第五章-相交线与平行线复习提纲
初一下册数学第五章知识点:相交线与平行线知识点总结
初一下册数学第五章知识点:相交线与平行线知识点总结学习是一个循序渐进的过程,需要同学们不断的学习和努力。
提供了初一下册数学第五章知识点,希望能帮助大家更好的复习所学的知识。
一、目标与要求
1.理解对顶角和邻补角的概念,能在图形中辨认;
2.掌握对顶角相等的性质和它的推证过程;
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点
在较复杂的图形中准确辨认对顶角和邻补角;
两条直线互相垂直的概念、性质和画法;
同位角、内错角、同旁内角的概念与识别。
三、难点
在较复杂的图形中准确辨认对顶角和邻补角;
对点到直线的距离的概念的理解;
对平行线本质属性的理解,用几何语言描述图形的性质;
能区分平行线的性质和判定,平行线的性质与判定的混合应用。
这篇
初一下册数学第五章知识点,希望对大家有所帮助!。
(完整版)相交线与平行线复习知识点总结
第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。
第5章 相交线与平行线 知识清单 2023--2024学年人教版七年级数学下册
第5章相交线与平行线5.1相交线5.1.1 相交线【知识点】(一)邻补角和对顶角1.只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.2.有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.3.对顶角形成的前提条件是两条直线相交;邻补角、对顶角成对出现;每个角的对顶角只有一个,而每个角的邻补角有两个.(一个角的补角可以有无数个)4.邻补角与补角有什么关系?邻补角是一种特殊的补角,邻补角是两个具有公共边且互补的角. 互为邻补角的两个角一定互补,但互补的两个角不一定是邻补角.5.性质:邻补角互补;对顶角相等.6.【易错】相等的两个角不一定是对顶角;两个角的和等于180°,这两个角不一定是邻补角.7.【拓展】若两个角互为邻补角,则它们的角平分线所夹的角为90°.8.【拓展】n条不同的直线相交于一点,会产生n(n-1)对对顶角.5.1.2 垂线【知识点】(一)垂线的定义、画法1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫另一条的垂线,它们的交点叫做垂足. 垂直用符号“⊥”表示,如:直线AB 与直线CD垂直,记作AB⊥CD.2.在平面内,过一点有且只有一条直线与已知直线垂直.(一条直线的垂线有无数条)3.【判断】(1)两条直线互相垂直,则所有的邻补角都相等;(2)根据两条直线相交所成的角都相等,也能判断两条直线垂直;(3)一条直线不可能与两条相交直线都垂直;(4)两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直;(5)两条直线相交有一组对顶角互补,那么这两条直线互相垂直.4.过一点画已知直线的垂线根据垂直的定义,直角的两边是互相垂直的,因此画一条直线的垂线就是作直角,一般有如下两种画法:(1)利用三角尺的两直角边.它的基本步骤是:一靠:将三角尺的一条边紧靠在已知直线AB上;二过:使三角尺的另一直角边经过已知点C;沿已知点所在的直角边画出的直线就是所画直线AB经过点C的垂线.(2)利用量角器,它的基本步骤是:让量角器的0°线紧靠在已知直线上,再让90°的射线经过已知点,即可画出已知直线过已知点的垂线.(在画线段的垂线时,有时需先把线段延长,再画线段所在直线的垂线,所以垂足可能在线段上,也可能在其延长线上)5.【当前超纲:涉及全等三角形、圆知识】过一点作已知直线AB的垂线【方法一】点在直线上或点在直线外均适用(1)任意取一点K,使点K和点C在AB的两旁(若点C在直线上,则跳过第一步)(2)以点C为圆心,CK长为半径作弧,交AB于点D和E(若点C在直线上,以任意半径作弧,只要保证C点为DE中点即可)(3)分别以点D和点E为圆心,大于1DE的长为半径作弧,两弧相交于点F2(4)作直线CF,CF即为直线AB的垂线(利用全等三角形SSS可以证明)(底层思想:作线段DE的中垂线)【方法二】仅适用点在直线外(1)在直线l上任取两点A,B(2)分别以点A,B为圆心,AC,BC长为半径作弧,两弧相交于点D;(3)作直线CD,CD即为直线AB的垂线(直线l是线段CD的中垂线)(二)垂线性质的应用1.连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成垂线段最短.2.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.(解决最短路线问题,往往需要运用“两点间线段最短”和“垂线段最短”的数学结论.)5.1.3 同位角、内错角、同旁内角【知识点】1.两条直线被第三条直线所截,没有公共顶点的两个角有同位角、内错角、同旁内角.2.同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角,“F”字型,“同旁同侧”(截线同侧,被截线的同方向)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两条直线之间,并且在第三条直线(截线)的两旁,则这样的一对角叫做内错角,“Z”字型,“之间两侧”(截线两侧,被截两线之间)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两条直线之间,并且在第三条直线(截线)的同旁,则这样的一对角叫做同旁内角,“C”字型,“之间同侧”(截线同侧,被截两线之间)3.判断“三线八角”中两个角的位置时,应先找出这两个角的公共边,公共边所在的直线就是截线,另外两条直线就是被截线.4.在复杂图形中,一个角的同位角,或内错角,或同旁内角可能不止一个.5.2 平行线及其判定5.2.1平行线【知识点】1.在同一平面内,两条不相交的直线叫做平行线. 平行线用符号“//”表示,如AB//CD,读作直线AB平行于直线CD.2.在同一平面内,两条直线的位置关系是相交或平行.3.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(有无数条直线与已知直线平行)4.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.在同一平面内,任意三条直线有四种不同的位置关系:(1)三条直线平行(2)三条直线交于一点(3)三条直线两两相交但不交于一点(4)只有两条直线平行5.2.2平行线的判定【知识点】1.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(同位角相等,两直线平行).2.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(内错角相等,两直线平行).3.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(同旁内角互补,两直线平行).4.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行(可以直接使用).5.证平行线的方法:找出要证两直线被第三条直线所截,看是否满足同位角相等或内错角相等或同旁内角互补即可.6.判定两条直线平行的5种方法:(1)定义法:在同一平面内,不相交的两条直线是平行线.(没有公共点的两条直线)(2)平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线平行.(3)同位角相等,两直线平行(4)内错角相等,两直线平行(5)同旁内角互补,两直线平行5.3 平行线的性质5.3.1平行线的性质【知识点】1.两条平行线被第三条直线所截,同位角相等.2.两条平行线被第三条直线所截,内错角相等.3.两条平行线被第三条直线所截,同旁内角互补.4.【链接240408】平行线间拐角模型5.3.2命题、定理、证明【知识点】1.判断一件事情的语句,叫做命题,命题由题设和结论两部分组成. 题设(条件)是已知事项,结论是由已知事项推出的事项.2.任何一个命题都可以写成“如果……那么……”(“若……则……”)的形式,正确的命题叫真命题,错误的命题叫假命题.3.一个命题是真命题,它的正确性是经过推理证实的,这样的真命题叫做定理.4.命题“对顶角相等”的题设是有两个角是对顶角,结论是这两个角相等.5.若a2=b2,则a=b. 这个命题是假命题.6.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明. 证明的根据可以是已知条件,也可以是定义、基本事实、定理等.7.判断一个命题是假命题,只要举出一个例子(反例),它符合命题的假设,但不满足结论就可以了.5.4 平移【知识点】1.在平面内,把一个图形整体沿某一方向移动,会得到一个新的图形,图形的这种移动,叫做平移.【平移概念中的“平”字指:不翻、不转、平稳过度,保持原来的姿势沿着一定方向运动】2.决定平移的因素有两个,即平移的方向和平移的距离.3.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(平移改变的是图形的位置)4.经过平移所得的图形与原来的图形的对应线段相等,对应角相等,对应点所连的线段平行(或在同一条直线上)且相等.5.在平移过程中,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各对对应点的线段平行(或在同一条直线上)且相等.6.平移三角形ABC,使A移动到点A′. 画出平移后的三角形A′B′C′.解:如图,连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,点B′就是点B 的对应点.类似地,作出点C的对应点C′. 连接A′B′,B′C′,A′C′,则三角形A′B′C′就是平移后的三角形.7.平移作图步骤总结:(1)分析题目要求,找出平移的方向和距离;(2)分析所作图形,找出构成图形的关键点;(3)沿平移方向,按平移的距离平移各个关键点;(作相关的平行(或在同一直线上)且相等的线段)(4)按照原来图形的连接方式连接所作的各个关键点,并标上字母,就可得到平移后的图形.8.对于一些不规则的图形可通过平移,将其转化为规则图形进行求解. 如:求不规则的线段的长度通过平移转化为规则线段的长度,不规则图形的面积转化为规则图形的面积和或差计算.。
人教版七年级数学下册—复习第5章相交线与平行线单元总结巩固复习
第五章 相交线与平行线一.知识框架 二.知识梳理 1.邻补角互补注意:(1)邻补角指明了位置关系,又指明了数量关系,“邻”指位置上的相邻;“补”指两个角的和为180°; (2)邻补角的条件:①有公共顶点;②其中一边公共;③另一组边互为反向延长线; (3)邻补角是成对的 2.对顶角相等注意: (1)定义:有一个公共顶点,且有一个角的两边分别是另一角两边的反向延长线(2)性质:对顶角相等3.垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离. 5.三线八角概念两条直线被第三条直线所截形成八个角,它们构成了同位角.内错角与同旁内角. 如图,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方 叫做同位角(位置相同);(一边共线)②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做内错角(位置在内且交错); ③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做同旁内角. 6.如何判别三线八角判别同位角.内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全.模型:同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型.ABC DO abl1 2 3 45 6 7 87.平行线的概念及公理一般地,在同一平面内,不相交的两条直线叫做平行线.记作“a∥b”平行公理:经过直线外一点,有且只有一条直线与这条直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相平行8.平行线的判定两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
七年级数学下册第五章相交线与平行线重点归纳笔记(带答案)
七年级数学下册第五章相交线与平行线重点归纳笔记单选题1、如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°答案:C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项不符合题意;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项不符合题意;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项符合题意;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项不符合题意;故选C.小提示:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.2、将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED//BC,则∠AEF的度数为( )A.145°B.155°C.165°D.170°答案:C分析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=∠DEF -∠2计算出∠CEF,即可求出∠AEF.解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°,∴∠AEF=180°-15°=165°.故选C.小提示:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.3、下列说法错误的是( )A.如果两条直线被第三条直线所截,那么内错角相等B.在同一平面内过一点有且仅有一条直线与已知直线垂直C.经过直线外一点有且只有一条直线与已知直线平行D.连接直线外一点与直线上各点的所有线段中,垂线段最短答案:A分析:分别利用平行线的性质以及垂线的性质分别判断得出答案.A、如果两条直线平行时,被第三条直线所截时,内错角才会是相等,故A选项错误,符合题意;B、在同一平面内过一点有且仅有一条直线与已知直线垂直,正确,不合题意;C、经过直线外一点有且只有一条直线与已知直线平行,正确,不合题意;D、联结直线外一点与直线上各点的所有线段中,垂线段最短,正确,不合题意;故选A.小提示:考查了平行公理及推论和垂线的性质,正确把握相关定义是解题关键.4、下列命题正确的是()A.绝对值等于本身的数是正数B.绝对值等于相反数的数是负数C.互为相反数的两个数的绝对值相等D.绝对值相等的两个数互为相反数答案:C分析:根据绝对值和相反数的概念分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:A、绝对值等于本身的数是非负数,原命题是假命题;B、绝对值等于相反数的数是非正数,原命题是假命题;C、互为相反数的两个数的绝对值相等,是真命题;D、绝对值相等的两个数相等或互为相反数,原命题是假命题;故选:C.小提示:此题借助绝对值和相反数的概念考查了命题与定理,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处,则∠ABC等于()A.130°B.120°C.110°D.100°答案:C分析:根据方位角和平行线性质求出∠ABE,再求出∠EBC即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.小提示:本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.6、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3答案:B试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D 选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.7、下列说法中,正确的是().A.两直线不相交则平行B.两直线不平行则相交C.若两线段平行,那么它们不相交D.两条线段不相交,那么它们平行答案:C分析:根据平面内两直线的位置关系:平行或者相交,逐一判断选项即可.A选项,在同一平面内,两直线不相交则平行,不正确,不符合题意;B选项,在同一平面内,两直线不平行则相交,不正确,不符合题意;C选项,若两线段平行,那么它们不相交,正确,符合题意;D选项,两条线段不相交,那么它们不一定平行,不正确,不符合题意,故选:C.小提示:本题主要考查平面内两直线的位置关系:平行或者相交,属于基础题,掌握平面内两直线的位置关系是解题关键.8、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5答案:A分析:根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.解:由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项为∠2>∠3,C选项为∠1=∠4+∠5,D选项为∠2>∠5.故选:A.小提示:本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.9、如图所示,l1∥l2,∠1=105°,∠2=140°,则∠3的度数为( )A.55°B.60°C.65°D.70°答案:C分析:首先过点A作AB∥l1,由l1∥l2,即可得AB∥l1∥l2,然后根据两直线平行,同旁内角互补,即可求得∠4与∠5的度数,又由平角的定义,即可求得∠3的度数.解:过点A作AB∥l1,∵l1∥l2,∴AB∥l1∥l2,∴∠1+∠4=180°,∠2+∠5=180°,∵∠1=105°,∠2=140 °,∴∠4=75°,∠5=40°,∵∠4+∠5+∠3=180°,∴∠3=65°.故选:C.小提示:本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.10、如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是()A.25°B.30°C.40°D.50°答案:D分析:根据对顶角相等可得∠BOD=75°,之后根据∠1=25°,即可求出∠2.解:由题可知∠BOD=∠AOC=75°,∵∠1=25°,∴∠2=∠BOD−∠1=75°−25°=50°.故选:D.小提示:本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.填空题11、如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为_____.答案:1分析:利用平移的性质得到BE=CF,再用EC=2BE=2得到BE的长,从而得到CF的长.解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.小提示:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.12、如图6,已知直线a∥b,∠BAC=90°,∠1=50°,则∠2=______.答案:40°##40度分析:根据平行线的性质可以得到∠3的度数,进一步计算即可求得∠2的度数.解:∵a∥b,∴∠1=∠3=50°,∵∠BAC=90°,∴∠2+∠3=90°,∴∠2=90°-∠3=40°,所以答案是:40°.小提示:本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.13、命题“如果x2=4,那么x=2”是__________命题(填“真”或“假”).答案:假分析:直接两边开平方求得x的值即可确定是真命题还是假命题;∵如果x2=4,那么x=±2,∴命题“如果x2=4,那么x=2”是假命题,故答案为假.小提示:本题考查了命题与定理的知识,解题的关键是能够确定x的值,属于基础题,难度不大.14、已知在同一个平面内,一个角的度数是70°,另一个角的两边分别与它的两边垂直,则另一个角的度数是___________.答案:70°或110°分析:由两个角的两边互相垂直,即可得这两个角互补或相等,又由其中一角度数,即可求另一角的度数.解:∵同一平面内的两个角的两边互相垂直(如图所示),∵这两个角互补或相等,∵其中一个角为70°,∵另一角的度数为:70°或110°.所以答案是:70°或110°.小提示:此题考查了垂线的意义,熟练运用画图分析以及分类讨论是此题的难点,也是解决此题的关键.15、命题“如果a+b=0,那么a、b互为相反数”的逆命题是______命题(填“真”或“假”).答案:真分析:交换命题的题设和结论后判断正误即可.解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0.所以逆命题是真命题.所以答案是:真.小提示:考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.解答题16、完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()答案:邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补分析:依据∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB,则∠3=∠ADE,再根据∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同旁内角互补,即可得出结论.∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)小提示:本题考查了平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.17、请根据题目中的逻辑关系填空:已知:如图,∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴CD∥EF(①)∵∠A=∠2∴②(③)∴AB∥CD∥EF.∴∠A= ④,∠C= ⑤,(⑥)∵∠AFE=∠EFC+∠AFC,∴⑦.(等量代换)答案:同旁内角互补两直线平行,AB∵CD,同位角相等两直线平行,∠AFE,∠EFC,两直线平行内错角相等,∠A=∠C+∠AFC分析:根据平行线的判定可判定CD∵EF,AB∵CD,则AB∵CD∵EF,再由平行线性质可得:∠C=∠CFE,∠A=∠AFE,最后等量代换即可求解.证明:∵∠1+∠AFE=180°∴CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2∴AB∵CD(同位角相等,两直线平行)∴AB∥CD∥EF.∴∠A=∠AFE,∠C=∠EFC(两直线平行内错角相等)∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC(等量代换).所以答案是:同旁内角互补两直线平行,AB∵CD,同位角相等两直线平行,∠AFE,∠EFC,两直线平行内错角相等,∠A=∠C+∠AFC.小提示:本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.18、如图,O是直线AB上一点,∠BOC=3∠AOC,OC平分∠AOD(1)求∠AOC的度数.(2)试猜想OD与AB的位置关系,并说明理由.答案:(1)∠AOC的度数为45°(2)OD⊥AB,理由见解析分析:(1)设∠AOC=x,根据题意得∠BOC=3x,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.(1)解:设∠AOC=x,∵∠BOC=3∠AOC,∴∠BOC=3x,∵直线AB,∴x+3x=180°,解得x=45°,∴∠AOC的度数为45°;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.小提示:此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.。
第五章-相交线与平行线复习提纲
第五章相交线与平行线复习提纲一.知识点回顾1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_______________ .2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为____________ 对顶角的性质______ .3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______ .垂线的性质:⑴过一点_______________ 条直线与已知直线垂直•⑵连接直线外一点与直线上各点的所在线段中,4.直线外一点到这条直线的垂线段的长度,叫做5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做______________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_____________________________________ .6.在同一平面内,不相交的两条直线互相_____________ •同一平面内的两条直线的位置关系只有_________ 与 _________ 种•7.平行公理:经过直线外一点,有且只有一条直线与这条直线推论:如果两条直线都与第三条直线平行,那么8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行•简单说成:________________________________________ ⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行•简单说成:⑶两条直线被第二条直线所截,如果同芳内角互补,那么这两条直线平行■简单说成:4. 如下图,0为直线AB 上一点,/ COB=26 30',则/仁 ____________5. 如下图,AB,CD 相交于 O,/ 1- / 2=85°,/ AOC _______ °10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等 .简单说成: .⑵两条平行直线被第三条直线所截,内错角相等.简单说成:⑶两条平行直线被第三条直线所截,同旁内角互补 .简单说成:二.典型题集萃(第4题) (第5题)6.已知/ AOB 与/ BOCS 为邻补角,OD 是/ AOB 勺平分线,0E 在/ BOC内,(一)、相交线、三线八角1. 平面内三条直线交点的个数有 ________________________________________2. 在同一平面内,过直线I 外的两点A , B 所作直线与直线I 的位置关系是3. 两条直线相交,最多有1个交点,三条直线两两相交,最多有 个交点,四条直线两两相交,最多有—个交点,n 条直线两两相交,最多有 ____________ 个交点。
人教版七年级数学下册第五章相交线与平行线全章知识点归纳及典型题目练习含复习资料
相交线与平行线全章知识点归纳及典型题目练习1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠CO E 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA∠=∠.交CA于G.求证1222.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥Q 90EFB ADB ∴∠=∠=o//EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠Q 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。
第五章相交线平行线基础知识复习提纲
第五章相交线平行线基础知识复习提纲班级 __________ 姓名__________ 一、相交线对顶角:如图1∠与 2∠,满足①有一个公共顶点②两边分别互为反向延长线.对顶角的性质: .邻补角:如图1∠ 与3∠, 满足①有一条公共边②另外一边互为反向延长线.邻补角的性质: . 例1:如图,直线AB 、CD 、EF 相交于点O ,则∠AOC 的 对顶角是____________,∠AOE 的邻补角是____________.垂直:当两条直线相交所成角度为 度时,我们称两条直线互相垂直.垂线的定义:两条直线互相垂直,其中一条直线叫做另一条直线的 ,他们的交点叫做 .垂线的性质:在 ,过一点 一条直线与已知直线垂直. 垂线段的性质:连接直线外一点与直线上各点的所有线段中, 最短. 简单的说: .例2:如图要从小河a 引水到村庄A ,请作出一最佳路线, 理由是: .点到直线的距离: 叫做点到直线的距离. 例3:下列作图能表示点A 到BC 的距离的是( )例4:读句画图:如图,直线CD 与直线AB 相交于点C ,根据下列语句画图: (1)过点P 作PQ ∥CD ,交AB 于点Q ; (2)过点P 作PR ⊥CD ,垂足为R ; (3)若∠DCB =130°,猜想∠PQC 是多少度?并说明理由.同位角:两条直线被第三条直线所截,在两条直线(AB 、CD )的 ,并且分别在第三条直线(EF )的 .比如下图中的∠1与∠5、 、 、 。
内错角:两条直线被第三条直线所截,在两条直线(AB 、CD ) ,并且分别在第三条直线(EF )的 .比如下图中的 、 .同旁内角:两条直线被第三条直线所截,在两条直线(AB 、CD ) ,并且分别在第三条直线(EF )的 .比如下图中的 、 . 例5:如图,描述关系不正确...的是( ) A.1∠与4∠是同位角 B.2∠与3∠是内错角 C.3∠与4∠是同旁内角 D.2∠与4∠是同旁内角 二、平行线定义: ,不相交的的两条直线叫平行线平行公理:经过 一点, 与已知直线平行. 平行公理的推论:如果 ,那么这两条直线也互相平行. 例6:下列说法正确的是( )A .经过一点有无数条直线与已知直线平行B .在同一平面内,有且只有一条直线与已知直线平行C .经过直线外一点,有且只有一条直线与已知直线平行D .以上说法都不正确 平行线的判定:1.两条直线被第三条直线所截,如果 ,那么这两条直线平行. 2.两条直线被第三条直线所截,如果 ,那么这两条直线平行. 3.两条直线被第三条直线所截,如果 互补,那么这两条直线平行. 例7:如图,不能推出a ∥b 的条件是( ) A 、∠1=∠3 B 、∠2=∠4C 、∠2=∠3D 、∠2+∠3=1800例8:已知如图,1ABC ADC ∠=∠=∠,35∠=∠,24∠∠=, 180ABC BCD ∠+∠=.将下列推理过程补充完整: (1)∵1ABC ∠=∠(已知),∴AD____,(_________________________________)(2)∵35∠=∠(已知),∴AB ∥_____,(__________________________________) (3)∵180ABC BCD ∠+∠=(已知),∴________,(_________________________)1 2 3 45 7 68 DCB AE F例9:如图:AE 平分∠DAC ,∠DAC=120°,∠C=60°,AE 与BC 平行吗?为什么?平行线的性质:1.两直线平行,同位角相等.如图,若a ∥b ,则 = ; = ; = ; = . 2.两直线平行,内错角相等.如图,若a ∥b ,则 = ; = . 3. 两直线平行,同旁内角互补.如图,若a ∥b ,则 + = 180°; + = 180°。
七年级下册数学 第五章 相交线与平行线复习提纲
第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
在同一平面内,不重合的两条直线只有两种位置关系:相交或平行。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
四、经典例题例1、如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。
例2、如图,将△ABC沿CB边向右平移得到△DFE,DE交AB于点G.已知∠A︰∠C︰∠ABC=1︰2︰3,AB=9cm,BF=5cm,AG=5cm,则图中阴影部分的面积为2cm .例3、下列命题是假命题的是 ( )。
七年级第五章相交线与平行线知识点整理
相交线与平行线知识点整理摘要:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果αβ∠∠与是对顶角,那么一定有αβ∠=∠;反之如果αβ∠=∠,那么αβ∠∠与不一定是对顶角,⑶如果αβ∠∠与互为邻补角,则一定有180αβ∠+∠=︒;反之如果180αβ∠+∠=︒,则αβ∠∠与不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
5.1相交线1、邻补角与对顶角注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离A BC DO记得时候应该结合图形进行记忆。
如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长。
第五章+相交线与平行线+章节复习-2022-2023学年七年级数学下册同步备课系列(人教版)
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
性质2:两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
性质3:两条平行线被第三条直线所截,同旁内角互补.
BC
∴∠EDC=∠5(________________________).
两直线平行,内错角相等
∴∠5=∠A(已知),
等量代换
∠A
∴∠EDC=______(__________).
同位角相等,两直线平行
∴DC//AB(_______________________).
同旁内角互补,两直线平行
∴∠5+∠ABC=180°(________________________),即∠5+∠2+∠3=180°
例5.如图,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,则
∠A=∠F,为什么?
解:∠AGB=∠DGF (对顶角相等)
∠AGB=∠EHF (已知)
∴∠DGF=∠EHF (等量代换)
∵BD//CE (同位角相等,两直线平行)
∴∠C=∠ABD (两直线平行,同位角相等)
∵∠C=∠D (已知)
过程叫做证明.
四、平移
1. 平移的定义:“三要素”
一个图形、一个方向、一个距离.
2. 平移的性质:“四特征”
• 图形的形状和大小不改变;
• 对应点所连的线段平行(或在一条直线上)且相等;
• 对应线段平行(或在一条直线上)且相等;
• 对应角相等.
四、平移
3.平移作图的一般步骤:
平移作图是平移性质的应用,利用平移可以得到许多美丽的图案,在具体作
相交线与平行线期末复习
角的计算
与角的边有关:
1.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,
那么这两个角是( C )
A.50°、130°
B.都是10°
C.50°、130°或10°、10°
D.以上都不对
2.已知在同一个平面内,一个角的度数是70°,另一个角的两边分别与它
的两边垂直,则另一个角的度数是__7_0_°___或__1_1_0.°
的个数是( C )
A.1个 B.2个 C.3个 D.4个
2.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为(C)
A.∠α+∠β+∠γ=180° B.∠α-∠β+∠γ=180° C.∠α+∠β-∠γ=180° D.∠α-∠β-∠γ=180°
3.如图,AB∥EF,∠D=90°,则αβ,γ的大小关系是(D)
地毯,则这块红地毯至少需要(B )
A.23平方米 B.90平方米 C.130平方米 D.120平方米
5.在一块长a米,宽102米的草坪上修筑宽2米的小
路(如图),则种草地面的面积是 _100_a___2_ ㎡.
6.如图,∠1=70°,直线a平移后得
到直线b,则∠2-∠3( C)
A.70° B.180° C.110° D.80°
A.2个 B.3个 C.4个 D.5个
5.如图所示的四个图形中,∠1和∠2是同位角的是( C )
A.②③ B.①②③
C.①②④
D.①④
6.如图,给出下列四个条件:① ∠BAC=∠DCA; ② ∠DAC=∠BCA;③ ∠ABD=∠CDB;④
∠ADB=∠CBD,其中能使 AD∥BC的条件是(C )
A.①② B.③④ C.②④ D.①③④
七年级下册第五章相交线与平行线复习PPT课件
D O
由 A O B : B O C 3 2 :1 3,
A 设 A O B 3 2 x, 则 B O C = 1 3 x 列 方 程 :32x+13x=900
由垂直先找到 9 0 0 的 角,再根据角之间 的关系求解。
x 20 BO C 13 20 260 又 OB OD
BO D 900
2020年10月2日
C O D 900 260 640
12
1. 平行线的概念: 在同一平面内,不相交的两条直线叫做平行线。
2. 两直线的位置关系: 在同一平面内,两直线的位置关系只有两
种:(1)相交; (2)平行。
3. 平行线的基本性质: (1) 平行公理(平行线的存在性和唯一性)
经过直线外一点,有且只有一条直线与已知直线平行。
段最短。简称:垂线段最短。
3.点到直线的距离: 从直线外一点到这条直线的垂线段的长度,
叫做点到直线的距离。
4.如遇到线段与线段,线段与射线,射线与射线,线段或射线与
直线垂直时,特指它们所在的直线互相垂直。
5.垂线是直线,垂线段特指一条线段是图形,点到直线距离是指
垂2线020段年1的0月长2日 度,是指一个数量,是有单位的。
2020年10月2日
7
1.垂线的定义: 两条直线相交,所构成的四个角中,有一个角 是 9 0 0 时,就说这两条直线互相垂直。其中一条直线叫做另一 条直线的垂线。它们的交点叫垂足。
2. 垂线的性质: (1)过一点有且只有一条直线与已知直线垂直。
性质(2): 直线外一点与直线上各点连结的所有线段中,垂线
A
2
D
1
O
3
C
4
B
2020年10月2日
七年级下册数学期中复习提纲及经典题型
七年级下册数学期中复习提纲第五章相交线与平行线5.1 相交线对顶角相等。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
过两点有且只有一条直线两点之间线段最短余角:两个角的和为90度,这两个角叫做互为余角。
补角:两个角的和为180度,这两个角叫做互为补角。
对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
同位角:在“三线八角”中,位置相同的角,就是同位角。
内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
5.2 平行线经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
5.3 平行线的性质同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题。
第六章实数平方根如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
第五章相交线与平行线知识点复习优秀版
习优秀版第(11)题E D C B A 1. APO B 2. A O P BABCDO123EFA B120° α 25°CDABC a b 1 23 一、相交线、垂直、“三线八角”1、对顶角,邻补角。
2、垂直→90°→垂直,垂线公理。
3、同位角,内错角,同旁内角。
例题讲解:例1、如图,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于__________。
例2、如图,当剪刀口∠AOB 增大21°时,∠COD 增大 。
例3、如图2,∠1=20°,AO ⊥CO ,点B 、O 、D 在同一直线上,则∠2的度数为___________。
例4 例6、例7 例4、如图,∠1=150 , ∠AOC =900,点B 、O 、D 在同一直线上,则∠2的度数为______________。
例5、若a ⊥b ,c ⊥d 则a 与c 的关系是__________。
例6、如图,∠ADE 和∠CED 是____________________。
例7、找出图中∠B 的内错角是:____________,∠B 的同位角:_________,∠A 的同旁内角:__________。
例8、如图,过P 点,画出OA 、OB 的垂线.例9、 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.10、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数.二、平行线判断与性质。
1、同一平面内两直线位置关系:平行、相交。
2、平行公理及推论。
3、平行线判断。
4、平行线性质。
例1、直线a 、b 、c 在同一平面内,那么它们就交点个数为:______________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E O DC BA 第五章 相交线与平行线复习提纲一.知识点回顾1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为_________.对顶角的性质_____. 3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种. 7. $8.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.9. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.10. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .11. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:______________________ . 二.典型题集萃 (一)、相交线、三线八角 …1、平面内三条直线交点的个数有 2.在同一平面内,过直线l 外的两点A ,B 所作直线与直线l 的位置关系是_________3.两条直线相交,最多有1个交点,三条直线两两相交,最多有___个交点,四条直线两两相交,最多有___个交点,n 条直线两两相交,最多有_________个交点。
4.如下图,O 为直线AB 上一点,∠COB=26°30′,则∠1=_____5.如下图, AB,CD 相交于O ,∠1-∠2=85°,∠AOC= ° ((第4题) (第5题)6.已知∠AOB 与∠BOC 互为邻补角,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE=21∠EOC ,∠DOE=72°,求∠EOC 的度数。
7.如图,与∠ 构成内错角的角有___个,同位角有___个,同旁内角有____个。
C BADbaCB(二)、对顶角、垂直及它们的性质1.如果直线b⊥a,c⊥a,那么b____c。
2.与一条已知直线垂直的直线有_____条。
村正南有一条公路MN,由A村到公路最近的路线是经过点A作AD⊥MN,垂足为点D,这种设计的理由是_________________;B村与A村相邻,两村村民来往的最短路线是线段AB的长,理由是_____________________。
4.如下图BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是_____,点A到BC的距离是____,A、B两点间的距离是________,5.如下图,若2∠3=3∠1,∠2=____°,∠3=____°,∠4=____°。
(第4题)(第5题)(第6题)~6.如上图,直线a⊥b,∠2=40°,∠1=_____7.已知OA⊥OC于点O,∠AOB: ∠AOC=2:3,那么∠BOC的度数是______________8.如图,已知OA⊥OC,OB⊥OD,且∠AOD=3∠BOC,求∠BOC的度数。
[9.已知直线AB和CD相交于点O,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°,求∠AOC和∠EOD的度数。
(三)、平行线的性质1.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,则∠ABC等于( )-°°°°2.如右图,一条公路修到湖边时,需拐弯绕湖而过,已知第一次拐弯的角是∠A,且∠A=120°,第二次拐弯的角是∠B,且∠B=150°,第三次拐弯的角是∠C,这时道路恰好和第一次拐弯之前的道路平行,则∠C等于()°°°°AB A,B,C的直线%}3.如图3,已知∠1+∠2=180°,∠1=∠3,EF与GH平行吗为什么4.AB,CD被直线EF所截,如果∠1=∠2,∠CNF=∠BME,那么AB右上图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠2+∠7=180°;③∠2+∠3=180°;④∠4=∠5.其中能判定a右右图若不添加辅助线,写出一个能判定EB条公路两次转弯后,和原来的方向相同。
第一次的右拐60°,第二次___(选填“左”“右”)拐____°E,F,D,G都在△ABC的边上,且EF知DF)DBDBE FD C B AE C BD 21B A C5.如图,将一副三角板如图放置,使点A 在DE 上,BC 如下图所示,已知AB αβγ下图,已知AB 下图,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB ,试说明CD 平分∠ACE.(第7题) (第8题)>(七)、平移、作图及相关计算1.将长度为8cm 的线段向南偏东方向平移了6cm ,所得线段的长度是_______2.将一个黑板擦在黑板上平移10cm ,下列说法中,错误的是( ) A.四个顶点都平移了10cmB.平移后与平移前两者位置发生变化,所占面积未发生变化C.对应点的连线是互相平行的线段D.水平平移距离为10cm 。
-3.如果将一条长为6cm 的线段AB 向左平移4cm 得到PQ ,则PQ=_______,AP=_______4.一个图形从一个位置平移到另个一位置,下列说法中,错误的是( ) A.图形上任意一点的移动方向都相同 B.图形上任意一点的移动距离都相等 C.图形上也可能存在不动点 D.图形上任意一对对应点连线的长度相等5. 如图①,长为b ,宽为a 的长方形草坪上有两条宽度都为c ,且互相垂直的小路,为求草坪的面积,小明进行了如图②的变换,那么草坪的面积可用式子表示为________7.已知钝角△ABC 中,∠BAC 为钝角。
;(1)画出点C 到AB 的垂线段;(2)过点A 画BC 的垂线;(3)量出点B 到AC 的距离。
8.造桥选址:如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A 到B 的路径AMNB 最短(假定河的两岸是平行的直线,桥要与河垂直。
)三、自我检测 —1、判断(1).如果两个角是邻补角,那么一个角是锐角,另一个角是钝角.( ) (2).平面内,一条直线不可能与两条相交直线都平行.( )(3).两条直线被第三条直线所截,内错角的对顶角一定相等.( ) (4).互为补角的两个角的角平分线互相垂直.( )(5).两条直线都与同一条直线相交,这两条直线必相交.( ) 2、.如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________. 3.设a 、b 、c 为平面上三条不同直线,a) {b)若//,//a b b c ,则a 与c 的位置关系是_________;c) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________; d) 若//a b ,b c ⊥,则a 与c 的位置关系是________.4.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.BA】5.如图,AOC∠与BOC∠是邻补角,OD、OE分别是AOC∠与BOC∠的平分线,试判断OD 与OE的位置关系,并说明理由.6.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE)过点C作CF∥AB,则B∠=∠____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE.7.⑴如图,已知∠1=∠2 求证:a∥b.⑵直线//a b,求证:12∠=∠.8.阅读理解并在括号内填注理由:如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,∴∠MEB=∠MFD()又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即∠MEP=∠______∴EP∥_____.()9、已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠PAG的大小.第9题第10题10、如图,已知ABC∆,AD BC⊥于D,E为AB上一点,EF BC⊥于F,//DG BA交CA于G.求证12∠=∠.。