圆的基本性质课件1
合集下载
第1部分第6章第1节圆的基本性质PPT课件
圆周角定理及其推论(必考) 4.(2019 安徽,13,5 分)如图,△ABC 内接于⊙O,∠CAB=30 °,∠CBA=45°,CD⊥AB 于点 D.若⊙O 的半径为 2,则 CD 的长 为 2.
【解析】本题考查圆周角定理和三角函数等,体现了逻辑推理和 数学运算的核心素养.如图,连接 OB,OC,则∠BOC=2∠A=60°. 又∵OB=OC,∴△BOC 是等边三角形,∴BC=OB=2.又∵∠CDB =90°,∠CBD=45°,CD=BC·sin45°=2× 22= 2.
弦心距,另一条直线是弦的一半.如图,设圆的半径为 r、弦长为 a、 弦心距为 d,弓形高为 h,则a22+d2=r2,h=r-d,这两个等式是关于 四个量 r,a,d,h 的一个方程组,只要已知其中任意两个量即可求出 其余两个量.
(2019·保定一模)小帅家的新房子刚装修完,便遇到罕见 的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图 1 所示的是他了 解的一款遮雨罩,它的侧面如图 2 所示,其中顶部圆弧 AB 的圆心 O1 在竖直边缘 AD 上,另一条圆弧 BC 的圆心 O2 在水平边缘 DC 的延长 线上,其圆心角为 90°,BE⊥AD 于点 E,则根据所标示的尺寸(单位: cm)可求出弧 AB 所在圆的半径 AO1 的长度为 61 cm.
2.圆内接四边形的任意一个角的外角等于它的⑳____内__对__角____, 如图,∠DCE=∠A.
利用垂径定理解决问题 圆中与弦有关的计算可通过连接半径和圆心到 弦中点的垂线段,把问题转化为解直角三角形的问 题来解决,垂径定理和勾股定理“形影不离”,常 结合起来使用.一般地,求解时将已知条件集中在 一个直角三角形中,这个直角三角形的斜边是圆的半径,一条直角边是
1.垂径定理:垂直于弦的直径⑦_平__分___这条弦,并且平分弦所对 的两条弧.
第一节 圆的基本性质
情况
圆心在圆周 角一条边上
圆心在圆 周角内部
理
圆心在圆 周角外部
图形
结论
∠APB = 15
1 AOB 2
推论1
推论2
半圆(或直径)所对
圆 内容 同弧或等弧所对的 的圆周角是⑯ 90°,
周
圆周角相等
90°的圆周角所对的
角
弦是⑰直径
推 论
表现 如∴∠图1,=(⑱1)∵∠2BD; BD
如图,(1)∵AB是直 径,∴∠C=⑲ 90°
及其
h表示弓形高,半径OC与弦AB垂直,则有:
推论 垂径
定理 (1)r=d+h;
简单 (2)r2=( 应用
1 2
1
a)
2
+d
2=( a
2
a)2+(r-h)2;
(3 h)
r
r
一条弧所对的圆周角等于它所对的圆心
圆
内容 角的⑭
1 2
周
角 定
形式 (2)∵DE BD , ∴∠2=∠3
(2)∵∠C=90°,∴AB 是直径
推论1
推论2
圆
周 角
图形
推
论 (1)连直径,得直角;
作用 证明圆周角相等 (2)确定圆的直径
1.如果一个多边形的所有顶点都在同一个 圆上,这个多边形叫做圆的内接多边形 圆的内接 多边形
2.圆内接四边形的对角⑳ 互补
第六章 圆
第一节 圆的基本性质
考点精讲
与圆有关的概念及性质
圆 弧、弦、圆心角之间的关系
的 基
垂径定理及其推论
定理
本 性 质
圆周角定理及其推论 推论
圆的内接多边形 圆与多边形
人教版数学九年级上册第24课时 圆的基本性质(ppt版)-课件
【温馨提示】1.应用定理时一定注意“在同圆或等圆中” 同时要注意一条弦对着两条弧. 2.弦心距、半径、弦的一半构成的直角三角形,常用 于求未知线段或角,为构造这个直角三角形,常连接半 径或作弦心距,利用勾股定理求未知线段长.
提分必练
2.如图,在⊙O中,若点C是的中点,∠A=50°,则
∠BOC=( A )
提分必练
4.如图,⊙O是△ABC的外接圆,若∠ABC=40°, 则∠AOC的度数为( D ) A.20° B.40° C.60° D.80°
提分必练
5.如图,⊙O中,弦AB、CD相交于点P,若∠A=
30°,∠APD=70°,则∠B等于( C ) A.30° B. 35° C. 40° D. 50°
第一部分 夯实基础 提分多
第六单元 圆
第24课时 圆的基本性质
基础点巧练妙记 基础点 1 圆的相关的概念及性质
1.圆的基本概念(参考图(1)) (1)定义:平面内到定点距离等于定长的所 有点组成的图形叫做圆,这个定点叫做圆 心,定长叫做半径,即O为圆心,OA为半 径.
(2)弧、劣弧、优弧:圆上任意两点间的部分叫做圆弧, 简称弧.其中,小于半圆的部分叫做劣弧,A F 为劣弧; 大于半圆的部分叫做①__优__弧__,A E F 为优弧. (3)圆心角:顶点在圆心,角的两边都与圆相交的角叫做 圆心角,∠AOF叫做A F 所对的圆心角. (4)圆周角:顶点在圆上,角的两边都与圆相交的角叫做 圆周角,∠AEF为A F 所对的圆周角.
2.在遇到与直径有关的问题时,一般要构造直径所对 的圆周角,这样可以由直径转化出直角,从而解决问 题.
4.圆内接四边形的性质
(1)圆内接四边形的对角⑪_互__补_,如图(2),∠A+∠BCD =⑫1_8_0_°_,∠B+∠D=⑬1_8_0_°___;
第22讲 圆的基本性质PPT课件
2.圆的有关性质 (1)圆的对称性: ①圆是____轴__对__称__图形,其对称轴是___过__圆__心__的__任__意__一__条__直__线_. ②圆是____中__心__对__称_图形,对称中心是_____圆__心___. ③旋转不变性,即圆绕着它的圆心旋转任意一个角度,都能与本来 的图形重合.
圆周角定理的推论: ①同弧或等弧所对的圆周角相等;同圆或等圆中相等的圆周角所对 的弧_____相__等__. ②半圆(或直径)所对的圆周角是___直__角____;90°的圆周角所对的弦 是____直__径__. (5)点和圆的位置关系(设d为点P到圆心的距离,r为圆的半径): ①点P在圆上⇔_____d_=__r__; ②点P在圆内⇔_____d_<_r___; ③点P在圆外⇔_____d_>_r___.
△APB和△ADC中, ∠∠AABPBP==∠∠AACDPC,, ∴△APB≌△ADC(AAS), AP=AD,
∴BP=CD,又∵PD=AP,∴CP=BP+AP
(3)当点P为 A︵B 的中点时,四边形APBC的面积最大.理由如
下,如图②,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为
F.∵S△APB=
【例4】 矩形ABCD中,AB=8,BC=35,P点在边AB上,且BP =3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断 正确的是( C ) A.点B,C均在圆P外 B.点B在圆P外,点C在圆P内 C.点B在圆P内,点C在圆P外 D.点B,C均在圆P内 【点评】 本题考查了点与圆的位置关系的判定,根据点与圆心 之间的距离和圆的半径的大小关系作出判断.
解: (1)在△AEB和△DEC中,∠A=∠D,
AE=ED,∠AEB=∠DEC,∴△AEB≌△DEC(ASA),∴EB=
九年级数学上册(人教版)第二十四章《圆》课件
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
人教版圆的认识ppt课件
圆的几何变换
总结词
描述圆的几何变换
详细描述
圆的几何变换包括平移、旋转和对称。平移是将圆沿任意方向移动一定的距离 ,旋转是将圆绕圆心旋转一定的角度,对称则是关于某一直线或点进行对称。
圆与其他图形的几何变换
总结词
描述圆与其他图形的几何变换
详细描述
圆与其他图形可以通过几何变换进行相互转换。例如,将圆进行平移或旋转可以 得到椭圆,将圆进行对称可以得到扇形等。这些变换在几何学中有着广泛的应用 。
03 圆上所有点到定点连线段相等
从圆上任意一点到圆心的连线段都相等,这个线 段称为直径。
圆的基本性质
01 圆心角与弧的关系
在同一个圆或等圆中,相等的圆心角所对的弧也 相等。
02 弦与直径的关系
通过圆心的弦是直径,直径将圆分成两个相等的 部分。
03 弦与弦心距的关系
弦的中垂线经过圆心,弦心距等于弦的一半。
圆与椭圆的交点
将圆的方程与椭圆的方程联立,解出交点 的坐标。
圆与双曲线的交点
将圆的方程与双曲线的方程联立,解出交 点的坐标。
THANKS
感谢观看
直径
经过圆心的弦称为直径,直径是弦 中最长的。
切线与弦的关系
01
切线与弦垂直
切线垂直于过切点的弦,即切线与弦互相垂直。
02
切点与弦的中点的关系
切点是弦的中点与圆心连线的交点,即中点到切 点的距离等于半径。
05
圆的方程与作图方法
圆的方程
圆的一般方程
$x^2 + y^2 + Dx + Ey + F = 0$,其中D、E、F 为常数,D^2 + E^2 - 4F > 0。
圆的基本性质第1课时圆课件沪科版数学九年级下册
可以推出右边;同时从符号的右边也可以推出左边.
针对训练
1. 以点O为圆心,分别以2cm,3cm 为半径画两个圆(这两个圆叫做同心
圆),说出满足下列条件的点 P 的位置:
(1)OP >3cOP <3cm
(4)OP=0cm
(1)点 P 在大圆的外部 (3)点 P 在大圆和小圆之间
(1)圆上各点到定点(圆心O)的距离都等于__定__长__(半__径__r_)___. (2)平面内到定点(圆心O)的距离等于定长(半径r)的所有点都在 __同__一__个__圆__上________.
因此,圆可以看成:平面内到定点(圆心O)的距离等于定长(半径r)的 所有点组成的图形.
针对训练
1.下列关于圆的叙述正确的是( B ) A.圆是由圆心唯一确定的 B.圆是一条封闭的曲线 C.到定点的距离小于或等于定长的所有点组成圆 D.圆内任意一点到圆心的距离都相等
24.2圆的基本性质 第1课时 圆
九年级下
沪科版
学习目标
1.理解圆、弧、弦的概念;
重点
2.了解等圆、等弧、弓形的概念;
3.探索并掌握点和圆的位置关系.
重点
新课引入
观察下列生活中的图片,说说你还见过哪些这样的图形.
本节课我们将对圆进行初步的学习!
新知学习 一、圆的定义
如图,在平面内,线段OP绕着它固定的一个端点 О旋转一周,则另一个端点Р所形成的封闭曲线叫做 圆.固定的端点О叫做圆心 ,线段OP的长为 r 叫做半
半径是弦吗?
半圆、优弧及劣弧 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 大于半圆的弧(图中的 ACB,一般用三个字母表示)叫做优弧; 小于半圆的弧(图中的 BD,AB 或 AC )叫做劣弧.
针对训练
1. 以点O为圆心,分别以2cm,3cm 为半径画两个圆(这两个圆叫做同心
圆),说出满足下列条件的点 P 的位置:
(1)OP >3cOP <3cm
(4)OP=0cm
(1)点 P 在大圆的外部 (3)点 P 在大圆和小圆之间
(1)圆上各点到定点(圆心O)的距离都等于__定__长__(半__径__r_)___. (2)平面内到定点(圆心O)的距离等于定长(半径r)的所有点都在 __同__一__个__圆__上________.
因此,圆可以看成:平面内到定点(圆心O)的距离等于定长(半径r)的 所有点组成的图形.
针对训练
1.下列关于圆的叙述正确的是( B ) A.圆是由圆心唯一确定的 B.圆是一条封闭的曲线 C.到定点的距离小于或等于定长的所有点组成圆 D.圆内任意一点到圆心的距离都相等
24.2圆的基本性质 第1课时 圆
九年级下
沪科版
学习目标
1.理解圆、弧、弦的概念;
重点
2.了解等圆、等弧、弓形的概念;
3.探索并掌握点和圆的位置关系.
重点
新课引入
观察下列生活中的图片,说说你还见过哪些这样的图形.
本节课我们将对圆进行初步的学习!
新知学习 一、圆的定义
如图,在平面内,线段OP绕着它固定的一个端点 О旋转一周,则另一个端点Р所形成的封闭曲线叫做 圆.固定的端点О叫做圆心 ,线段OP的长为 r 叫做半
半径是弦吗?
半圆、优弧及劣弧 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 大于半圆的弧(图中的 ACB,一般用三个字母表示)叫做优弧; 小于半圆的弧(图中的 BD,AB 或 AC )叫做劣弧.
《圆的基本性质》课件
E D A O B
• 什么时候圆周角是直角? 反过来呢? • 直角三角形斜边中线有 什么性质?反过来呢?
△ABC的三个顶点在半径为 2cm的圆上,BC=2 3 cm, 求∠A的度数。
O
D
A
圆中 多解 问题
半径为2.5的⊙O中,直径AB的不同侧有 定点C和动点P.已知BC :CA=4 : 3, (3)当点P运动到什么位置时,CQ取到 点P在上运动,过点C作CP的垂线,与PB 最大值?求此时CQ的长. 的延长线交于点O(l)当点P与点C关于AB (2)当点P运动到弧AB的中点时,求 对称时,求CQ的长; CQ的长;
如图,弦AB和CD交于点P,且CD是 ∠ACB的平分线 C 问题(1):你能找 问题(3):若点C在 O 出图中相等的圆周 P B 圆上上运动(不和A,A 角和相等的线段吗? B重合),在此运动 D 问题(2):图中有哪些 过程中,哪些线段是 相似的三角形?
不变的,哪些线段发 生了改变?
如图,弦AB和CD交于点P, 且CD是∠ACB的平分线 C 问题(4):若弦 O AB= , P 3 ∠BAD=30°, 在点C A D 运动的过程中,四边形 ADBC的最大面积为 多少?此时∠CAD等 于多少度?
C
的弧也相等
E O1 C A D O2
F
B
推论1 同弧或等弧所对的圆周角相等 同圆或等圆中,相等的圆周角所对的 思考: 弧相等。
1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。
B
C
E
O A D B
A
ODC源自F关于等积式的证明 • 如图,已知AB是⊙O的弦,半径 OP⊥AB,弦PD交AB于C, P • 求证:PA2=PC· PD A 经验: C
• 什么时候圆周角是直角? 反过来呢? • 直角三角形斜边中线有 什么性质?反过来呢?
△ABC的三个顶点在半径为 2cm的圆上,BC=2 3 cm, 求∠A的度数。
O
D
A
圆中 多解 问题
半径为2.5的⊙O中,直径AB的不同侧有 定点C和动点P.已知BC :CA=4 : 3, (3)当点P运动到什么位置时,CQ取到 点P在上运动,过点C作CP的垂线,与PB 最大值?求此时CQ的长. 的延长线交于点O(l)当点P与点C关于AB (2)当点P运动到弧AB的中点时,求 对称时,求CQ的长; CQ的长;
如图,弦AB和CD交于点P,且CD是 ∠ACB的平分线 C 问题(1):你能找 问题(3):若点C在 O 出图中相等的圆周 P B 圆上上运动(不和A,A 角和相等的线段吗? B重合),在此运动 D 问题(2):图中有哪些 过程中,哪些线段是 相似的三角形?
不变的,哪些线段发 生了改变?
如图,弦AB和CD交于点P, 且CD是∠ACB的平分线 C 问题(4):若弦 O AB= , P 3 ∠BAD=30°, 在点C A D 运动的过程中,四边形 ADBC的最大面积为 多少?此时∠CAD等 于多少度?
C
的弧也相等
E O1 C A D O2
F
B
推论1 同弧或等弧所对的圆周角相等 同圆或等圆中,相等的圆周角所对的 思考: 弧相等。
1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。
B
C
E
O A D B
A
ODC源自F关于等积式的证明 • 如图,已知AB是⊙O的弦,半径 OP⊥AB,弦PD交AB于C, P • 求证:PA2=PC· PD A 经验: C
24.2 圆的基本性质 第1课时 课件 沪科版数学九年级下册
重合
O1
O2
(1)
Ar
Br
(2)
能够重合的两个圆叫做等圆. 半径相等的两个圆是等圆. 反过来,同圆或等圆的半径相等.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
C
O
D A
B
(1)
O1
O2
(2)
在同圆或等圆中,能够重合的弧叫做等弧.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
24.2 圆的基本性质
第1课时
学习目标
1.理解圆、弧、弦等与圆有关的概念;并了解它们之间的区别与联系;
圆
2.探索并掌握点和圆的位置关系,及这三种位置关系对应的圆的半径与
及
点到圆心的距离之间的关系;
其 相
3.经历圆的概念的形成过程,通过合作、探究等方法,发展学生的数学
关
思考能力;
概
4.感受生活中的圆,感受圆中蕴含的数学美,感受数学的价值,培养审
思考 平面上的圆把平面分成了哪几部分?
圆外
圆内
圆上
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
观察点和圆的位置关系,能否对这六个点进行分类?
C A BD
点A、D在圆内 E
点B、E在圆上
F 点C、F在圆外
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考 设⊙O的半径为r,OA,OB,OC与r有怎样的数量关系?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
圆的定义
在一个平面内,线段OP绕它固定的一个端点O旋转一周,
圆 及 其
另一个端点P所形成的的图形叫做圆. 圆心为O、半径为r的圆可以看成:平面内到定点(圆心
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
C
锐角三角形的外心位于三角形内,直角三角形的外心位
于直角三角形斜边中点,钝角三角形的外心位于三角形外.
老师期望:
作三角形的外接圆是必备基本技能,定要熟练掌握.
结束寄语
•盛年不重来,一日难再晨, 及时宜自勉,岁月不待人.
请你证明你做得圆符合要求.
●A
证明:∵点O在AB的垂直平分线上, E
∴OA=OB. 同理,OB=OC. ∴OA=OB=OC.
●B
┏ ●O
●C
D
∴点A,B,C在以O为圆心的圆上.
这样的圆可 以作出几个?
G
∴⊙O就是所求作的圆,
为什么?.
议一议
三点定圆
• 定理 不在一条直线上的三个点确定一个圆.
2.作圆,使它过已知点A,B.你能作出几个这样的圆?
读一读
确定圆的条件
• 2. 过已知点A,B作圆,可以作无数个圆.
你准备如何(确定圆心,半径)作圆?
其圆心的分布有什么特点?与线
●O
段AB有什么关系?
●O
经过两点A,B的圆的圆心在线段AB ●A ●O ●B
的垂直平分线上.
●O
以线段AB的垂直平分线上的任意
的圆心在线段AB的垂直平分线上. 经过两点B,C的圆的圆心在线段AB的垂
●B
┏ ●O
●C
直平分线上.
经过三点A,B,C的圆的圆心应该这两条 垂直平分线的交点O的位置.
想一想
确定圆的条件
• 请你作圆,使它过已知点A,B,C(A,B,C三点不在同一条 直线上).
• 以O为圆心,OA(或OB,或OC)为半径,作⊙O即可.F
• 在上面的作图过程中.
∵直线DE和FG只有一个交点O,并
F ●A
且点O到A,B,C三个点的距离相等,E
∴经过点A,B,C三点可以作一 个圆,并且只能作一个圆.
●B
┏ ●O
●C
D
老师期望:
G
将这个结论及其证明作为一种模型对待.
做一做
三角形与圆的位置关系
• 因此,三角形的三个顶点确定一
个圆,这圆叫做三角形的外接圆.
A
这个三角形叫做圆的内接三角形
外. 接圆的圆心是三角形三边垂直 平分线的的交点,叫做三角形的外 B
●O C
心.
老师提示:
多边形的顶点与圆的位置关系称为接.
随堂练习
三角形与圆的位置关系
• 分别作出锐角三角形,直角三角形,钝角三角形的外 接圆,并说明与它们外心的位置情况
A
A
A
●O
●O
●O
B
┐
CB
一点为圆心,这点到A或B的距离为
半径作圆.
想一想
确,C(A,B,C三点不在同一条直 线上),你能作出几个这样的圆?
你准备如何(确定圆心,半径)作圆?
其圆心的位置有什么特点?与A,B,C有什么关系?
老师提示:
●A
能否转化为2的情况:经过两点A,B的圆
24.2 圆的基本性质
(第4课时)
读一读
确定圆的条件
• 类比确定直线的条件: • 经过一点可以作无数条直线;
●A
●A
●B
经过两点只能作一条直线.
猜一猜
确定圆的条件
• 1.想一想,经过一点可以作几个圆?经过两点,三点,…,呢?
●
●O
● ●A O O
●O
●O ●O
●
O
●A
●O ●B
●O
1.作圆,使它过已知点A.你能作出几个这样的圆?