
信号与系统—signals and systems
若f1(t),f2(t), …, fn(t)定义在(t1, t2)区间上,并且在 (t1, t2) 内有

这两组条件并不完全等价。它们都是傅里叶级 数收敛的充分条件。相当广泛的信号都能满足这 两组条件中的一组,因而用傅里叶级数表示周期 信号具有相当的普遍适用性。
Signals that violate the Dirichlet conditions
(b) the periodic signal of eq. x(t)=sin(2π/t) which violates the second Dirichlet condition



(1)在一周期内,如果有间断点存在,则间 断点的数目应该是有限个; (2)在一周期内,极大值和极小值的数目应 是有限个; (3)在一周期内,信号是绝对可积的,即 t T t f (t ) dt 等于有限值(T1为周期)

《信号与系统》第3章

《信号与系统》第3章

信号与系统讲稿
• 这部经典著作将欧拉、伯努利等人在一 些特殊情形下应用的三角级数方法发展 成内容丰富的一般理论,三角级数后来 就以傅里叶的名字命名。 • 《热的解析理论》影响了整个19世纪分 析严格化的进程。
信号与系统讲稿
3.1
周期性信号的频域分析
教学目标:掌握周期性信号频谱的概念, 会用傅里叶级数表示周期信号。
或 E 2 E f (t ) T1 T1 n1 Sa 2 n 1

Cos( n1t )
若将展开指数形式的傅里叶级数,由式(8)可得:
1 Fn T1

T1 2 T 1 2
Ee
ห้องสมุดไป่ตู้
jn1t
E n1 dt Sa T1 2
幅度谱cn和相位谱 见书P104页。
特别注意:书P103 1. 2. 3. P105 “对称方波信号有两个特点: (1)它是正负交替的信号,其直流分量(a0 等于零。 (2) 它的脉宽等于周期的一半,即 ”
信号与系统讲稿 第三章

信号与系统讲稿
二. 三. 四. 五.
周期锯齿脉冲信号(书P106,自学) 周期三角脉冲信号(书P106,自学) 周期半波余弦信号(书P108,自学) 周期全波余弦信号(书P108,自学)
n 1

a0 d0 2 dn
2 2 an bn 1
n tg
an bn
n次谐波的初相角
信号与系统讲稿
三. 频谱的概念
f ( t )为时间函数,而c0、cn、n为频率函数, 所以,信号从用时间函数来表达过渡到用频率函 数来表达。 1. 幅度频谱:cn 随频率变化的情况用图 来表示就叫幅度频谱。 2. 相位频谱:n随频率变化的情况用图 来表示就叫相位频谱。

信号与系统分析PPT全套课件 (3)可修改全文

信号与系统分析PPT全套课件 (3)可修改全文

f (2t)
倒相
f (t)
f (t)
1.3 信号时域变换
例1-8
1.4 信号时域运算
相加
f1(t)
f2 (t)
fn (t)
相乘 f1(t)
f2 (t)
y(t) f1(t) f2 (t) fn (t) y(t) f1(t) f2 (t)
1.4 信号时域运算
数乘
f (t)
a
y(t) af (t)
y
(
k
)
(0
)
y (k) (0 )
y y
(0
(k)
) (0
)
y zi
(0
y
(k zi
)
) (0
y )
zs (0
y
(k zs
) ) (0
)
在零输入条件下,且系统的内部结构和参数 不发生变化时,有:
y(0 y (k )
) (0
)
yzi (0
y
(k zi
)
) (0
)
3.初始状态和初始值的确定
A1 y1(t) A2 y2 (t)
y(t)
y(t t0 )
1.7 线性时不变系统的性质
微分性
f (t)
df (t) dt
积分性
f (t)
t
f ( )d
系统 系统
y(t)
dy(t) dt
y(t)
t
y( )d
1.8 信号与系统分析概述
1.8.1 基本内容与方法
确定信号和线性时不变系统
建立与求解系统的数学模型
2.2.2 零输入响应与零状态响应
1.零输入响应 2.零状态响应

信号与系统 全套课件完整版ppt教学教程最新最全

信号与系统 全套课件完整版ppt教学教程最新最全
2.积分 信号的积分是指信号在区间(-∞,t)上的积分。可表示为
t
y(t)
f()df( 1)(t)
1.2.3 信号的相加、相乘及综合变换 1.相加
信号相加任一瞬间值,等于同一瞬间相加信号瞬时值的和。即
y (t)f1 (t)f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 2.相乘
信号相乘任一瞬间值,等于同一瞬间相乘信号瞬时值的积。即
离散时间系统是指输入系统的信号是离散时间信号,输出也是离散 时间信号的系统,简称离散系统。如图连续时间系统与离散时间系统(b) 所示。
1.3.1 系统的定义及系统分类 2. 线性系统与非线性系统
线性系统是指具有线性特性的系统,线性特性包括齐次性与叠加性。线 性系统的数学模型是线性微分方程和线性差分方程。
2.1.2 MATLAB语言的特点
1、友好的工作平台和编程环境 2、简单易用的程序语言 3、强大的科学计算机数据处理能力 4、出色的图形处理功能
1、友好的工作平台和编程环境
MATLAB由一系列工具组成。这些工具方 便用户使用MATLAB的函数和文件,其中 许多工具采用的是图形用户界面。
新版本的MATLAB提供了完整的联机查询、 帮助系统,极大的方便了用户的使用。简 单的编程环境提供了比较完备的调试系统, 程序不必经过编译就可以直接运行,而且 能够及时地报告出现的错误及进行出错原 因分析。
y (t)f1 (t) f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 3.综合变换 在信号分析的处理过程中,通常的情况不是以上某种单一信号的运算,往
往都是一些信号的复合变换,我们称之为综合变换。
1.3 系统
1.3.1 系统的定义及系统分类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
傅立叶 1768-1830 (Fourier, Jean Baptiste Joseph) 法国数学家、物理学家
•最早使用定积分符号 •改进符号法则、根数判别方法 •傅立叶级数创始人
➢1807 《热的传播》 ➢1822 《热的分析理论》 ➢傅立叶级数、分析等理论
精品课件
傅里叶的两个最重要的贡献——
y (n ) zn kh (k ) zn h (k )z k H (z)zn
k
k
结论:复指数函数是一切LTI系统的特征函数 精品课件
离散时间LTI系统的单位脉冲响应 时不变性
[n] LTI
[n k]
齐次性
x[k][nk]
LTI
可加性
x[k][n k]
LTI
k
h[n ] h[n k]
1965年 Cooley & Tukey (IBM) 发明FFT 算法
精品课件
3.2 LTI系统对复指数信号的响应
❖ 考查LTI系统对复指数信号e s t z n和
e st
h (t)
Hale Waihona Puke y(t) z nh (n )
y (n )
的响
由时域分析方法有,
y ( t) e s ( t ) h () d e s t h () e s d H ( s ) e s t
y (n ) zn kh (k ) zn h (k )z k H (z)zn
k
k
易求LTI系统对复指数信号的响应
这说明 e s t z 和n
符合对单元信号的第一项
精品课件
特征函数与特征值
❖ 如果系统对某一输入信号的响应只是该输入信 号乘以一个常数,则称该输入信号是这个系统的特 征函数,该常数称为与该信号有关(相对应)的特征 值
第3章 周期信号的傅里叶级数表示
Fourier Series Representation of Periodic Signals
Ⅰ. 周期信号的频域分析 Ⅱ. LTI系统的频域分析 Ⅲ. 傅立叶级数的性质
精品课件
3.0 引言 Introduction
时域分析方法的基础: 信号在时域的分解;LTI系统:满足线性、时不变性
利用齐次性与可加性,有
x ( t ) y ( t ) a 1 H ( s 1 ) e s 1 t a 2 H ( s 2 ) e s 2 t a 3 H ( s 3 ) e s 3 t
即: x(t) akeskt
k
同理: x(n) akZkn
k 精品课件
y(t) akH(sk)eskt
弦的实际运动可用标准振荡模的线性组合来表 示
1759年 拉格朗日
精品课件
不能用三角级数来表示具有间断点的函数
1822年 傅立叶 “热的分析理论” 中提出并证明周期函数的正弦
级数展开原理,奠定了傅立叶级数的理论基础
1829年 P.L狄里赫利 周期信号傅立叶级数表示的若干精确条件
19-20世纪 两种傅立叶分析方法--连续与离散
成谐波关系的复指数信号集合
基波周期为
第k次谐波 e jk 0 t
T0
2 0
的周期T为k
2 k 0
精品课件
成谐波关系的复指数信号之和
x(t) akejk0t k
傅里叶级数表示
信号周期为
T 2 0
傅里叶级数系数
精品课件
例1:
x(t)cos0t
1ej0t 2
1ej0t 2
该信号中,有两个谐波分量,a 1 分量的加权因子。
精品课件
系统对某一输入信号的响应:一个常数×输入信号
y(t)H(s)est
系统的特征值
系统的特征函数
y(n)H(z)zn
精品课件
❖ 系统的特征值
H(s) h(t)estdt
H(z) h(n)zn
k
y ( t) e s ( t ) h () d e s t h () e s d H ( s ) e s t
k
y(n) akH(Zk)Zkn
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
精品课件
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
Perspective)
任何科学理论, 科学方法的建立都是经过许多 人不懈的努力而得来的, 其中有争论, 还有人为 之献出了生命。 历史的经验告诉我们, 要想在 科学的领域有所建树,必须倾心尽力为之奋斗。 今天我们将要学习的傅立叶分析法,也经历了曲 折漫长的发展过程,刚刚发布这一理论时,有人 反对,也有人认为不可思议。但在今天,这一分 析方法在许多领域已发挥了巨大的作用。
x[k]h[nk]
x[k]h[n k]
k
精品课件
对时域的任何一个信号 x ( t ) 或者 x ( n ),若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
从分解信号的角度出发,基本信号单元必须满足:
➢本身简单,且LTI系统对它的响应能简便得到。 ➢具有普遍性,能够用以构成相当广泛的信号。
傅立叶分析方法:
➢出发点:将信号表示成一组基本信号的线性组合; ➢基本信号为复指数信号; ➢信号表示为连续时间和离散时间的傅立叶级数与傅立叶变换。
精品课件
3.1 历史的回顾 (A Historical
• “周期信号都可以表示为成谐波关系的正弦信 号的加权和”——傅里叶的第一个主要论点
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
精品课件
傅立叶分析方法的历史
古巴比伦人
“三角函数和” 体运动
描述周期性过程、预测天
1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利
1 2
为相应
精品课件
例2: x(t)co s 0 t 2co s3 0 t
精品课件
3.3 连续时间周期信号的傅里叶级数表示
一. 连续时间傅里叶级数 回顾:连续复指数信号的周期
对一个复指数信号e jt ,要成为具有周T期0 为
的周期信号的必要条件:
ejT0 1
定义 有
2k T0
0
2 T0
(k0,1,2)
k0 精品课件
成谐波关系的复指数信号
基波频率
k(t)ejk0t , k0,1,2
相关文档
最新文档