13.7狭义相对论之相对论能量和动量的关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m = m0
= [v dm + (c − v )dm]
2 2 2

m
m = m0
c 2 dm mc 2 − m0 c 2 =
根据质点的动能定理:合外力所做的功等于动能的增量。 在相对论中物体的动能为 物体静止时动能为零, m0 c 2 2 - m c2 故合外力所做的功全部 − m0 c 2 . T = mc= 0 1 − v2 / c2 转化为物体的动能。
m0 v ⋅ dv m0 d 对质-速关系 dm = d[ = = 2 mv ⋅ 2 v 2 ] c 2 (1 − v 2 / c 2 )3/ 2 c (1 − v / c ) (1 − v ⋅ v / c 2 )1/ 2 求微分得
由此得 mv·dv = (c2– v2)dm
A =
代入功的公式得

m
{范例13.7} 相对论能量和动量的关系
试推导相对动能和能量公式以及动量公式。
= T = mc2 - m0c2 m0 c 2 1 − v2 / c2 − m0 c 2
当v << c时,根据公式(1 + x)n≈ 1 + nx,运动物体的质量为 1 m0 v 2 −1/ 2 v2 = m0 (1 − 2 ) ≈ m0 (1 + 2 ) m= T ≈ m0 v 2 因此 c 2c 2 1 − v2 / c2 可见:在低速情况下,相对论力学过渡到经典力学。 m0是物体的静止质量,m是物体的运动质量。 物体的静止能量为E0 = m0c2, 能量守恒必然导致质量 守恒,反之,质量守恒 也将导致能量守恒。 物体的总能量为 E = mc2, 在相对论中,质量守恒 和能量守恒是统一的, 能量蕴含在质量之中。 这就是质-能方程,是相对论独有的,没有经典项对应。
{范例13.7} 相对论能量和动量的关系
试推导相对动能和能量公式以及动量公式。 [解析]在合外力F的作用下,静止质量为m0 的物体,速度由零变为v,合外力做的功为
v v = 0=
A =

v
F ⋅ d= r

v
v v d(mv ) ⋅ dr = ∫ v ⋅ d(mv )= ∫ (v 2 dm + mv ⋅ dv ) v v = 0= 0 0 dt
{范例13.7} 相对论能量和动量的关系
试推导相对动能和能量公式以及动量公式。 m0 E0 = m0c2, E = mc2, m = 1 − v2 / c2 利用质-速关系可得 2 2 m0 v 2 c 2 m0 c 4 2 = m2v 2c 2 p 2c 2 = = −= E 2 − E02 m0 c 4 2 2 2 2 1− v / c 1− v / c 即E2 = p2c2 + m02c4, 这就是相对论中的能量-动量关系。 能量和动量是双曲线的关系。 如果某种粒子静止质量为零,即m0 = 0,则得E = pc, 比较公式E = mc2,可得p = mc, 该粒子速度就是光速。 光可当作一种静止质量为零的粒子流,对应的粒子称为光子。
物体能量随速度的变化的曲线与质 量随速度的变化的曲线是相同的。
பைடு நூலகம்
当物体的静止质量不为零时,能 量随动量按双曲线的规律变化;
当物体的静止质量为零时, 能量随动量直线变化。
相关文档
最新文档